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Coherence modulo relations
Benjamin Dupont and Philippe Malbos

Institut Camille Jordan, University of Lyon, France, {bdupont,malbos}@math.univ-lyon1.fr

Abstract – The computation of minimal convergent presentations for monoids, categories
or higher-dimensional categories appear in low-dimensional combinatorial problems on these
structures, such as coherence problems. A method to compute coherent presentations using
convergent string rewriting systems was developed following works of Squier. In this approach,
coherence results are formulated in terms of confluence diagrams of critical pairs. This work
proposes an extension of these methods to string rewriting systems modulo.

1 Introduction
The computation of minimal convergent presentations for monoids, categories or higher-dimensional
categories appear in low-dimensional combinatorial problems on these structures, such as coherence
problems. A method to compute coherent presentations using convergent string rewriting systems was
developed following works of Squier, see [9, 10]. In this approach, coherence results are formulated
in terms of confluence diagrams of critical pairs. This work proposes an extension of these methods to
algebraic or categorical structures having additional algebraic axioms, such as commutation, linearity or
inverses. Using a notion of rewriting modulo, we show how to compute coherent presentations modulo
algebraic axioms.

Rewriting modulo was developed in several approaches. The rules are split into two parts: oriented
rules in a set R and non-oriented equations in a set E. The most naive approach of rewriting modulo is
to use a rewriting system R{E consisting in rewriting on congruence classes modulo E, but this appears
unefficient for analysis of confluence, see [1, Chapter 11]. Another approach of rewriting modulo
has been considered by Huet in [11] where rewriting paths does not involve equivalence steps, and
confluence is formulated modulo equivalence. Jouannaud and Kirchner enlarged this approach in [12] by
providing completion methods for any rewriting system between R and R{E. Several other approaches
have also been developed for term rewriting systems modulo to deal with various equational theories,
see [2, 14, 17].

In this work, we extend Huet’s approach to prove coherence results modulo algebraic relations, e.g.
inverses for rewriting in groups, or commutation for linear rewriting. Indeed, in most cases, algebraic
relations such as commutation cannot be oriented in a terminating way. Moreover, rewriting modulo can
be used to delete some critical branchings that should not be considered in the analysis of coherence.
This is the case for the computation of coherent presentations for algebraic structures such as groups or
algebras.

Known approaches of rewriting for groups are mainly based on a presentation of groups as monoids
with explicit inverses and explicit rules for inverse axioms. The SRS is thus defined on the set of genera-
tors of the group, their formal inverses, and the explicit rules for inverses, [3–6, 15]. However, coherent
presentations of groups have to take into account that the presentation is modulo these inverse relations.
The objective is to study confluence modulo the confluence diagrams induced by these relations, and to
consider rewriting steps in the free group. This approach corresponds to rewriting on congruence classes
modulo the equivalence given by the inverse relations, and thus is not suitable to study confluence. For
this reason, we consider the weaker theory of rewriting modulo introduced by Huet. One of the main
applications is to extend the coherent results obtained by rewriting methods on Artin-Tits monoids in
[7] to Artin-Tits groups.
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The second example of algebraic structure we consider is the axiomatic of vector spaces in the theory
of linear rewriting developed in [8]. Actually, the critical branchings in linear rewriting are defined
modulo the axioms of vector spaces, namely abelian groups and distributivity of the multiplicative law.
For instance, if we denote by E the set of axiomatic rules of vector spaces and R is a linear rewriting
system with two rules 3x ñ 2y and 2x ñ z, then the branching 2y ð 3x � 2x � x ñ z � x can be
interpreted as a branching of R modulo E. In this way, the coherence result obtained on algebras in [8]
can be formulated in terms of rewriting modulo.

This work presents a construction of coherent extensions of SRS modulo. In a first part, we recall
the notion of confluence modulo as introduced by Huet, [11]. Then, we introduce the notion of coherent
extension modulo, that corresponds to homotopy bases of SRS as defined in [10] when the set of axioms
is empty. It is defined by a set of 3-cells modulo tiling all the spheres created by rewriting paths which
are parallel modulo the axioms. In the last section, we enounce a generalization of Squier’s coherence
theorem to confluent SRS modulo. The proof of this result is given in Appendix A as well as some
recalls on the categorical language on SRS used in this work in Appendix B.

2 Rewriting modulo

Let us recall the notion of rewriting modulo a set of relations. In the sequel, all the SRS considered are
defined on a same alphabet X. Given two SRS R and E, a rewiting with respect to R modulo relations
defined by E consists in rewriting using rules of R on congruence classes modulo E. This corresponds
to studying the rewriting system R{E defined by u ñR{E v if and only if there exists strings u 1 and
v 1 on X such that u �E u

1 ñR v
1 �E v. However, studying confluence of this rewriting system is

complicated as explained in [1], so we use a weaker notion of confluence modulo as introduced by Huet
in [11]. Whenever it exists, we denote by pu a normal form of a string u on X with respect to R.

Equivalence modulo. Let consider the free p2, 1q-category EJ generated by E (see Appendix B for
categorical constructions). The 2-cells of EJ will be called equivalences modulo E. An equivalence
modulo E of length equals to 1 is called a one-step equivalence. We denote by �E
the equivalence relation generated by E. A branching modulo E of the SRS R is a pair
pf, gq of 2-cells of the free 2-category R� such that s1pfq �E s1pgq as depicted by the
diagram on the side. We do not distinguish the branchings pf, gq and pg, fq. Such a
branching pf, gq is local if `pfq, `pgq, `peq ¤ 1 and `pfq � `pgq � `peq � 2.

u 1

u

f %9

e
v

g
%9 v 1

An aspherical (resp. Peiffer) branching modulo E of R is a pair pf, fq (resp. pfv, ugq) of 2-cells of R�

depicted by

u

f

�+
u 1

u

f

2F
(resp.

u 1v

uv

fv &:

uv

ug $8 uv 1

)

A branching pf, gq is confluent modulo E if there exists 2-cells f 1 and g 1 in R�,
as in the diagram on the side. pf 1, g 1q is called a confluence modulo E. We

will denote this by u 1
E
_ v 1. We say that R is confluent modulo E if all of its

branchings are confluent modulo E.

u 1 f 1

�'
u

f ';

w

v

g #7

w 1

v 1 g 1

8L

Local branching. Local branchings belong to one of the following families:

i) local aspherical branchings, for a rewriting step f of R: u
f
�/

f

/C v
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ii) local Peiffer branchings: for rewriting steps f, g of R (resp. for a rewriting step f of R and a one-step
equivalence e of E):

u 1v

uv

fv %9

ug
%9 uv 1

(resp.
u 1v

uv

fv %9

		
ue

�� uv 1
)

iii) overlapping branchings are the remaining local branchings, in which we distinguish two families:

v

u

f #7

g
&: v 1

v

u

f #7

��
e

  v 1

A critical branching modulo E is an overlapping local branching that is minimal for the order generated
by the relations pf, gq ¤

�
ufv, ugvq.

Local Confluence modulo. A SRS R is locally confluent modulo a SRS E if any of its local branchings
is confluent modulo E. Note that any aspherical and Peiffer branching being confluent modulo E, local
confluence modulo E is equivalent to the confluence of overlappings modulo E. Huet show that under
the assumption that the composite ñR � �E is terminating, then R is confluent modulo E if and only
if any overlapping branching of R modulo E is confluent modulo E, [11]. Under the same assumption,
he shows that a SRS R is locally confluent modulo a SRS E if and only if any critical branching of R
modulo E is confluent modulo E, [11].

3 Coherent extensions modulo

Given two SRS R and E, a 2-sphere modulo E in the free p2, 1q-category RJ is a pair pf, gq of 2-cells
in RJ which are parallel modulo E, that is, s1pfq �E s1pgq and t1pfq �E t1pgq and such that f or g
is not trivial. Note that the case f and g trivial produce a 2-sphere in EJ. These 2-spheres do not fit in
the construction of coherence extensions modulo E. A 2-sphere modulo E will be pictured by one of the
following diagrams:

u

f

�1
v

u 1

g

-A v 1

u

!!

u 1

==

f

�-

g

1E

v

!!

v 1

==

u

##

u 1

::

f��

g��
v

##

v 1

::

We will denote by SphEpRq the set of 2-spheres modulo E in RJ. A cellular extension of RJ modulo E
is a set Γ equipped with a map γ : Γ ÝÑ SphEpRq, whose elements are called 3-cells modulo E. We say
that Γ is coherent if the map γ is surjective. A 3-cell A modulo E filling a 2-sphere pf, gq modulo E will
be denoted by A : f VE g. We say that f (resp. g) is the 2-source (resp. 2-target) of A and we denote
it by s2pAq (resp. t2pAq). We define formal compositions �0,�1,�2 of 3-cells modulo E in a cellular
extension Γ as pasting operations defined as follows:

3
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i) Given A and B in Γ , one defines A �0 B as the 3-cell modulo E tiling the cylinder as follows:

u

##

u 1

::

v

##

v 1

::

A
5I

f��

g��

f 1��

g 1��
B
5I

w

##

w 1

::

t

##

t 1

::

ù

uv

##

u 1v 1

::

ff 1��

gg 1��
A�0B
5I

wt

##

w 1t 1

::

ii) Given A and B in Γ such that t1s2pAq � s1s2pBq and t1t2pAq � s1t2pBq, one defines a 3-cell
modulo E denoted by A �1 B tiling the following composite cylinder:

u

FF

u 1

XX

A
Ui

f
%9

g %9

v

FF

v 1

XX

B
Ui

f 1
%9

g 1 %9

w

FF

w 1

XX

ù
u

FF

u 1

XX

A�1B
Ui

f�1f
1

%9

g�1g
1

%9

w

FF

w 1

XX

iii) Given A and B in Γ such that t2pAq � s2pBq, one defines a 3-cell modulo E denoted by A �2 B
tiling the cylinder obtained as follows:

u

##

u 1

::

f��

g��
A
5I

v

##

v 1

::

u 1

##

u2

::

g��

h��
B
5I

v 1

##

v2

::

,

ù

u

##

u2

::

f��

h��
A�2B
5I

v

##

v2

::

Let Γ be a cellular extension of RJ modulo E. We will denote by CpΓq the closure of Γ with respect
to compositions �0, �1 and �2 of 3-cells of Γ and their formal inverses A�1 for A P Γ quotiented by
the exchange relations pA �i Bq �j pA 1 �i B

1q � pA �j A
1q �i pB �j B

1q for any 0 ¤ i   j ¤ 2 and the
inverse relations A �i A� � 1sipAq for any A in Γ and i � 0, 1, 2. When CpΓq is a coherent extension
of RJ modulo E, we say that Γ is acyclic modulo E.

4 Coherence from confluence modulo
Squier’s completion. Suppose that R is a confluent SRS modulo a SRS E. A Squier’s completion
modulo E of R is a cellular extension modulo E of RJ whose elements are the 3-cells

u 1
f 1

�-

Af,g��

w
e 1u

f (<

g "6
w 1

v
g 1

1E

u 1
f 1

�-

Bf,e��

w
e 1u

f (<

xx

e ��
w 1

v
g 1

1E

for any critical branching pf, gq and pf, eq of R modulo E, where f, g are rewriting steps of R and e is
a one-step equivalence of E. Note that such a completion is not unique in general and depends on the
rewriting sequences f 1, g 1 and the equivalence e 1 used to obtain the confluence diagrams.

4
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4.1. Theorem (Coherence modulo). Let R be a SRS confluent modulo a SRS E such that ñR � �E is
terminating, then any Squier’s completion of R modulo E is acyclic.

A proof of this result is given in Appendix A. As a consequence of Theorem 4.1, with the same
hypothesis, one can prove that if Γ is an acyclic extension of EJ then CpSpR, Eqq \ Γ is a coherent
extension of pR\ EqJ. In particular when E is convergent, we fix a Squier completion SpEq and we get
that CpSpR, Eqq \ SpEq is a coherent extension of pR\ EqJ.

Example. Let R be the SRS on X � ta, b, c, d, d 1u defined by the rules ab
α0
ñ a and da

β
ñ ac. We

complete the SRS R into a confluent SRS by adding the rules acnb
αn
ñ acn for all n in N in R. Let us

consider the SRS E defined on X with the rule d 1a
e
ñ ac. A Squier’s completion of R modulo E is then

given by a family of 3-cells modulo E tiling the following confluence modulo diagrams:

acn�1b αn�1

�0
dacnb

βcnb (<

dαn
$8

acn�1

dacn βcn

/C

acn
�� ecn�1

��
acnb

αn %9

��
ecn�1b

��

d 1acn�1

d 1acn�1b d 1αn�1

.B

d 1acn �� ecn

��
d 1acnb

d 1αn &:

��
ecnb ��

acn�1

acn�1b αn�1

0D

Note that up to a diagram rotation, the last two families of confluence diagrams are the same, so the
coherent extension of Rmodulo E consists in the two families of 3-cells given by the first two confluence
modulo diagrams. We recover the coherent extension of the SRS R\ E given in [13].

Finiteness conditions modulo. In the case where E is empty, Theorem 4.1 is the Squier’s theorem for
SRS, [16], see [10] for a polygraphic proof. From Squier’s result, it follows the homotopical finiteness
from convergence: if a monoid admits a presentation by a finite convergent SRS, then it has finite
derivation type (FDT). From Theorem 4.1, we deduce a new finiteness condition modulo. If a monoid
admits a presentation by a finite convergent SRS R modulo E, then it has FDT modulo E, that is, R
admits a finite cellular extension Γ modulo E such that CpΓq is acyclic. If the SRS R modulo E has FDT
modulo E and E has FDT, then the SRS R \ E has FDT. In particular, if R is a finite confluent SRS
modulo a finite convergent SRS such that ñR � �E terminating, then R\ E has FDT.

5 Conclusion and work in progress
In this work, we have presented a coherence result for SRS modulo a set of axioms. This result is based
on the notion of confluence modulo introduced by Huet. However, completion procedures for such SRS
are missing. We expect that some completion methods given in [2, 12, 17] could be adapted to compute
Squier’s completion of non confluent SRS modulo. In particular, with the axioms of group, naive
completion modulo induces infinitely many completion steps due to overlapping branchings between
a rule and an equivalence obtained by adding elements of the form xx�1. The objective is to define
an appropriate completion procedure allowing to avoid this infinite completion. One approach is to
consider a restriction of local obstruction of confluence by considering rewriting step conditioned by
algebraic context.

5
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A. Proof of Theorem 4.1

Proof. Let us consider a Squier’s completion SpR, Eq of R modulo E.
Step 1. Prove that, for every local branching pf, gq and pf, eq of R modulo E with f, g in R and e in E,

there exist 2-cells f 1 and g 1 in R� and 3-cells A : f �1 f
1 V g �1 g

1 and B : f �1 f
1 V e �1 g

1 modulo E
in CpSpR, Eqq, as in the following diagram:

u 1 f 1

�-

A��

w
u

f
)=

g "6
w 1

v
g 1

1E

u 1 f 1

�-

B��

w
u

f
)=

uu

e ��

w 1

v
g2

1E

In the case of a local aspherical branching, we setA as an identity. For a local Peiffer branching pf, gq
with f, g in R, we can choose f 1 and g 1 such that f �1 f 1 � g �1 g 1 and we set A an identity. For a local
Peiffer branching pf, eqwith f in R and e in E, we can choose f 1 as the empty 2-cell, g2 � f and the right
equivalence being e so that B is also an identity. Moreover, if we have an overlapping branching pf, gq
(resp. pf, eq) that is not critical, we have pf, gq � puhv, ukvq (resp. pf, eq � puhv, ue 1vq) for some
u, v in X� such that both ph, kq and ph, e 1q are critical. We consider the 3-cells A 1 : f �1 f

1 VE g �1 g
1

and B 1 : f �1 f 1 VE e �1 g
2 corresponding respectively to the critical branchings ph, kq and ph, e 1q. We

conclude by setting f 1 � uh 1v g 1 � uk 1v g2 � ue 1v A 1 � u �0 A
1 �0 v B � u �0 B

1 �0 v.

Step 2. We prove that, for any 2-cells f : x ñ y and g : x ñ z of R�, there exists a 3-cell modulo
E from f to g in CpSpR, Eqq. To do this, we decompose the 2-cells f and g into f � f1 �1 f2 and
g � g1 �1 g2 where f1 : x ñ y 1 and g1 : x ñ z 1 are rewriting steps of R, and f2,g2 are in R�. Then
pf1, g1q is a local branching of R modulo E and we use local confluence modulo E to get 1-cells y2 and
z2 in X� and 2-cells f 11 : y

1 ñ y2 and g 11 : z
1 ñ z2 in R� with y2 �E z2. Using Step 1, we get a 3-cell

A : f1 �1 f
1
1 VE g1 �1 g

11. We construct a 3-cell modulo E from f to g using Noetherian induction
principle from [11] defined as follows: we fix an auxiliary string rewriting system Raux with only one
0-cell, whose 1-cells are the pairs px, yq of elements of X�. Raux contains a 2-cell px, yq ñRaux px 1, y 1q
in any of the following situation:

• there exist 2-cells xñ x 1 and (yñ y 1 or xñ y 1) in R�;

• there exists a 2-cell yñ y 1 in R and an equivalence x �E x 1 in E;

• there exist 2-cells yñ x 1 and yñ y 1 in R�;

• x e�E y �E x 1
e 1

�E y
1 and `peq   `pe 1q.

Following [11, Proposition 2.2], if ñR � �E is terminating, then so is Raux. Let us apply Noetherian
induction on Raux with the following property:

Ppx, yq : x �E y ñ @ x 1, y 1 | x
�
ñP x

1 & y
�
ñR ñ x 1

E
_ y 1

7
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This leads to the diagram on the right which enables to construct a 3-cell A : fVE g in CpSpR, Eqq.

y 1

f 11 �1

f2

�+

1©

y2 %9 y

x

f

�(

g

6J

f1

.B

g1

�1
z2 %9 z

z 1
g 11

,@

g2

2F

�

�

Ind.

Ind.

Ind.

Step 3. We now prove that for each rewriting steps f : x ñ x 1 and g : y ñ y 1 in R such that x
e
�E y,

there exist 2-cells f 1 : x 1 ñ x2, g 1 : y 1 ñ y2 in R� and a 3-cell modulo E from f �1 f
1 to g �1 g 1.

We will prove the result by induction on `peq. If `peq � 0, this is Step 1. Suppose that `peq � 1, that is
x () y. By local confluence of R modulo E, looking at the local branching pf, eq, we get the existence
of 2-cells f1 : x 1 ñ x2, g1 : yñ y2 in R� with x2 �E y2. By Step 1, there exists a 3-cell modulo E in
CpSpR, Eqq from f �1 f1 to g1. We construct the 3-modulo E from f �1 f

1 to g �1 g 1 using Noetherian’s
induction as illustrated by the following diagram.

x 1
f 1

�0f1 �0
x__

__

f
*>

1© x2 %9 x2

y

g �3

g1 %9 y2 %9 y2

y 1
g 1

/C

2©

Ind.

2©

Hence the result is proved for `peq � 1. Suppose the result proved for `peq � k ¡ 1 and let us prove

the result for `peq � k � 1. Suppose that x
k�1
() y, we decompose

this reduction by x
k
() z () y. We fix a 2-cell h : y ñ py in R�. By

confluence modulo E, there exists 2-cells f 1 : x 1 ñ x2 and g 1 : z 1 ñ z2

in R� such that x2 �E py �E z
2. We construct a 3-cell modulo E

between f �1 f 1 and g �1 g 1 as depicted on the diagram on the right.

x__
k__

f�1f
1

 4
x2

y__
__

h %9 py
z

g�1g
1

*> z2

Induction on k

3©

Step 4. Now, let us prove that for any 2-cells f : x ñ px and g : y ñ py with x
e
�E y, there exists a

3-cell A : f VE g modulo E in CpSpR, Eqq. Let us first write f � f1 �1 f2 and g � g1 �1 g2 where
f1 : x ñ x 1 and g1 : y ñ y 1 are rewriting steps in R and f2 : x 1 ñ px, g2 : y 1 ñ py are 2-cells
in R�. Using the confluence modulo E on the triple pf1, e, g1q, we get the existence of 1-cells x2, y2

and 2-cells f 11 : x 1 ñ x2 and g 11 : y 1 ñ y2 such that x2 �E y2. According to Step 3, there exists a
3-cell modulo E in CpSpR, Eqq from f1 �1 f

1
1 to g1 �1 g 11. By Noetherian induction principle, we get the

8



Coherence modulo relations B. Dupont, Ph. Malbos

following diagram allowing us to construct the 3-cell A:

x 1

f 11 �2

f2

�,

3©
x

f1

)=

f

�*
x2 %9 px

y
g1

 4

g

4Hy2 %9 py
y 1

g 11

-A

g2

2F

�

�

Ind.

Ind.

Ind.

Step 5. We prove that every 2-sphere modulo E of RJ is the boundary of a 3-cell modulo E
of CpSpR, Eqq. First, let us consider a 2-cell f : uñ v in R�. Using confluence modulo E of R,
there exist 2-cells in R� σu : u ñ pu and σv : v ñ pv in R� such that
pu �E pv. By construction, the 2-cells f �1 σv and σu are parallel modulo
E and their respective targets are normal forms. By Step 4, there exists a
3-cell modulo E in CpSpR, Eqq from f �1 σv to σu as in the diagram on the
right.

u

f

 4

σu  4

v

σvj~pu pv
σf��

Now, let us consider a 2-cell f : u ñ v of RJ. By construction of RJ, the 2-cell f can be decom-
posed in a non unique way into a zigzag sequence f1 �g�11 �1 � � � �1 fn �1 g

�1
n with source u and target

v where each fi and gi is a 2-cell of R�. We define a 3-cell modulo σf : f �1 σv VE σu in CpSpR, Eqq
as the following composition:

u

σu

��

f1 %9 v1

σv1

��

u2
g1ey

σu2

��

%9 p� � � q uney

σun

��

fn %9 vn

σvn

��

v
gney

σv

��
pu pv1 xu2 p� � � q xun xvn pv

σf1��
σg1��

σfn
��

σgn
��

Proceeding similarly for any other 2-cell g : u 1 ñ v 1 of RJ, we get a 3-cell σg : g �1 σv 1 VE σu
in CpSpR, Eqq. In this way, for any 2-sphere pf, gq modulo E in RJ, there exists a 3-cell modulo fVE g
in CpSpR, Eqq given by the following composition:

u

f

�1
σu �2

v
σvl�pu pv

xu 1 pv 1
u 1

g

,@
σ 1u

-A

v 1
σ 1v

]q
�E4© 4©

σf��

σg

DX
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B. Categorical formulation of string rewriting systems
In this work, the constructions on SRS are formulated in categorical language. In this part, we recall
the notions used in the text for a reader unfamiliar to this language. We refer to [10] for a deeper
presentation of categorical formulation of SRS.

1-categories of strings. Given an alphabet X, we denote by X� the free monoid generated by X. This
monoid can be seen as the free 1-category generated by X, that is a 1-category with only one 0-cell
and whose 1-cells are strings made of elements of X. Having only one 0-cell, any two 1-cells of X�

are composable and the composition corresponds to concatenation of strings. This concatenation is
associative and unitary with the empty string as unit.

2-categories of rewriting steps. Recall that a 2-category C is defined by a set C0 of 0-cells, a set C1 of
1-cells and a set C2 of 2-cells and equipped with two compositions �0 for 1-cells and 2-cells and �1 for
2-cells. A 2-category is equipped with source and target maps making it a 2-graph, that is a digram in
the category of sets:

C0 C1
t0

oo

s0
oo

C2
t1

oo

s1
oo

where the maps satisfy the globular relations: s0s1 � s0t1 and t0s1 � t0t1. For any 1 ¤ i   j ¤ 2,
the i-cell sipfq (resp. tipfq) is called the i-source (resp. i-target) of a j-cell f. A 2-cell f in C can be
pictured by

s0pfq

s1pfq

""

t1pfq

<<
f
��

t0pfq

The composition �0 and �1 are associative and unitary and compatible with source and target maps.
They also satisfy the exchange law, that is, for any situation

x

u

��

u 1 //

u2

@@

f��

f 1��

y

v

��

v 1 //

v2

BB

g
��

g 1��

z

the equality pf �0 gq �1 pf 1 �0 g 1q � pf �1 f
1q �0 pg �1 g

1q holds.
Given a SRS R on an alphabet X, one can construct the free 2-category generated by R, denoted by

R� and defined as follows. It has only one 0-cell, its 1-cells are strings on X and its 2-cells are rewriting
paths of R. The �0-composition in R� corresponds to concatenation of strings, and the �1-composition
is the sequential composition of rewritings of R. Each 2-cell f of R� can be decomposed into a sequence
f � f1 �1 f2 �1 . . . �1 fk, where each fi is a 2-cell corresponding to a rewriting step of the form:

x
u
// y

s1pfq

!!

t1pfq

==
f�� z

v
// t
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that we will denote by ufv. The length of a 2-cell f in R�, denoted by `pfq is the minimal number of
rewriting steps in any �1-decomposition of f. We denote by u ñR v if there exists a 2-cell in R� of
length 1, that is u rewrites to v in one R-step.

p2, 1q-categories of equivalence. Let E be a SRS on an alphabet X. The free p2, 1q-category generated
by E, denoted by EJ, is the free 2-category on E in which all the 2-cells are invertible with respect to
the �1-composition. That is its 0-cells, 1-cells and 2-cells are those of E�, and any 2-cell f of EJ has
an inverse f� : t1pfq ñ s1pfq with respect the �1-composition satisfying the relations f �1 f� � 1s1pfq
and f� �1 f � 1t1pfq. The 2-cells of the p2, 1q-category EJ corresponds to elements of the equivalence
relation generated by E, that we will denote by �E.
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