Influence of eye-movements on multisensory stimulus localization: experiments, models and robotics application

Mathieu Lefort, Jean-Charles Quinton, Simon Forest, Adrien Techer, Alan Chauvin, and Marie Avillac

Objectives:

Multimodal merging in autonomous agent

- Identification (what to merge) → statistical correlations
- Fusion (how to merge) \rightarrow how to get weighting? Hypothesis: active perception

Partners:

- -Lyon 1 University (LIRIS, CRNL)
- Univ. Grenoble Alpes (LJK, LPNC)
- Hoomano

Funding:

- CRNL
- PERSYVAL-Lab LabEx
- the CNRS' Interdisciplinary Mission
- the Auvergne-Rhône-Alpes Region

Psychophysics experiments (ongoing work):

Modeling of superior colliculus (ongoing work):

Hypothesis: active perception provides more cues on sensory relevance

 log polar visual encoding in the superior colliculus may provide more weight to the centered stimuli (after saccade)

Modeling: Dynamic neural fields

- mesoscopic modeling (of the cortical surface)
- good model for saccade dynamic (motor command in the superior colliculus)
- dynamical system of spatial competition/fusion

Open questions:

- frame of reference of visuo-auditory stimuli
- individual and population neuronal merging operation
- variance encoding in DNF

Improving social robots (future work):

Open questions:

- -Does the computational models adapt to noisy data of real robots?
- What dimensions are (contextually) relevant in attention and goal achieving?
- How to chain simple active perception decision within a global behavior?
- How to mix active perception with a global task completion?
- Does merging mechanisms apply from simple to more abstract stimuli?

