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Robust Real-time Whole-Body Motion Retargeting
from Human to Humanoid

L. Penco1, B. Clement1, V. Modugno2,
E. Mingo Hoffman3, G. Nava3, D. Pucci3, Nikos G. Tsagarakis3, J.-B. Mouret1, S. Ivaldi1

Abstract— Transferring the motion from a human operator to
a humanoid robot is a crucial step to enable robots to learn from
and replicate human movements. The ability to retarget in real-
time whole-body motions that are challenging for the humanoid
balance is critical to enable human to humanoid teleoperation.
In this work, we design a retargeting framework that allows the
robot to replicate the motion of the human operator, acquired
by a wearable motion capture suit, while maintaining the
whole-body balance. We introduce some dynamic filter in the
retargeting to forbid dangerous motions that can make the robot
fall. We validate our approach through several experiments
on the iCub robot, which has a significantly different body
structure and size from the one of the human operator.

I. INTRODUCTION

Current approaches for motion generation and control in
humanoid robots essentially rely on optimizers and planners
that search for the optimal sequence of joint commands (typ-
ically joint torques or velocities) according to an objective
function that fulfills multiple tasks under several constraints
[1], [2]. For instance, it is common to have tracking tasks in
the objective function to specify that the end-effectors should
follow a desired trajectory [3]. Unfortunately, designing and
tuning the desired trajectories to realize complex tasks is
time-consuming and often requires the expert knowledge
of the controller/planner and of the humanoid kinemat-
ics/dynamics, which prevents an easy deployment of new
tasks [4].

An alternative is to follow an imitation approach: a human
performs a movement and the robot attempts to reproduce
it [5]. Kinesthetic teaching is now a mature approach for
robotic arms and industrial manipulators equipped with
torque sensing: it allows the human operator to show the
robot the desired trajectories by physically manipulating the
robot links. While this approach is relatively straightforward
for robotic arms, it can be hardly done for humanoids
to demonstrate whole-body movements (because it is not
possible to physically guide all the robot links at once while
ensuring the robot balance). Motion retargeting in this sense
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Fig. 1: Teleoperation of the iCub robot by an operator
equipped with the XSens motion capture suit.

represents the extension of the kinesthetic teaching concept
at a whole-body level.

However, real-time retargeting (or teleoperation) of en-
tire whole-body movements is challenging for humanoids.
First, direct mapping is not possible because of important
differences in kinematics (e.g., joint limits, limb lengths) and
dynamics (e.g., mass distribution, inertia); second, the robot
needs to maintain its balance while imitating the human, so
it has to trade-off between imitation and feasibility/safety.
Third, since we do not know a priori which motion is going
to be retargeted on the robot by the operator, it is not possible
to tune offline the controller and/or the retargeting parameters
for specific motions: rather, we need to provide a generic
solution that is able to handle a variety of motions.

Our requirement is to have a retargeting framework that
can handle a variety of whole-body motions shown by the
human operator, and generates appropriate robust motions
(not only feasible) for the humanoid robot. This work is
motivated by our application in the project AnDy [6], where
we would like to show directly to the humanoid human-like
movements that represents demonstrations of collaborative
policies. In this paper we present our current developments
to teleoperate the iCub robot (see Figure 1).

The paper is organized as follows. In Section II we
discuss the previous works on retargeting and teleoperation



of humanoids. In Sections III we present on overview of the
framework and in Section IV the corresponding retargeting
method. We discuss our teleoperation experiments in Section
V and outline the future works in Section VI.

II. RELATED WORK

Human-to-humanoids motion retargeting is an active re-
search field. The first approaches to the retargeting problem
consisted in attaching virtual markers to the robot and
applying the inverse kinematics to adjust the human reference
motion to fit the robot constraints [7],[8],[9].

Several balance controllers have been then proposed for
maintaining dynamic stability, since the mass distribution
often differs between the human and the robot [10], [9].
Dariush et al [10] considered only upper body movements
and used task space control with a separate ZMP-controller to
ensure balance. Yamane presented a control-based approach
to imitate human motions with a force-controlled robot,
generating online the joint trajectories under the assumptions
that the feet maintain ground contact [11].

Recently, multi-task whole-body QP controllers were ap-
plied to retargeting. Otani and Bouyarmane [12] retargeted
onto the HRP-4 robot in full-body dynamics simulation a bag
retrieval, a door opening and a box lifting task. Their method
relied on a-priori knowledge of the contact events and could
not be formulated on-line without an off-line pre-processing
of the recorded human motion sequence. Kanajar et al
[13] retargeted a challenging multi-contact motion (climbing
over an obstacle) with the Coman robot: they formulated
the tasks based on the observed contact states to generate
keyframes for the contact points, then optimized according
to the robot stability and mechanical constraints. A multi-
robot QP controller was also proposed to simulate human-
robot physical interaction by retargeting human motions on
a simulated human model [14]. In these works, however, QP
controllers were used to retarget motions offline and they
were specifically tuned to the known demonstrated motions.

The first online retargeting works were for the majority
related exclusively to upper body movements [15],[16],[17].
Frequently, the retargeting of the upper-body joints, which
is important for manipulation, is done independently from
the one of the legs, crucial for balancing and locomotion
[10],[18]. At KIST for example, they combined their upper
body teleoperation framework [16] with a real-time walking
pattern generator [19] to retarget also the walking [18].

In the last few years real-time retargeting of general
whole-body motions has been addressed. Koenemann [20]
has implemented a teleoperation of a physical robot (NAO)
considering also changes in the contact support in real-
time. His method is based on a simplified human model
and an approximate posture mapping followed by a posture
stabilization that allow transitions between double and single
stances phases. However, this stabilization is not a robust
solution for more complex humanoid robots that are more
challenging to maintain stable during the motion, such as the
iCub. Furthermore, the center of mass tracking formulation
and the simplified model do not take into account the

retargeting of torso movements - we will address this in our
approach in Section IV.

Ishiguro et al [21] proposed a secured system to tele-
operate the robot LIP safety constraints. In their work
they conducted some experiments involving dynamic upper-
body and leg motions onto the legged robot CHIDORI and
humanoid robot JAXON.

Off-line methods have been proposed as well to recon-
struct the human motion within the physical constraints
imposed by the retargeted subject kinematics and dynamics.
Ayusawa and Yoshida [22] proposed a simultaneous morph-
ing parameter identification and motion optimization. In [23]
Borno et al used instead a LQR-tree formulation to transfer
the motion between 3D realistic human models and adapting
it to the different body shapes.

Very efficient real-time methods that can reshape a dy-
namic motion demonstrated by a human and adapt the
dynamics of the human to the dynamics of the robot,
use an inverse dynamics control scheme with a quadratic
programming optimization solver [24], [25]. However, even
if they successfully handle dynamic overshoots due to large
angular momentum variation, they require a suitable walking
pattern generator to handle the linear momentum.

The model predictive control (MPC) instead, is able to deal
with great linear momentum variations by considering the
full temporal evolution of the system. The optimal trajectory
is then updated real-time with sensor measurements. MPC
enhances the expressivity capabilities of the motion generator
and gives more compliance to the robot that can react
to external unexpected contact events [26], [27]. The only
drawback of using an MPC approach in a teleoperation
framework is the underlying computational cost.

Our approach is based on an inverse kinematics (IK) con-
trol scheme with a QP optimization solver. In its simplicity,
it is able to guarantee the stability of the teleoperated robot
even when the retargeted movements challenge its balance.
We use a ZMP retargeting correction that provides robustness
and allows generality of the retargeted motion.

We evaluate our framework with several experiments with
the iCub humanoid robot being teleoperated by a human
operator (see also attached video). Differently from [17] that
teleoperated only the upperbody of the iCub, we control
its entire body and we are able to retarget whole-body
movements that are challenging for the balance (e.g., squat).

We formerly explored an alternative approach based on
torque control that allows physical interaction with the tele-
operated robot1. The framework was built upon the CoDyCo
torque controller [28] that computes the joint torques that
minimize the forces at the contacts [29]. The reason for
choosing a desired set of contact forces is that we can use the
contact wrench as a fictitious control input of the centroidal
momentum dynamics. Instantaneous values for forces are
computed so as to follow a desired trajectory of the center
of mass and to reduce the system’s angular momentum. The

1Some experiments with the torque controller are shown in this video:
https://youtu.be/-ib0n5shuxg

https://youtu.be/-ib0n5shuxg


Fig. 2: Teleoperation pipeline.

torque control allows a more flexible interaction with the
robot, in particular it enables direct physical interaction be-
tween the human and the robot that is teleoperated. However,
in the case of iCub, the absence of joint torque sensing2 and
saturation of force/torque sensors limit the torque control
loop, to the point that velocity control seems more appro-
priate for quasi-static movements. Moreover, the structure of
the torque controller ensures stability for complex motions at
the price of a reduced mimicry and a notable delay3. In this
paper we overcome these limits with a novel framework for
online motion retargeting with a velocity-based QP controller
that we describe in the next section.

III. FROM MOTION CAPTURE TO ROBOT MOTION

A. Motion capture

The first step for a motion retargeting technique is to
track the human pose. Recent developments in human motion
capture allow now high-fidelity and high-frequency tracking
data. Motion-capture is widely used nowadays in various
fields including physiotherapy, surveillance, computer graph-
ics and foremost in the cinema, using external cameras or
wearable sensors. For our experiments we used the Xsens
MVN system [31]. It is a wearable system consisting of 17
IMUs, providing a real-time estimation of the human posture.

Once the data is acquired from the motion capture sys-
tem, it can be mapped to feasible corresponding values for
the robot that are set as references for the multi-task QP
controller (see Fig. 2).

B. QP controller based on stack-of-tasks

We opted for a velocity-based QP controller based on
OpenSoT [32], an open-source library implementing QP
controllers based on the stack-of-tasks [33]. Nowadays, QP
controllers have become widespread thanks to their flexibility
and various formulations have been proposed in the litera-
ture, [34], [12], [35], which take into account joint velocity,
acceleration and torque control as well as contact forces. The
general form of QP-based controllers is:

min
x
|| Ax− b ||2W s.t. l ≤ Cx ≤ u (1)

where x are the controlled variables (e.g. joint velocities),
A is the Jacobian task matrix, b is the desired task to perform,

2Joint torques are estimated online with a model-based approach that
exploits the sensor readings from the force/torque sensors distributed on the
robot [30].

3These limitations can be observed in the video of the teleoperation with
the CoDyCo torque controller: https://youtu.be/-ib0n5shuxg

W is a positive definite weight matrix, C is the constraint
matrix and finally l (lower) and u (upper) are constraints.
QP controllers permit to handle various type of constraints
that, depending on the chosen formulation, may include robot
dynamics, friction cones, self-collision avoidance, joint limits
and many more (see for example [35]).

For the teleoperation this kind of controllers is appropriate
since they allow to take into account both Cartesian tasks
(body segment positions) and Joint space tasks while satis-
fying all the robot constraints. Moreover, the tasks can be
specified both in a hard and soft priority fashion.

IV. RETARGETING METHOD

The QP controller allows to define Cartesian tasks and
a postural task together with their subtasks. Since the iCub
body dimension is close to the one of a 5 years old child,
there is a great difference with the size of the human operator
wearing the xSens suit. For this reason, the direct retargeting
of Cartesian tasks that are expressed in the global frame
does not make any sense. We tried then to assign Cartesian
tasks related to the relative positions of the feet with respect
to the hips and of the hands with respect to the shoulders
as done in [20]. However, to do so we should accurately
measure the ratio between the lengths of the limbs of the
robot and of the human, and when starting the streaming
of the data from Xsens, the 3D Xsens skeleton initial body
orientation with respect the global frame should also match
precisely the one of the robot. Furthermore, the MVN Xsens
skeleton estimation is affected by some noise that makes
the global frame drift on the ground over time. Hence for
long teleoperations the retargeting of Cartesian tasks could
be compromised because of the change of orientation of the
global frame.

For these reasons, we opted for retargeting only the joint
angles and simplifying the initialization process for the
teleoperation together with the reliability. More specifically,
we do not retarget all the joint angles but we separate
the postural task in several subtasks: headsub (neck joints),
torsosub (torso joints), lArmsub (left arm joints), rArmsub

(right arm joints).
We additionally considered a Cartesian task for the ground

position of the CoM of the robot (comsub) and a Cartesian
task for the height and orientation of the floating base
(basesub). The global position of the feet is also taken into
consideration, in order to keep each foot in contact with the
ground whenever it is a support link (lFoot and/or rFoot).
The posture of the legs is retargeted indirectly through the
CoM and floating base tasks. Our resulting selected stack of
tasks for the teleoperation is the following:

stack = (lFoot+ rFoot+ headsub)/

(comsub + basesub + torsosub + lArmsub + rArmsub);

where Ta +Tb means that the tasks Ta and Tb are in a SOFT
(Weighted) Priority relation while Ta/Tb means the tasks Ta
and Tb are in a HARD (Null-Space) Priority relation.

In single support mode, the task of the foot that is not
the support one can be removed and a leg postural task can

https://youtu.be/-ib0n5shuxg


added for the lifted leg. However, in this paper we only show
experiments in double support.

As constraints, here we mostly care for joint limits and
joint velocity limits; the chosen formulation is based on joint
velocity.

A. Joint Angles Mapping

The Xsens model of the human has 66 DoFs that cor-
respond to 22 spherical joints. Except for the torso, the
other spherical joints can be easily visually assigned to the
corresponding ones of the iCub. Less intuitive is the mapping
between the individual joints composing the spherical one.
Through several tests on simulation we identified the right
mapping reported in Fig. 3. For the torso, we used an
approximate mapping. We considered the joints that are the
most involved in the motion that are jL4L3, j1T12, and
jT9T8, corresponding to the vertebrae going from the second
lowest lumbar vertebra (L4) to the thoracic vertebra at the
level of the breastbone (T8). The joints jT1C7 and jL5S1
(together with the other joints not reported in Fig. 3) have
been considered in some tests as well but their contribution
is negligible. Each joint value of the torso is obtained from
the sum of the corresponding rotations of the joints jL4L3,
j1T12, and jT9T8. Except for the yaw of the torso, this
mapping is just approximate since the actual angle between
the trunk and the hips is generally lower than the one given
by the sum of the three joints. However, we noticed that the
difference is not so relevant, that is reasonable if we consider
that most of the inclination of the torso is generated by the
hip movement.

After the identification of the human-iCub joints associ-
ation, we retarget the variation of the joint angles from the
starting posture

∆qi,H = qi,H − qstart,H (2)

qi,R = qstart,R + ∆qi,H (3)

where qstart,R, qstart,H and qi,R, qi,H are the human and
robot joint position vectors at the start and at each time step
respectively and ∆qi,H is the joint position deviation vector
from the starting posture of the human in each time step.

B. Center of Mass Tracking

To track the center of mass we present an improvement of
the method proposed in [12],[20], where the robot tracks a
normalized offset (denoted as o) between its support feet.
Let us consider the 2D ground projection of the human
CoM pCoM . The position pCoM with respect to an arbitrary
support foot (in our case the left foot) is projected onto the
line connecting the two feet. The result is then normalized
to get a value in between 0 and 1.

o =
(pCoM,H − pLFoot,H) · (pRFoot,H − pLFoot,H)

|| pRFoot,H − pLFoot,H ||2
(4)

So when the human is in a symmetric pose in double support
mode the offset has a value around 0.5 and when the human
stands on a single foot the offset is either 0 (left foot) or 1
(right foot). The robot 2D CoM ground projection is then

Fig. 3: Mapping between the Xsens joints and the iCub
joints.

reconstructed on the line connecting the two feet by means
of this offset value.

pCoM,R = pLFoot,R + o(pRFoot,R − pLFoot,R) (5)

To retarget also changes of the human CoM that are not
on the line connecting the two feet, we first measure the
maximum backward and forward CoM displacement of the
human and of the robot over their support polygon (with the
origin lying on the feet line), i.e. δCoMback,H

, δCoMforw,H

and δCoMback,R
, δCoMforw,R

respectively. Then, we retar-
get the human CoM displacement ∆CoM,H (comprised
within the minimum value −δCoMback,H

and maximum value
δCoMforw,H

) onto the robot, by computing the offset

o′ =
(∆CoM,H − (−δCoMback,H

))

(δCoMforw,H
− (−δCoMback,H

))
(6)

from which we get the corresponding robot CoM displace-
ment

∆CoM,R = o′(δCoMforw,R
+ δCoMback,R

)− δCoMback,R
(7)

then we apply this displacement in the orthogonal direction
of the line connecting the two feet of the robot.

C. Controlling the Floating Base

We can consider the pelvis as the floating base for the
human. To control the height of the floating base of the robot



Fig. 4: Determination of the normalized offset from the
ground projection of the CoM pCoM,H and the feet positions
of the human.

we consider the deviation of the height of the human pelvis
∆basei,H from the starting value over time

∆basei,H = basei,H − basestart,H (8)

In order to follow the human motion, we expect the corre-
sponding deviation of the floating base of the robot ∆basei,R
to be proportional to the one of the human

∆basei,H = α∆basei,R (9)

α =
hbase,R
hbase,H

(10)

where α is the ratio between the height of the floating base
of the robot and of the pelvis of the human when in N-pose4.
Then we can calculate the height of the robot base at each
time step as:

basei,R = basestart,R + ∆basei,R. (11)

We also retarget the change of orientation of the floating
base in a similar way, by computing the roll, pitch and yaw
from the quaternion information given by the motion capture
system.

D. ZMP Retargeting Correction

During whole body teleoperation of humanoid robots,
disastrous crashes may occur if the desired CoM trajectories
recorded from the human do not ensure the balance of the
controlled robot when retargeted.

To this scope, we propose a QP-based “preprocessor” that
adjusts in real-time the desired commanded CoM to satisfy
constraints that represent a condition for dynamic balance.
In order to achieve a stable CoM trajectory we employ the
linear inverted pendulum model (LIPM) in combination with
the Zero Moment Point (ZMP) criterion.

The ZMP is represented with a point on the ground plane
where the tipping moments, generated by the gravity and the
inertial forces, are equal to zero. A humanoid robot keeps its
balance if the ZMP is contained inside the support polygon
of the robot.

4N pose is a resting pose, where the human stands with lowered arms
close to its body.

Through the LIPM model it is possible to establish a
simple relation between the ZMP and the CoM dynamics:

p̈CoM =
g

h
(pCoM − pZMP ) (12)

where g represents the gravity acceleration, h is the height
of the inverted pendulum and pCoM = (xCoM , yCoM )T ,
pZMP = (xZMP , yZMP )T represent respectively the CoM
and ZMP positions of the LIPM on the horizontal plane.
By employing the equation (12) is possible to cast a QP
problem to obtain an optimal correction of the desired CoM
that satisfies the balance condition on the humanoid

min
pZMP

(ṗdesCoM − ṗCoM )TR (ṗdesCoM − ṗCoM )

s.t. ṗCoM = ṗt−1CoM + Tg
ht−1 (pCoM − pZMP )
lbSP < pZMP < ubSP

(13)

where ṗdesCoM is the desired CoM velocity, T is the sampling
time, ṗt−1CoM , h

t−1 are respectively the last CoM velocity and
the last CoM height measured from the robot and lbSP and
ubSP are the lower and upper bound of the support polygon
of the robot. Updating the height of the LIPM at each time
step with the actual robot CoM z position provides a better
model to estimate the ZMP position and consequently, a
more accurate correction.

V. EXPERIMENTS

We set up two experiments to validate our approach.
First, through dynamics simulations on the simulated robot
in Gazebo, we show how the ZMP retargeting correction
is essential to retarget a motion that is dynamically stable
onto the robot. Then, we tested our framework by tele-
operating the real robot iCub in real-time. Videos of our
experiments with the real robot can be seen at https://
youtu.be/CjLQu_6ifAE and https://youtu.be/
iZVAacyvYhM.

Simulated robot – We selected three kind of motions to
show the efficacy of our method: squat motion, hip roll
exaggerate motion and a grasping motion involving some
torso and leg movements (see Figure 7). Figure 5 shows
how the ZMP associated to the retargeted motion without
the correction lies outside the support polygon, making the
robot fall inevitably (that is why we show this in simulation).
This is due both to mechanical limitations of the robot,
which cannot achieve the same CoM displacement given the
retargeted joint values (that might go beyond the robot joint
limits), and to the generation of some momentum different
from the human one that makes the desired robot CoM
trajectory unstable. Hence, the ZMP trajectory is corrected
in real-time to stay inside the support polygon and the CoM
trajectory is modified accordingly (see Figure 6).

Real robot – We teleoperated the robot trying to move
all its links to show the effectiveness of our framework.
During the teleoperation the ZMP position of the robot
always lies inside the support polygon as expected (see
Figure 8). The robot joint trajectories follow the retargeted
values guaranteeing the mimicry of the human motion (see
Figure 9). Even though the legs joint angles are not taken into

https://youtu.be/CjLQu_6ifAE
https://youtu.be/CjLQu_6ifAE
https://youtu.be/iZVAacyvYhM
https://youtu.be/iZVAacyvYhM


Fig. 5: ZMP position of the simulated robot without (red)
and with (blue) the stability correction during the teleoper-
ation while performing a squat motion (up-left), a hip roll
exaggerate motion (up-right), a grasping motion involving
some torso and leg movements (down).

Fig. 6: CoM desired (red) and stabilized (blue) position of the
simulated robot during the teleoperation while performing
a squat motion (up-left), a hip roll exaggerate motion (up-
right), a grasping motion involving some torso and leg
movements (down).

Fig. 7: Snapshots of the teleoperated simulated robot and
of the Xsens skeleton while performing a squat motion, a
hip roll exaggerate motion and a grasping motion during the
teleoperation.

Fig. 8: iCub: CoM (left) and ZMP (right) position trajectories
during the teleoperation experiment.

consideration in the stack, the retargeting of the height and of
the orientation of the floating base makes the resulting legs
joint trajectories close to the human ones. This framework
allows to teleoperate the robot for a potentially unlimited
amount of time. Even if the human performs some motions
that are very challenging for the balance, the ZMP constraints
introduced by our framework make the robot maintain its
balance. The video attachment at https://youtu.be/
iZVAacyvYhM shows that even if the operator is falling,
the robot does not and keeps its balance.

VI. CONCLUSIONS

We proposed a framework to teleoperate the iCub robot,
based on an inverse kinematics (IK) control scheme with
a QP optimization solver. It allows a robust real-time re-
targeting of generic whole-body motions. The generality is
obtained thanks to the mapping of all the main human joints:
not only the arms and the legs, but also the torso and the
head. The CoM as well is retargeted in a way that does
not restrict the range of possible retargeted robot motions.
The robustness is given by a ZMP correction approach
that guarantees the stability of the retargeted trajectory in
double support. In the future we will overcome the double
support limitation of this paper, integrate single support and
teleoperation with locomotion.
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