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Abstract—In the context of Connected and Smart Cities, the
need to predict short term traffic conditions has led to the
development of a large variety of forecasting algorithms. In spite
of various research efforts, there is however still no clear view
of the requirements involved in network-wide traffic forecasting.

In this paper, we study the ability of several state-of-the-art
methods to forecast the traffic flow at each road segment. Some
of the multivariate methods use the information of all sensors to
predict traffic at a specific location, whereas some others rely on
the selection of a suitable subset. In addition to classical methods,
we also study the advantage of learning this subset by using a
new variable selection algorithm based on time series graphical
models and information theory. This method has already been
successfully used in natural science applications with similar
goals, but not in the traffic community.

A contribution is to evaluate all these methods on two real-
world datasets with different characteristics and to compare the
forecasting ability of each method in both contexts. The first
dataset describes the traffic flow in the city center of Lyon
(France), which exhibits complex patterns due to the network
structure and urban traffic dynamics. The second dataset de-
scribes inter-urban freeway traffic on the outskirts of the french
city of Marseille.

Experimental results validate the need for variable selection
mechanisms and illustrate the complementarity of forecasting
algorithms depending on the type of road and the forecasting
horizon.

Index Terms—Traffic Forecasting, Time Series, Variable Selec-
tion, k-NN, SVR, Lasso, VAR, ARIMA.

I. INTRODUCTION AND CONTEXT

The growing need for short-term forecasting of traffic
conditions has led to the development of a large variety of
forecasting algorithms. Real-time Intelligent Transportation
Systems and Connected and Smart Cities are the driving force
behind this renewal of interest. To measure traffic conditions,
sensors are embedded in roads and measure traffic flow (i.e.,
number of vehicles per time unit) and density (i.e., number
of vehicles per length unit). Collected data are aggregated
with respect to fixed-length time steps to obtain time series.
To forecast traffic conditions, the goal is to estimate these
measures at time £+ h based on historical data, i.e., time-series
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up to time t. In our case, we focus on short-term forecasting
of traffic flow measures, with a prediction horizon A < 30
minutes.

Road traffic exhibits several features that are common
among many complex systems: self-organization, emergence
of transient space-time patterns based on local and global feed-
back loops, hardness of predictability, etc. Unlike some other
complex systems, however, road networks are characterized
by a huge variability at small time scales [1] that prevents
efficient forecasting at small to medium time scales [2]. If
traffic forecasting is difficult for freeway traffic (which has
attracted the majority of current scientific work), it is even
more difficult for city center traffic. In this latter context,
the sensitivity to highly probable small non predictable events
leads to an even higher variability [3]. Moreover, city centers
are often equipped with a high number of sensors and, in this
case, forecasting is subject to the curse of dimensionality that
dilutes important information into a small dynamic subset of
sensors. So, in this particular context, data availability creates
new challenges. While in theory only a small subset of sensors
is necessary to learn a reliable predictor, their identification is
an essential step of the process. As pointed out in [4], [5], an
analysis of space-time dependencies is necessary to identify
critical sensors and reduce the dimensionality of the problem.

Our application is also challenging for forecasting algo-
rithms which need a lot of training data to perform well.
This is due to the fact that even if a large history of data
is available (e.g., several years), it may be meaningless to use
the whole dataset to train the model because the road network
is frequently modified: speed limits, one-way street directions,
road signaling, etc, are often changed. Therefore, models are
often trained on a recent data history (a few weeks) in order to
keep the underlying phenomenon as stable in time as possible.

The literature in short-term traffic forecasting is extensive
[6] and involves non-parametric models [7], [8], Kalman
filtering, auto regressive integrated moving average models,
wavelets [9], fuzzy logic [10], traditional or deep neural net-
works [11], [12], or Bayesian models [13]. Nevertheless, few
contributions analyze whether the non linear characteristics of
urban traffic allow for a relevant application of these methods
to multivariate traffic flow time series. [14] investigated the



deterministic properties of freeway traffic flow using a non
linear time series analysis technique and showed that these
data exhibit strong chaotic properties. [15] used a dynamic
Bayesian network to identify conditional independences and
infer some causal drives embedded in traffic flow multivariate
series.

More recently, Runge et al. [16]-[18] introduced a method
that takes into account the specific characteristics of high-
dimensional dynamical systems (time-delays, non-linearity,
and strong autocorrelations) in the context of climate and
geophysical data. The idea is to extract important regions
supposed to participate in the propagation of perturbations
through the system. This is done with a two-step method.
First, a graphical model based on decomposed transfer entropy
is built to detect causal interaction between variables of the
system, as well as assert time delays between causes and
effects. This leads to a causal time series graph structure
that describes conditional dependencies between components
at different time lags. In a second step, the strength of each
interaction in this graph is evaluated with partial correlation
and a regression measure. This reduces detection biases when
strong autocorrelations are present, and allows the ranking of
pairwise associations between sensors based on their causal
strength. Applied to climate data, the method improves fore-
casting performance.

A question addressed in this paper is the applicability of
this causality detection approach to improve urban traffic
forecasting. The main challenges are coming from specificities
of urban traffic. First, the number of sensors is much higher for
urban traffic than for previous applications of this approach,
and the construction of the graphical model may become
computationally challenging. Also, urban traffic systems are
more sensitive to perturbations than climate systems. For
example, cascading failures (leading to traffic jams) spread
through the system in minutes, rather than in months or years
in climate data. Furthermore, in our case, we have a sampling
frequency of 6 minutes for the Lyon dataset, which is much
slower than some fixed forced regimes present in the system
(e.g., less than a minute for some traffic lights). Finally, causal
dependencies change through time: in fluid traffic a sensor
causally influences downstream sensors, whereas in a traffic
jam (that may coalesce in a few minutes) causality is reversed
as the jam wave-front travels backwards.

Contributions and organization of the paper

In this paper, we evaluate several state of the art methods for
forecasting traffic conditions in two different urban datasets,
and we investigate whether causal information can readily
improve urban traffic forecasting. Throughout the paper, when
referring to causality, we consider a definition similar to the
idea of Granger Causality [19] for more than two variables:
we call causality a dependency between two time series, where
the past of the first series provides a unique information which
is useful for predicting the future of the second series. The
term “unique” means that this information is not present in
the rest of the dataset. However, it should be emphasized that

the presence of such a relationship in the data does not prove
the existence of a causal relation in the real world.

Section II describes a set of ten forecasting methods.
We consider three kinds of forecasting methods, i.e., linear
approaches, support vector regression, and nearest neighbor
approaches. For each kind of approach, we consider univariate
and multivariate settings (to evaluate the interest of exploiting
information coming from other sensors), and we consider
variable selection settings (to evaluate the interest of exploiting
causality information).

In Section III, we experimentally compare these ten methods
on two real-world datasets with different characteristics: the
first one comes from sensors in the city center of Lyon whereas
the second one comes from sensors on inter-urban freeways
in the city of Marseille. Measures have been aggregated with
a time step of 6 minutes for the Lyon dataset and 2 minutes
for the Marseille dataset.

When forecasting traffic flow in Lyon city center, we show
that the multivariate nearest neighbor approach outperforms
other methods, and that causality information does not signif-
icantly improve the multivariate nearest neighbor approach.

When forecasting on Marseille urban freeway, we show that
classic parametric methods (Lasso, SVR) give the best fore-
casts. The embedded variable selection mechanism of Lasso
allows for a robust performance even when the forecasting
horizon increases.

II. DESCRIPTION OF FORECASTING METHODS

Sensors are denoted 1, ..., xy, the variable that gives the
state of x; at time step ¢ is denoted X;(t), and its realization
is denoted x;(¢). Given a current time step t, a time horizon
h, and a history length d, the goal is to produce at time ¢ a
forecast &;(t + h) of x;(t + h) given the realizations of all
variables between time steps t —d + 1 and ¢.

In order to ascertain the predictive power of a wide range of
forecasting schemes, we describe ten methods in this section.
We consider three kinds of approaches: state-of-the-art linear
and time series approaches (described in Section II-A), support
vector regression approaches (described in Section II-B), and
nearest neighbor approaches (described in Section II-C). For
each kind of approach, we consider a univariate method
(that only uses the past of x; to compute Z;(t + h)), and
a multivariate method (that uses the past of all sensors to
compute #;(t + h)). For each kind of approach, we also
consider methods that select a spatio-temporal environment,
for each sensor, and that use this selected environment to
compute #;(t + h). We consider two different approaches
for selecting a spatio-temporal environment: a Lasso-based
approach (described in Section II-D), and a Tigramite-based
approach (described in Section II-E).

A. Linear and Time Series Methods

e ARIMA [6] is a classical univariate time series model. It
has been widely used in traffic flow forecasting literature.
The "AR" term is the autoregressive part, meaning that the
future of the time series is regressed on its prior values. The



"I" for integrated indicates that we can predict the difference
between consecutive values rather than the values themselves.
The "MA" part (moving average) means that the current error
value is a linear combination of past errors.

The ARIMA model has 3 hyperparameters: p the autore-
gressive order, g the moving-average order and d the degree
of differencing. Let us define the difference operator A for a
time series:

AXt)=X@{#t)—X({t—-1)

We note A4z (t) the difference of degree d of the time series.
It is obtained by applying d times the difference operator to the
series. The goal of this operation is to obtain a stationary time
series. The ARIMA (p, d, q) model is defined by the following
equation:
P q
AMX(t)=¢o+ Y s AX({E—i)+ D biei+e (1)
i=1 i=1
where ¢; is white noise. A unique model is learned to forecast
every time horizon h: when h = 1, we directly produce a
forecast from past observations; when h > 1, we compute a
forecast for h = 1 which is then used as a new observation
to recursively produce forecasts for higher horizons. The
setting of hyperparameters p, d, q is determined using Akaike
information criterion (AIC) [20].

e VAR (vector autogression) [21] is a linear multiple regression
on the past values of all sensors: a value observed on a
specific sensor may be influenced by those observed in the
past of all other sensors. The model has one hyperparameter
(the autoregressive order p) which is determined using AIC.
As for ARIMA, a unique model is used to produce forecasts
recursively for all horizons starting with A = 1.

B. Support Vector Regression

SVR (Support Vector Regression) [22] is an adaptation of
SVM (Support Vector Machine) for regression problems. They
are kernel methods that project each example x into a new
representation space ¢(x), in which it will be possible to learn
a linear model with good accuracy. In our experiments, we
tried the linear kernel and the Radial basis function (RBF)
kernel. We observed similar performances for both, and for
readability we only present the results with the RBF kernel.
The model has 3 parameters: « is the parameter of the kernel,
C and € are two parameters of SVR controlling the complexity
of the regression model and its number of support vectors. The
parameters are learned by grid search, with logarithmic ranges
centered around initialization values described in [23].

e SVR-RBF-uni denotes a univariate SVR model with an RBF
kernel. A model is learned for each sensor and forecasting
horizon. As for the ARIMA model, its inputs are the d last
observations of this particular sensor.

e SVR-RBF-multi denotes a multivariate SVR model with
an RBF kernel. A model is learned for each sensor and
forecasting horizon. As for the VAR model, its inputs are the
d last observations of all the sensors.

C. Nearest Neighbor Approaches

Nearest neighbor (K -NN) forecasting [7] is based on the
idea that the future behaves like the past. It uses a description
of the current state of the system, where a system is either a
single sensor in a univariate set-up, or a set of sensors in a
multivariate set-up. The idea is to search similar past states
of the system in the history of observations, then combine
the future of these states (which has been observed) in order
to predict the future of the current state (which has not yet
happened).

e K-NN-uni denotes the univariate version of K-NN. The
state of sensor x; at time step t is described by its d last
values. To measure the similarity of the state of sensor z; at
two different time steps t; and ¢35, we compute the Euclidean
distance between its states at times ¢; and to. The predicted
value at time step ¢ + h is the average of the values observed
at time horizon h in the future of the k-nearest states of x; in
its past values.

o K-NN-multi denotes an extension of K -NN-uni to the mul-
tivariate setting. In this case, x(t) = (1(¢),...,zn(t)) is the
value of the multivariate time series. The state vector s(t) is
the matrix composed of the N state vectors associated with
each sensor:

s(t) = (s1(t),...,sn(t))

As for the univariate case, let h be the time horizon, and

t1,...,tp € [0,t — h] be the k time steps such that
s(t1),...,s(tg) are the k nearest states of s(¢). The predicted
vector at time step ¢t + h is
X(t+h)=(Z1(t+h),...,&n({+h))
with
1 F
i(t+h) = z_: i(t; + h). (2)

For all K-NN approaches, the value of the hyperparameter k is
determined with cross-validation. K-NN-uni and K-NN-multi
have another parameter d (the length of a sequence) which is
also learned with cross-validation.

D. Selection with Lasso

In our multivariate methods (VAR, SVR-RBF-multi, and K-
NN-multi), the same environment (composed of all sensors) is
used to predict the value of each sensor: these methods assume
that a sensor in the network may be impacted by every other
sensor (as well as by its own past).

A goal of this paper is to study the interest of selecting
more relevant environments. In this case, we assume that the
state of a sensor at time ¢ + h is not impacted by the states of
every other sensor at all time steps in [t — d, t], but only by
a subset of these variables. Selecting the most relevant subset
of variables for each sensor is challenging since there is an
exponential number of possible subsets: it is not possible to



evaluate each of these subsets in order to select the one that
leads to the best prediction.

Lasso [4] is a linear multiple regression on past values
of all sensors with an ¢; regularization term. Its coefficients
shrink to zero for variables that are not useful for prediction.
This method therefore allows predictions with an embedded
variable selection mechanism. To predict the future of a sensor
y at horizon h, a regression is done on the past d values of
all sensors:

d

[

Y(t+h) =)

i=1j=0

Bij Xi(t —j) 3)

Let 5 be the flatten parameter vector. Its value is optimized
by the following minimization:

T—h
mﬁmQ(Til_h) 37 (@t +h) —y(t+ 1)+ N8l

where 7' is the number of samples in the training set. In this
approach, a different model is learned for every sensor x;
and horizon h. The value of the regularization parameter A
is learned by cross-validation.

Because this selection procedure is already embedded in a
regression model, we can already produce forecasts with this
model.

e Lasso denotes the prediction produced with this regression
model.

We can also use this selection procedure with other fore-
casting methods: Lasso is used to select a subset of relevant
variables (those with nonzero coefficients after the Lasso
regression), and this subset of relevant variables is used to
build a model with another forecatsing method.

e {-NN-lasso denotes a K-NN multivariate prediction scheme
with such a lasso-based variable selection procedure. For each
sensor 7 and each time horizon h, Lasso is used to select a
subset of relevant variables (with nonzero coefficients), that
we denote P(i,h) C {X;(t—7):j € [1,N],7 € [0,d]}.
Given this subset, the state s”(¢) of the system at time ¢ used
to predict z;(t + h) is the vector of the realizations of the
variables in P (i, h). We can then search for the k-nearest states
as for K-NN-multi and obtain the prediction Z;(¢ + h) using
equation (2).

e SVR-RBF-Lasso denotes a multivariate SVR model with
an RBF kernel. A model is learned for each sensor and
forecasting horizon. The difference with SVR-RBF-multi is the
Lasso processing step. As for the K-NN-lasso model, its inputs
are the variables with nonzero coefficients P(i, h).

E. Selection with Tigramite

TiGraMITe [24] is a time series analysis method for causal
discovery. This algorithm can quantify information transfer
along causal pathways in complex systems: it restricts its
results to optimal causal drivers and excludes the effects

of common drivers and indirect influences. Hence, it seems
well suited for urban traffic forecasting. More precisely, given
a training dataset, TiGraMITe builds a causal dependence
graphical model linking sensor states at different time delays:
An edge X,(t —7) — X;(t) models the fact that the state
of x; has a causal influence on the state of x; with a time
delay 7'. A threshold parameter controls the density of the
learned graph: depending on its value, we obtain graphs with
different densities. We note G = {¢1, ..., gm } the set of these
graphs with m the number of graphs. For a given graph g;,
P(i, h) is derived from the set of causal parents of X;(t+ h)
in g; as illustrated in Fig. 1. A key point is to choose the
graph g; € G used to define causal parents. The best graph
is chosen by performing the prediction for each graph of G
on a validation set, and keeping the one leading to the best
prediction on this set. As for all the evaluated methods, it is
evaluated on separated training and validation sets (see III-D).

e K-NN-tigSB denotes a {-NN multivariate prediction scheme
with a variable selection procedure where P(i, h) is computed
with the causal algorithm (see Fig. 1). This set of causal
parents determines our description of the state of the system
(used to select the nearest neighbors), and it depends on the
sensor z; for which we want to perform the prediction and
on the time horizon h of this prediction. The SB part of the
name K-NN-tigSB means Single Best because we select only
the best causal graph.

We did not use TiGraMITe for variable selection of the
linear regression model, because Lasso is the classical and
well-established approach for this type of model. We also
did not use TiGraMITe for the SVR approach, because
the time and computing resources needed to learn an SVR
model for each possible graph g; is not really suited to our
application, where models are retrained frequently. Further-
more, we performed the experiments with K -NN first, showing
that TIGraMITe was not able to learn a pertinent subset of
variables. We describe this in section III.

III. EXPERIMENTAL COMPARISON

We compare the forecasting methods introduced in the
previous section on two real datasets coming from two French
conurbations: Lyon and Marseille.

A. Missing Values

Loop sensors are not very reliable, leading to datasets with
a lot of missing data, both for Lyon and Marseille. When
there were less than 3 successive missing values, we applied
imputation with a simple linear interpolation. For larger gaps
of missing values, we could have used the historical median or
mean value, but we would have then compared our forecasting
methods on data contaminated by our imputation method
instead of raw data. It would therefore have been difficult to
quantify the effect of such a contamination on the relative

'In our case, we may also observe a contemporary (non directed) depen-
dency X;(t) <> X;(t) due to the fact that our raw data are the results of the
aggregation of a measure per minute over multiple time steps.
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Fig. 1: Selection of relevant variables from a TiGraMITe
graph. The predicted variable is X3(¢ + 2) (black node). Its
parents are X5(t) and X5(¢t+1). Because X3(t+ 1) is still in
the unobserved future, it cannot be used to produce a forecast.
We have to go back to its own parents, Xo(¢t — 1) and X3(t),
which are already known at time ¢. Therefore, we can include
them in the set of selected variables P(3,2) — (in blue). This
figure is adapted from Fig.1 in [24].

performances of our forecasting methods. For this reason, we
chose to keep a subset of sensors with no large missing data
gaps, even though this meant learning with less sensors.

B. Sensor geographical location

The Lyon dataset comes from 600 sensors embedded in the
streets downtown. In this work, we focus on a cleaned subset
of 44 sensors which are displayed in Figure 2. It shows us that
the 44 selected sensors are grouped into 3 clusters such that
sensors in different clusters are sufficiently far apart to rule
out direct causal relationships between them, at least in the 3
first time delays (i.e., 18 minutes). Therefore, a good variable
selection algorithm should discover and use this structure of
almost independent clusters.

The Marseille dataset comes from 24 sensors embedded in
an urban freeway which are displayed in Fig. 3.

C. Aggregation steps

One time step is equal to 6 minutes in the Lyon dataset
and 2 minutes in the Marseille dataset. In Lyon, we had no
control on this parameter, as the data collected were already
aggregated. For Marseille, the aggregation time has been
chosen to be consistent with the average time one vehicle
needs to go from one sensor to the next. It is important to
keep this in mind when analyzing figure 5, where h = 1
corresponds to a two minute horizon for Lyon and a six minute
horizon for Marseille. Note also that the speed limits are very
different in the two datasets: this limit varies between 30
and 50 km/h in the Lyon dataset, and between 90 and 110
km/h in the Marseille dataset. As a consequence, the length
traveled by a vehicle during a same duration is usually much
higher in the Marseille dataset than in the Lyon dataset. This
counterbalances the fact that time steps are smaller.
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Fig. 2: Location of the 44 sensors in Lyon conurbation.
The three clusters are chosen in such a way that sensors in
different clusters are far enough to exclude causal dependence
between them, whereas sensors within a same cluster may
be dependent. A dependence structure learned with a good
variable selection algorithm should reflect this.

 As2]
L NE W‘
P == ’7
,_//‘./w a-__-smb /_égb\agne
- —
oo T S Lot
La Penne-sur-Huveaune T

Fig. 3: Geographical location of the 24 sensors in the Marseille
dataset. The sensors follow each others on an urban freeway
and detect the traffic in both directions.

We display in Fig. 4 an example of one day of flow measures
(aggregated by time steps) on two road segments in Lyon
and Marseille. Both plots have high frequency variations, but
the amplitude of these variations is larger for Lyon than for
Marseille, leading to more difficult forecasting.

D. Experimental setup

For both dataset, models are trained on a training set of
20 week days (excluding Saturdays and Sundays because they
have different dynamics) and the prediction is made on the
next 4 week days. For the Marseille dataset, we have also
made experiments on vacation days. As results were stable on
both sets and for brevity, we only display results for the four
week day datasets.

Different scientific software libraries were used for this
experiment. The Python library scikit-learn [25] was used to
learn Lasso and SVR models. The Python module statsmod-
els [26] was used to learn VAR. For ARIMA model, we used
the implementation of the R package forecast [20]. K-NN
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Fig. 4: Example of raw data for one sensor of the Lyon dataset
(left) and the Marseille dataset (right): the x-axis corresponds
to time (24 hours of measures) and the y-axis to flow (number
of vehicle per hour).

approaches were reimplemented, but the causal graph for
TiGraMITe was learned with tigramite Python API [27].

All experiments were performed with the comput-
ing resources of the CNRS/IN2P3 Computing Center
(Lyon/Villeurbanne - France).

We use the Mean Absolute Scaled Error (MASE) [28] to
evaluate forecasting accuracy, because it is scale invariant.
The time series can have very different amplitudes due to the
difference of traffic volume on different roads. Using RMSE
would not allow us to reason about the aggregated performance
over all the time series, because it is not scale invariant.

E. Univariate vs Multivariate

The different linear or time series models are compared in
Fig. 5a, K-NN approaches in Fig. 5b and SVR approaches
in Fig. 5c. As expected, multivariate methods (K -NN-multi,
VAR, and SVR-RBF-multi) almost always perform better than
their univariate counterparts (K-NN-uni, ARIMA, and SVR-
RBF-uni) for all prediction horizons, because the latter cannot
use the information of nearby road segments.

The only exception occurs on Lyon dataset for large predic-
tion horizons, where SVR-RBF-multi has a very bad prediction
performance, while SVR-RBF-uni has a slightly better perfor-
mance but is still not competitive with methods from other
families.

F. Evaluation of the interest of selection methods

a) Linear and time series approaches: On both datasets,
Lasso performs better than VAR. While the difference is subtle
in the urban context, it is clearer for the freeway traffic. We
will show in the next paragraph that this is coherent with
the observations made on K-NN methods, that it is easier
to find a relevant set of predictors for freeway data. The
generalization advantage of Lasso becomes larger with the
forecasting horizon.

b) K-NN approaches: On Lyon dataset, we observe that
the best K-NN approach for all horizons is K-NN-multi. This
means that the variable selection performed by K-NN-lasso
and K-NN-figSB does not improve the forecasting accuracy
of the algorithm. On the Marseille dataset, the K -NN-/asso is
the best for one-step horizon and performs as well as K-NN-
multi for the other horizons. This suggest that the dependence

graph learned with the K-NN-lasso is relevant. However, K-
NN-#igSB is again not able to select a suitable set of predictors.
The TiGraMITe graph with the best performance on the
validation set is a very dense graph, meaning that the variables
used for the prediction are almost the same as those used in
K-NN-multi.

The difficulty to learn a dependence structure for the Lyon
dataset which improves the prediction performance may be
surprising, especially given the nature of the urban traffic
phenomenon. A possible explanation is the fact that the causal
relationship between road segments depends on their traffic
state: a segment with fluid traffic causally influences down-
stream segments, whereas a segment with congested traffic
rather impacts upstream segments (as traffic waves of conges-
tion propagate backwards relative to vehicle directions). This
property is difficult to capture if we learn a single dependence
graph. Hence, we have segmented the day into five distinct
regimes using expert knowledge about traffic flow (calm night
period, morning and afternoon peak and intermediate regime in
between) [2]. However, this was not sufficient to learn a proper
dependence structure. This is probably due to the fact that in
urban areas, the global traffic state in the network is composed
of local traffic conditions on every segment. Different road
segments can switch from one regime (fluid/congested) to
another at different time steps, and there is no reason why this
switch should occurs simultaneously on every road segment.
Therefore, throughout the day, at each time step, it is possible
that some road segments switch from one regime to another,
changing locally the dependence structure with its neighbors
and therefore requiring a different dependence graph. This
helps us understand why segmenting the day in five different
periods (identified by traffic experts) is still insufficient to
capture the very unstable dependence structure. This very high
dynamics makes the forecasting task very difficult.

The fact that K-NN-lasso performs well on the Marseille
dataset and that K -NN-#igSB does not indicates that a simple
linear and parametric approach is better suited to the modeling
of freeway traffic than the information theory approach, with
very few hypotheses about the nature of the dependence. The
parsimony of lasso is an advantage for better generalization,
and having good restricting assumptions on the dependence
structure reduces the number of observations needed to con-
verge to a good model.

We can observe that the performances of K-NN-figSB and
K -NN-lasso tend towards that of K -NN-multi when the horizon
is large. This can be explained by the fact that when the
horizon increases, the number of parents used in prediction
also increases, and therefore we are closer to a setting where
the set of selected variables is the full network. For example,
if we want to forecast x; at horizon h = 3, we search in
the graph the direct parents of X, (¢ + 3), that we will note
Px,(t+3)- We want to select them as predictors but some of
them may still be in the unobserved future, for example if
X;(t + 1) € Px,(4+3), so their information is not available
at time ¢. Therefore, in order to retrieve this information, we
replace them by their parents, for example P, (;11) and do
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Fig. 5: Comparison of forecasting methods: (top) Lyon dataset; (bottom) Marseille dataset; (left) k-NN approaches; (middle
left) time series/linear approaches; (middle right) SVR approaches ; (right) best approaches. The y-axis gives the MASE and

the x-axis gives the time horizon h € {1,5}.

this recursively until the selected variables are all evaluated
at time ¢ or prior. This procedure gives us the set of selected
variables P(%,3) used to predict X;(¢ + 3). At each step of
this recursion, a variable is replaced by its set of parents,
which may contain a lot of variables. This is the reason why
the number of selected variables increases with the forecast
horizon, and tends towards selecting the whole network if
the dependence graph is connected. The denser the graph, the
sooner this happens. This outlines the need to keep the graph
as sparse as possible.

¢) SVR approaches: SVR-RBF-Lasso seems slightly bet-
ter than SVR-RBF-multi on both datasets, but the difference is
too small to be considered significant.

On the Lyon dataset, SVR-RBF-multi and SVR-RBF-Lasso
have a good performance for small forecasting horizons (h <
3). This performance collapses for larger horizon, meaning the
the model was not able to capture the increasingly complex
dynamics.

G. Best methods for both datasets

In Fig. 5d, we show the methods which are at least once
the best in their category (Linear, K-NN or SVR). On the
Lyon dataset, K-NN-multi has the best performance, and
the difference with other methods increases with forecasting
horizon. Lasso performs better than SVR. On the Marseille
dataset, K-NN-multi is clearly beaten by Lasso and SVR,
whose performances are very close. SVR is better for one-
step horizon and Lasso is slightly better for larger horizon,
but this is not enough to draw significant conclusions.

The superiority of the non-parametric K-NN approach for
urban traffic forecasting can be interpreted as the difficulty to
learn a parametric model which is globally valid on all the
test set. The advantage of K-NN is to find, for each step of
prediction, some past conditions similar to those of the time
of prediction without the hypotheses of a constant structure
or model. In Fig. 6, we provide an example of one day of
prediction with the best method for one sensor of each dataset.

Let us conclude this experimental evaluation with a com-
parison of computational aspects. In this application, models
must be trained frequently (e.g., every day), in order to
incorporate recent data and to be robust to changes in the
network. They should also be able to produce forecasts in
real-time to be used by practitioners. A brute-force K -NN does
not require offline training, but online forecasts may become
expensive depending on the size of history. We may speed-
up online forecasting by creating offline a tree-based data
structure. Lasso and SVR both require offline training. Lasso
is much faster than SVR both for offline learning and online
forecasting.

IV. CONCLUSION

We presented several contributions to short-term urban road
traffic forecasting. First, we evaluated a benchmark of ten
forecasting methods on real-world city traffic data in two
different contexts. We showed that multivariate approaches are
essential. In the particular city centre context, we showed that
the nonparametric approach (K -NN) always outperforms other
parametric methods and that variable selection algorithms do



Fig. 6: Example k-NN forecasts of urban traffic in Lyon (left)
and Lasso forecast of freeway traffic in Marseille (right), for
h =5 in both cases.

not improve the predictions: capturing relevant causal drivers
is too difficult a task because of the very high dynamics. In
the freeway context, we showed that parametric approaches
(Lasso, SVR) perform better, probably due to simpler traffic
dynamics, and Lasso variable selection is useful (even for
K-NN) especially for large horizons. This is surprisingly not
the case for TiGraMITe, maybe because it does not make
assumptions about the nature of the dependence (as Lasso
does) that would avoid overfitting. We advise practitioners
to prefer Lasso to SVR because it is faster for learning and
forecasting and is easier to interpret.
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