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Finite-sample Analysis of M -estimators using Self-concordance

Dmitrii M. Ostrovskii∗ Francis Bach∗

October 16, 2018

Abstract

We demonstrate how self-concordance of the loss can be exploited to obtain asymptotically
optimal rates for M -estimators in finite-sample regimes. We consider two classes of losses: (i)
canonically self-concordant losses in the sense of Nesterov and Nemirovski (1994) [NN94], i.e.,
with the third derivative uniformly bounded with the 3/2 power of the second; (ii) pseudo
self-concordant losses, for which the power is removed, as introduced by Bach (2010) [Bac10].
These classes contain some losses arising in generalized linear models, including logistic
regression; in addition, the second class includes some common pseudo-Huber losses. Our
results consist in establishing the critical sample size sufficient to reach the asymptotically
optimal excess risk, as characterized by the classical theory of local asymptotic normality, for
both classes of losses. Denoting d the parameter dimension, and deff the effective dimension
which takes into account possible misspecification of the parametric model, we find the
critical sample size to be O(deff ·d) for canonically self-concordant losses, and O(ρ ·deff ·d) for
pseudo self-concordant losses, where ρ is the problem-dependent parameter that characterizes
the curvature of the risk at the best predictor θ∗. In contrast to the existing results, we only
impose local assumptions on the data distribution, assuming that the calibrated design, i.e.,
the design scaled with the square root of the second derivative of the loss, is subgaussian at
the best predictor. Moreover, we obtain the improved bounds on the critical sample size,
scaling near-linearly in max(deff, d), under the extra assumption that the calibrated design is
subgaussian in the Dikin ellipsoid of θ∗. Motivated by these findings, we construct canonically
self-concordant analogues of the Huber and logistic losses with improved statistical properties.
Finally, we extend some of these results to `1-regularized M -estimators in high dimensions.

1 Introduction and problem statement

Recall the standard setting of statistical learning: given a set Θ ⊆ Rd that parameterizes the
space of possible hypotheses, and a random observation Z ∈ Z with unknown distribution P,
one would like to minimize the average risk

L(θ) := E[`Z(θ)],

where for each possible observation z of Z, the loss `z : Θ→ R specifies the cost of choosing θ
under the outcome {Z = z}, and E[·] is the expectation with respect to the distribution P.
This distribution is assumed unknown, so the average risk cannot be computed and minimized
directly. Instead, we are granted access to the sample (Z1, ..., Zn) of independent copies of Z,
which is then used to construct an estimator θ̂ of the true risk minimizer θ∗ ∈ Argminθ∈Θ L(θ),
assuming that such a minimizer exists. As such, we can consider the empirical distribution Pn –
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uniform probability measure supported on the sample – and the empirical risk Ln(θ), defined as
the observable counterpart of L(θ):

Ln(θ) :=
1

n

n∑

i=1

`Zi(θ).

Ideally, we would like to have an estimator with small excess risk L(θ̂)− L(θ∗), in probability
or in expectation over the sample. Since for each fixed value θ of the parameter, Ln(θ) is an
unbiased estimate of L(θ) which converges to L(θ) almost surely by the law of large numbers, a
natural candidate estimator of θ∗ is the empirical risk minimizer (ERM), defined as

θ̂n ∈ Argmin
θ∈Θ

Ln(θ).

In this paper, we are concerned with establishing finite-sample high-probability bounds on the
excess risk of the ERM estimator. More precisely, our goal is to characterize the sample size
sufficient for the asymptotically optimal excess risk bound to become available in finite sample.

Classical theory of local asymptotic normality (LAN). Our main focus in this paper is
the setting where Ln(θ) is a negative log-likelihood, meaning that `z(θ) = − log pθ(z) where pθ(·)
is some probability density supported on Z. In this case, θ̂n maximizes the likelihood of observing
the i.i.d. sample (Z1, ..., Zn) from Pθ ranging over some parametric family P = {Pθ, θ ∈ Θ}. In
reality, P may or may not contain the actual data-generating distribution P. When P ∈P,
we say that the parametric model corresponding to P is well-specified ; in this case, ERM
becomes the maximum-likelihood estimator (MLE). Otherwise, the model is called misspecified ;
ERM can then be regarded as MLE under model misspecification, or quasi maximum likelihood
estimator [Whi82]. In this case, Pθ∗ corresponds to the “projection” of P onto the family P in
the sense of the Kullback-Leibler divergence, and the quasi MLE approximates Pθ∗ by replacing P
with the empirical distribution Pn. Now, this work has been motivated by the following question:

Can we extend the classical LAN theory for quasi-MLE to the non-asymptotic setting? (?)

To clarify and substantiate (?), let us briefly review the main results of the LAN theory. Most
of them, see monographs [LC06, IH13, vdV98, Bor98], rely on the local regularity assumptions
about the log-likelihood, allowing for a second-order Taylor expansion of L(θ) around θ∗. In
particular, it is assumed that L(θ) is sufficiently smooth at θ∗, which is an internal point of Θ,
so that the first-order optimality condition for θ∗ reduces to ∇L(θ∗) = 0. Moreover, the Hessian

H := ∇2L(θ∗)

is assumed to be non-degenerate, i.e., H � 0. When combined together, these assumptions allow
to derive the local asymptotic normality of quasi MLE: in the limit n→∞ with fixed d, we have

√
nH1/2(θ̂n − θ∗) N (0,H−1/2GH−1/2), (1)

where  denotes convergence in law, and G is the covariance matrix of the loss gradient at θ∗:

G := E[∇`Z(θ∗)∇`Z(θ∗)
>].

Matrices G and H remain fixed as n grows, and hence the above results imply, in particular, that
the variance of θ̂n decreases at the rate 1/n. Moreover, in the well-specified case one has G = H,
see, e.g., [Bar53], which leads to Fisher’s theorem:

√
nH1/2(θ̂n − θ∗) N (0, Id).

2



Thus, denoting ‖ · ‖M the norm linked to positive semidefinite matrix M by ‖x‖M = ‖M1/2x‖2,

n‖θ̂n − θ∗‖2H χ2
d, (2)

where χ2
d is the chi-square law with d degrees of freedom. The second-order Taylor expansion of

the average risk around θ∗ then allows to derive the same asymptotic law for the scaled excess
risk 2n[L(θ̂n)− L(θ∗)] – this result is known as Wilks’ theorem. This implies, in particular, that

En[L(θ̂n)]− L(θ∗) =
d

2n
+ o(n−1), (3)

where En is the expectation over the sample (Z1, ..., Zn). Moreover, via the chi-square deviation
bound (see [LM00, Lemma 1]), the limiting law (1) implies that with probability at least 1− δ,

L(θ̂n)− L(θ∗) =
(
√
d+

√
2 log(1/δ))2

2n
+ o(n−1). (4)

Finally, these O(d/n) asymptotic bounds can be extended to the general situation of misspecified
models by introducing the effective dimension:

deff := E[‖∇`Z(θ∗)‖2H−1 ] = tr(H−1/2GH−1/2).

Note that in a well-specified model, deff = d since G = H; moreover, in the ill-specified case one
can still have deff = O(d) “in favorable circumstances” – we will consider one such situation, that
of misspecified linear regression, later on.1 The expected excess risk bound (3) then changes to

En[L(θ̂n)]− L(θ∗) =
deff

2n
+ o(n−1), (5)

and the corresponding in-probability bound (see again [LM00, Lemma 1])2 can be expressed as

L(θ̂n)− L(θ∗) =
deff(1 +

√
2 log(1/δ))2

2n
+ o(n−1). (?)

In fact, the main term in the right-hand side of (5) is the minimum possible asymptotic variance
of any unbiased estimator; this result is known as the Cramér-Rao bound. For what is to follow,
it is important to note that the asymptotic approach can be summarized in the following steps:

• First, the estimate is localized: ‖θ̂n − θ∗‖2H is shown to behave as the squared “natural”
norm of the score, ‖∇Ln(θ∗)‖2H−1 , which is can be controlled by the central limit theorem.

• Then, using the second-order Taylor expansion of L(θ) around θ∗, similar behavior is
obtained for the excess risk L(θ̂n)− L(θ∗).

Paying tribute to the clarity and historical significance of the classical LAN theory, one should
keep in mind that this theory is limited to the asymptotic regime n→∞ with fixed parameter
dimension, which hinders its use in the modern context. The recent works [DM16, BKM+18]
extend the classical results to the asymptotic high-dimensional regime d→∞ with d = O(n),
analyzing M -estimator as the fixed point of the approximate message passing algorithm. However,
existing analysis of approximate message passing in the finite-sample regime is scarce: in fact,
the only paper we are aware of is [RV18], which only considers linear regression with fixed design.

1Note, however, that it can also happen that deff < d if we get “extremely lucky”. For example, consider the
Gaussian shift model y ∼ N (θ, 1), and suppose that in reality y ∼ N (0, σ). Then deff = σ2 which can be arbitrary.

2Notice that (?) is weaker than (4) due to the replacement of d with deff, but also because of the main term
scaling as O(deff log(1/δ)). This is due to the fact that the chi-squared statistic in (1) is replaced with the
“generalized chi-squared” statistic χ2

M := ‖ξ‖2M, where ξ ∈ N (0, Id), and M = H−1/2GH−1/2. Unless M = Id,
various matrix norms of M which control the deviations of ‖ξ‖M, see [LM00, Lemma 1], might be as large as deff.
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Finite-sample regime and empirical processes. One rather general approach for answer-
ing question (?), i.e., addressing the fully finite-sample regime, has been outlined in [Spo12],
and can be described as follows. First, the parameter space Θ is divided into the local subset,
given as the intersection of Θ and the unit Dikin ellipsoid of the true optimum, defined as

Θ1(θ∗) := {θ ∈ Rd : ‖θ − θ∗‖H ≤ 1},

and the complement subset Θ \Θ1(θ∗). Then, the second step of the asymptotic approach is
replaced with so-called quadratic bracketing: the excess risk is “sandwiched” on Θ1(θ∗) between
two quadratic forms which correspond to the inflation and deflation of ‖θ − θ∗‖2H. On the other

hand, the first step (localization of the estimate) is done via the control of the event {θ̂n /∈ Θ1(θ∗)},
by bounding the uniform deviations of the empirical risk Ln(θ) − Ln(θ∗) via advanced tools
of empirical process theory such as generic chaining [Tal06]. This approach is quite powerful,
allowing to derive the counterparts of asymptotic results in the non-asymptotic regime n ≥ cδdeff,
where the constant cδ only depends on the desired confidence level 1− δ. However, it requires
rather strong global assumptions on the pointwise deviations of the empirical risk process, which
are necessary to control its uniform deviations, see [Spo12, Sections 2.2 and 4]. Close in spirit
to [Spo12] are the techniques developed in [CCK17] to study Gaussian approximation of the
maxima of the sums of i.i.d. random variables. The main highlight of [CCK17] is their ability to
handle the regime of exponentially large dimensionality, with respect to the sample size, due to
the special structure of the statistics under study. However, much like in [Spo12], the techniques
of [CCK17] rely on the advanced machinery of empirical process theory.

On the other hand, as we demonstrate next, in the case of linear regression with random
design, finite-sample analysis is much simpler, and heavyweight techniques from empirical
processes theory are not needed. In this case, the problem is reduced to controlling the sample
covariance matrix of the design, which encapsulates the second-order information about the
risk. Our primal goal in this paper is to extend these ideas to a wider class of models with
non-quadratic losses, including conditional generalized linear models and regression models
with robust losses. In these models, the second-order information about the risks is local, and
covariance matrix estimation should be augmented with some local approximation techniques.

Simple case: linear regression. An original approach introduced in [HKZ12a] allows to
answer (?) in the setting of unconstrained least-squares linear regression with random design.
Here, Θ = Rd, and the observations take the form Z = (X,Y ) where X ∈ Rd and Y ∈ R. The
goal is to predict response Y as a linear combination of design X with predictor θ ∈ Rd, and one
takes `Z(θ) to be the normalized square loss (and ERM is the ordinary least-squares estimator):

`Z(θ) =
1

2σ2
(Y −X>θ)2.

This corresponds to the implicit assumption that the residual ε = Y − X>θ∗ has Gaussian
distribution ε ∼ N (0, σ2) with σ > 0, and is independent of X, which allows to factor out the
distribution of X from the model. Note that the rate O(d/n) translates to the well-known
minimax rate O(dσ2/n) for the mean square error E[(Y −X>θ)2]− σ2. Moreover, sometimes
the Gaussian assumption on ε can be relaxed, and the misspecified situation becomes essentially
as favorable as the well-specified one, at least from the asymptotic point of view. Indeed,
normalizing the noise to have unit variance, and using that ∇`Z(θ∗) = εX and H = E[XX>],
we get deff = E[ε2‖H−1/2X‖2]. Hence, deff = d for any distribution of ε with E[ε2] = 1, provided
that ε and X are independent. Moreover, assuming that Y and all one-dimensional marginals of X
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have finite fourth moment, i.e.,

√
E[Y 4|X = x] ≤ κεE[Y 2|X = x], ∀x ∈ Rd,
√

E[〈u,X〉4] ≤ κXE[〈u,X〉2], ∀u ∈ Rd,

we can bound deff as deff ≤ κX ·κε · d. In other words, deff and d are comparable in this situation.
The approach of [HKZ12a] is based on the observation that since L(θ) is a quadratic form,

L(θ)− L(θ∗) = 1
2‖θ − θ∗‖2H, (6)

the empirical risk Ln(θ) is also a quadratic form with random matrix Hn = 1
n

∑n
i=1XiX

>
i :

Ln(θ)− Ln(θ∗) = 1
2‖θ − θ∗‖2Hn

+ 〈∇Ln(θ∗), θ − θ∗〉.

In other words, the global curvature information about L(θ) is encapsulated in a single matrix H,
and we have at our disposal an unbiased estimate Hn of this matrix. This observation allows to
dramatically simplify the analysis: it suffices to control the deviations of Hn from its expectation,
which can be done using the standard tools of random matrix theory. In particular, in [Ver12],
see also Theorem A.2 in Appendix, it is shown that whenever X has subgaussian marginals, and

n & K4(d+ log(1/δ)), (7)

where symbol & hides an absolute constant, and K is a constant which depends on the concen-
tration properties of X, with high probability it holds

1
2‖∆‖2H ≤ ‖∆‖2Hn

≤ 2‖∆‖2H, ∀∆ ∈ Rd. (8)

In other words, the sample second-moment matrix Hn approximates H, up to a constant factor,
in the sense of the corresponding Mahalanobis distances (in particular, Hn is non-degenerate
whenever H is). This result can then be exploited as follows: since ∇Ln(θ̂n) = 0, and Hn � 0,

‖θ̂n − θ∗‖2Hn
= ‖∇Ln(θ∗)‖2H−1

n
. (9)

Using (8), this gives 1
2‖θ̂n − θ∗‖2H ≤ 2‖∇Ln(θ∗)‖2H−1 , which, in combination with (6), results in

L(θ̂n)− L(θ∗) ≤ 2‖∇Ln(θ∗)‖2H−1 .

Finally, a non-asymptotic version of (?) is obtained by controlling ‖∇Ln(θ∗)‖2H−1 , under sub-
gaussian assumptions on ∇`Z(θ∗) = εX, through standard concentration inequalities. In fact,
the subgaussian assumption can be relaxed to the fourth-moment assumption, see [HS16], using
the generalized median-of-means estimator,3 and the light-tailed assumptions on X can also be
relaxed, through a rejection sampling argument similar to the one that we employ in Theorem 3.4.

The remarkable feature of the outlined argument is that as soon as the curvature of L(θ),
as given by H, is reliably estimated, the localization step is automatic due to (9). The only
requirement for the sample size is the lower bound (7), which allows to relate the norms ‖ · ‖Hn

and ‖ · ‖H. This is entirely due to the fact that the loss is quadratic, and the curvature
information is global. However, in the general case the information about the curvature of
the risk is not encoded in a single matrix, and there seems to be no direct way of extending
the above argument. As discussed before, the known solution to the problem [Spo12] involved

3One divides the sample into log(1/δ) non-overlapping subsamples, computes independent least-squares
estimators over this subsamples, and take as the final estimator their multi-dimensional median in ‖ · ‖Hn -distance.

5



localization of the estimate, through the control of the global uniform deviations of Ln(θ), to the
neighborhood of θ∗ where the local quadratic approximations can be used, and this approach
requires global assumptions on the pointwise deviations of Ln(θ). Yet, we will show that in
some other models beyond linear regression with quadratic loss, the local analysis suffices to
provide localization of the estimate, and the complicated and non-transparent localization step
using generic chaining, as in [Spo12], can be circumvented. Namely, this is the case when the
loss satisfies certain self-concordance assumptions, which allows to control the precision of local
quadratic approximations of Ln(θ) and L(θ) more directly, using a simple integration technique.

1.1 Contributions and outline

Our analysis applies to linear prediction models : observing a pair Z = (X,Y ) with X ∈ X ⊆ Rd
and Y ∈ Y ⊆ R, one must predict Y through a linear combination η = X>θ where θ ∈ Θ ⊆ Rd.
Accordingly, we consider M -estimators with losses of the form `Z(θ) = `(Y,X>θ) for some
function ` : Y × R → R which is assumed to be sufficiently smooth in its second argument.
This subsumes regression, Y = R, and classification, Y = {0, 1}. Moreover, we assume the
ability to bound the third derivative of `(y, η) with respect to η via the second derivative in two
alternative ways, as will be detailed in Section 2. Such self-concordance assumptions originate
from [NN94], where they were used in the context of interior-point methods; later on, they were
modified and used in the statistical analysis of logistic regression in [Bac10, BM13]. We consider
both variants of self-concordance in our analysis, and show that the original self-concordance, as
proposed in [NN94], leads to better statistical results than its modification suggested in [Bac10]
(see Section 3), and is therefore more favorable from the statistical perspective. In addition to
self-concordance of the loss, we make some assumptions on the local behavior of the gradient
and Hessian of the empirical risk at the true optimal point θ∗, which is needed to control the
norm of ∇Ln(θ) and the deviations of Hn from H. We mention once again that the global
assumptions in the vein of [Spo12] about the deviations of the empirical risk, its gradient, and
Hessian can be avoided by making use of the self-concordance of the loss at hand.

Our framework includes random-design linear regression, which provides a “sanity check”
for our results. However, as we show in Section 2, the framework is in fact much more general.
First, it encompasses some conditional generalized linear models with random design. Here
we find that both versions of self-concordance are related to some natural assumptions about
the moments of the response, and discover several generalized linear models amenable to our
analysis, including logistic regression. Second, we can address some common losses in robust
estimation, which turn out to be pseudo self-concordant in the sense of [Bac10]. Moreover, we
show how to slightly these losses to make them canonically self-concordant while preserving their
first- and second-order structure. According to our theory, this leads to better tradeoff between
the statistical performance of the M -estimator, as characterized by the sufficient sample size to
reach the asymptotically optimal rate, and its robustness properties.

In our analysis, we execute the following plan. First, the local assumptions allow to make
sure that starting from the certain sample size, the sample Hessian at the optimal point, that is,

Hn :=
1

n

n∑

i=1

`′′(Yi, X
>
i θ∗)XiX

>
i ,

approximates the true Hessian H = E[`′′(Y,X>θ∗)XX
>] up to a constant factor, completely

analogous to the case of least squares. After that, self-concordance comes at play: using the
properties of canonically and pseudo self-concordant functions presented in Section 3.1, we
show that the ERM estimator θ̂n gets localized around θ∗ whenever the natural norm of the
score ‖∇Ln(θ∗)‖H−1 is small enough. Overall, we obtain the following results in Section 3:
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• Our analysis in Sections 3.2–3.3 shows that for pseudo self-concordant losses as in [Bac10],
‖∇Ln(θ∗)‖H−1 must be smaller, with high probability, than the quantity ‖X‖H−1 . This
is guaranteed to happen once the sample size achieves the threshold O(ρ · d · deff) up
to distribution constants and logarithmic factors in 1/δ, where ρ is the local curvature
parameter linking H and Σ := E[XX>] as follows:

Σ 4 ρH.

While the only available generic upper bound on ρ is given by the inverse of the global
strong convexity modulus of the loss, and can be extremely large or even infinite in the
case of unbounded predictors, the actual value of ρ depends on the data distribution,
and is moderate when this distribution is not chosen adversarially, as discussed in [BM13,
Sections 3.1, 4.2] and in our Section 2.2. For example, one can show (see Appendix C)
that ρ . 1 + ‖θ∗‖3Σ in logistic regression with Gaussian design X ∼ N (0,Σ). Moreover,
for canonically self-concordant losses in the sense of [NN94], the dependency on ρ can be
eliminated, and the critical sample size becomes O(d ·deff), see Theorems 3.2 and 3.4. Thus,
canonically self-concordant losses have somewhat better statistical behavior according to
our theory. Motivated by this result, we propose canonically self-concordant losses for
robust estimation and classification in Section 2.1.

• In Section 3.4, we obtain improved bounds for the critical sample size, eliminating the
extra d factor under a slightly stronger assumption on the data distribution. In particular,

n & max(deff, d log d) (10)

turns out to be sufficient for canonically self-concordant losses, cf. Theorem 3.5, while

n & max(ρdeff, d log d) (11)

sufficient in the case of pseudo self-concordant losses, cf. Theorem 3.6, up to the distribution
constants and logarithmic in 1/δ factors. The extra assumption is rather mild: we require
that the calibrated design X̃(θ) := [`′′(Y,X>θ)]1/2X has subgaussian tails at any point θ
within the Dikin ellipsoid of θ∗ with some radius r > 0,

Θr(θ∗) := {θ : ‖θ − θ∗‖H ≤ r},

rather than only at the true optimum θ∗. Specifically, we require r & 1 for canonically
self-concordant losses, and r & 1/

√
ρ for pseudo self-concordant losses (we also motivate the

latter choice on the example of logistic regression with Gaussian design). This assumption
allows to control the uniform deviations of the empirical Hessians from their means
on Θr(θ∗), leading to the reduced sample size. The analysis is complicated by the fact that
self-concordance of the individual losses does not imply self-concordance of empirical risk.
Instead, control of sample Hessians on Θr(θ∗) is achieved by noting that self-concordance
of the losses suffices to control Hessians in a small Dikin ellipsoid with radius O(1/dκ) for
some κ > 0, and combining this observation with a simple covering argument.

We hypothesize that the bounds (10)–(11) are optimal up to the log(d) factor, i.e., the
empirical risk minimizer cannot provably achieve the nonasymptotic version of (?) when the
sample size is sublinear in deff or d. This hypothesis is based on the following observations:

– the linear growth of n in d is necessary to estimate the local metric related to ∇L(θ∗);

– the linear growth of n in deff is necessary to have small score ‖∇Ln(θ∗)‖H ≤ c, which
is the key property allowing to localize θ̂n to the neighborhood of the true optimum θ∗.

7



• In Section 3.5, we extend some of the above results to the high-dimensional setup. Specif-
ically, we obtain analogues of Theorems 3.3 and 3.4 for `1-regularized M -estimators,
assuming that the optimal parameter θ∗ is s-sparse, the matrices G and H are bounded in
the operator norm, and the design is uncorrelated (the last assumption can in principle be
relaxed). In the case of pseudo self-concordant losses (Theorem 3.7), we replace max(d, deff)
with O(ρs log(d)), both in the error rates and the minimal sample size requirements. Un-
fortunately, for canonically self-concordant losses, we do not get the expected improvement
by ρ (see Theorem 3.8), and the bounds essentially remain the same as in the case of pseudo
self-concordance. This, however, is not surprising since both sparsity and `1-regularization
depend on the choice of the basis, and are not affine-invariant, which prevents us from
fully exploiting self-concordance in the analysis by forcing to rely on the usual `1- and `2-
norms instead of the ‖ · ‖H-norm. Overall, our results are comparable to those in [Bac10]
and [vdGB09]; however, there are some important differences as discussed in Section 3.5.

1.2 Related work

Our techniques are inspired from [Bac10], and we use and extend some of their technical results
in our Propositions 3.4–3.5. However, our results and analysis are crucially different from those
in [Bac10] in several ways. First, we address the random-design setting, whereas in [Bac10] the
design is fixed. Second, [Bac10] considers only pseudo self-concordant losses, focusing on logistic
regression, whereas we also provide results for canonically self-concordant losses, and, crucially,
compare the two cases. Third, we obtain similar results for ill-specified models, whereas [Bac10]
only establish a slow rate in this case. Finally, and most importantly, while we use very similar
tools to those in [Bac10], the “core” of our analysis is more direct. Namely, [Bac10] study
the `2-penalized estimator θ̂λ,n = arg minθ Ln(θ) + λ‖θ‖22 with strictly positive regularization
parameter λ, and moreover, impose some technical condition on the minimal magnitude of λ,
see their equation (13). Close inspection of this condition shows that it implies n & ρ df2

1, where

df1 := tr(H(H + λI)−1)

is the `1-number of degrees of freedom, a quantity replacing d in the `2-penalized setting. This,
in turn, allows to carry out an argument analogous to ours, but applying Proposition 3.5 to the
regularized empirical risk. However, `2 penalization makes the analysis much more involved, as
it rests on the comparison of the regularized risks, and accordingly, relates θ∗ and θ̂λ,n through
the intermediate point θλ = arg minθ L(θ) +λ‖θ‖22. The extra condition in [Bac10], which makes
this analysis possible, is non-trivial, and requires some fine balance between the regularization
parameter, sample size, and various types of degrees of freedom and biases. We manage to
circumvent these difficulties for the plain ERM estimator, including the ill-specified case, by
realizing that the only condition needed to carry out the argument based on self-concordance, in
the non-regularized case, is the large enough sample size.

Another relevant work is [Bac14] which studies logistic regression with random design, but
analyzes an estimate computed by stochastic approximation with averaging. While this estimator
is more advantageous from the computational standpoint, the control of the distance to the
optimum is more involved (see [Bac14, Proposition 7]), which leads to the suboptimal risk bound

En[L(θ̂)]− L(θ∗) .
R2(R4D4

0 + 1)

µn
, (12)

where µ is the lowest eigenvalue of H, R is an upper bound on ‖X‖2 and supθ∈Θ ‖∇`Z(θ)‖2,
and D0 := ‖θ0 − θ∗‖2 is the intial `2-distance from the optimum (in fact, if D0 is known up to
a constant factor, R4D4

0 in (12) can be replaced with R2D2
0). The bound (12) reflects the fact
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that gradient descent trajectory is not affine-invariant, hence the distances are not “measured”
in terms of the natural norm ‖ · ‖H. For the natural gradient, that is, gradient descent on the
tranformed problem θ̃ = H1/2θ, factor µ would disappear from (12), but R would be replaced
with max(deff, ρd), and D0 with the initial prediction distance ‖θ0 − θ∗‖H, which would lead to
a bound scaling as the cube of max(deff, ρd). The follow-up work [BM13] studies a version of
the quasi-Newton method in which the local quadratic subproblems are solved via stochastic
approximation. This allows to conduct affine-invariant analysis of the outer loop, and results in

En[L(θ̂)]− L(θ∗) .
ρ2(R4D4

0 + 1) max(deff, ρd)

n
(13)

whenever n & (R4D4
0 + 1). It should be noted that the curvature parameter ρ that appears in

these results, as well as in our results for pseudo self-concordant losses, is problem-dependent.
In particular, it depends on the true distribution P of the data, and can be very large if this
distribution is chosen adversarially. By constructing such an adversarial distribution, [HKL14]
prove a lower bound Ω(

√
RD/n), i.e., for the excess risk of any algorithm, in logistic regression

in the finite-sample regime n = O(eRD). This implies that ρ grows super-polynomially in RD
for this distribution. Notably, the lower bound of [HKL14] is not applicable in the setting of
improper prediction, where one is allowed to estimate η∗ := X>θ∗ with any predictor η̂ : X 7→ R,
not necessarily with a linear one. Making such an observation, [FKL+18] recently proposed an
improper estimator which attains the excess risk O(d/n) up to logarithmic factors in RD, n,
and 1/δ. Their estimator reduces to Vovk’s Aggregating Algorithm [Vov98] for online convex
optimization, combined with a simple “boosting the confidence” scheme proposed in [Meh17].

Finally, we should mention the recent surge of interest in stochastic quasi-Newton methods
applied to the finite-sum setting with self-concordant losses, see, e.g., [ZGG17], [ZL15]. However,
none of these works is concerned with establishing the asymptotically optimal rates.

Existing literature on `1-regularized M -estimation will be reviewed separately in Section 3.5.

Notation. We write f . g or f = O(g) to state that f(·) ≤ Cg(·) for any possible arguments
of f(·) and g(·) and some constant C; analogously for f & g or f = Ω(g). [n] is the set of
integers {1, 2, ..., n}. Throughout, θ∗ is the unique minimizer of L(θ), Similarly, θ̂n denotes the
minimizer of Ln(θ), which is unique in all the cases of interest due to Assumptions SCa and SCb
below. Similarly, θ̂n is the minimizer of Ln(θ), which is proved to be unique with high probability
in all cases of interest. Random vectors are denoted with capital letters (such as Z), and matrices
with bold capital letters (such as M). Id denotes the d× d identity matrix. M> is the transpose
of a matrix M. For a pair of semidefinite matrices M1,M2 of the same size, we write M1 4M2

whenever M2 −M1 is positive semidefinite. We denote with ‖ · ‖p both the `p-norm on Rd and
the Schatten `p-norm of a matrix M, in particular, ‖M‖2 is the Frobenius norm, and ‖M‖∞
the operator norm. Given M � 0, we define the norm ‖θ‖M := ‖M1/2θ‖2.

2 Assumptions and examples

Before introducing the assumptions, we remind that the loss `Z : Θ→ R is modeled as `Z(θ) =
`(Y,X>θ) for some function `(y, η) on Y×R(+), where Y is a subset of R, and R(+) is allowed to
be either R or the ray R+ of strictly positive numbers, which allows to encompass the exponential
response model (cf. Section 2.1). We refer to both `Z(θ) and `(y, η) as the loss; which of the two
we mean is always clear from the context. The derivatives of `(y, η) are taken with respect to η.
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2.1 Self-concordance assumptions

Let us introduce the assumptions related purely to the loss, rather to the data distribution. Our
basic assumption, which we silently use later on, is rather standard: for any z ∈ Z, the loss `z(·)
is assumed to be three times differentiable and convex on the set Θ.

We first present the assumption of pseudo self-concordance, introduced in [Bac10] for the
analysis of logistic regression. We refer to [STD18, TDKC15, BM13] for an overview of self-
concordant-like functions in the general context of optimization and quasi-Newton algorithms.

Assumption SCa. For any y ∈ Y and η ∈ R(+), the loss `(y, η) satisfies |`′′′(y, η)| ≤ `′′(y, η).

On the other hand, we also consider the canonical self-concordance assumption which has
been first introduced in [NN94] in the context of interior-point algorithms. The constant 2 allows
to slightly simplify our results, and can be replaced with arbitrary constant by scaling the loss.

Assumption SCb. For any y ∈ Y and η ∈ R(+), `(y, η) satisfies |`′′′(y, η)| ≤ 2[`′′(y, η)]3/2.

We now present some examples in which any of the two assumptions are satisfied.

Generalized linear models with canonical parametrization. In generalized linear models
(GLM) with canonical parametrization, see [MN89], one has

`(y, η) = −yη + a(η)− b(y), (14)

where the cumulant generating function a(η) : R(+) → R normalizes `(y, η) to be a valid negative
log-likelihood:

a(η) = log

∫

Y
exp(yη + b(y)) dy.

With η = X>θ, we have a conditional GLM for Y given η = X>θ. Some remarks are in order.

• Note that the second and third derivatives of `(y, η) with respect to η coincide with those
of a(·), hence ` satisfies the basic smoothness/convexity assumption whenever a(·) is three
times differentiable (note that a(·) is necessarily convex). Moreover, the derivatives of the
cumulant are equal to the central moments of Y . In particular,

a′(η) = Eη[Y ], a′′(η) = Eη[(Y −Eη[Y ])2], a′′′(η) = Eη[(Y −Eη[Y ])3],

where Eη[·] is expectation with respect to the distribution with negative log-likelihood
given by (14). Hence, Assumption SCb states precisely that the skewness of the model
distribution is bounded by a constant uniformly over η ∈ R(+). This is the case in the
exponential response GLM where Y ∼ Exp(η) and a(η) = − log(η) defined on R(+) = R+.

• On the other hand, Assumption SCa is satisfied whenever the third absolute central
moment of Y is uniformly bounded by the variance of Y , without the 3/2 power. This
is the case in Poisson regression: Y ∼ Poisson(λ) with λ = exp(η); then b(y) = − log(y!)
and a(η) = exp(η) so that a′′′(η) = a′′(η). This model is appropriate for count data
where the rate of arrival itself depends multiplicatively on the canonical parameter η;
see, e.g., [Chr06].4 Perhaps most importantly, Assumption SCa is automatically satisfied
in logistic regression in which Y = {0, 1}, and Y is modeled as a Bernoulli random
variable with Pη{Y = 1} = σ(η) where σ(η) = 1/(1 + e−η) is the sigmoid function.
In this case, a(η) = log(1 + eη), and one can verify that a′′′(η) = a′′(η)(1 − 2σ(η)), so
Assumption SCa is satisfied since |σ(η)| < 1 for any η ∈ R. Another way to see this is by
looking at the cumulant and using that Y = {0, 1}:

|a′′′(η)| ≤ |Y −Eη[Y ]| ·Eη[(Y −Eη[Y ])2] ≤ Eη[(Y −Eη[Y ])2] = a′′(η).
4Note that this model is different from the Poisson likelihood model Y ∼ Poisson(X>θ), which is not a GLM.
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Robust estimation. Here, Y = R, and `(y, η) = ϕ(y − η) for some contrast ϕ : R → R, a
function minimized in the origin and usually even. Crucially, ϕ(·) must be globally Lipschitz-
continuous, which guarantees robustness of the M -estimator, see [Hub11]. On the other hand,
from the statistical perspective, one can motivate contrasts that are locally quadratic, i.e., such
that ϕ′′(0) exists and is strictly positive, see, e.g., [Loh17].5 These considerations, along with
certain minimax optimality results, lead to the well-known Huber loss as introduced in [Hub64]:

ϕτ (t) =





t2

2
, |t| ≤ τ,

τt− τ2

2
, |t| > τ.

(15)

The Huber loss is parametrized by τ > 0, which allows to control the tradeoff of robustness
and statistical performance. Indeed, on one hand, |ϕ′τ (t)| ≤ τ for any t ∈ R, while on the
other hand, the variance of the corresponding M -estimator usually decreases with τ . However,
finite-sample statistical analysis of the Huber loss is complicated by the fact that ϕ(t) is not
C3-smooth. This is also unfavorable from the algorithmic perspective, as it complicates the
analysis of Newton-type algorithms for the computation of the M -estimator. These issues can
be circumvented if one instead uses pseudo-Huber losses, which retain the favorable properties of
the Huber loss, yet are C3-smooth. Examples include losses of the form ϕτ (t) = τ2ϕ(t/τ), with
the following contrasts:

ϕ(t) = log

(
exp(t) + exp(−t)

2

)
, ϕ(t) =

√
1 + t2 − 1. (16)

In both cases, the resulting scaled function satisfies φ′′τ (0) = 1 for any τ > 0, and |ϕ′τ (t)| ≤ τ for
any t ∈ R. Moreover, simple algebra shows that both functions ϕ(t) satisfy Assumption SCa up
to c = 2 in the first case, and c = 3 in the second case, whence,

|ϕ′′′τ (t)| ≤ cφ′′τ (t)

τ
.

As such, our theory is applicable to both these losses once they are properly renormalized. Finally,
note that we can obtain a pseudo-Huber loss with the above properties, for any τ > 0, if we
take ϕτ (t) = τ2ϕ(t/τ) where function ϕ(t) satisfies ϕ′′(0) = 1, |ϕ′(t)| ≤ 1, and |ϕ′′′(t)| ≤ cφ′′(t).

Novel self-concordant losses. Here we construct a canonically self-concordant (up to a
constant) pseudo-Huber loss, and similarly, a canonically self-concordant loss suitable for
classification and similar to the logistic loss. This construction is useful since, according to our
theory, canonically self-concordant losses have provably better statistical properties than pseudo
self-concordant ones. The key idea in this contruction is that self-concordance is preserved
when passing to the convex conjugate, whose gradients we can easily control, see, e.g., [STD18,
Proposition 6]. Namely, consider φ : (−1, 1)→ R+ given by

φ(u) = − log(1− u2)/2, (17)

that is, the negative log-barrier on [−1, 1] normalized by φ′′(0) = 1. Its Fenchel dual is given by

ϕ(t) =
1

2

[√
1 + 4t2 − 1 + log

(√
1 + 4t2 − 1

2t2

)]
. (18)

5However, this condition is not necessary for the local asymptotic normality: the sample median in the shift
model y = θ+ ε ∈ R, corresponding to ϕ(t) = |t|, is asymptotically normal if the density of ε does not vanish at 0.
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Figure 1: Left: self-concordant pseudo-Huber loss, cf. (18). Right : self-concordant analogue
of the logistic loss suitable for classification, cf. (19). Although our classification loss does not
upper-bound the 0-1 loss on R+, it can be lower-bounded with Ω(− log(yη)) for positive margins.

This function is even, satisfies φ′′(0) = 1 and

|φ′′′(u)| ≤ 2
√

2[φ′′(u)]3/2

since both functions log(1± u) satisfy Assumption SCb. By some simple calculations detailed
in Appendix B, ϕ(t) defined in (18) has all the same properties. On the other hand, we
have |ϕ′(t)| < 1 since φ(u) is a barrier on [−1, 1]. Thus, ϕ(t) has all properties desired for a
robust loss, and besides is canonically self-concordant (albeit with constant 2

√
2 instead of 2). As

illustrated in Figure 1, the quality of approximating the Huber loss for the new loss is essentially
as good as for the commonly used pseudo-Huber losses (16). It can also be generalized to have
arbitrary slope, by considering ϕτ (t) = τ2ϕ(t/τ) which satisfies ϕ′′τ (0) = 1, |ϕ′τ (t)| ≤ τ , and
|ϕ′′′τ (t)| ≤ (2/τ)[ϕ′′τ (t)]3/2. Similarly, we can construct a self-concordant counterpart of the logistic
loss suited for classification. In this case, we take φ(u) = − log(u(1 + u))/2, the normalized
log-barrier of [−1, 0], whose convex conjugate is

φ∗(t) =
1

2

[
−1− t+

√
1 + t2 + log

(√
1 + t2 − 1

2t2

)]
.

The derivative of φ∗(·) must belong to (−1, 0), and it is canonically self-concordant (up to a
constant) by the same reasoning as before. By rescaling and shifting it, we obtain the loss

`(y, η) = 2 +
1

2 log 2

[
−1− yη +

√
1 + (yη)2 + log

(√
1 + (yη)2 − 1

2(yη)2

)]
(19)

which can be considered as a convex surrogate of the 0-1 loss similar to the logistic loss, see
Figure 1. However, this loss is negative for yη > 2.396..., and therefore does not globally
upper-bound the 0-1 loss. Fortunately, its right branch can be lower-bounded with Ω(− log(yη)),
so the resulting “leakage” is insignificant.6 On the other hand, this defect is unavoidable: one can
show that a canonically self-concordant function on R+ cannot have a horizontal asymptote: this
would imply ϕ′′(t)→t→+∞ 0, contradicting Assumption SCb reformulated as |([ϕ′′(t)]−1/2)′| ≤ 1.

6This effect can be quantified using the calibration theory developed in [BJM06]. We leave this for future work.
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2.2 Distribution assumptions

We now introduce additional assumptions that are related to the distribution of the design and
the derivatives of the loss at the true optimum θ∗. Note that all these assumptions are fully
local, i.e., they only concern the true optimal point θ∗. Let us start with some preliminaries first.

• We assume that X>θ ∈ R(+) for any θ ∈ Θ and X ∈ X . This assumption is non-trivial
only when R(+) = R+ which is of interest in the exponential response model. In this case,
one can assume Θ ⊆ Rd+ and X ⊆ Rd+ where Rd+ is the positive orthant, or replace the
pair (Rd+,R

d
+) with some other pair of mutually dual convex cones in Rd.

• We denote Σ := E[XX>] the second-order moment matrix of X, and assume that it exists.

• Note that for any θ ∈ Θ one has

∇`Z(θ) = `′(Y,X>θ)X, ∇2`Z(θ) = `′′(Y,X>θ)XX>. (20)

Recall that E[∇`Z(θ∗)] = 0, E[∇`Z(θ∗)∇`Z(θ∗)
>] = G, and E[∇2`Z(θ∗)] = H. Gener-

ally, Σ 6= H (unless the loss is quadratic), and G 6= H (unless in a well-specified model).

• Following [Ver12], we use the standard definition of ψ2-norms for subgaussian distributions.
The ψ2-norm ‖ξ‖ψ2 of a random variable ξ ∈ R can be defined in a number of equivalent
ways (see Appendix A), for example, as follows:

‖ξ‖ψ2 := inf
{
σ > 0 : E[eξ

2/σ2
] ≤ e

}
.

This definition is extended to random vectors Z ∈ Rd as

‖Z‖ψ2 := sup{‖〈Z, θ〉‖ψ2 : ‖θ‖2 ≤ 1}.

In other words, ‖Z‖ψ2 is the maximal ‖ · ‖ψ2-norm for all one-dimensional marginals
of Z. We recount alternative definition of the ψ2-norm and some useful results related to
subgaussian distributions in Appendix A.

Assumption D0. The decorrelated design is subgaussian:

‖Σ−1/2X‖ψ2 ≤ K0.

Assumption D0 is often satisfied with a constant K0 not depending on n or d. For example,
this the case for zero-mean Gaussian design X ∼ N (0,Σ), or design with independent Bernoulli
components. Moreover, it can be shown that affine transformation of the design X that satisfies
Assumption D0 also satisfies it, with at worst twice larger K0 (see Lemma A.5 in Appendix).

Assumption D1. The decorrelated gradient of the loss at the optimal point is subgaussian:

‖G−1/2∇`Z(θ∗)‖ψ2 ≤ K1.

Note that Assumption D1 can be reformulated in terms of the design vector scaled by the loss
derivative at θ∗ since ∇`Z(θ∗) = `′(Y,X>θ∗)X. Similarly, we can consider the random vector

X̃ := [`′′(Y,X>θ∗)]
1/2X,

the design scaled by the curvature of the loss at the optimal point. Note that X̃ is linked with
the Hessian by E[X̃X̃>] = H, cf. (20). As stated next, we assume that the calibrated design is
subgaussian. This allows to control the deviations of Hn using Theorem A.2 in Appendix.
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Assumption D2. The decorrelated calibrated design X̃ := [`′′(Y,X>θ∗)]
1/2X satisfies

‖H−1/2X̃‖ψ2 ≤ K2.

Assumption D2 can be reformulated in terms of the loss Hessian ∇2`Z(θ∗) due to (20).
However, this formulation does not give new ideas, and we omit it. Some remarks are in order.

• The quantities K0, K1, K2 are necessarily bounded with some absolute constant from
below. This fact follows from the moment characterization of the ψ2-norm (Item 2 of
Lemma A.1 in Appendix), combined with the bound (E|ξ|4)1/4 ≥ (E|ξ|2)1/2 for any random
variable ξ ∈ R, and allows to simplify the formulation of the subsequent results.

• Assumptions D1–D2 are in fact quite restrictive, even when D0 is assumed. In partic-
ular, in the canonically-parametrized GLMs (cf. Section 2.1), the calibrated design at
point θ∗ is given by X̃(θ) = [a′′(X>θ)]1/2X where a(η) is the cumulant function. The
transform [a′′(X>θ)]1/2 that scales X along a direction θ can be highly-non-linear, breaking
subgaussianity for X̃(θ). For example, Assumption D2 does not hold in Poisson regression.

• Another limitation of our approach is as follows: even when Assumptions D1–D2 are
satisfied, K1 and K2 can depend on the unknown solution θ∗. For example, in Appendix C,
we show that for logistic regression with Gaussian design X ∼ N (0,Σ) one has

K2 . log(1 + ‖θ∗‖Σ)
√

1 + ‖θ∗‖Σ,
and, provided that the model is well-specified,

K1 . 1 + ‖θ∗‖3/2Σ .

This improves to K1 . 1 + ‖θ∗‖1/2Σ if the subgaussian norm ‖ · ‖ψ2 is replaced with the
subexponential norm ‖ ·‖ψ1 (see Appendix C and Section 3.3 for details). Thus, in concrete
applications one shoud carefully verify Assumptions D1–D2 and bound the quantities K1

and K2. Such verification can itself be a complicated task, especially without the exact
knowledge of the distribution of X.

Finally, when dealing with pseudo self-concordant losses, we need compatibility of Σ and H.

Assumption C (Compatibility of Σ and H). It holds Σ 4 ρH for some ρ <∞.

Assumption C has already appeared in the statistical analysis of logistic regression in [BM13].
Note that the only available generic upper bound for ρ is

ρ ≤ 1

inf(y,η)∈Y×R(+) `′′(y, η)
, (21)

and unless `′′(y, ·) is strictly convex on R(+) (which is usually not the case), this bound
is vacuous. On the other hand, the infinum in (21) can be taken on the subset of R(+)

corresponding to possible values of X>θ∗, but such bound can still be very conservative: for
example, it only gives ρ = O(eRD) in the case of logistic regression with ‖X‖2 ≤ R a.s.
and Θ = {θ ∈ Rd : ‖θ‖2 ≤ D}. However, the actual value of ρ depends on the true distribution
of the data, and is usually much smaller, see, e.g., dicsussion in [BM13, Sections 3.1, 4.2] for
the case of logistic regression. For example, consider a “quasi well-specified” robust regression
model: `(Y,X>θ) = ϕ(Y −X>θ) with even contrast ϕ(·) and unconstrained parameter. Suppose
that the true distribution of Y is given by Y = X>θ∗ + ε. with ε being independent from X,
zero-mean, and symmetrically distributed. One can check that in this case, L(θ) is minimized
at θ∗, and ρ = 1/E[ϕ′′(ε)]. On the other hand, the worst-case bounds on ρ can be enforced if
the data distribution is chosen adversarially. In particular, for the logistic regression [HKL14]
construct an adversarial distribution that enforces ρ = Ω(eRD) in the regime n = O(eRD).
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Boundedness assumptions. To ease the presentation, we now give simplified versions of the
results (Theorems 3.1–3.2) holding under the strengthened versions of Assumptions D0 and D2,
in which the decorrelated design (or the calibrated design at θ∗) is almost surely bounded.

Assumption B0. The decorrelated design is P-a.s. bounded:

‖Σ−1/2X‖2 ≤ B0.

Assumption B2. The decorrelated calibrated design at θ∗ is P-a.s. bounded:

‖H−1/2X̃‖2 ≤ B2.

Some further remarks regarding these assumptions are summarized below.

• ‖X‖2 ≤ R implies B2
0 ≤ R2/λmin(H), and similarly for B2

2 under the bound for ‖X̃‖2.

• By Markov’s inequality, both B0 and B2 must be lower bounded a constant times
√
d.

• On the other hand, Assumptions D0 and D2 “almost” imply Assumptions B0 and B2
with O(

√
d) radii. Specifically, by Corollary A.2 and Lemma A.5 in Appendix, with probabil-

ity at least 1− δ we have ‖Σ−1/2X‖2 . K0

√
d log(e/δ) and ‖H−1/2X̃‖2 . K2

√
d log(e/δ).

3 Theoretical results

3.1 Useful technical propositions

Here we summarize technical results related to self-concordant-like functions. These results will
be used later on to control the empirical and average risks. We defer the proofs to Appendix B.

Let us fix two arbitrary parameter values θ0, θ1 ∈ Θ, and let θt := θ0 + t(θ1−θ0) for 0 ≤ t ≤ 1.
Consider functions φZ(·), φ(·), and φn(·) on [0, 1], defined by

φZ(t) := `Z(θt), φ(t) := L(θt) = E[φZ(t)], φn(t) := Ln(θt) =
1

n

n∑

i=1

`Zi(θt). (22)

We first state a direct consequence of the assumptions of Section 2.1. The proof of the next
proposition is essentially just an application of the chain differentiation rule.

Proposition 3.1. Suppose that the loss `z(θ) is convex and three times differentiable on Θ.

(a) If Assumption SCa is satisfied, then for any t ∈ [0, 1], one has

|φ′′′n (t)| ≤ φ′′n(t) max
i∈[n]
|〈Xi, θ1 − θ0〉|, (23)

|φ′′′(t)| ≤ φ′′(t) sup
x∈X
|〈x, θ1 − θ0〉|. (24)

(b) If Assumption SCb is satisfied instead, then for any t ∈ [0, 1], one has

|φ′′′z (t)| ≤ 2[φ′′z(t)]
3/2, ∀z ∈ Z, (25)

|φ′′′n (t)| ≤ φ′′n(t)

[
max
i∈[n]

φ′′Zi(t)

]1/2

, (26)

|φ′′′(t)| ≤ φ′′(t)
[
sup
z∈Z

φ′′z(t)

]1/2

. (27)
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The next two propositions, whose proofs follow [Nes13], will allow us to quantify the change
of the second derivative of the restriction of the loss to a straight line by using self-concordance.

Proposition 3.2. Suppose g : R → R is differentiable, non-negative, and for some c ≥ 0
satisfies

|g′(t)| ≤ 2c[g(t)]3/2, for any t ∈ R(+) : c|t|
√
g(0) ≤ 1.

Then, for any t ∈ R such that c|t|
√
g(0) ≤ 1, it holds

g(0)

(1 + c|t|
√
g(0))2

≤ g(t) ≤ g(0)

(1− c|t|
√
g(0))2

.

Proposition 3.3. Suppose g : R → R is differentiable, non-negative, and for some c ≥ 0
satisfies

|g′(t)| ≤ c
√
g(0)g(t), |t| ≤ T.

Then, for any t ∈ T it holds

g(0)e−c|t|
√
g(0) ≤ g(t) ≤ g(0)ec|t|

√
g(0).

The next proposition summarizes the local properties of multivariate functions whose restric-
tions to line segments behave essentially as pseudo self-concordant functions in Case (a), or in a
similar manner but with a weaker control of the third derivative in Cases (b) and (c). Case (a) is
a straightforward extension of [Bac10, Proposition 1], and is sufficient for pseudo self-concordant
losses; the remaining cases are useful when dealing with canonically self-concordant losses.

Proposition 3.4. Let F : Θ → R be a convex C3-mapping, fix θ0, θ1 ∈ Θ, and let φF (t) :=
F (θt), θt := θ0 + t(θ1− θ0). Assume that H0 := ∇2F (θ0) � 0. Finally, for some W ∈ Rd, define

S := |〈W, θ1 − θ0〉|.

(a) [Bac10, Proposition 1]. Suppose that φF (t) satisfies

|φ′′′F (t)| ≤ Sφ′′F (t), 0 ≤ t ≤ 1.

Then,

F (θ1)− F (θ0)−∇F (θ0)>(θ1 − θ0) ≤ eS − S − 1

S2
‖θ1 − θ0‖2H0

, (28)

F (θ1)− F (θ0)−∇F (θ0)>(θ1 − θ0) ≥ e−S + S − 1

S2
‖θ1 − θ0‖2H0

. (29)

(b) Suppose that φF (t) satisfies, instead,

|φ′′′F (t)| ≤ Sφ′′F (t)

1− t , 0 ≤ t < 1.

Then,

F (θ1)− F (θ0)−∇F (θ0)>(θ1 − θ0) ≤ 1

2− S ‖θ1 − θ0‖2H0
, (30)

F (θ1)− F (θ0)−∇F (θ0)>(θ1 − θ0) ≥ 1

2 + S
‖θ1 − θ0‖2H0

, (31)

where (30) holds whenever S < 2.
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(c) Suppose that θ1/S ∈ Θ, and φF (t) satisfies, instead,

|φ′′′F (t)| ≤ Sφ′′F (t)

1− St , 0 ≤ t < 1/S,

Then,

F (θ1/S)− F (θ0)− 1

S
∇F (θ0)>(θ1 − θ0) ≤

‖θ1 − θ0‖2H0

S2
, (32)

F (θ1/S)− F (θ0)− 1

S
∇F (θ0)>(θ1 − θ0) ≥

‖θ1 − θ0‖2H0

3S2
. (33)

The next proposition describes the behavior of such functions close to the optimum. In
Case (a), it has already been proved in [Bac10, Proposition 2].

Proposition 3.5. Suppose that the premise of Proposition 3.4 holds with fixed θ0, all θ1 ∈ Θ,
and some W ∈ Rd which can depend on θ1. If for any W = W (θ1) it holds

‖W‖H−1
0
‖∇F (θ0)‖H−1

0
≤ c,

where one can take c = 1/2 in Cases (a)–(b) and c = 1/4 in Case (c), function F (θ) has a
unique global minimizer θ̃ ∈ Θ, and

‖θ̃ − θ0‖H0 ≤ 4‖∇F (θ0)‖H−1
0
.

The key message of Proposition 3.5 is that the local information about F (·) at one point
efficiently amounts to the global information about how close is this point to the optimum. When
applied to the empirical risk with θ0 = θ∗ and θ̃ = θ̂n, this proposition allows us to localize θ̂n
around θ∗, using that ‖∇Ln(θ∗)‖2H−1 decreases at the rate O(deff/n) due to the i.i.d. assumption.

3.2 Preliminary results under boundedness assumptions

In this section, we present extensions of the asymptotic deviation bound (?) to the finite-sample
regime. In the proofs, we use some technical results related to subgaussian distributions, namely,
deviation bounds for the quadratic forms of subgaussian random vectors, Theorem A.1, and for
their sample covariance matrices, Theorem A.2. These technical results, as well as some useful
corollaries from them, are collected in Appendix A. In what follows, we first prove simplified
results, in which the design is assumed almost surely bounded, rather than just subgaussian.
This simplifies the control of the average risk using Proposition 3.1, allowing to take supremum
over z in (24) and (27). In Section 3.3, we will extend these results by dropping the boundedness
assumptions. The bounds on the critical sample size will be improved later on in Section 3.4
under a strengthened version of Assumption D2. This will require a more subtle analysis relying
upon some new ideas. Hence, the results presented next could be considered as preliminary ones.

Pseudo self-concordant losses. Let us first treat the case of pseudo self-concordant losses.

Theorem 3.1. Let Assumptions SCa, B0, D1, D2, and C hold, and let for some 0 < δ ≤ 1,

n & max
{
K4

2 (d+ log (1/δ)) , ρK2
1B

2
0deff log (e/δ)

}
. (34)

Then, with probability at least 1− δ it holds

‖∇Ln(θ∗)‖2H−1 .
K2

1deff log (e/δ)

n
, (35)

and

L(θ̂n)− L(θ∗) . ‖θ̂n − θ∗‖2H . ‖∇Ln(θ∗)‖2H−1 . (36)
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Proof. 0o. Recall that H = ∇2L(θ∗), and let Hn := ∇2Ln(θ∗) be the empirical Hessian at the
true optimum θ∗. Note that due to Assumption D2 and the first bound on n in the premise of
the theorem, we can apply Theorem A.2 to Hn and H. Thus, with probability at least 1− δ,

1

2
H 4 Hn 4 2H. (37)

On the other hand, we can prove (35) using Assumption D1. Indeed, for i ∈ [n], random vectors

∇`Zi(θ∗) = `′(Yi, X
>
i θ∗)Xi

are mutually independent, have zero mean and covariance G. Hence, G−1/2∇`Zi(θ∗) are
independent and isotropic (have zero mean and unit covariance). Moreover, by Assumption D1,
we have ‖G−1/2∇`Zi(θ∗)‖ψ2 ≤ K1. Hence, by Lemma A.4 about the subgaussian norm of the
sum of independent subgaussian random vectors, we have that the random vector Vn, given by

Vn :=
√
nG−1/2∇Ln(θ∗),

is an isotropic random vector satisfying ‖Vn‖ψ2 ≤ CK1 for some constant C, and, moreover,

‖∇Ln(θ∗)‖2H−1 =
‖Vn‖2M
n

, M = G1/2H−1G1/2. (38)

We further have ‖M‖∞ ≤ ‖M‖2 ≤ tr(M) = deff. Applying Theorem A.1, we arrive at (35).
1o. Our next step is to obtain the right inequality in (36), by applying Proposition 3.5

to Ln(θ) at θ0 = θ∗. Invoking the bound (23) of Proposition 3.1, and using the Cauchy-Schwarz
inequality, we see that Ln(θ) falls into Case (a) of Proposition 3.4 at θ0 = θ∗ with H0 = Hn,
W (θ) = Xj where j ∈ Argmaxi∈[n] |〈Xi, θ − θ∗〉|, and

‖W (θ)‖H−1
0
≤ max

i∈[n]
‖Xi‖H−1

n
≤ max

x∈X
‖x‖H−1

n
.

Hence, we can apply Proposition 3.5 with θ̃ = θ̂n. That is, whenever

max
x∈X
‖x‖2

H−1
n
‖∇Ln(θ∗)‖2H−1

n
≤ c, (39)

for some absolute constant c (we can take, e.g. c = 1/4), we have ‖θ̂−θ∗‖2Hn
≤ C‖∇Ln(θ∗)‖2H−1

n
,

which, when combined with (37), implies the desired bound:

‖θ̂ − θ∗‖2H ≤ C‖∇Ln(θ∗)‖2H−1 .

On the other hand, again using (37) and Assumptions B0 and C, we have that with probability
at least 1− δ,

max
x∈X
‖x‖2

H−1
n
≤ 2ρB2

0,

whence for (39) it suffices that
ρB2

0‖∇Ln(θ∗)‖2H−1 ≤ c. (40)

But this holds due to (35) and the second bound in (34). The right inequality in (36) is proved.
2o. To prove the left inequality in (36), we apply case (a) of Proposition 3.4, namely (28),

to L(θ) with θ0 = θ∗, θ1 = θ̂n, H0 = H, and W = W (θ) ∈ Argmaxx∈X |〈x, θ − θ∗〉|, so
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that ‖W (θ)‖H−1 ≤ √ρB0.7 This is possible due to the bound (24) of Proposition 3.1, and using
the Cauchy-Schwarz inequality as in 1o. As such, noting that ∇L(θ∗) = 0, we arrive at

L(θ̂n)− L(θ∗) ≤
e
√
ρB0r − 1−√ρB0r

ρB2
0

,

where r = ‖θ̂n − θ∗‖2H. Finally, note that
√
ρB0r . 1 as guaranteed by (34), (35), and the right

inequality of (36). Since f(u) = eu − 1− u . u2 whenever u . 1 (e.g., f(u) ≤ u2 when u ≤ 1),
we obtain the left inequality of (36). �

Remark 3.1. From the proof we can easily see that in the case of a well-specified MLE estimator,
we can replace deff log(e/δ) with (

√
d+

√
log(1/δ))2, both in (34) and (35).

Canonically self-concordant losses. We now present a counterpart of Theorem 3.1 for
canonically self-concordant losses, i.e., those satisfying Assumption SCb. The crucial difference
of the following result from Theorem 3.1 is the absence of the curvature parameter ρ. This
improvement is achieved by carefully exploiting Assumption SCb while working with individual
losses. This allows to reduce the situation to Case (c) of Propositions 3.1 and 3.4, where the role
of W is now played by the calibrated design X̃. However, the bound for the sufficient sample
size is still inflated by the radius of the decorrelated design (now the calibrated one).

Theorem 3.2. Let Assumptions SCb, B2, D1, D2 hold. Then, (35)–(36) are satisfied whenever

n & max
{
K4

2 (d+ log (1/δ)) , K2
1B

2
2deff log (e/δ)

}
. (41)

Proof. Note that step 0o completely repeats that of the previous proof, hence (35) and (37)
remain valid. On the other hand, to prove (36) under (41), we will use Case (b) of Proposition 3.1.

1o. For any θ ∈ Θ different from θ∗, let θt = θ∗ + t(θ − θ∗) for 0 ≤ t < 1. Due to (25),
we can apply Proposition 3.2 to g(t) = φ′′z(t) for any z = (x, y) ∈ Z, taking c = 1. Thus,
denoting x̃ := [`′′(y, x>θ∗)]x for arbitrary (x, y) ∈ X × Y, we have

φ′′z(t) ≤
φ′′z(0)

(1− t
√
φ′′z(0))2

=
〈x̃, θ − θ∗〉2

(1− t|〈x̃, θ − θ∗〉|)2
, (42)

holding for any t ≥ 0 for which the denominator is positive. Combining this with (26), we have

|φ′′′n (t)| ≤ φ′′n(t) max
i∈[n]

|〈X̃i, θ − θ∗〉|
1− t|〈X̃i, θ − θ∗〉|

= φ′′n(t)
|〈X̃j , θ − θ∗〉|

1− t|〈X̃j , θ − θ∗〉|
, (43)

where j = j(θ) ∈ Argmaxi∈[n] |〈X̃i, θ−θ∗〉|, and we can take any t ≥ 0 for which the denominator
in the right-hand side is positive. Thus, Ln(θ) falls into case (c) of Proposition 3.4 with
θ0 = θ∗, H0 = Hn, and W = X̃j . Moreover, using (37), we have

‖X̃j‖H−1
n
≤ max

(x,y)∈X×Y
‖x̃‖H−1

n
≤
√

2 max
(x,y)∈X×Y

‖x̃‖H−1 =
√

2B2,

where the second inequality holds with probability at least 1 − δ due to (37). Hence, we can
apply Proposition 3.5 to Ln(θ) at θ0 = θ∗, which allows to obtain the right inequality in (36),
proceeding in the same way as in part 1o of the proof of Theorem 3.1.

2o. We now prove the left inequality in (36). Similarly to (43), from (42) and (27) we obtain

7Hereinafter, we slightly abuse the notation by ignoring zero-probability subsets of Z when maximizing over it.
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|φ′′′(t)| ≤ φ′′(t) |〈W, θ − θ∗〉|
1− t|〈W, θ − θ∗〉|

, (44)

where W = x̃(x, y) for (x, y) ∈ ArgmaxX×Y |〈x̃, θ − θ∗〉|. Thus, we have ‖W‖H−1 ≤ B2, and

|〈W, θ̂n − θ∗〉| ≤ B2‖θ̂n − θ∗‖H ≤ 1

by (35), the right inequality in (36), and the second bound in (41). As such, the average
risk L(θ̂n) satisfies the premise of Case (c) of Proposition 3.4 with θ1 = θ̂n and S ≤ 1. But this
implies that Case (b) is also satisfied. Thus, denoting r := ‖θ̂n−θ∗‖H, and using (30), we obtain

L(θ̂n)− L(θ∗) ≤
r2

2−B2r
≤ r2.

Thus, the theorem is proved. �

Discussion. Recall from the discussion in Section 2.2 that both B0 and B2 cannot be smaller
than O(

√
d), hence, both bounds (34), (41) on the critical sample size must grow proportionally

to the product of deff and d. As we will make sure in the next section, in the case of unbounded
(but subgaussian) design vectors X and X̃, parameters B0 and B2 indeed can be replaced
with O(

√
d), so that the critical sample size can be bounded as O(d · deff) or O(ρ · d · deff) in the

case of canonical or pseudo self-concordant losses. As such, we see that the actual difference
between the critical sizes in the case of pseudo/canonically self-concordant losses is in the
curvature parameter ρ, which is absent in the latter case. Moreover, this difference is preserved
in the improved bounds on the critical sample size, be presented in Section 3.4.

3.3 Extension to unbounded design

Next, we extend Theorems 3.1 and 3.2, dropping the almost-sure boundedness assumptions.
While the main ideas are the same, the proof is more technical and is therefore placed into
Appendix B. Essentially, the main difficulty is that we cannot apply Proposition 3.4 to L(θ)
anymore, since the suprema in the right-hand sides of (24) and (27) can potentially be infinite.
The issue can be circumvented by restricting the (calibrated) design vector is to its confidence
set through rejection sampling. Note that such confidence sets are readily given under the
subgaussian assumptions from Section 2.2. Namely, for any 0 < δ ≤ 1 consider the events

E0 :=
{
‖X‖Σ−1 . K0

√
d log (e/δ)

}
, E2 :=

{
‖X̃‖H−1 . K2

√
d log (e/δ)

}
.

Using the tools from Appendix A, we can show that P(E0) ≥ 1 − δ under Assumption D0,
and P(E2) ≥ 1− δ under Assumption D2. Now, let us replace L(θ) with the restricted risks:

LE0(θ) := E[`Z(θ)1E0(X)]; LE2(θ) := E[`Z(θ)1E2(X̃)]

where 1E0(X) := 1 {X ∈ E} and similarly for 1E2(X̃). This allows to exclude from averaging
the low-probability outcomes in which the norms of X and X̃ are too large, and work with X
and X̃ as if they were bounded. On the other hand, using Assumptions D1 and D2, we can
demonstrate that ∇LE0(θ∗) ≈ 0 and ∇2LE0(θ∗) ≈ H, and similarly for LE2(·), provided that δ is
small enough. Combining these ideas leads to the following result proved in Appendix B.

Theorem 3.3. Let Assumptions SCa, D0, D1, D2, and C hold. Whenever

n & max
{
K4

2 (d+ log (1/δ)) , K2
1K

2
0ρdeff d log (ed/δ)

}
, (45)
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with probability at least 1− δ it holds

‖∇Ln(θ∗)‖2H−1 .
K2

1deff log (e/δ)

n
, (46)

‖θ̂n − θ∗‖2H . ‖∇Ln(θ∗)‖2H−1 . (47)

Moreover, one has

LE0(θ̂n)− LE0(θ∗) .
K2

1deff log (e/δ)

n
(48)

whenever δ satisfies

δ . min





(
1√

n log(edeff)

)q(deff)

,

(
1

K2
2d log(ed)

)q(d)


 , (49)

where q(t) = 1 + 1/ log(t).

As we see, Theorem 3.3 includes an extra technical condition (49) on the minimal violation
probability δ. This condition is mild, as the admissible δ depends polynomially on n and d.

Theorem 3.2 can also be extended to the case of unbounded design, in a similar manner.
Below we present such an extension. Its proof closely follows that of Theorem 3.3, and is omitted.

Theorem 3.4. Let Assumptions SCb, D1, D2 hold together with (49). Then, (46)–(48) are
satisfied, with LE2(·) instead of LE0(·), whenever

n & max
{
K4

2 (d+ log (1/δ)) , K2
1K

2
2deff d log (ed/δ)

}
. (50)

Discussion: extension to heavy-tailed observations. As mentioned in Section 2.2, As-
sumptions D0–D2 are quite restrictive. Let us point out some possibilities for relaxing them.

• One possibility is to reject X with large ‖·‖Σ-norm, namely with ‖X‖2Σ & Cδρd for some Cδ
depending (polynomially) on 1/δ, when computing the estimator. This allows to replace
Assumption D0 in Theorem 3.3 with the existence of some finite moments of the marginals
of X0, using the technique from steps 3o–4o of the proof (see also [Ver11, Section 1.3]),
replacing Hölder’s inequality with Cauchy-Schwarz. The price to pay is somewhat worse
threshold for the admissible δ compared to (49). We can relax Assumptions D1 and D2
similarly, provided that `′(y, η) and `′′(y, η) are uniformly bounded from above, which holds
in logistic regression and in robust estimation. Such bounds are required since we cannot
perform rejection sampling directly on ∇`Z(θ∗) = `′(Y,X>θ∗)X and X̃ = `′′(Y,X>θ∗)X.

• Another possibility is to use the “confidence-boosting” technique based on a version of the
multi-dimensional sample median as suggested in [HS16]. This allows to completely get
rid of Assumption D1, only assuming the existence of the covariance matrix G(θ∗). To use
the technique, one first divides the sample into k = log(e/δ) non-overlapping subsamples,
and computes the corresponding M -estimators θ̂(1), ..., θ̂(k) over each subsample. Then,
one aggregates them via Algorithm 3 of [HS16], using

dist(i)(θ) := ‖θ − θ̂(i)‖
Ĥ(i) , Ĥ(i) := ∇2Ln(θ̂(i))

as the random distance oracle related to θ̂(i). The final estimator is given by θ̂(̂i) with

î ∈ Argmin
i∈[k]

{
Median

[(
dist(j)(θ̂(i))

)
j∈[k]

]}
.
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By Chebyshev’s inequality, each θ̂(i) will admit a fixed-probability version of (46), say,
with δ = 2/3. On the other hand, for each i ∈ [k] with fixed probability we will also have

1
2H 4 ∇2Ln(θ̂(i)) 4 2H.

This follows from our analysis in Theorems 3.1–3.2, which yields 1
2L(θ∗) 4 Ln(θ∗) 4 2L(θ∗),

and an integration argument that allows to show that 1
2Ln(θ∗) 4 Ln(θ̂(i)) 4 2Ln(θ∗),

cf. Lemmas B.1–B.3. Finally, the estimators over different subsamples are mutually
independent. Thus, we can apply Theorem 11 of [HS16], which yields the desired bound (48).
This technique also allows to weaken Assumptions D0 and D2, replacing the subgaussian
norm ‖ · ‖ψ2 with the subexponential norm ‖ · ‖ψ1 at the expense of a logarithmic factor.8

This can be done by replacing Theorem A.2 with [Ver12, Theorem 5.48] and controlling the
quantities E[maxi∈[n] ‖Xi‖2H], E[maxi∈[n] ‖X̃i‖2H] via Bernstein’s inequality (Theorem A.1).

3.4 Improved bounds under stronger local assumptions

As we demonstrate next, the critical sample size obtained in Sections 3.2–3.3 can actually be
improved: essentially, the product of deff and d can be replaced with max(deff, d log d). To obtain
these improvements, we have to introduce an extended version of Assumption D2.

Assumption D2∗. The calibrated design process X̃(θ) := [`′′(Y,X>θ)]1/2X satisfies

‖H(θ)−1/2X̃(θ)‖ψ2 ≤ K̄2(r),

where H(θ) denotes its covariance matrix, for any θ in the Dikin ellipsoid Θr(θ∗), as given by

Θr(θ∗) := {θ ∈ Rd : ‖θ − θ∗‖H(θ∗) ≤ r}.

Note that Assumption D2 corresponds to Assumption D2∗ with r = 0; the correspondence
being given by K2 = K̄2(0). On the other hand, the extended assumption is still local, i.e.,
it only concerns the points r-close to θ∗ rather than in the whole domain Θ. With the new
assumption at hand, we now state the improved result for canonically self-concordant losses.

Theorem 3.5. Assume SCb, D1, and D2∗ with r & 1. Then, (35)–(36) hold whenever

n & max

{
K̄4

2 (r)d log

(
ed

δ

)
, K2

1K̄
6
2 (r)deff log

(e
δ

)}
. (51)

Before presenting the full proof of this result, let us briefly explain the main ideas behind
it. First of all, let us recall where the extra factor d in the bound of Theorem 3.4 comes from.
This factor appears because self-concordance of the individual losses only allows to obtain a
second-order approximation of the empirical risk in a small Dikin ellipsoid with radius O(1/

√
d),

due to the fact that ‖X̃‖H−1 = Ω(
√
d) with high probability. This second-order approximation

then allows to localize the estimate as soon as ‖∇Ln(θ∗)‖H−1 becomes smaller than the radius of
the ellipsoid in which such an approximation holds, cf. the proof of Proposition 3.4. Hence, the
extra factor d would be eliminated if we managed to provide a second-order Taylor approximation
of Ln(θ) in the constant-radius Dikin ellipsoid Θc(θ∗). The immediately arising difficulty is that
unlike the individual losses, the empirical risk is not self-concordant, hence, the desired Taylor
approximation cannot be obtained purely by integration. Instead, we conduct a somewhat non-
standard argument (see Figure 2) which combines (i) self-concordance of average risk following

8 One of the equivalent definitions of ‖ · ‖ψ1 -norm, see [Ver12, Section 5.2.4], is as follows: X ∈ Rd satis-
fies ‖X‖ψ1 ≤ K if for any ∀u ∈ Sd one has (E[|〈X,u〉|p])1/p . Kp, compared to K

√
p for ‖ · ‖ψ2 , cf. Lemma A.1.
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•<latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit><latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit><latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit><latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit>

•<latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit><latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit><latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit><latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit>

•<latexit sha1_base64="NBxMvorF0uI5cm6qXLzfrn5RL+s=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkoigh6LXjxWsK3QhLLZTtqlmw92J2IJwYt/xYsHRbz6K7z5b9ymOWjrg4HHezM7O89PBFdo299GZWl5ZXWtul7b2Nza3jF39zoqTiWDNotFLO98qkDwCNrIUcBdIoGGvoCuP76a+t17kIrH0S1OEvBCOox4wBlFLfXNAxfhAYt3Ml+kkGeunwoBmPfNut2wC1iLxClJnZRo9c0vdxCzNIQImaBK9Rw7QS+jEjkTkNfcVEFC2ZgOoadpRENQXlaszq1jrQysIJa6IrQK9fdERkOlJqGvO0OKIzXvTcX/vF6KwYWX8ShJESI2WxSkwsLYmuZhDbgEhmKiCWWS679abEQlZahTq+kQnPmTF0nntOHYDefmrN68LOOokkNyRE6IQ85Jk1yTFmkTRh7JM3klb8aT8WK8Gx+z1opRzuyTPzA+fwDmwJhh</latexit><latexit sha1_base64="NBxMvorF0uI5cm6qXLzfrn5RL+s=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkoigh6LXjxWsK3QhLLZTtqlmw92J2IJwYt/xYsHRbz6K7z5b9ymOWjrg4HHezM7O89PBFdo299GZWl5ZXWtul7b2Nza3jF39zoqTiWDNotFLO98qkDwCNrIUcBdIoGGvoCuP76a+t17kIrH0S1OEvBCOox4wBlFLfXNAxfhAYt3Ml+kkGeunwoBmPfNut2wC1iLxClJnZRo9c0vdxCzNIQImaBK9Rw7QS+jEjkTkNfcVEFC2ZgOoadpRENQXlaszq1jrQysIJa6IrQK9fdERkOlJqGvO0OKIzXvTcX/vF6KwYWX8ShJESI2WxSkwsLYmuZhDbgEhmKiCWWS679abEQlZahTq+kQnPmTF0nntOHYDefmrN68LOOokkNyRE6IQ85Jk1yTFmkTRh7JM3klb8aT8WK8Gx+z1opRzuyTPzA+fwDmwJhh</latexit><latexit sha1_base64="NBxMvorF0uI5cm6qXLzfrn5RL+s=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkoigh6LXjxWsK3QhLLZTtqlmw92J2IJwYt/xYsHRbz6K7z5b9ymOWjrg4HHezM7O89PBFdo299GZWl5ZXWtul7b2Nza3jF39zoqTiWDNotFLO98qkDwCNrIUcBdIoGGvoCuP76a+t17kIrH0S1OEvBCOox4wBlFLfXNAxfhAYt3Ml+kkGeunwoBmPfNut2wC1iLxClJnZRo9c0vdxCzNIQImaBK9Rw7QS+jEjkTkNfcVEFC2ZgOoadpRENQXlaszq1jrQysIJa6IrQK9fdERkOlJqGvO0OKIzXvTcX/vF6KwYWX8ShJESI2WxSkwsLYmuZhDbgEhmKiCWWS679abEQlZahTq+kQnPmTF0nntOHYDefmrN68LOOokkNyRE6IQ85Jk1yTFmkTRh7JM3klb8aT8WK8Gx+z1opRzuyTPzA+fwDmwJhh</latexit><latexit sha1_base64="NBxMvorF0uI5cm6qXLzfrn5RL+s=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkoigh6LXjxWsK3QhLLZTtqlmw92J2IJwYt/xYsHRbz6K7z5b9ymOWjrg4HHezM7O89PBFdo299GZWl5ZXWtul7b2Nza3jF39zoqTiWDNotFLO98qkDwCNrIUcBdIoGGvoCuP76a+t17kIrH0S1OEvBCOox4wBlFLfXNAxfhAYt3Ml+kkGeunwoBmPfNut2wC1iLxClJnZRo9c0vdxCzNIQImaBK9Rw7QS+jEjkTkNfcVEFC2ZgOoadpRENQXlaszq1jrQysIJa6IrQK9fdERkOlJqGvO0OKIzXvTcX/vF6KwYWX8ShJESI2WxSkwsLYmuZhDbgEhmKiCWWS679abEQlZahTq+kQnPmTF0nntOHYDefmrN68LOOokkNyRE6IQ85Jk1yTFmkTRh7JM3klb8aT8WK8Gx+z1opRzuyTPzA+fwDmwJhh</latexit>

✓0 2 N"
<latexit sha1_base64="QywVmX585ztVAZ5gLmS2oBxJPWc=">AAACDHicbVDLSgNBEJyN7/iKevQyGERPYVcEPYpePEkEo0I2hN5JxwyZnV1megNhyQd48Ve8eFDEqx/gzb9xssnBV8FAUVXNdFeUKmnJ9z+90szs3PzC4lJ5eWV1bb2ysXltk8wIbIhEJeY2AotKamyQJIW3qUGII4U3Uf9s7N8M0FiZ6CsaptiK4U7LrhRATmpXqiH1kGCPh1LzMAbqCVD5xagdDsBgaqUqUn7NL8D/kmBKqmyKervyEXYSkcWoSSiwthn4KbVyMCSFwlE5zCymIPpwh01HNcRoW3lxzIjvOqXDu4lxTxMv1O8TOcTWDuPIJcfr2t/eWPzPa2bUPW7lUqcZoRaTj7qZ4pTwcTO8Iw0KUkNHQBjpduWiBwYEuf7KroTg98l/yfVBLfBrweVh9eR0Wsci22Y7bJ8F7IidsHNWZw0m2D17ZM/sxXvwnrxX720SLXnTmS32A977F/Hcm48=</latexit><latexit sha1_base64="QywVmX585ztVAZ5gLmS2oBxJPWc=">AAACDHicbVDLSgNBEJyN7/iKevQyGERPYVcEPYpePEkEo0I2hN5JxwyZnV1megNhyQd48Ve8eFDEqx/gzb9xssnBV8FAUVXNdFeUKmnJ9z+90szs3PzC4lJ5eWV1bb2ysXltk8wIbIhEJeY2AotKamyQJIW3qUGII4U3Uf9s7N8M0FiZ6CsaptiK4U7LrhRATmpXqiH1kGCPh1LzMAbqCVD5xagdDsBgaqUqUn7NL8D/kmBKqmyKervyEXYSkcWoSSiwthn4KbVyMCSFwlE5zCymIPpwh01HNcRoW3lxzIjvOqXDu4lxTxMv1O8TOcTWDuPIJcfr2t/eWPzPa2bUPW7lUqcZoRaTj7qZ4pTwcTO8Iw0KUkNHQBjpduWiBwYEuf7KroTg98l/yfVBLfBrweVh9eR0Wsci22Y7bJ8F7IidsHNWZw0m2D17ZM/sxXvwnrxX720SLXnTmS32A977F/Hcm48=</latexit><latexit sha1_base64="QywVmX585ztVAZ5gLmS2oBxJPWc=">AAACDHicbVDLSgNBEJyN7/iKevQyGERPYVcEPYpePEkEo0I2hN5JxwyZnV1megNhyQd48Ve8eFDEqx/gzb9xssnBV8FAUVXNdFeUKmnJ9z+90szs3PzC4lJ5eWV1bb2ysXltk8wIbIhEJeY2AotKamyQJIW3qUGII4U3Uf9s7N8M0FiZ6CsaptiK4U7LrhRATmpXqiH1kGCPh1LzMAbqCVD5xagdDsBgaqUqUn7NL8D/kmBKqmyKervyEXYSkcWoSSiwthn4KbVyMCSFwlE5zCymIPpwh01HNcRoW3lxzIjvOqXDu4lxTxMv1O8TOcTWDuPIJcfr2t/eWPzPa2bUPW7lUqcZoRaTj7qZ4pTwcTO8Iw0KUkNHQBjpduWiBwYEuf7KroTg98l/yfVBLfBrweVh9eR0Wsci22Y7bJ8F7IidsHNWZw0m2D17ZM/sxXvwnrxX720SLXnTmS32A977F/Hcm48=</latexit><latexit sha1_base64="QywVmX585ztVAZ5gLmS2oBxJPWc=">AAACDHicbVDLSgNBEJyN7/iKevQyGERPYVcEPYpePEkEo0I2hN5JxwyZnV1megNhyQd48Ve8eFDEqx/gzb9xssnBV8FAUVXNdFeUKmnJ9z+90szs3PzC4lJ5eWV1bb2ysXltk8wIbIhEJeY2AotKamyQJIW3qUGII4U3Uf9s7N8M0FiZ6CsaptiK4U7LrhRATmpXqiH1kGCPh1LzMAbqCVD5xagdDsBgaqUqUn7NL8D/kmBKqmyKervyEXYSkcWoSSiwthn4KbVyMCSFwlE5zCymIPpwh01HNcRoW3lxzIjvOqXDu4lxTxMv1O8TOcTWDuPIJcfr2t/eWPzPa2bUPW7lUqcZoRaTj7qZ4pTwcTO8Iw0KUkNHQBjpduWiBwYEuf7KroTg98l/yfVBLfBrweVh9eR0Wsci22Y7bJ8F7IidsHNWZw0m2D17ZM/sxXvwnrxX720SLXnTmS32A977F/Hcm48=</latexit>

✓ 2 ⇥c(✓⇤)
<latexit sha1_base64="0AXCeeEJni/ahJyWqX4VUbLLs/Y=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiVBclEUGXRTcuK/QGTQmT6aQdOpmEmROhhK7c+CpuXCji1mdw59s4abvQ1h8GPv5zDmfOHySCa3Ccb6uwsrq2vlHcLG1t7+zu2fsHLR2nirImjUWsOgHRTHDJmsBBsE6iGIkCwdrB6Davtx+Y0jyWDRgnrBeRgeQhpwSM5dvHHgwZEOxxib1Gjj6tzDz//My3y07VmQovgzuHMpqr7ttfXj+macQkUEG07rpOAr2MKOBUsEnJSzVLCB2RAesalCRiupdNz5jgU+P0cRgr8yTgqft7IiOR1uMoMJ0RgaFerOXmf7VuCuF1L+MySYFJOlsUpgJDjPNMcJ8rRkGMDRCquPkrpkOiCAWTXMmE4C6evAyti6rrVN37y3LtZh5HER2hE1RBLrpCNXSH6qiJKHpEz+gVvVlP1ov1bn3MWgvWfOYQ/ZH1+QPbs5gS</latexit><latexit sha1_base64="0AXCeeEJni/ahJyWqX4VUbLLs/Y=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiVBclEUGXRTcuK/QGTQmT6aQdOpmEmROhhK7c+CpuXCji1mdw59s4abvQ1h8GPv5zDmfOHySCa3Ccb6uwsrq2vlHcLG1t7+zu2fsHLR2nirImjUWsOgHRTHDJmsBBsE6iGIkCwdrB6Davtx+Y0jyWDRgnrBeRgeQhpwSM5dvHHgwZEOxxib1Gjj6tzDz//My3y07VmQovgzuHMpqr7ttfXj+macQkUEG07rpOAr2MKOBUsEnJSzVLCB2RAesalCRiupdNz5jgU+P0cRgr8yTgqft7IiOR1uMoMJ0RgaFerOXmf7VuCuF1L+MySYFJOlsUpgJDjPNMcJ8rRkGMDRCquPkrpkOiCAWTXMmE4C6evAyti6rrVN37y3LtZh5HER2hE1RBLrpCNXSH6qiJKHpEz+gVvVlP1ov1bn3MWgvWfOYQ/ZH1+QPbs5gS</latexit><latexit sha1_base64="0AXCeeEJni/ahJyWqX4VUbLLs/Y=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiVBclEUGXRTcuK/QGTQmT6aQdOpmEmROhhK7c+CpuXCji1mdw59s4abvQ1h8GPv5zDmfOHySCa3Ccb6uwsrq2vlHcLG1t7+zu2fsHLR2nirImjUWsOgHRTHDJmsBBsE6iGIkCwdrB6Davtx+Y0jyWDRgnrBeRgeQhpwSM5dvHHgwZEOxxib1Gjj6tzDz//My3y07VmQovgzuHMpqr7ttfXj+macQkUEG07rpOAr2MKOBUsEnJSzVLCB2RAesalCRiupdNz5jgU+P0cRgr8yTgqft7IiOR1uMoMJ0RgaFerOXmf7VuCuF1L+MySYFJOlsUpgJDjPNMcJ8rRkGMDRCquPkrpkOiCAWTXMmE4C6evAyti6rrVN37y3LtZh5HER2hE1RBLrpCNXSH6qiJKHpEz+gVvVlP1ov1bn3MWgvWfOYQ/ZH1+QPbs5gS</latexit><latexit sha1_base64="0AXCeeEJni/ahJyWqX4VUbLLs/Y=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiVBclEUGXRTcuK/QGTQmT6aQdOpmEmROhhK7c+CpuXCji1mdw59s4abvQ1h8GPv5zDmfOHySCa3Ccb6uwsrq2vlHcLG1t7+zu2fsHLR2nirImjUWsOgHRTHDJmsBBsE6iGIkCwdrB6Davtx+Y0jyWDRgnrBeRgeQhpwSM5dvHHgwZEOxxib1Gjj6tzDz//My3y07VmQovgzuHMpqr7ttfXj+macQkUEG07rpOAr2MKOBUsEnJSzVLCB2RAesalCRiupdNz5jgU+P0cRgr8yTgqft7IiOR1uMoMJ0RgaFerOXmf7VuCuF1L+MySYFJOlsUpgJDjPNMcJ8rRkGMDRCquPkrpkOiCAWTXMmE4C6evAyti6rrVN37y3LtZh5HER2hE1RBLrpCNXSH6qiJKHpEz+gVvVlP1ov1bn3MWgvWfOYQ/ZH1+QPbs5gS</latexit>
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Figure 2: Crucial step in the proof of Theorem 3.5 – uniform approximation of the empirical
Hessians Hn(θ) in the constant-radius Dikin ellipsoid Θc(θ∗) (in green). Using Assumption D2∗,
we first prove that H(θ) ≈ H(θ∗), up to a constant factor, for any θ ∈ Θc(θ∗). On the other hand,
self-concordance of the individual losses can be used to obtain a constant-order approximation
of Hn(·) within a smaller ellipsoid with radius O(1/dκ), for some κ ≥ 1/2, around θ. As such,
the problem is reduced to the control of the uniform deviations of Hn(θ) from H(θ) for θ ∈ Nε,
where Nε is the epsilon-net of Θ1(θ∗) with respect to the norm ‖·‖H(θ∗) with ε = O(1/dκ). This is
done using Theorem A.2. As a result, we obtain that Hn(θ) ≈ H(θ∗) uniformly over θ ∈ Θc(θ∗).

from Assumption D2∗; (ii) self-concordance of the individual losses; (iii) a covering argument in
which ellipsoid Θc(θ∗) is covered with small ellipsoids with radius O(1/dκ) for some κ ≥ 1/2.9

Next we state a counterpart of this result in the case of pseudo self-concordant losses. As we
might expect, the critical sample size in this case increases by the factor of ρ.

Theorem 3.6. Assume SCa, D0, D1,C, and D2∗ with r & 1/
√
ρ. Then, (35)–(36) hold whenever

n & max

{
K̄4

2 (r)d log

(
ed

δ

)
, ρK2

0K
2
1K̄

4
2 (r)deff log

(e
δ

)}
. (52)

The proof of Theorem 3.6 is very similar to that for Theorem 3.5, and is given in Appendix B.
Before proceeding with the proof of Theorem 3.5, let us discuss the results.

• First, note that in the case of pseudo self-concordance, the radius of the Dikin ellipsoid in
which Assumption D2∗ is required to be satisfied is

√
ρ times smaller than in the case of

canonical self-concordance. As it will become clear from the proof of Theorem 3.6, this

9Namely, we choose κ = 2, rather than κ = 1/2. This simplifies probabilistic calculations in step 3o of the
proof, and does not influence (51) since dκ only enters underneath the logarithm, see also Remark 3.2 below.
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deflation is related to the fact that we cannot control the Hessians of L(θ) over Dikin
ellipsoids with a larger radius, even when Assumption D2∗ holds on such an ellipsoid. On
the other hand, decreasing the radius r of the Dikin ellipsoid allows to control K̄2(r): as
we show in Appendix C, in logistic regression with Gaussian design X ∼ N (0,Σ) one has

K̄2
2 (r) . K̄2

2 (0) + r
√
ρ,

so that with r = 1/
√
ρ Assumption D2∗ is equivalent to Assumption D2 in this case.

• Note that the second threshold in (51) has the additional K̄4
2 (r) factor compared to that

in (50) if we do not distinguish between K̄2(r) and K2 = K̄2(0), and similarly when
comparing (52) and (45). In fact, this can be a substantial difference since K2 and K̄2(r)
can depend on the unknown θ∗. For example, in Appendix C (Proposition C.1), we show
that in logistic regression with Gaussian design X ∼ N (0,Σ), one has ρ . (1 + ‖θ∗‖Σ)3,
this bound being tight, while the bound on K̄2(1/

√
ρ) is

K̄2(1/
√
ρ) . log(1 + ‖θ∗‖Σ)

√
1 + ‖θ∗‖Σ,

Thus, K̄4
2 (1/
√
ρ) can potentially be as large as ρ2/3.

• On the other hand, when the distribution of X̃(θ) is log-concave and centrally symmetric
for any θ ∈ Θr(θ∗), the factor K̄4

2(r) can be eliminated. This amounts to using the

improved relation between the third and second moments of the marginals of H(θ)−1/2X̃(θ)
in step 1o of the analysis in Theorems 3.5–3.6:

E[|〈H(θ)−1/2X̃(θ), u〉|3| ≤ 7(E[〈u,H(θ)−1/2X̃(θ), u〉2])3/2,

which follows from [BE15, Lemma 2] by simple algebra using log-concavity of H(θ)−1/2X̃(θ).

Proof (of Theorem 3.5). 1o. Without loss of generality, we assume that Θ = Rd; the
argument can be extended to the general case simply by replacing all arising Dikin ellipsoids
with their intersections with Θ. For simplicity, we also assume that Assumption D2∗ holds
with r = 1, and denote K̄2 := K̄2(1). First of all, for any r ≥ 0 and θ ∈ Θ1(θ∗), we define the
Dikin ellipsoid with center θ and radius r:

Θr(θ) := {θ′ ∈ Rd : ‖θ′ − θ‖H(θ) ≤ r}.

We will prove that the Hessians H(θ) := ∇2L(θ) are close to H(θ∗) within the Dikin ellipsoid with
radius Ω(1/K̄3

2 ). To this end, fix θ0 = θ∗ and arbitrary θ1 ∈ Rd, and let θt = θ0 + t(θ1−θ0), t ≥ 0.
By using Assumptions SCb and D2∗, we can prove that for the function φ(t) = L(θt) it holds

φ′′′(t) ≤ 2c̄[φ′′(t)]3/2

for any t ≥ 0 such that θt ∈ Θ1/c̄(θ∗) with c̄ & 1/K̄3
2 . Indeed, let ∆ := θ1 − θ0, and recall that

φ(p)(t) = E[`(p)(Y, 〈X, θt〉) · 〈X,∆〉p], p ∈ {2, 3},

cf. the proof of Proposition 3.1. In particular, putting X̃(θt) := [`′′(Y, 〈X, θt〉)]1/2X, we have

φ′′(t) = E[`′′(Y, 〈X, θt〉) · 〈X,∆〉2] = E[〈X̃(θt),∆〉2]

= E[〈H(θt)
−1/2X̃(θt),H(θt)

1/2∆〉2] = ‖∆‖2H(θt)
,
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where in the final step we used the definition of H(θt). On the other hand, due to Assumption SCb,

|φ′′′(t)| ≤ E[|`′′′(Y, 〈X, θt〉)| · |〈X,∆〉|3] ≤ 2E[|〈[`′′(Y, 〈X, θt〉)]1/2X,∆〉|3]

= 2E[|〈H(θt)
−1/2X̃(θt),H(θt)

1/2∆〉|3].

Now, recall that whenever θ ∈ Θc(θ∗), one has ‖H(θt)
−1/2X̃(θt)‖ψ2 ≤ K̄2 due to Assumption D2∗.

Thus, for such θt we have ‖〈H(θt)
−1/2X̃(θt),H(θt)

1/2∆〉‖ψ2 ≤ K̄2‖∆‖H(θt), and by Lemma A.1,

E[|〈H(θt)
−1/2X̃(θt),H(θt)

1/2∆〉|3] ≤ CK̄3
2‖∆‖3H(θt)

for some absolute constant C > 0. Without the loss of generality we can assume that C ≥ 1 by
weakening the inequality in the opposite case. Combining the above inequalities, we observe that

|φ′′′(t)| ≤ 2CK̄3
2 [φ′′(t)]3/2, 0 ≤ t[φ′′(0)]1/2 ≤ 1,

where we used that θt ∈ Θ1(θ∗) is equivalent to t2φ′′(0) ≤ 1. We can now apply Proposition 3.2
to g(t) = φ′′(t), putting

c̄ := CK̄3
2 & 1,

and arriving at

φ′′(0)

(1 + c̄t
√
φ′′(0))2

≤ φ′′(t) ≤ φ′′(0)

(1− c̄t
√
φ′′(0))2

, 0 ≤ c̄t[φ′′(0)]1/2 ≤ 1.

Finally, since φ′′(t) = ‖∆‖2H(θt)
, this translates to

H(θ∗)

(1 + c̄‖θ − θ∗‖H(θ∗))
2
4 H(θ) 4

H(θ∗)

(1− c̄‖θ − θ∗‖H(θ∗))
2
, θ ∈ Θ1/c̄(θ∗).

In particular, we have

4

9
H(θ∗) 4 H(θ) 4 4H(θ∗), θ ∈ Θ1/(2c̄)(θ∗). (53)

2o. Next, we derive a similar approximation result for the Hessian of empirical risk Hn(θ) :=
∇2Ln(θ). This can be done by constructing an epsilon-net on Θ1/(2c̄)(θ∗) with respect to
the ‖ · ‖H(θ∗)-norm. Then, one can control the uniform deviations of Hn(θ) from H(θ) for θ on
the net, while approximating Hn(θ) for θ outside the net, by exploiting the self-concordance of
the individual losses, and appropriately choosing the net resolution. To this end, recall that

Hn(θ) =
1

n

n∑

i=1

`′′(Yi, X
>
i θ)XiX

>
i .

Hence, we can relate Hn(θ) to Hn(θ′) at some other point θ′ by relating `′′(Yi, X
>
i θ) to `′′(Yi, X

>
i θ
′).

Namely, fix arbitrary θ0 ∈ Θ1/(2c̄)(θ∗) and θ1 ∈ Θ. Due to (25), we can apply Proposition 3.2 to

the second derivative φ′′Z(t) of the individual loss φZ(t) := `(Y,X>θt). This results in

φ′′Z(0)

(1 + t[φ′′Z(0)]1/2)2
≤ φ′′Z(t) ≤ φ′′Z(0)

(1− t[φ′′Z(0)]1/2)2
, 0 ≤ t[φ′′Z(0)]1/2 ≤ 1.

cf. (42). Recalling that φ′′Z(t) = `′′(Y,X>θt) · 〈X,∆〉2 = 〈X̃(θt),∆〉2, where again ∆ = θ1 − θ0

but now without the constraint that θ0 = θ∗, we arrive at

`′′(Y,X>θ0)

(1 + t|〈X̃(θ0),∆〉|)2
≤ `′′(Y,X>θt) ≤

`′′(Y,X>θ0)

(1− t|〈X̃(θ0),∆〉|)2
, t|〈X̃(θ0),∆〉| ≤ 1.
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Using the Cauchy-Schwarz inequality together with (53), this can be weakened to

`′′(Y,X>θ0)

(1 + 2t‖H(θ0)−1/2X̃(θ0)‖2‖∆‖H(θ∗))
2
≤ `′′(Y,X>θt) ≤

`′′(Y,X>θ0)

(1− 2t‖H(θ0)−1/2X̃(θ0)‖2‖∆‖H(θ∗))
2
.

where t ≥ 0 is such that the denominator on the right-hand side is strictly positive. As a result,

`′′(Y,X>θ)

(1 + 2‖H(θ)−1/2X̃(θ)‖2‖θ′ − θ‖H(θ∗))
2
≤ `′′(Y,X>θ′) ≤ `′′(Y,X>θ)

(1− 2‖H(θ)−1/2X̃(θ)‖2‖θ′ − θ‖H(θ∗))
2

(54)

for any θ ∈ Θ1/(2c̄)(θ∗), and any θ′ such that the denominator in the right-hand side is positive.
3o. Now, consider the smallest epsilon-netNε for Θ1/(2c̄)(θ∗) with respect to the norm ‖·‖H(θ∗),

i.e., the smallest subset of Θ1/(2c̄)(θ∗) such that for any θ ∈ Θ1/(2c̄)(θ∗) there exists a point θ′ ∈ Nε
such that ‖θ′ − θ‖H(θ∗) ≤ ε. Note that such Nε can be obtained as the affine image of the
epsilon-net for the Euclidean ball with radius 1/(2c̄) with respect to the standard Euclidean
norm. Hence, we can apply the bound for covering numbers of Euclidean balls: for any ε ≤ 1,

|Nε| ≤
(

3

2c̄ε

)d
. (55)

Consider random vectors H(θ)−1/2X̃i(θ), where i ∈ [n] and θ ∈ Nε for some ε to be defined later.
Each of them has unit covariance matrix, and is subgaussian with ψ2-norm at most K̄2 due to
Assumption D2∗. Repeating the argument from part 1o of the proof of Theorem 3.3 (to account
for the fact that the vectors are not centered), we can show that with probability at least 1− δ,

‖H(θ)−1/2X̃i(θ)‖2 ≤ C2K̄2

√
d log

(e
δ

)

for some absolute constant C2 ≥ 1. Note that we used here that Nε ⊂ Θ1/2c̄(θ∗) ⊆ Θ1(θ∗). Thus,

sup
i∈[n], θ0∈Nε

‖H(θ)−1/2X̃i(θ)‖2 ≤ C2K̄2

√
d log

(
en|Nε|
δ

)
≤ C2K̄2d

√
log

(
3en

δε

)
, (56)

with probability at least 1− δ, where in the second transition we used (55). Now, let us choose

ε =
1

64C2
2K̄

2
2d

2 log (en/δ)
. (57)

By some simple algebra, such choice of ε ensures that

ε

√
log

(
3en

δε

)
≤ 1

4C2K̄2d
.

Combining this with (54) and (56), we see that the following is true with probability ≥ 1− δ:
for any θ′ ∈ Θ1/(2c̄)(θ∗), there exists θ ∈ Nε such that

4

9
`′′(Yi, X

>
i θ) ≤ `′′(Yi, X>i θ′) ≤ 4`′′(Yi, X

>
i θ), i ∈ [n].

This implies that with probability ≥ 1− δ, it holds

4

9
Hn(π∗(θ)) 4 Hn(θ) 4 4Hn(π∗(θ)), ∀θ ∈ Θ1/(2c̄)(θ∗), (58)
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where π∗(·) is the operation of ‖ · ‖H(θ∗)-projection on the epsilon-net Nε. Finally, to establish
the uniform approximation of Hn(·) on Θ1/(2c̄)(θ∗), it remains to control Hn(θ) on the net itself.
This can be done by combining the deviation bounds for sample covariance matrices with the
results of 1o. First, by Theorem A.2, for any θ ∈ Nε we have that with probability at least 1− δ,

1

2
H(θ) 4 Hn(θ) 4 2H(θ),

provided that n & K̄4
2 (d+ log(1/δ)). Taking the union bound over Nε, and using (55) and (57),

we see that
1

2
H(θ) 4 Hn(θ) 4 2H(θ), ∀θ ∈ Nε (59)

holds with probability ≥ 1− δ, provided that

n & K̄4
2d log

( e

c̄δε

)
& K̄4

2d

[
log

(
ed

δ

)
+ log log

(en
δ

)]
.

By simple algebra, it suffices that

n & K̄4
2d log

(e
δ

)
. (60)

Combining (58), (59), and (53), we see that the sample size satisfying (60) guarantees uniform
approximation of empirical Hessians on the Dikin ellipsoid Θ1/(2c̄)(θ∗): with probability ≥ 1− δ,

0.09 H(θ∗) 4 Hn(θ) 4 32 H(θ∗), ∀θ ∈ Θ1/(2c̄)(θ∗). (61)

4o. With (61) at hand, we can localize the estimate through a similar argument to that
in Proposition 3.5, but with S replaced with a constant. Indeed, fixing θ0 = θ∗ and taking
arbitrary θ1 ∈ Θ1/(2c̄)(θ∗), we see that (61) is equivalent to

0.09φ′′(0) ≤ φ′′n(t) ≤ 32φ′′(0), 0 ≤ t ≤ 1.

Integrating this twice on [0, 1], we arrive at

0.09φ′′(0)t2

2
≤ φn(t)− φn(0)− φ′n(0)t ≤ 32φ′′(0)t2

2
.

Putting t = 1, and noting that φ′′(0) = ‖θ1 − θ∗‖2H(θ∗)
, we obtain that for any θ ∈ Θ1/(2c̄)(θ∗),

with high probability it holds

0.045‖θ − θ∗‖2H(θ∗)
≤ Ln(θ)− Ln(θ∗)− 〈∇Ln(θ∗), θ − θ∗〉 ≤ 16‖θ − θ∗‖2H(θ∗)

. (62)

cf. (32)–(33). Now we can proceed as in the proof of Proposition 3.5, Case (c). Namely,
consider the event θ̂n /∈ Θ1/(2c̄)(θ∗). Under this event, there exists a point θ̄n ∈ [θ∗, θ̂n] such that
‖θ̄n − θ∗‖H(θ∗) = 1/2c̄. On the other hand, clearly, Ln(θ̄n) ≤ Ln(θ∗). Combining these facts
with (62), we obtain that with probability at least 1− δ,

‖∇Ln(θ∗)‖2H(θ∗)−1 & 1/c̄2 & 1/K̄6
2 .

On the other hand, we know (see part 0o of the proof of Theorem 3.1) that with probability ≥ 1−δ.

‖∇Ln(θ∗)‖2H(θ∗)−1 .
K2

1deff log (e/δ)

n
.

Thus, whenever
n & K2

1K̄
6
2deff log(e/δ),
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we have a contradiction, and θ̂n must belong to Θ1/(2c̄)(θ∗). Then, (62) applied at θ = θ̂n yields

‖θ̂n − θ∗‖2H(θ∗)
. ‖∇Ln(θ∗)‖2H(θ∗)−1 .

It only remains to control the excess average risk. This can be done by recalling the result (53),
which translates to

4

9
φ′′(0) ≤ φ′′(t) ≤ 4φ′′(0), 0 ≤ t ≤ 1.

Integrating this twice on [0, 1], we obtain

4φ′′(0)t2

9
≤ φ(t)− φ(0) ≤ 4φ′′(0)t2,

where we used that φ′(0) = ∇L(θ∗) = 0. The upper bound leads to L(θ)−L(θ∗) ≤ ‖θ− θ∗‖2H(θ∗)

for any θ ∈ Θ1/2c̄(θ∗). But we have already proved that this holds for θ̂n with high probability. �

Remark 3.2. One fact that played a key role in the proof of the theorem is that the confidence
interval enters additively into the bound for the sample size when estimating a covariance matrix:

n & K2(d+ log(e/δ)).

Hence, we can simultaneously estimate exponential number of covariance matrices from O(d) ob-
servations. In our case, this number is dO(d), which results in extra logarithmic factor in (51).

3.5 Results in the high-dimensional setup

Our next goal is to extend the results obtained so far to the high-dimensional setting. Namely,
we assume that Θ = Rd with d � n, and that the optimal parameter θ∗ is sparse, i.e., the
number of non-zero components of θ∗ is at most s� d. Note that if the support S of θ∗ was
known, a reasonable estimator could be obtained by replacing X with its projection XS on S,
and minimizing the empirical risk on S. As in the case of quadratic loss, and the classical
Lasso estimator, this would lead to the improvement of the results of Section 3 in the sense
that the ambient dimension d would be replaced with s, and deff with the quantity tr(H−1

S GS)
where GS = E[`′(Y,X>S θ∗)XSX

>
S ] and HS = E[`′′(Y,X>S θ∗)XSX

>
S ]. However, in reality S is

unknown, and the common recommendation is to use the `1-penalized M -estimator, given by

θ̂λ,n ∈ Argmin
θ∈Rd

Ln(θ) + λ‖θ‖1. (63)

In the case of quadratic loss, it is well-known that the risk of the `1-penalized estimator, when
measured in terms of the `1-loss or the “prediction” loss corresponding to the design covariance
matrix, is within a logarithmic in d factor from the “ideal” risk of the projection oracle, provided
that the penalization parameter λ is appropriately chosen, and the design is near-isotropic and
subgaussian – see, e.g., [Tib96], [CT07], [BRT09], [JN11]. While the statistical theory for the
quadratic loss is almost complete, this is not yet the case for general M -estimators. Here our goal
is to partially close this gap, providing analogues of Theorems 3.1–3.4 in the high-dimensional
setting, which give the quadratic dependence of the critical sample size from the sparsity index.
These results extend those obtained in [Bac10] for the logistic loss using pseudo self-concordance,
and are close to those proved in [vdGM12]; we discuss the connections with these works in the
end of this section. Finally, notice that we do not prove analogues of Theorems 3.5–3.6, which
would have resulted in a near-linear, rather than quadratic, dependence of the critical sample
size from sparsity. We believe that such extension is possible, and leave it for future work.

Before stating the results, we introduce an extra assumption complimentary to Assumption C.

Assumption C∗. Design is uncorrelated: Σ = I. Moreover, for some positive κ1, κ2, it holds

G 4 κ1I, H 4 κ2I.
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Discussion. Together, Assumptions C and C∗ imply the following bounds in operator norm:

‖G‖∞ ≤ κ1, ‖H‖∞ ≤ κ2, ‖H−1‖∞ ≥
1

ρ
.

Moreover, we can reasonably expect that in the ill-specified case, G < H, which is a stronger
version of the natural inequality deff ≥ d. When this is the case, the eigenvalues of both H
and G belong to the interval [ρ−1,κ] where κ := max(κ1,κ2). Then, the product Q := ρκ can
be considered as the condition number of the estimation problem at hand. In particular, we
are about to see that the excess risk bounds, as well the bounds for the critical sample size, get
inflated by Q in the high-dimensional regime. This reflects the requirement that the problem
should be well-conditioned with respect to the standard coordinate basis, since both `0-“norm”
and `1-norm depend on the choice of the basis. Some further remarks are in order.

• Similarly to the case of ρ, we always have the following bounds on κ1 and κ2:

κ1 ≤ sup
(y,η)∈Y×R

|`′(y, η)|, κ2 ≤ sup
(y,η)∈Y×R

`′′(y, η).

Arguably, these bounds are more informative than the similar bound (21) for ρ. For example,
they allow to bound κ with a constant in robust estimation and logistic regression.

• Correlated designs can also be considered, but this would lead to the inflation of the
bounds by the condition number of Σ.

The result presented next characterizes the statistical properties of the `1-penalized M -
estimator defined in (63) in the case of canonically self-concordant losses, extending Theorem 3.3.

Theorem 3.7. Assume SCa, D0, D1, D2, C, C∗, and |θ∗|0 ≤ s.

1. Whenever

n & max

{
ρκ2K

4
2s log

(
ed

δ

)
, ρ2κ1K

2
0K

2
1s

2 log

(
edn

δ

)}
, (64)

and the regularization parameter satisfies

K1

√
κ1 log(ed/δ)

n
. λ .

1

ρK0s
√

log(edn/δ)
, (65)

we have that with probability at least 1− δ,

‖θ̂λ,n − θ∗‖1 . ρsλ, ‖θ̂λ,n − θ∗‖2H . ρsλ2. (66)

2. Define the event E := {‖X‖∞ . K0

√
log (ed/δ)}. Then, P(E) ≥ 1− δ, and whenever

δ .

(
λ

K1

√
κ1 log(ed)

)1+ 1
log(d)

,

the restricted risk LE(θ) := E[`Z(θ)1E(X)] with probability at least 1− δ satisfies

LE(θ̂λ,n)− LE(θ∗) . ρsλ2. (67)
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Discussion. Clearly, the right choice of λ is the one attaining the lower bound in (65), that is,

λ � K1

√
κ1 log(ed/δ)

n

up to a constant factor (note that this choice is always possible since the left-hand side in (65) is
always upper-bounded with the right-hand side due to the second bound in (64). With such λ,
both the prediction error and the (restricted) excess risk LE(θ̂λ,n)− LE(θ∗) are bounded with

O

(
Qs log(ed/δ)

n

)

whenever n & max(Qs, ρQs2) log(ed/δ), where we ignored the dependence on the subgaussian
constants. Thus, we conclude that in the case of pseudo self-concordant losses, `1-penalization
allows to replace d and deff with s, at the expense of inflating all bounds by O(Q log d).

We now state an analogue of Theorem 3.7 in the case of canonically self-concordant losses.
Its proof is similar, and is outlined in Appendix B.

Theorem 3.8. Assume SCb, D1, D2, C, C∗, and |θ∗|0 ≤ s.

1. Whenever

n & max

{
ρκ2K

4
2s log

(
ed

δ

)
, ρ2κ1κ2K

2
1K

2
2s

2 log

(
edn

δ

)}
, (68)

and the regularization parameter satisfies

K1

√
κ1 log(ed/δ)

n
. λ .

1

ρK2s
√
κ2 log(edn/δ)

, (69)

we have that with probability at least 1− δ,

‖θ̂λ,n − θ∗‖1 . ρsλ, ‖θ̂λ,n − θ∗‖2H . ρsλ2. (70)

2. Define the event E := {‖X̃‖∞ . K2

√
κ2 log (ed/δ)}. Then, P(E) ≥ 1− δ, and whenever

δ .

(
λ

K1

√
κ1 log(ed)

)1+ 1
log(d)

,

the restricted risk LE(θ) := E[`Z(θ)1E(X)] with probability at least 1− δ satisfies

LE(θ̂λ,n)− LE(θ∗) . ρsλ2. (71)

Comparison of Theorems 3.7 and 3.8. We see that the usual gain of ρ that we observed so
far when replacing pseudo self-concordance with canonical self-concordance is not preserved in the
case of `1-regularized estimators. Instead, the second bound in (64) and the upper bound in (65)
get inflated with κ2, and the critical sample size, given the “ideal” choice of the regularization
parameter corresponding to the lower bound in (69), becomes n & max(Qs, Q2s2) log(ed/δ).
Essentially, the reason for that is that `1-regularization does not “know” anything about the
matrices H and Hn, and, in a sense, violates the affine-invariant structure of the proofs for
non-regularized M -estimators. This seems to be a fundamental problem with `1-regularization,
rather than the artifacts of our proofs, since `1-regularized M -estimators are themselves not
affine-invariant. As such, we believe the additional factors of Q and Q2 to be unimprovable in
the high-dimensional case without further assumptions.
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Comparison with the prior work. Our result in Theorem 3.7 extends the result of [Bac10,
Theorem 5] for logistic regression with fixed design, obtained using pseudo self-concordance of
the logistic loss. While the established error bounds are similar, our results have important
novelties. First, we analyze the random-design setting, whereas [Bac10] assumes fixed design.
Second, the result of [Bac10] requires larger sample size, scaling with the product of s and R2

where R is an upper bound on ‖X‖2. Typically, R scales as Ω(
√
d) (e.g., this is the case where

the design is pre-generated by sampling from a subgaussian distribution), thus [Bac10] essentially
requires a sample of size Ω(sd).

On the other hand, our results can be compared to those in [vdGM12] who establish
the rate O(λs) for the `1-error and O(λ2s) for the prediction error (see their Theorems 5.2
and 7.3), addressing a larger class of models including GLMs with non-canonical link functions
and general convex robust losses. However, in order to control the precision of the local
quadratic approximations of the risk, [vdGM12] assumes that `′′(Y,X>θ∗) is bounded from
below (Conditions A4 and B), which can only be guaranteed by assuming that θ∗ is bounded
in `1-norm. Thus, the results of [vdGM12] do not address the case of unbounded parameter.
Remarkably, these results have a similar requirement for the sample size to scale as Ω(s2 log d).

Proof (of Theorem 3.7). 0o. First, we follow the standard idea in the analysis of `1-penalized
estimators (see, e.g., [BCW11]): using the convexity of Ln(θ), we show that whenever λ
dominates ∇Ln(θ) – which is in fact enforced by the lower bound in (65) – the essential part of
the residual ∆ := θ̂λ,n − θ∗ with high probability concentrates on the support S. Indeed, due to

the optimality of θ̂ := θ̂λ,n, we have

Ln(θ̂)− Ln(θ∗) ≤ λ(‖θ∗‖1 − ‖θ̂‖1). (72)

Let ∆S be the orthogonal projection of ∆ onto S, and denote ∆Sc = ∆−∆S = θ̂S its projection
onto Sc, the orthogonal complement of S. By the triangle inequality,

‖θ∗‖1 − ‖θ̂‖1 ≤ ‖∆S‖1 − ‖∆Sc‖1. (73)

On the other hand, by convexity of Ln(θ), we have

Ln(θ̂)− Ln(θ∗) ≥ −‖∇Ln(θ∗)‖∞‖θ̂ − θ∗‖1 ≥ −‖∇Ln(θ∗)‖∞(‖∆S‖1 + ‖∆Sc‖1). (74)

Collecting (72)–(74), we get (λ− ‖∇Ln(θ∗)‖∞) ‖∆Sc‖1 ≤ (λ+ ‖∇Ln(θ∗)‖∞) ‖∆S‖1. Whence if

λ ≥ 2‖∇Ln(θ∗)‖∞, (75)

we have that ∆ satisfies the restricted subspace condition:

‖∆Sc‖1 ≤ 3‖∆S‖1, (76)

combining which with ‖∆S‖1 ≤
√
s‖∆S‖2 ≤

√
s‖∆‖2 results in

‖∆‖1 ≤ 4
√
s‖∆‖2. (77)

Later on, we will show that the lower bound in (65) implies (75) with probability at least 1− δ.
For now, let us assume that (75) holds.

1o. To localize the estimate, we now use a similar technique to the one used in the proof
of Proposition 3.5, but replace the Cauchy-Schwarz inequality with Young’s inequality. First,
applying (29) to Ln(θ) with θ0 = θ∗, θ1 = θ̂, and W = Xj for some (random) j ∈ [n], we have

e−|〈Xj ,∆〉| − 1 + |〈Xj ,∆〉|
|〈Xj ,∆〉|2

‖∆‖2Hn
≤ Ln(θ̂)− Ln(θ∗)− 〈∇Ln(θ∗),∆〉,
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Since function u 7→ (e−u − 1 + u)/u2 is non-increasing, we can replace |〈Xj ,∆〉| with ‖Xj‖∞‖∆‖1.
Combining this with (72) and (73), bounding −〈∇Ln(θ∗),∆〉 via Young’s inequality, and
using (75), we get

e−‖Xj‖‖∆‖1 − 1 + ‖Xj‖∞‖∆‖1
‖Xj‖2∞‖∆‖21

‖∆‖2Hn
≤ 3λ‖∆‖1

2
. (78)

We now use the standard result from compressed sensing theory (see Theorem A.3 in Appendix)
which states the following. Suppose that all s-restricted eigenvalues of H belong to [1/ρ,κ2],
meaning that

‖∆‖2
ρ
≤ ‖∆‖2H ≤ κ‖∆‖2

for any ∆ satisfying the restricted subspace property (76) – which is clearly the case for H in
question, due to Assumptions C and C∗. Then, the corresponding sample covariance matrix Hn

with probability at least 1− δ satisfies

1

2
‖∆‖2H 4 ‖∆‖2Hn

4 2‖∆‖2H, (79)

for any ∆ satisfying (76), provided that

n & ρκ2K
4
2s log

(
ed

δ

)
,

cf. (64). Combining this result with

‖∆‖2H ≥
‖∆‖22
ρ
≥ ‖∆‖

2
1

16ρs
,

where we used (77), we obtain that under (64) with probability 1− δ it holds

‖∆‖2Hn
≥ ‖∆‖

2
1

32ρs
. (80)

Combining this with (78), and denoting Bsup := maxi∈[n] ‖Xi‖∞ and u := Bsup‖∆‖1, we obtain

e−u − 1 + u ≤ 48ρsλBsupu.

From now on, we can proceed as in the proof of Proposition 3.5, cf. (95). That is, whenever

48ρsλBsup ≤ 1/2, (81)

we sequentially obtain u ≤ 2, e−u − 1 + u ≥ u2

4 , and u ≤ 192ρsBsupλ, and finally arrive at

‖∆‖1 ≤ 192ρsλ.

This is the first inequality in (66), and the second one is obtained by combining it with (78)–(79).
Thus, both inequalities in (66) are satisfied under the two assumed conditions (75) and (81). It
remains to show that these conditions are indeed guatanteed to be satisfied with high probability
under (65). For that, we have to bound the quantities ‖∇Ln(θ∗)‖∞ and Bsup from above.
Indeed, due to Assumption D1, we have

‖∇`Z(θ∗)‖ψ2 ≤ K1
√
κ1.
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Via Lemma A.4, this gives ‖∇Ln(θ∗)‖ψ2 . K1

√
κ1/n; in particular, ‖[∇Ln(θ∗)]i‖ψ2 . K1

√
κ1/n

componentwise for any i ∈ [n]. Whence, by Lemma A.2, with probability at least 1− δ it holds

‖∇Ln(θ∗)‖∞ . K1

√
κ1 log (ed/δ)

n
.

This guarantees (75) under the lower bound in (65). Similarly, we can show that with probability
at least 1− δ,

Bsup . K0

√
log (edn/δ),

which guarantees (81) under the upper bound in (65). The first claim of the theorem is proved;
note that the upper bound in (64) is simply a corrolary of (65).

2o. To prove the second claim, we bound the excess average risk using a similar technique as
when proving Theorem 3.3. To simplify the presentation, we defer the proof to Appendix B. �

Remark 3.3. In the above analysis (as well as in the proof of Theorem 3.8 in Appendix), the
matrices H and Hn only interact with the residual ∆, which with high probability satisfies the
restricted subspace condition (76). Hence, we can strengthen the result, replacing Assumption C
and the second inequality of Assumption C∗ with the requirement that

1

ρ
‖∆‖22 ≤ ‖∆‖2H ≤ κ2‖∆‖22

in the case where ∆ ∈ Rd is approximately sparse, i.e., satisfies ‖∆ − [∆]s‖1 ≤ 3‖[∆]s‖1,
where [∆]s is the projection of ∆ to the span of its s largest coordinates. This observation can
be exploited to accelerate computation of the estimator (63) when using proximal Newton-type
methods (see [LSS14]) via Hessian sketching, i.e., by replacing the estimates Hn(θ) with the
estimates Hm(θ) := 1

m

∑m
j=1 X̃j(θ)X̃j(θ)

> computed from a small subsample with size m� n.

4 Conclusion and perspectives

We have demonstrated how to obtain the asymptotically optimal rates O(d log(1/δ)/n) for the
excess risk of M -estimators in finite-sample regimes. Our analysis encompasses M -estimators
with losses satisfying certain self-concordance-type assumptions; these include some generalized
linear models (notably, logistic regression) as well as some robust estimation models. Such
assumptions allow to control the precision of the local quadratic approximations of empirical risk
through a simple integration technique. However, self-concordance alone only allows to address
the large-sample regime n = Ω(d2). In order to handle the moderate sample size regime n = Ω(d),
we conduct a somewhat non-standard analysis in which self-concordance is combined with a
covering argument, allowing to control the uniform deviations of the Hessians of empirical
risk in a Dikin ellipsoid of the best predictor. We also study `1-regularized M -estimators in
high-dimensional regimes, showing that in this case d essentially gets replaced with the number
of non-zero components s of the best predictor whenever n = Ω(s2) up to a logarithmic factor.

One question left untouched is the practical performance of M -estimators with canonically
self-concordant losses. In principle, it is possible that the comparative advantage for such losses
predicted by our theory is hardly observed empirically, e.g., due to the curvature parameter ρ
being moderate in practice. Other possible directions for future research are discussed further.

Improved results in the high-dimensional setup. For `1-regularized estimators, we have
only showed a suboptimal result that requires n = Ω(s2) up to a logarithmic factor. Improving
this sample size bound to a near-linear one is a long-standing open problem, see, e.g, [vdGM12].
We believe that with some technical work, our covering argument in Section 3.4 could be extended
to `1-regularized estimators, resulting in a near-linear boundary for the admissible sample size.
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Nonparametric regression. One possible direction for extending our results is the nonpara-
metric setting where d and deff can be infinite, and θ lives in a Hilbert space H with norm ‖ · ‖H.
Naturally, M -estimator should be replaced with its regularized counterpart, a unique solution to

min
θ∈H

Ln(θ) + λ‖θ‖2H

for some λ > 0. For pseudo self-concordant losses, [Bac10] has already obtained analogues of our
basic results presented in Section 3.2, showing the optimal bound for the bias and variance of the
regularized estimator in the regime n & ρdf2

1, where dfp := tr[Hp(H + λI)−p] is the `p-number
of degrees of freedom that replaces d in the nonparametric setting. However, without additional
conditions on the eigenvalues of H, these results lead to a suboptimal bias-variance balance
because of the restriction n & ρdf2

1. As such, the optimal bias-variance tradeoff is likely to be
implied by an extension of our refined results (cf. Section 3.4) to the nonparametric setting.

Efficient algorithms. It would also be interesting to revisit algorithmically efficient procedures
such as stochastic approximation, varianced reduction techniques, and quasi-Newton methods.
In particular, one could be interested in extending Hessian-sketching procedures from least-
squares linear regression to general M -estimators with (pseudo) self-concordant losses. On the
other hand, the stand-of-the-art stochastic-approximation-type algorithm for logistic regression
in [BM13] as well relies on Hessian approximation, and is also worth revisiting in this connection.

Matrix-parametrized models. In this work, we did not investigate M -estimators with
matrix-valued design and predictors, arising, for example, in covariance matrix estimation and
independent component analysis. In some of them, one commonly uses the log-determinant
loss which is self-concordant in the sense of [NN94]. Our techniques could shed light on the
statistical performance of such estimators in finite-sample regimes with random measurements.
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A Probabilistic tools

A.1 Subgaussian distributions

We recall the definition of subgaussian norm for random variables ξ ∈ R:

‖ξ‖ψ2 := inf
{
σ > 0 : E[eξ

2/σ2
] ≤ e

}
.

The lemma below provides equivalent definitions of the subgaussian norm.

Lemma A.1 ([Ver12, Lemma 5.5]). There exists an absolute constant c > 0 such that ‖ξ‖ψ2 ≤ σ
is equivalent to either of the following:

1. Subgaussian tails: for any t ≥ 0,

P {|ξ| > t} ≤ exp

(
1− ct2

σ2

)
.
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2. Subgaussian moments: for any p ≥ 1,

E[|ξ|p]1/p ≤ cσ√p.

Moreover, if E[ξ] = 0, either of these properties is equivalent to the exponential moment bound:

E exp(tξ) ≤ exp(cσ2t2).

Subgaussian norm can also be extended to Z ∈ Rd as the maximal ‖ · ‖ψ2-norm of all
one-dimensional marginals of Z:

‖Z‖ψ2 := sup
θ∈Sd−1

‖〈Z, θ〉‖ψ2 , (82)

where Sd−1 is the unit sphere in Rd. Note that this is indeed a norm; in particular, it satisfies
the triangle inequality: ‖Z1 + Z2‖ψ2 ≤ ‖Z1‖ψ2 + ‖Z2‖ψ2 for any pair of random vectors Z1, Z2.
Another elementary property is that ‖MZ‖ψ2 ≤ ‖M‖∞‖Z‖ψ2 for arbitrary matrix M. Some
well-known properties of subgaussian random vectors are summarized in the following lemmata.

Lemma A.2. Let the components of Z ∈ Rd satisfy ‖Zi‖ψ2 ≤ K, i ∈ [d]. Then, with probability
at least 1− δ,

‖Z‖∞ . K
√

log(ed/δ).

Proof. The statement of the lemma follows from item 1 of Lemma A.1 by the union bound. �

The next lemma provides a simple bound for the p-th moment of ‖Z‖∞. Although this
bound is loose for any fixed p, we use it only in the regime p ≈ log d in which it is tight.10

Lemma A.3. In the assumptions of the previous lemma, for any p ≥ 1 it holds

E[‖Z‖p∞]1/p . Kd1/p√p.

Proof. Using the bound from Lemma A.2, we obtain

E[‖Z‖p∞] =

∫ ∞

0
P {‖Z‖∞ ≥ u} dup

≤ ed
∫ ∞

0
e−

c2u2

K2 d(up) ≤ ed
(
K

c

)p p
2

Γ
(p

2

)
≤ ed

(
K

c

)p p
2

(p
2

)p/2
=
d(K
√
p)pep

2(c
√

2)p
.

We obtain the claimed bound by extracting the p-th root and doing some simple estimates. �

Lemma A.4 (Hoeffding-type inequality, follows from [Ver12, Lemma 5.9] through (82)). Let
Z1, ..., Zn ∈ Rd be independent and zero-mean. Then,

∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥

2

ψ2

.
n∑

i=1

‖Zi‖2ψ2
.

The following simple result allows to pass from a subgaussian vector to its centered version.

Lemma A.5 (Subgaussian norm after affine transform and decorrelation). Suppose that X ∈ Rd
satisfies E[X] = 0, Σ := E[XX>], and ‖Σ−1/2X‖ψ2 ≤ K. Then for any A ∈ Rd×d, b ∈ Rd,
vector X̂ = AX + b satisfies

‖Σ̂−1/2
X̂‖ψ2 . K, where Σ̂ = E[X̂X̂>].

10Tight bounds for all moments can be obtained via the Chernoff method combined with the general Orlicz
norms ‖ · ‖ψα with α = 2/p, see [Pol90]. This requires some technical work, and is beyond the scope of this paper.
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Proof. The quantity Σ−1/2X is invariant with respect to linear transforms, so it only remains
to treat the case X̂ = X + b. Note that in this case, Σ̂ = Σ + bb>. By the triangle inequality,

‖Σ̂−1/2
X̂‖ψ2 ≤ ‖Σ̂

−1/2
X‖ψ2 + ‖Σ̂−1/2

b‖ψ2 ≤ ‖Σ̂
−1/2

X‖ψ2 + ‖Σ̂−1/2
b‖2.

Since Σ̂ < Σ, we have

‖Σ̂−1/2
X‖ψ2 ≤ ‖Σ−1/2X‖ψ2 ≤ K.

On the other hand, by the Sherman-Morrison formula,

‖Σ̂−1/2
b‖22 = b>Σ̂

−1
b> ≤ 1.

Finally, note that K & 1, as follows from the inequality E[ξ4] ≥ (E[ξ2])2 applied to ξ = 〈u,X〉,
together with Item 2 of Lemma A.1. �

A.2 Deviation bounds for quadratic forms of subgaussian random vectors

We call random vector Z ∈ Rd isotropic if E[Z] = 0 and E[ZZ>] = Id. The following result is a
deviation bound for quadratic forms of isotropic subgaussian random vectors. It is obtained
from [HKZ12b, Theorem 2.1], modulo some changes in notation, using the isotropicity assumption
which allows to get rid of the K2 factor ahead of tr(M).

Theorem A.1. Let Z ∈ Rd be an isotropic random vector with ‖Z‖ψ2 ≤ K, and let M ∈ Rd×d
be positive semi-definite. Then,

P
{
‖Z‖2M − tr(M) ≥ t

}
≤ exp

(
−cmin

{
t2

K2‖M‖22
,

t

K‖M‖∞

})
.

In other words, with probability at least 1− δ it holds

‖Z‖2M − tr(M) . K2
(
‖M‖2

√
log (1/δ) + ‖M‖∞ log (1/δ)

)
.

Corollary A.1. We obtain a deviation bound for the `2-norm of the projection of an isotropic
subgaussian vector Z onto an arbitrary direction u ∈ Rd: with probability at least 1− δ it holds

|〈u, Z〉| . ‖u‖2K
√

log (e/δ). (83)

This follows, through some elementary algebra, by applying Theorem A.1 to the rank-one matrix
M = uu> which satisfies ‖M‖∞ = ‖M‖2 = tr(M) = ‖u‖22.

The next result immediately follows from Theorem A.1 using that ‖M‖∞ ≤ ‖M‖2 ≤ tr(M).

Corollary A.2. Under the premise of Theorem A.1, random variable ζ = ‖Z‖M is subgaussian:

P

{
ζ√

tr(M)
≥ cK(1 + t)

}
≤ exp(−t2),

and, as a consequence,

P

{
ζ

cK
√

tr(M)
≥ u

}
≤ exp

(
c1 −

u2

2c2

)
,

so that
‖ζ‖ψ2

≤ cK
√

tr(M).
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A.3 Sample covariance matrices

Next we describe the behavior of the sample second-moment matrix of a subgaussian vector.

Theorem A.2 ([Ver12, Theorem 5.39]). Assume that X̃ ∈ Rd satisfies E[X̃X̃>] = H and
‖H−1/2X̃‖ψ2 ≤ K. Let Hn = 1

n

∑n
i=1 X̃iX̃

>
i where X̃1, ..., X̃n are independent copies of X̃.

Whenever
n & K4(d+ log(1/δ)),

with probability at least 1− δ it holds

1
2‖∆‖2H ≤ ‖∆‖2Hn

≤ 2‖∆‖2H, ∀∆ ∈ Rd. (84)

What follows next is an extension of this result to the high-dimensional and sparse setting.

Theorem A.3 ([Zho09, Theorem 1.6]). Let H, Hn, and X̃ be as in the previous theorem, and
suppose that H satisfies the (ρ,κ, s)-restricted eigenvalues condition for some ρ,κ > 0 and s ≤ d.
Namely, for any ∆ ∈ Rd such that

‖∆Sc‖1 ≤ 3‖∆S‖1,

where S is the subspace of Rd correponding to s largest coordinates of ∆, and Sc is the complement
of S, it holds

(1/ρ)‖∆‖22 ≤ ‖∆‖2H ≤ κ‖∆‖22.
Then, whenever

n & ρκK4s log (ed/δ)

it holds that with probability at least 1− δ, for any ∆ ∈ Rd satisfying the same condition one has

1
2‖∆‖2H ≤ ‖∆‖2Hn

≤ 2‖∆‖2H.

B Deferred proofs

B.1 Properties of pseudo-Huber loss (18)

We can check that the Fenchel dual of φ : (−1, 1)→ R defined in (17) is indeed ϕ(t), cf. (18), by
solving a quadratic equation. Since φ is a barrier on (−1, 1), we have |ϕ′(t)| < 1 for any t ∈ R.
Now, by the known property of Fenchel-dual functions,

φ′(ϕ′(t)) = t, ∀t ∈ R.

Differentiating this, we obtain
φ′′(ϕ′(t)) · ϕ′′(t) = 1. (85)

Clearly, the Fenchel dual of an even function is also even, hence ϕ′(0) = 0, and ϕ′′(0) = 1/φ′′(0).
Differentiating once again, we get

φ′′′(ϕ′(t)) · [ϕ′′(t)]2 + φ′′(ϕ′(t)) · ϕ′′′(t) = 0,

whence, using that φ′′(u) > 0 for any u ∈ (−1, 1),

|ϕ′′′(t)| = |φ
′′′(ϕ′(t))|
φ′′(ϕ′(t))

[ϕ′′(t)]2.

Whence, if φ(u) satisfies |φ′′′(u)| ≤ c[φ′′(u)]3/2, we get that |φ′′′(u)| ≤ c[φ′′(u)]3/2 using (85). �
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B.2 Proof of Proposition 3.1

Recall that θt = θ0 + t(θ1 − θ0) for t ∈ [0, 1], and denote ∆ := θ1 − θ0. Differentiating under the
expectation, we obtain that the p-th derivative of φ(t) = L(θt) and φn(t) = Ln(θt), are given by

φ
(p)
Z (t) = `(p)(Y, 〈X, θt〉) · 〈X,∆〉p, (86)

φ(p)(t) = E[`(p)(Y, 〈X, θt〉) · 〈X,∆〉p], (87)

φ(p)
n (t) =

1

n

∑

i∈[n]

`(p)(Yi, 〈Xi, θt〉) · 〈Xi,∆〉p. (88)

This holds for p ≤ 3 due to the basic smoothness assumption. Now, let Assumption SCa be
satisfied. Using (87) with p ∈ {2, 3}, we get

|φ′′′(t)| ≤ E[|`′′′(Y, 〈X, θt〉)| · |〈X,∆〉|3]

≤ E[`′′(Y, 〈X, θt〉) · 〈X,∆〉2] · sup
x∈X
|〈x,∆〉|,

arriving at (24). Analogously, we obtain (23) from (88), replacing X with the set {X1, ..., Xn}.
Let Assumption SCb be satisfied instead, then (25) is obvious from (86). On the other hand,

|φ′′′(t)| ≤ E[|`′′′(Y, 〈X, θt〉)| · |〈X,∆〉|3]

≤ E[`′′(Y, 〈X, θt〉)3/2 · |〈X,∆〉|3]

≤ E[`′′(Y, 〈X, θt〉) · 〈X,∆〉2] sup
x,y∈X×Y

{√
`′′(y, 〈x, θt〉) · |〈x,∆〉|

}
,

which amounts to (27). We obtain (26) analogously, replacing the expectation with the sum. �

B.3 Proof of Proposition 3.2

We first treat the case g(0) > 0. Denote

T0 =

[
− 1

c
√
g(0)

,
1

c
√
g(0)

]
,

and assume that g(t) > 0 on the whole T0. Then, we can define ψ(t) := 1/
√
g(t) on T0, and the

premise of the proposition translates to |ψ′(t)| ≤ c. Now, let t ∈ T0 be positive without loss of
generality. Integrating from 0 to t, we get

−ct ≤ 1√
g(t)
− 1√

g(0)
≤ ct.

Multiplying by the product
√
g(t)g(0) > 0, and rearranging the terms, we prove the claim in

the case where g(t) does not vanish on T0 (the case of negative t is treated analogously). Now,
let t0 ∈ T0 be the leftmost zero of g(t) on T0 ∪R+ (recall that we still assume g(0) > 0). Then
the preceding argument is valid for any t ∈ [0, t0], which implies that g(t0) > 0, thus yielding
a contradiction. This argument can be repeated for negative t, taking t0 to be the rightmost
negative zero of g(t) on T0. Hence, g(0) > 0 actually implies that g(t) > 0 on the whole T0.

Finally, assume that g(0) = 0. Then if g(t) ≡ 0 on the whole T0, we are done. Otherwise,
there is a point t′ ∈ T0 in which g(t′) > 0. W.l.o.g. assume that t′ > 0, let t0 be the rightmost
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zero of g(t) on T0 ∪R+, and take a pair of points t1, t2 ∈ T0 such that t0 < t1 < t2. Integrating
ψ′(t) from t1 to t2, we get

−c(t2 − t1) ≤ 1√
g(t2)

− 1√
g(t1)

≤ c(t2 − t1),

which, after the mutiplication by
√
g(t1)g(t2) and rearrangement, results in the lower bound

g(t1) ≥ g(t2)

(1 + (t2 − t1)
√
g(t2))

.

Taking the limit t1 → t0, by the continuity of g(t) we obtain a contradiction with g(t0) = 0. �

B.4 Proof of Proposition 3.3

We assume that g(t) > 0 for t : |t| ≤ T ; the argument can be generalized in exactly the same way
as in the proof of Proposition 3.2. Denoting ψ(t) = log g(t), we obtain by integrating ψ′(t) that

−c
√
g(0)t ≤ log(g(t))− log(g(0)) ≤ c

√
g(0)t,

rearranging which, we arrive at the claim. �

B.5 Proof of Proposition 3.4

We first treat the one-dimensional situation, proving analogues of Proposition 3.2 in all cases.

Lemma B.1 (Lemma 1 in [Bac10]). Let g : [0, 1]→ R be a three times differentiable and convex
function such that g′′(0) > 0, and for some S ≥ 0,

|g′′′(t)| ≤ Sg′′(t), 0 ≤ t ≤ 1.

Then, for any 0 ≤ t ≤ 1, one has

e−St + St− 1

S2
g′′(0) ≤ g(t)− g(0)− g′(0)t ≤ eSt − St− 1

S2
g′′(0), 0 ≤ t ≤ 1. (89)

Proof. First assume that g′′(t) > 0 on [0, 1]. Then, the premise of the lemma implies that for
any t ∈ [0, 1],

−Sdt ≤ d log g′′(t) ≤ Sdt.

Integrating this, we obtain:
g′′(0)e−St ≤ g′′(t) ≤ g′′(0)eSt. (90)

Two more integrations successively give

1− e−St
S

g′′(0) ≤ g′(t)− g′(0) ≤ eSt − 1

S
g′′(0),

and then (89). Now, let t0 ∈ (0, 1] be the leftmost zero of g′′(t). Then, the preceding argument
can be applied on [0, t0], yielding a contradiction due to the left inequality in (90). �

Lemma B.2. Let g : [0, 1]→ R be a three times differentiable and convex function such that
g′′(0) > 0, and for some S ≥ 0,

|g′′′(t)| ≤ S

1− tg
′′(t), 0 ≤ t < 1.
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Then, for any 0 ≤ t ≤ 1, one has

(1− t)2+S + (2 + S)t− 1

(1 + S)(2 + S)
g′′(0) ≤ g(t)− g(0)− g′(0)t ≤ (1− t)2−S + (2− S)t− 1

(1− S)(2− S)
g′′(0), (91)

where the upper bound holds whenever S < 1 for any t ∈ [0, 1), and whenever S < 2 when t = 1.
In particular, taking t = 1, we have

g′′(0)

2 + S
≤ g(1)− g(0)− g′(0) ≤ g′′(0)

2− S .

Proof. Without loss of generality, we assume that g′′(t) > 0; the general case can be treated as
in Lemma B.1. The proof follows the same steps as in Lemma B.1. The first integration gives

(1− t)Sg′′(0) ≤ g′′(t) ≤ (1− t)−Sg′′(0), (92)

Integrating two more times, and assuming that S < 1 for the upper bound, we first get

1− (1− t)1+S

1 + S
g′′(0) ≤ g′(t)− g′(0) ≤ 1− (1− t)1−S

1− S g′′(0),

and then (91). Finally, when t = 1, the term (1 − S) vanishes from the denominator of the
right-hand side of (91), hence in this case we can take S < 2. �

Lemma B.3. Let g : [0, 1]→ R be a three times differentiable and convex function such that
g′′(0) > 0, and for some S ≥ 0,

|g′′′(t)| ≤ Sg′′(t)

1− St , 0 ≤ t < 1/S.

Then, for any 0 ≤ t ≤ 1/S, one has

(
t2

2
− St3

6

)
g′′(0) ≤ g(t)− g(0)− g′(0)t ≤ St+ (1− St) log(1− St)

S2
g′′(0). (93)

In particular, taking t = 1/S, we have

g′′(0)

3S2
≤ g(1/S)− g(0)− g′(0)

S
≤ g′′(0)

S2
.

Proof. We again assume w.l.o.g. that g′′(t) > 0, and integrate three times. obtaining

(1− St)g′′(0) ≤ g′′(t) ≤ g′′(0)

1− St,

then (
t− St2

2

)
g′′(0) ≤ g′(t)− g′(0) ≤

(
− log(1− St)

S

)
g′′(0), (94)

and finally (93). Note that we can take t = 1/S in (93) by continuity of f(u) = u log u at 0. �

Proof of the proposition. Cases (a)–(c) follow from Lemmata B.1–B.3 applied to g(t) =
φF (t), using that g(t) = F (θt), g

′(0) = 〈F ′(θ0), θ1− θ0〉, and g′′(0) = ‖θ1− θ0‖2H0
. Note that the

inner-product structure of S does not play a role here, but will be exploited in Proposition 3.5. �
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B.6 Proof of Proposition 3.5

Note that from (90), (92), or (94), depending on the case, it follows that ∇2F (θ) � 0 for any
θ ∈ Θ, hence the minimum θ̃ is unique provided that it exists. Now, consider the level set

ΘF (F (θ0)) := {θ ∈ Θ : F (θ) ≤ F (θ0)}.
Let θ1 be arbitrary point from ΘF (F (θ0)), and let r = ‖θ1 − θ0‖H0 . Denote ν := ‖∇F (θ0)‖H−1

0

and R := ‖W‖H−1
0

; note that S ≤ Rr. We now separately consider all cases of Proposition 3.4.

Case (a). By (29), we have

F (θ1) ≥ F (θ0) + 〈∇F (θ0), θ1 − θ0〉+
e−Rr − 1 +Rr

R2r2
r2

≥ F (θ0)− νr +
e−Rr − 1 +Rr

R2
,

where we first used that u 7→ (e−u − 1 + u)/u is a decreasing function, and then the Cauchy-
Schwarz inequality. Denoting u = Rr, we arrive at

e−u − 1 + u ≤ νRu. (95)

By the premise, we know that νR ≤ 1/2, hence

e−u − 1 +
u

2
≤ 0.

We can check numerically that this implies u ≤ 2. We can also check that for such u, it holds

e−u − 1 + u ≥ u2

4
.

Plugging this back into (95), we arrive at u ≤ 4νR, that is, ‖θ1 − θ0‖H0 ≤ 4ν. In other words,
the level set ΘF (F (θ0)) is compact and belongs to the ‖ · ‖H0-ball of radius 4ν centered at θ0.
Hence, the minimum θ̃ exists and belongs to the same ball; it is also unique since F (θ) � 0.

Case (b). By (31), we have

F (θ1) ≥ F (θ0) + 〈∇F (θ0), θ1 − θ0〉+
1

2 +Rr
r2

≥ F (θ0)− νr +
1

2 +Rr
r2,

where we used that u 7→ 1/(2 + u) is a decreasing function on R+. Whence, denoting u = Rr,

u

u+ 2
≤ νR.

Since νR ≤ 1/2, we have u ≤ 2. Then, we arrive at u ≤ 4νR, that is, r ≤ 4ν as required.

Case (c). First assume that Rr ≥ S ≥ 1. Then, θ1/S belongs to the segment [θ0, θ1] and to Θ.
Whence F (θ1/S) ≤ F (θ0) by the convexity of ΘF (F (θ0)). On the other hand, from (33) we have

F (θ1/S) ≥ F (θ0)− νr

S
+

r2

3S2
.

Whence

ν ≥ r

3S
≥ 1

3R
,

and we arrive at the contradiction. Thus, S < 1, but for such S, the premise of Case (c) implies
that of Case (b). �
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B.7 Proof of Theorem 3.3

1o. Denote µ = E[X], and let Σo := E[(X − µ)(X − µ)>]. Note that Σ = Σo + µµ>.

Denoting Q = Σ
1/2
o Σ−1Σ

1/2
o , we have

‖Xi‖2Σ−1 = ‖Xi − µ‖2Σ−1 + 2〈Σ−1/2µ,Σ−1/2(Xi − µ)〉+ ‖µ‖2
Σ−1

= ‖Σ−1/2
o (Xi − µ)‖2Q + 2〈Q1/2Σ−1/2

o µ,Q1/2Σ−1/2
o (Xi − µ)〉+ ‖Σ−1/2µ‖22.

By construction, Σ
−1/2
o (Xi−µ) is an isotropic random vector; moreover, ‖Σ−1/2

o (Xi−µ)‖ψ2 . K0

due to Assumption D0 combined with Lemma A.5. Note that ‖Q‖2 ≤ tr(Q) ≤ d, and ‖Q‖∞ ≤ 1.
Hence, by Theorem A.1, with probability at least 1− δ it holds

‖Σ−1/2
o (Xi − µ)‖2Q . K2

0d
(√

log (e/δ) + log (1/δ)
)
. K2

0d log (e/δ) .

The second term can be controlled as follows:

|〈Q1/2Σ−1/2
o µ,Q1/2Σ−1/2

o (Xi − µ)〉| ≤ ‖Q‖1/2∞ ‖Q1/2Σ−1/2
o µ‖2‖Σ−1/2

o (Xi − µ)‖2
= ‖Q‖1/2∞ ‖Σ−1/2µ‖2‖Σ−1/2

o (Xi − µ)‖2
≤ ‖Σ−1/2µ‖2‖Σ−1/2

o (Xi − µ)‖2

. K0

√
d log

(e
δ

)
‖Σ−1/2µ‖2,

where the last inequality holds with probability at least 1− δ by Corollary A.1 Finally, we have

‖Σ−1/2µ‖22 ≤ µ>Σ−1µ = µ>(Σo + µµ>)−1µ ≤ 1.

Combining these bounds, and taking the union bound, we get that with probability at least 1− δ,
for any i ∈ [n] it holds

max
i∈[n]
‖Xi‖2H−1

n
. ρK2

0d log
(en
δ

)
,

where we also used (37). Recalling the bound (35), and again making use of (37), we conclude
that (39) holds under (45). This implies (46) and (47) by the same argument as in Theorem 3.1.

2o. Let us now prove (48). To this end, consider the restricted risk LE0(θ), fix two arbitrary
points θ0, θ1 ∈ Θ, and consider function φE0(t) := LE0(θt) where θt = θ0 + t(θ1 − θ0) for t ∈ [0, 1].
Differentiating φE0(t) three times (note that E0 does not depend on θ), we see that (24) can now
be replaced with

|φ′′′E0(t)| ≤ φ′′E0(t) · sup
x∈XE0

|〈x, θ1 − θ0〉|,

where XE is the confidence set for X under the event E0, namely,

XE := {x ∈ X : ‖x‖H−1 ≤ √ρB},
where B := K0

√
d log(e/δ), and we used Assumption C. Besides, let us assume, for time being,

that the new Hessian HE0 := ∇2LE0(θ∗) is invertible, and approximates the non-perturbed one:

cH 4 HE0 4 CH (96)

for some pair of absolute constants c, C > 0. Later on, we will make sure that this is indeed
true under the condition (49) on δ. Under this assumption, applying Proposition 3.4, case (a),
to LE(θ) with θ0 = θ∗, θ1 = θ̂n, H0 = HE0 , and W ∈ XE0 , we get by (28):

LE0(θ̂n)− LE0(θ∗) .

(
e
√
ρBr − 1−√ρBr

ρB2r2

)
r2 +∇LE0(θ∗)

>(θ̂n − θ∗)

. r2 + r‖∇LE0(θ∗)‖H−1 ,

(97)
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where in the last transition we acted as in the proof of Theorem 3.1, and used the results of 1o.
3o. Comparing with the proof of Theorem 3.1, the novelty in (97) is the additional term

depending on ‖∇LE0(θ∗)‖H−1 . To control this term, let us introduce the complementary risk:

LEc0 (θ∗) := E[`Z(θ∗)1Ec0 (X)],

where Ec0 is the complement of E0, so that P(Ec0) ≤ δ. Note that since ∇L(θ∗) = 0, we
have ∇LE0(θ∗) = −∇LEc0 (θ∗), whence

‖∇LE0(θ∗)‖H−1 = ‖∇LEc0 (θ∗)‖H−1 .

We now estimate ‖∇LEc0 (θ∗)‖H−1 through a technique similar to the one used in [Ver11, Sec-
tion 1.3]. For any p, q such that 1/p+ 1/q = 1, we have by Hölder’s inequality:

‖∇LEc0 (θ∗)‖H−1 ≤ E[‖∇`Z(θ∗)‖H−11Ec0 ] ≤ E[‖∇`Z(θ∗)‖pH−1 ]1/pδ1/q, (98)

Note that
‖∇`Z(θ∗)‖2H−1 = ‖G−1/2∇`Z(θ∗)‖2M

where M = G1/2H−1G1/2, and G−1/2∇`Z(θ∗) is isotropic and satisfies ‖G−1/2∇`Z(θ∗)‖ψ2 ≤ K1.
Hence, by Corollary A.2, ζ := ‖∇`Z(θ∗)‖H−1 satisfies ‖ζ‖ψ2 . K1

√
tr(M) = K1

√
deff. As such,

we can bound the moments of ζ using Lemma A.1:

E[‖∇`Z(θ∗)‖pH−1 ]1/p . K1

√
pdeff.

Combining this with (97), (98), (46), (47), and choosing p = log(edeff), q = 1 + 1/log(deff), we
obtain

LE0(θ̂n)− LE0(θ∗) . K
2
1

√
deff

n
log
(e
δ

)(√deff

n
log
(e
δ

)
+ δ

log(deff)

log(deff)+1
√
deff log(edeff)

)
.

Hence, for (48) it suffices that δ
log(deff)

log(deff)+1
√

log(deff) .
√

log(e/δ)/n, which follows from the first
bound in (49).

4o. It remains to make sure that the Hessians H and HE0 are indeed close in the sense
of (96). First of all, the upper bound in (96) is trivial. Indeed defining the complementary
Hessian HEc0 := ∇2LEc0 (θ∗), we see that

HE0 = H−HEc0 4 H,

simply because HEc0 < 0. On the other hand, the lower bound in (96) with c ∈ (0, 1) would
follow from the bound

‖H−1/2HEc0H−1/2‖∞ ≤ c′,
where c′ ∈ (0, 1). Let us show that this bound is satisfied under the second bound in (49), using a
technique similar to the one used to control ∇LE0(θ∗). For any p, q ≥ 1 such that 1/p+ 1/q = 1,
we have by Hölder’s and Young’s inequalities:

‖H−1/2HEc0H−1/2‖∞ ≤ E[‖H−1/2∇2`Z(θ∗)H
−1/2‖p∞]1/pδ1/q

= E[‖H−1/2X̃X̃>H−1/2‖p∞]1/pδ1/q

= E[‖H−1/2X̃‖2p2 ]1/pδ1/q

. K2
2pdδ

1/q,

where in the last line we used that ζ = ‖H−1/2X̃‖2 satisfies ‖ζ‖ψ2 ≤ K2

√
d by Corollary A.2.

Choosing p = log(ed), we see that K2
2pdδ

1/q . 1 under the second bound in (49). �
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B.8 Proof of Theorem 3.6

We use the same conventions as in the proof of Theorem 3.5. Besides, we assume w.l.o.g. that
Assumption D2∗ holds with r = 1/

√
ρ, and let K̄2 := K̄2(1/

√
ρ) for brevity.

1o. Our first goal is to prove that the Hessians H(θ) := ∇2L(θ) are close to H(θ∗) within the
Dikin ellipsoid with radius 1/(c̄

√
ρ) for some c̄ depending on the subgaussian constants K0, K̄2.

Fix θ0 = θ∗ and arbitrary θ1 ∈ Rd, let θt = θ0 + t(θ1 − θ0), t ≥ 0, and let ∆ := θ1 − θ0.
Putting X̃(θt) := [`′′(Y, 〈X, θt〉)]1/2X as before, we have

φ′′(t) = E[`′′(Y, 〈X, θt〉) · 〈X,∆〉2] = E[〈H(θt)
−1/2X̃(θt),H(θt)

1/2∆〉2] = ‖∆‖2H(θt)
.

On the other hand, due to Assumption SCa,

|φ′′′(t)| ≤ E[|`′′′(Y, 〈X, θt〉)| · |〈X,∆〉|3]

≤ E[`′′(Y, 〈X, θt〉) · |〈X,∆〉|3]

≤ E[〈X̃(θt),∆〉2 · |〈X,∆〉|]
= E[〈H(θt)

−1/2X̃(θt),H(θt)
1/2∆〉2 · |〈Σ−1/2X,Σ1/2∆〉|]

≤
√

E[〈H(θt)−1/2X̃(θt),H(θt)1/2∆〉4] ·
√

E[〈Σ−1/2X,Σ1/2∆〉2],

where the last line is by the Cauchy-Schwarz inequality. Recall that whenever θt ∈ Θ1/
√
ρ(θ∗), one

has ‖H(θt)
−1/2X̃(θt)‖ψ2 ≤ K̄2 due to Assumption D2∗. On the other hand, ‖Σ−1/2X‖ψ2 ≤ K0.

Hence, by Lemma A.1 and Assumption C, we have

E[〈H(θt)
−1/2X̃(θt),H(θt)

1/2∆〉4] ≤ CK̄4
2‖∆‖4H(θt)

,

E[〈Σ−1/2X,Σ1/2∆〉2] ≤ CK2
0‖∆‖2Σ ≤ ρCK̄2

0‖∆‖2H(θ∗)
,

for some constant C > 0; moreover, we can enforce that C > 1 by weaking the bounds by a
constant factor if it is not the case. Combining the above inequalities, we arrive at

|φ′′′(t)| ≤ C2K0K̄
2
2 [ρφ′′(0)]1/2φ′′(t), 0 ≤ t[ρφ′′(0)]1/2 ≤ 1.

Putting
c̄ := CK0K̄

2
2 , (99)

and applying Proposition 3.3 to g(t) = φ′′(t), we obtain that whenever c̄|t|
√
ρ̄φ′′(0) ≤ 1, it holds

φ′′(0) exp(−c̄|t|
√
ρφ′′(0)) ≤ φ′′(t) ≤ φ′′(0) exp(c̄|t|

√
ρφ′′(0)).

Finally, since φ′′(t) = ‖∆‖2H(θt)
, this translates to the analogue of (53):

1

e
H(θ∗) 4 H(θ) 4 eH(θ∗), θ ∈ Θr̄(θ∗), r̄ :=

1

c̄
√
ρ̄
. (100)

Here we used that Θr̄(θ∗) ⊆ Θ1/
√
rho(θ∗) since c̄ ≥ 1.

2o. Let us now provide the local approximation of Hn(θ) using pseudo self-concordance of
individual losses. To this end, fix θ0 ∈ Θr̄(θ∗) and θ1 ∈ Θ, and note that

|φ′′′Z (t)| = |`′′′(Y,X>θt) · 〈X,∆〉|3

≤ |`′′′(Y,X>θt) · 〈X,∆〉|3 = 〈X̃(θt),∆〉2 · |〈X,∆〉| = φ′′Z(t) · |〈X,∆〉|.
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By the argument analogous to those in Propositions 3.2–3.3, we arrive at

φ′′Z(0)e−t|〈X,∆〉| ≤ φ′′Z(t) ≤ φ′′Z(0)et|〈X,∆〉|,

which translates to `′′(Y,X>θ0)e−t|〈X,∆〉| ≤ `′′(Y,X>θt) ≤ `′′(Y,X>θ0)et|〈X,∆〉|. Thus,

`′′(Y,X>θ0)e−t‖X‖H−1‖∆‖H ≤ `′′(Y,X>θt) ≤ `′′(Y,X>θ0)et‖X‖H−1‖∆‖H ,

where we recycled the simplified notation H := H(θ∗). Equivalently, for any θ ∈ Θr̄(θ∗)
and θ′ ∈ Θ,

`′′(Y,X>θ0) exp(−‖X‖H−1‖θ′ − θ‖H) ≤ `′′(Y,X>θt) ≤ `′′(Y,X>θ0) exp(‖X‖H−1‖θ′ − θ‖H).
(101)

By Assumption D0, random vector Σ−1/2X has ψ2-norm at most K̄0. Hence, repeating the
argument from 1o in the proof of Theorem 3.3 we can show that with probability at least 1− δ,

max
i∈[n]
‖Xi‖H−1 ≤ C0K0

√
ρd log

(en
δ

)
(102)

for some constant C0.
3o. Let Nε be the epsilon-net on the ellipsoid Θr̄(θ∗), with respect to the norm ‖ · ‖H, with

ε =
1

C0K0

√
ρd log (en/δ)

. (103)

Combining this with (101) and (102), we obtain that with probability at most 1− δ,
1

e
Hn(π(θ)) 4 Hn(θ) 4 eHn(π(θ)), ∀θ ∈ Θr̄(θ∗), (104)

where π(·) is the projection operator on the net Nε. On the other hand, by Theorem A.2, it
holds that

1

2
H(θ) ≤ Hn(θ) ≤ 2H(θ), ∀θ ∈ Nε (105)

with probability at least 1− δ, whenever n & d+ log (|Nε|/δ). Recaling that |Nε| ≤ (3r̄/ε)d, it
is sufficient that

n & d log
(er̄
εδ

)
& d log

(
eK0

√
d log(en/δ)

c̄δ

)
& d log

(
e
√
d log(en/δ)

K̄2
2δ

)
,

where we used (99) and (103). Noting that K̄2 ≥ 1, by simple algebra we have that (105) holds
with probability at least 1− δ under

n & d log (ed/δ) .

Finally, if this is the case, with probability at least 1− δ it holds

e2

2
H(θ∗) 4 Hn(θ) 4 2e2H(θ∗), ∀θ ∈ Θr̄(θ∗),

where we combined (105) with (104) and (100).
4o. As the empirical Hessians are uniformly approximated by H(θ∗) in the Dikin ellipsoid

with radius r̄ = 1/(CK0K̄
2
2
√
ρ), we can proceed in the same way as in step 4o in the proof of

Theorem 3.5, showing that (36) holds whenever ‖∇Ln(θ∗)‖2H−1 . 1/(ρc̄2) . 1/(ρK2
0K̄

4
2 ), cf. (99).

This leads to the second bound on the critical sample size from the premise of the theorem. �
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B.9 Proof of the second claim of Theorem 3.7

Note that P(E) ≥ 1−δ by the results of 1o. As in the proof of Theorem 3.3, let HE := ∇2LE(θ∗);
recall that HE 4 H. Applying (28) to LE(θ) with S ≤ ‖X‖∞‖∆‖1 (recall that X ∈ E), we have

LE(θ̂)− LE(θ∗) ≤ ‖∇LE(θ∗)‖∞‖∆‖1 +
e‖X‖∞‖∆‖1 − 1− ‖X‖∞‖∆‖1

‖X‖2∞‖∆‖21
‖∆‖2H

. ‖∇LE(θ∗)‖∞‖∆‖1 + ‖∆‖2H,

where we bounded the factor ahead of ‖∆‖2H by a constant using the results of 1o. Now,
define LEc(θ) := E[`Z(θ)1Ec(X)] where Ec0 is the complimentary event to E . Since ∇L(θ∗) = 0,
we have ∇LE(θ∗) = ∇LEc(θ∗). On the other hand, for any p, q ≥ 1 such that 1/p+ 1/q = 1, we
have

‖∇LEc(θ∗)‖∞ ≤ E[‖∇`Z(θ∗)‖∞1Ec(X)]

≤ E[‖∇`Z(θ∗)‖p∞]1/pδ1/q

≤ K1
√
pκ1 d

1/pδ1/q.

where we applied Hölder’s and Young’s inequalities, and then Lemma A.3. Recall that in 1o we
obtained that ‖∆‖1 . ρsλ and ‖∆‖2H . ρsλ2 with probability at least 1− δ. Combining these
observations, we arrive at

LE(θ̂)− LE(θ∗) ≤ (λ+K1
√
pκ1 d

1/pδ1/q)ρsλ.

Choosing p = log(ed), so that q = log(ed)/ log(d), we arrive at the claim. �

B.10 Proof of Theorem 3.8

1o. Let θ̂ = θ̂λ,n. Note that step 0o of the proof of Theorem 3.7 can be repeated verbatim. Thus,
whenever

λ ≥ 2‖∇Ln(θ∗)‖∞, (106)

we have
Ln(θ̂)− L(θ∗) ≤ λ(‖∆S‖1 − ‖∆Sc‖1) ≤ λ‖∆‖1, (107)

‖∆Sc‖1 ≤ 3‖∆S‖1, (108)

‖∆‖1 ≤ 4
√
s‖∆‖2. (109)

Moreover, we know (cf. the end of step 1o of the proof of Theorem 3.7) that (106) holds with
probability at least 1− δ as long as

‖∇Ln(θ∗)‖∞ . K1

√
κ1 log (ed/δ)

n
. (110)

Hence, (106) and (110) are satisfied under the lower bound in (69). Finally, under (108) we have

1

2
‖∆‖2H 4 ‖∆‖2Hn

4 2‖∆‖2H (111)

and

‖∆‖2Hn
≥ ‖∆‖

2
1

32ρs
, (112)

both with probability at least 1− δ, whenever

n & ρκ2K
4
2s log

(
ed

δ

)
.
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On the other hand, (78) does not hold since we cannot use (29). Instead, let us prove that

‖∆‖2Hn

1 + 3‖X̃j‖∞‖∆‖1
≤ Ln(θ̂)− L(θ∗)− 〈∇Ln(θ∗),∆〉, (113)

where j ∈ Argmaxi∈[n] |〈X̃i,∆〉|. Indeed, denote S = |〈X̃j ,∆〉|. Whenever S ≤ 1, function Ln(θ)
satisfies Case (b) of Proposition 3.4, and we obtain (113) from (31). On the other hand,
when S ≥ 1 function Ln(θ) always satisfies Case (c) of Proposition 3.4, and we can use (33), i.e.,

‖∆‖2Hn

3S2
≤ Ln(θ1/S)− L(θ∗)−

1

S
〈∇Ln(θ∗),∆〉, (114)

where

θ1/S =

(
1− 1

S

)
θ∗ +

1

S
θ̂

is a convex combination of θ∗ and θ̂. By convexity, we have Ln(θ1/S) ≤ (1− 1
S )Ln(θ∗) + 1

SLn(θ̂),

whence Ln(θ̂)− Ln(θ∗) ≤ (Ln(θ̂)− Ln(θ∗))/S. When combined with (114), this results in

‖∆‖2Hn

3S
≤ Ln(θ̂)− L(θ∗)− 〈∇Ln(θ∗),∆〉.

Whence (113) follows in this case as well by Young’s inequality. Now, (113), (107), and (106)
imply

‖∆‖2Hn

1 + 3‖X̃j‖∞‖∆‖1
≤ 3λ‖∆‖1

2
, (115)

which is an analogue of (78). Starting from this point, we can proceed in a similar way as in
the proof of Theorem 3.8. Namely, let B̃sup := ‖X̃‖∞ and u := B̃sup‖∆‖1, then (115) and (112)
imply

u

1 + 3u
≤ 48ρsλB̃sup.

Hence, whenever
48ρsλB̃sup ≤ 1/4, (116)

we have u ≤ 1 and u/(1 + 3u) ≥ u/4, which implies u ≤ 192ρsλB̃sup and ‖∆‖1 ≤ 192ρsλ. This
is the first inequality in (70). To obtain the second inequality, we combine (115) and (111).
Thus, for (70) it remains to show that (116) holds under the upper bound in (69). We have

‖X̃‖ψ2 ≤ ‖H1/2‖2‖H−1/2X̃‖ψ2 ≤ K2
√
κ2,

where we used Assumptions D2 and C∗. This leads to

B̃sup . K2

√
κ2 log(edn/δ)

with probability 1− δ, which, in turn, guarantees (116) under the upper bound in (69).
2o. We now adapt the proof of the second claim of Theorem 3.7. Recall that in our

case E := {‖X̃‖∞ . K2

√
κ2 log (ed/δ)}, and P(E) ≥ 1− δ by the results of 1o. As before, we

put HE := ∇2LE(θ∗) 4 H, but this time we note that LE(θ) satisfies Case (b) of Proposition 3.4
with S ≤ ‖X̃‖∞‖∆‖1 ≤ 1, cf. 1o. Thus, by (30) we have

LE(θ̂)− LE(θ∗) . ‖∇LE(θ∗)‖∞‖∆‖1 + ‖∆‖2H.

Thence we proceed exactly in the same way as when proving the second claim of Theorem 3.7. �
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C Case study of the distribution assumptions in Section 2.2

Change of variables. Consider a canonical GLM (14) with cumulant a(η). In such a
model, `′′(y, η) = a′′(η) does not depend on y, hence X̃(θ) = [a′′(X>θ)]1/2X is fully defined by
the distribution of X and the value of θ. Hence, the validity of Assumptions C, D2, D2∗ only
depends on the distribution of X, the expression for a′′(η), and, possibly, the value of θ∗ (or θ in
the unit Dikin ellipsoid of θ∗ in the case of Assumption D2∗). Note, however, that the distribution
of Y does influence Assumption D1 since the loss gradient `′(Y,X>θ)X = (a′(X>θ) − Y )X
contains Y . Now, consider the case of zero-mean design, which only makes sence when η is
unrestricted, i.e., R(+) = R (note that this excludes the exponential responce model). In this
case, it is natural to pass from X and θ to the decorrelated design Z := Σ−1/2X and the
parameter ϑ := Σ−1/2θ. Indeed, X>θ = Z>ϑ, and the corresponding calibrated vector Z̃(ϑ),

Z̃(ϑ) := [a′′(Z>ϑ)]1/2Z,

satisfies Z̃(ϑ) = Σ−1/2X̃(θ), so that its second-moment matrix Ψ(ϑ) := E[Z̃(ϑ)Z̃(ϑ)>] is
given by Ψ(ϑ) = Σ−1/2H(θ)Σ−1/2. Verifying Assumptions C thus reduces to bounding the
lowest eigenvalue of Ψ(ϑ∗) at ϑ∗ := Σ1/2θ∗, while Assumptions D2 and D2∗ reduce to check-
ing ‖Ψ(ϑ)−1/2Z̃(ϑ)‖ψ2 . K2 at ϑ∗ and closeby points. Similarly, Assumption D1 can be
reformulated in terms of the new variables Z, ϑ, and Y .

Logistic regression. In what follows, we consider the particular example of logistic regression
with Gaussian design X ∼ N (0,Σ), verifying the assumptions introduced in Section 2.2.

Proposition C.1. In logistic regression with X ∼ N (0,Σ), the following is true:

1. Assumption C holds with
ρ . 1 + ‖θ∗‖3Σ.

2. Assumption D2 holds with

K2 . (1 + log(1 + ‖θ∗‖Σ))
√

1 + ‖θ∗‖Σ.

Moreover, Assumption D2∗ with the radius r of the Dikin ellipsoid holds with

K̄2(r) . (1 + log(1 + ‖θ∗‖Σ + r
√
ρ))
√

1 + ‖θ∗‖Σ + r
√
ρ,

In particular, K̄2(1/
√
ρ) admits the same bound as K2.

3. If the model is well-specified, Assumption D1 holds with

K1 .
√
ρ . (1 + ‖θ∗‖Σ)3/2.

Moreover, a better bound holds for the subexponential norm (see [Ver12, Section 5.2.4]):

‖G(θ∗)
−1/2`′(Y,X>θ∗)X‖ψ1 . log(1 + ‖θ∗‖Σ)2

√
1 + ‖θ∗‖Σ;

equivalently, for any u ∈ Sd−1 one has
(
E[〈G(θ∗)

−1/2`′(Y,X>θ∗)X,u〉p
)1/p
. Kp with

K = log(1 + ‖θ∗‖Σ)2
√

1 + ‖θ∗‖Σ.
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Proof. Note that Z ∼ N (0, Id), and since this law is rotation-invariant, we can w.l.o.g. assume
that the first coordinate vector is parallel to ϑ. Using the symmetries of N (0, 1), we can make
sure that

Ψ(ϑ) =

[
κ 0>d−1

0d−1 κ⊥Id−1,

]
, (117)

where 0d−1 is the zero column, and κ, κ⊥ can be expressed in terms of the standard Gaussian
density φ(·) and

t = ‖ϑ∗‖2 = ‖θ∗‖Σ
as

κ :=

∫ ∞

−∞
a′′(tu)u2φ(u)du, κ⊥ :=

∫

R

a′′(tu)φ(u)du.

In fact, the form (117) for Ψ(ϑ) will be preserved with any elliptical distribution of X, with
somewhat more complicated expressions for κ and κ⊥ in the non-Gaussian case. Our next step
is to lower-bound κ and κ⊥, which automatically yields an upper bound for ρ in Assumption C:

ρ ≤ 1

min(κ, κ⊥)
. (118)

1o. Let us bound κ and κ⊥ for logistic regression, i.e., when a(η) = log(1 + eη). In this case,

a′(η) = σ(η), a′′(η) = σ(η)(1− σ(η)),

where σ(η) := 1/(1 + e−η) is the sigmoid function. Clearly, we can bound a′′(η) for any η ∈ R as

1

2(1 + e|η|)
≤ a′′(η) ≤ 1

1 + e|η|
,

which yields
e−|η|

4
≤ a′′(η) ≤ e−|η|. (119)

Hence, letting a ≈ b denote the intersection of a . b and a & b, we have

κ⊥ ≈
∫ +∞

0
e−tuφ(u)du ≈

∫ +∞

0
e−tu−u

2/2du = et
2/2G(t),

where

G(t) =

∫ +∞

t
e−v

2/2dv

is the partial Gaussian integral. From [AS65, Eq. 7.1.13], we know the following bounds for G(t):

2e−t
2/2

t+
√
t2 + 4

≤ G(t) ≤ 2e−t
2/2

t+
√
t2 + 8/π

, t ≥ 0. (120)

These bounds are sharp in the constant terms under the square root; in particular, they imply

G(t) ≈ e−t
2/2

t+ 1
,

whence,

κ⊥ ≈
1

t+ 1
. (121)
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We can similarly bound κ:

κ ≈
∫ +∞

0
e−tuu2φ(u)du ≈ et2/2

∫ +∞

0
e−(u+t)2/2u2du = et

2/2

∫ +∞

t
e−v

2/2(v − t)2dv

= (t2 + 1)G(t)− te−t2/2.

Using the lower bound in (120), this gives

κ ≥ 4

(t+
√
t2 + 4)(t2 + 2 +

√
t4 + 4t2)

&
1

1 + t3
. (122)

Plugging (121) and (122) into (118), we arrive at ρ . 1 + ‖θ∗‖3Σ, as claimed The dependency
on ‖θ∗‖Σ cannot be improved since the lower bound in (120) is sharp.

2o. On the other hand, we can estimate K2 from Assumption D2 (and similarly K̄2(r) from
Assumption D2∗). Indeed, note that

K2 = ‖Ψ(ϑ∗)
−1/2Z̃(θ∗)‖ψ2 = sup

u∈Sd−1

‖〈u,Ψ(ϑ∗)
−1/2Z̃(θ∗)〉‖ψ2 .

Let us consider separately the marginals for u = ϑ∗/t and for u from the othogonal complement
of the span of ϑ. When u = ϑ∗/t, we have

|〈u,Ψ(ϑ∗)
−1/2Z̃(θ∗)〉| =

√
a′′(tZ1)

κ
|Z1| ≈

√
a′′(tZ1)

κ
|Z1| . (1 + t3/2)e−t|Z1|/2|Z1|,

where Z1 ∼ N (0, 1), and we used (119) and (122). Thus, whenever t . 1, for such u we have

‖〈u,Ψ(ϑ∗)
−1/2Z̃(θ∗)〉‖ψ2 . ‖Z1‖ψ2 . 1. (123)

Let, on the contrary, t & 1. Note that in the case where

|Z1| ≥
3 log(1 + t)

t
,

we have (1 + t3/2)e−t|Z1|/2 . 1, whence

|〈u,Ψ(ϑ∗)
−1/2Z̃(θ∗)〉| . |Z1|. (124)

On the other hand, in the case

|Z1| ≤
3 log(1 + t)

t
,

we have (1 + t3/2)e−t|Z1|/2|Z1| . (1 + t1/2) log(1 + t). Hence, when u is parallel to ϑ∗, we have

‖〈u,Ψ(ϑ∗)
−1/2Z̃(θ∗)〉‖ψ2 . (1 + log(1 + t))

√
1 + t.

Finally, when u is orthogonal to ϑ∗, we can use the trivial estimate

‖〈u,Ψ(ϑ∗)
−1/2Z̃(θ∗)〉‖ψ2 =

∥∥∥∥∥∥

√
a′′(tZ1)

κ⊥
〈u, Z〉

∥∥∥∥∥∥
ψ2

.
√

1 + t‖〈u, Z〉‖ψ2 .
√

1 + t.

In fact, this bound is tight which can be verified by Item 2 of Lemma A.1 (note that Z1 and 〈Z, u〉
are independent). Thus, overall we have

K2 . (1 + log(1 + ‖θ∗‖Σ))
√

1 + ‖θ∗‖Σ. (125)
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Moreover, for K̄2(r) from Assumption D2∗, we clearly have

K̄2(r) . sup
θ∈Θr(θ∗)

(1 + log(1 + ‖θ‖Σ))
√

1 + ‖θ‖Σ

. (1 + log(1 + ‖θ∗‖Σ + r
√
ρ))
√

1 + ‖θ∗‖Σ + r
√
ρ.

This still results in (125) whenever r . 1/
√
ρ, motivating our condition in Theorem 3.6.

3o. Finally, let us verify Assumption D1, assuming that the model is well-specified. In this
case, we have G(θ∗) = H(θ∗), and the trivial bound using that |Y − σ(X>θ∗)| ≤ 1, is

K1 .
√
ρ . 1 + t3/2.

This is a rather discouraging result. However, we can show a weaker (subexponential) version of
Assumption D1 with a milder dependency on t, replacing the ‖ · ‖ψ2 norm with the ‖ · ‖ψ1-norm
as defined in [Ver12, Section 5.2.4]:

‖`′(Y,X>θ∗)Z‖ψ1 . log(1 + t)2
√

1 + t. (126)

One of the equivalent definitions of the subexponential norm is as follows: a random variable ξ ∈ R
satisfies ‖ξ‖ψ1 ≤ K when its moments scale as (E[|ξ|p])1/p . Kp, i.e., same as the moments of
the exponential distribution; then, the ψ1-norm of a random vector is defined as the maximum
norm of its one-dimensional marginals. Recall that for subgaussian random variables the scaling
is K
√
p (cf. Lemma A.1). To see (126), note that in the well-specified case for y ∈ {0, 1} we

have
P{Y = y} = σ(X>θ∗)

y(1− σ(X>θ∗))
1−y,

thus we can estimate the moments of the marginals of `′(Y,X>θ∗)Z = (Y −σ(Z>ϑ∗)Z for p ≥ 1:

EZ,Y [(Y − σ(Z>ϑ∗))〈Z, u〉]p ≤ 2EZ

[
σ(Z>ϑ∗)(1− σ(Z>ϑ∗))〈Z, u〉p

]
. 2EZ

[
e−|Z

>ϑ∗|〈Z, u〉p
]
,

where we used (119). For u parallel to ϑ∗, we should prove that

(1 + t)3/2

(∫ +∞

0
e−tuupe−u

2/2du

)1/p

. p log2(1 + t)
√

1 + t. (127)

We proceed similarly to 2o, using that (1 + t)3p/2e−tu ≤ 1 when u ≥ 3p log(1+t)
2t . Thus, when t & 1,

(1 + t)3p/2

∫ +∞

0
e−tuupe−u

2/2du ≤ (1 + t)3p/2

∫ 3p log(1+t)
2t

0
updu+

∫ +∞

3p log(1+t)
2t

upe−u
2/2du

. (1 + t)3p/2 1

p+ 1

(
3p log(1 + t)

2t

)p+1

+ pp/2

. (2p)p(1 + t)p/2 log(1 + t)p+1,

which implies (127). The remaining cases (u parallel to ϑ∗ with t . 1, u orthogonal to ϑ∗) are
straightforward, noting that a K-subgaussian random variable is also O(K)-subexponential. �
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