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Abstract In mobile robotic swarms, the gathering problem consists in coordinat-
ing all the robots so that in finite time they occupy the same location, not known
beforehand. Multiplicity detection refers to the ability to detect that more than one
robot can occupy a given position. When the robotic swarm operates synchronously, a
well-known result by Cohen and Peleg permits to achieve gathering, provided robots
are capable of multiplicity detection.

We present a new algorithm for synchronous gathering, that does not assume that
robots are capable of multiplicity detection, nor make any other extra assumption.
Unlike previous approaches, the correctness of our proof is certified in the model
where the protocol is defined, using the COQ proof assistant.

1 Introduction

Networks of mobile robots have captured the attention of the distributed computing
community, as they promise new applications (rescue, exploration, surveillance) in
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potentially dangerous (and harmful) environments. Since its initial presentation [23],
this computing model has grown in popularity1 and many refinements have been
proposed (see [17] for a recent state of the art). From a theoretical point of view, the
interest lies in characterising the exact conditions for solving a particular task.

A computing model for mobile robots. In the model we consider, robots operate in
Look-Compute-Move cycles. In each cycle a robot “Looks” at its surroundings and
obtains (in its own coordinate system) a snapshot containing some information about
the locations of all robots. Based on this visual information, the robot “Computes”
a destination location (still in its own coordinate system) and then “Moves” towards
the computed location. When the robots are oblivious, the computed destination in
each cycle depends only on the snapshot obtained in the current cycle (and not on the
past history of execution). The snapshots obtained by the robots are not necessarily
consistently oriented in any manner.

The model of execution impacts significantly the solvability of collaborative tasks.
Three different levels of synchronisation have been considered. Among these, the
strongest model [23] is the fully synchronised (FSYNC) model where each stage of
each cycle is performed simultaneously by all robots. At the other end of the spec-
trum, the asynchronous model [17] (ASYNC) allows for arbitrary delays between
the Look, Compute and Move stages and the movement itself may take an arbitrary
amount of time, possibly a different amount for each robot. In the semi-synchronous
(SSYNC) model [23], which lies somewhere between the two extreme models, time
is discretised into rounds and in each round an arbitrary subset of the robots are ac-
tive. The active robots in a round perform exactly one atomic Look-Compute-Move
cycle in that round. It is assumed that the scheduler (seen as an adversary) is fair in
the sense that it guarantees that in any configuration, any robot is activated within a
finite number of rounds.

Furthermore, the scheduler has the ability to stop a robot before it has completed
its move, provided the robot has already travelled some positive distance δ . If a robot
wants to move by some distance d < δ , the scheduler cannot stop its movement. The
value of δ is unknown to the robots, and is just meant to prevent the scheduler to
make them move by infinitely small distances. These stoppable moves are referred to
as flexible moves in the remainder of the paper, as opposed to rigid moves where the
computed destination is always reached.

The gathering problem. The gathering problem is one of the benchmarking tasks in
mobile robot networks, and has received a considerable amount of attention (see [17,
3] and references herein). The gathering task consists in making all robots (consid-
ered as dimensionless points in a two dimensional Euclidean space) reach a single
point, not known beforehand, in finite time. A foundational result [23] shows that
in the SSYNC model, no oblivious deterministic algorithm can solve gathering for
two robots. This✑ result can be extended [13] to the bivalent case, that is, when an
even number of robots is initially split evenly in exactly two locations. In general,

1 The 2016 SIROCCO Prize for Innovation in Distributed Computing was awarded to Masafumi Ya-
mashita for this line of work.

http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Gathering.InR.Impossibility.html
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without extra assumptions in the execution model (e.g. a common coordinate system,
persistent memory, the ability to detect multiple robots at a given location, use of
probabilistic variables, etc.), it is impossible to solve gathering [19] for any set of
at least two robots in the SSYNC model. As all possible executions in SSYNC are
also possible in ASYNC, those impossibilities also hold in ASYNC. Hence, the only
possibility to solve gathering without extra assumptions is to consider the FSYNC
model.

Cohen and Peleg [11] proposed the centre of gravity (a.k.a. CoG) algorithm (the
robots aim for the location that is the barycentre of all observed robot locations) for
the purpose of convergence (a weaker requirement than gathering, which mandates
robots to reach locations that are arbitrarily close to one another) in the SSYNC
model. They demonstrate that for the FSYNC model, their algorithm actually solves
gathering since all robots eventually become closer than δ from the barycentre, and
hence all reach it in the next round.

However, the CoG algorithm does not prevent more than one robot to occupy the
exact same location before gathering, even if they start from distinct locations. For
example, consider two robots r1 and r2 aligned toward the barycentre at some round,
at respective distances d1 and d2 (d1 < d2) that are both greater than δ . Then, the
scheduler stops r1 after δ and r2 at the same location. Robots r1 and r2 now occupy
the same location. One immediate consequence of this observation is that in the next
round, to compute the barycentre, observing robots must take into account both r1 and
r2. That is, using the CoG algorithm, robots must make use of multiplicity detection,
i.e. be able to detect how many robots occupy simultaneously a given location.

Overall, the question of gathering feasibility in FSYNC without multiplicity de-
tection (nor any other additional assumption) remained open.

Formal methods for mobile robots. Designing and proving mobile robot protocols
is notoriously difficult. Formal methods encompass a long-lasting path of research
that is meant to overcome errors of human origin. Unsurprisingly, this mechanised
approach to protocol correctness was successively used in the context of mobile
robots [7,15,5,2,18,13,8,20].

Model-checking proved useful to find bugs in existing literature [5,16] and to
assess formally published algorithms [15,5,20], in a simpler setting where robots
evolve in a discrete space where the number of possible locations is finite. Auto-
matic program synthesis (for the problem of perpetual exclusive exploration in a
ring-shaped discrete space) is due to Bonnet et al. [7], and can be used to obtain
automatically algorithms that are “correct-by-design”. The approach was refined by
Millet et al. [18] for the problem of gathering in a discrete ring network. As all afore-
mentioned approaches are designed for a discrete setting where both the number of
locations and the number of robots are known, they cannot be used in the contin-
uous space where the robots locations take values in a set that is not enumerable,
and they cannot permit to establish results that are valid for any number of robots.
The recent attempt to parameterised model checking by Sangnier et al. [22] yielded
mostly negative results: reachability property are in general undecidable even when
the number of robots is fixed and only the network size is parameterised (a ring in
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their case). Overall, model-checking approaches do not yet permit to tackle problems
that involve arbitrarily many robots evolving in a bidimensional Euclidean space.

The use of a mechanical proof assistant like COQ2 allows for more genericity as
this formal proof based approach is not limited to particular instances of algorithms.
Recent uses of COQ in Distributed Computing include that of Castéran et al. [9], who
use COQ and their library Loco to prove positive and negative results about subclasses
of LC systems, and that of Altisen et al. [1], who provide a COQ framework to study
self-stabilising algorithms.

Developed for the COQ proof assistant, the Pactole3 framework enabled the use
of high-order logic to certify impossibility results [2] for the problem of convergence:
for any positive ε , robots are required to reach locations that are at most ε apart. An-
other classical impossibility result that was certified using the Pactole framework is
the impossibility of gathering starting from a bivalent configuration [13]. Recently,
positive certified results for SSYNC gathering with multiplicity detection were pro-
vided by Courtieu et al. [14].

Our contribution. We propose a protocol for oblivious mobile robot gathering in
FSYNC that does not require multiplicity detection (nor any other extra assumption).
Our protocol, called CoGiL (for Centre of Gravity of inhabited Locations), is derived
from CoG as follows: robots aim to the barycentre of observed occupied locations
(that is, without considering how many robots occupy a given location). We also
present a proof of correctness for our CoGiL protocol.

Unlike previous approaches, our proof is certified in the model where the proto-
col is defined, using the COQ proof assistant. Throughout this paper, links to the COQ
development are denoted by a ✑ symbol in the margin. The sources package is avail-
able at http://pactole.lri.fr, as well as its online html documentation.

Roadmap. Section 2 describes our Pactole formal framework for mobile robots in
COQ, while our cases studies are developed in Section 3, including their formal proof
of correctness. Section 4 gives some insights about the benefits of our methodology
for mobile robot protocol design.

2 A Formal Model to Prove Robot Protocols

To certify results and to guarantee the soundness of theorems, we use COQ, a Curry-
Howard-based interactive proof assistant enjoying a trustworthy kernel. The (func-
tional) language of COQ is a very expressive λ -calculus: the Calculus of Inductive
Constructions (CIC) [12]. In this context, datatypes, objects, algorithms, theorems
and proofs can be expressed in a unified way, as terms.

The reader will find in [6] a very comprehensive overview and good practices with
reference to COQ. Developing a proof in a proof assistant may nonetheless be tedious,
or require expertise from the user. To make this task easier, we are actively developing

2 http://coq.inria.fr
3 http://pactole.lri.fr

http://pactole.lri.fr
http://pactole.lri.fr/pub/cffg2d_v86/html/toc.html
http://coq.inria.fr
http://pactole.lri.fr
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(under the name Pactole) a formal model, as well as lemmas and theorems, to specify
and certify results about networks of autonomous mobile robots. It is designed to be
robust and flexible enough to express most of the variety of assumptions in robots
network, for example with reference to the considered space: discrete or continuous,
bounded or unbounded. . .

We do not expect the reader to be an expert in COQ but of course the specification
of a model for mobile robots in COQ requires some knowledge of the proof assistant.
We want to stress that the framework eases the developer’s task in two main direc-
tions. Firstly, it clearly separates the specification and proof phases. This allows for
non-expert users of the COQ system to write easily specifications and theorem state-
ments in the COQ language, which is very expressive and close to usual mathemati-
cal writing, while still ensuring that every concept is precisely and formally defined,
without any implicit information. The proving phases requires more knowledge of
the COQ proof assistant but, being clearly separated from the specification phase,
does not need to be performed by the same person. Secondly, the framework is built
from modular components like the kind of space, the sensor capabilities of robots,
the various hypotheses of synchronicity or fairness, or the existence of Byzantine
faults. These components can be combined together to create the adequate setting
for the user but also to prove generic results in each component. The notations and
definitions we give hereafter should be simply read as typed functional expressions.

The Pactole model has been sketched in [2,13]; we recall its main characteristics.
We use two important features of COQ:

1. a formalism of higher-order logic to quantify over programs, demons, etc., which
allows us to prove generic results, and

2. the possibility to define inductive and coinductive types [21] to express inductive
and coinductive datatypes and properties.

Coinductive types are in particular of invaluable help to express infinite behaviours,
infinite datatypes and properties on them, as we shall see with demons.

Robots ✑are anonymous, however proofs sometimes need to identify some of them,
or to split them into separate groups. Thus, we consider given a finite set of identifiers,
isomorphic to a segment of N. If relevant, it is convenient to distinguish between
identifiers of Byzantine robots, of the form Byz b for b a name, and identifiers of
correct robots, of the form Good g for g a name. In this work, we do not consider
Byzantine robots (although the Pactole framework allows for them) and we hereafter
omit the set G of names of correct robots unless it is necessary to characterise the
number of robots. Robots are distributed in space, at places called locations. We ✑call
a configuration a function from the set of identifiers to the space of locations. For
instance, the location of a robot with identifier id in a configuration conf is simply
obtained by the application (conf id).

In this definition of configurations, all robots are still identified as we can get the
location of a robot from its identifier. In particular, equality between configurations
does not boil down to the equality of the multisets of inhabited locations. In order to
ensure that robots are anonymous and indistinguishable, we have to make sure that
the embedded algorithm cannot make use of those identifiers.

http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Robots.html#Robots
http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Configurations.html#Configuration
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Spectrum. The✑ computation of any robot’s target location is based on the perception
it gets from its environment, that is, in an FSYNC execution scheme, from a config-
uration. The result of this observation may be more or less accurate, depending on
the capabilities of sensors. A robot’s perception of a configuration is called a spec-
trum. To allow for different assumptions to be studied, we leave abstract the type
spectrum (Spect.t) and the notion of spectrum of a configuration. In addition to a
datatype, a spectrum definition must contain the definition of (a decidable) equality
on spectra, a conversion function (Spect.from_config) turning a configuration into
a spectrum, a formula (Spect.is_ok) expressing the relation between a configuration
and its spectrum, and the fact that the conversion function satisfies it:

∀ config, Spect.is_ok (Spect.from_config config) config

More precisely, the formula Spect.is_ok characterises the information from the con-
figuration that is still present in the spectrum, for example it may ensure that the
locations in a spectrum correspond to actual locations of robots in the relevant con-
figuration.

Module Type Spect(Location : DecidableType)(N : Size).
(* Spectra are abstract decidable types. *)
Parameter t : Type.
(* They are equipped with an equality relation *)
Parameter eq : t → t → Prop.
(* which is an equivalence relation *)
Parameter eq_equiv : Equivalence eq.
(* and which is decidable. *)
Parameter eq_dec : ∀ x y : t, {eq x y} + {¬ eq x y}.

(* Turning a configuration into a spectrum (erasing information). *)
Parameter from_config : Config.t → t.
(* Equal configurations give equal spectra. *)
Declare Instance from_config_compat :
Proper (Config.eq ⇛ eq) from_config.

(* An abstract predicate validating spectra for a configuration. *)
Parameter is_ok : t → Config.t → Prop.
(* from_config gives a correct spectrum. *)
Parameter from_config_spec :

∀ config, is_ok (from_config config) config.
End Spectrum.

When needed, those abstract properties may be instantiated in accordance to the
requirements and assumptions.

Robograms, representing protocols, will then output a location when given a spec-
trum (instead of a configuration), thus guaranteeing that assumptions over sensors are
fulfilled. For instance, the spectrum for anonymous robots with strong global multi-
plicity detection (this capacity refers to the ability to count exactly how many robots
occupy any observed location) could be the multiset of inhabited locations. In a set-
ting where robots do not enjoy the detection of multiplicity and just know if a location
is inhabited or not, the set of inhabited locations is a suitable spectrum.

In the following we will distinguish a demon configuration (resp. spectrum),
which is expressed in the global frame of reference, from a robot configuration (resp.
spectrum), which is expressed in the robot’s own frame of reference. At each step of

http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Configurations.html#Spectrum
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the distributed protocol (see definition of round below) the demon configuration is
transformed, that is recentred, mirrored, rotated, and scaled into the considered robot
one before being transformed into a spectrum given as parameter to the robogram.
Depending on assumptions, zoom and rotation factors may be constant or chosen by
the demon at each step, shared by all robots or not, etc.

Demon for flexible movements. In the context of flexible movements, as defined by
Suzuki and Yamashita [23], robots are not ensured to reach the location they com-
puted as their goal during their compute phase. It is nevertheless assumed that if they
do not reach their goal, a minimum (absolute) distance δ is travelled. Of course, the
value of δ is unknown to the robots, as they are just aware that some δ exists. Hence,
robots either reach their destination goal when it is at distance δ or less, or travel at
least δ towards it.

Rounds ✑in this FSYNC setting are thus characterised by each of the oblivious
robots getting both its new self-centred frame of reference, and the ratio of its actual
movement over (the distance to) its computed destination.

We call demonic action this operation together with the logical properties ensur-
ing, for example, that new frames of reference make sense, and that the provided ratio
belongs to the [0,1] interval. Formally, a demonic action consists of a function step

possibly assigning a change of referential and a ratio to each robot identifier, that
satisfies properties step_*. The general definition below also foresees a relocation
function for robots with Byzantine faults, which will be irrelevant here.

Record demonic_action := {
relocate_byz : Names.B → Location.t;
step : Names.ident → option ( (Location.t → Sim.t) * R );

(* change of referential * travel ratio *)

step_compat : Proper (eq ⇛ opt_eq ((Location.eq ⇛ Sim.eq) * (eqR)))
step;

step_zoom : ∀ id sim c, step id = Some sim →
(fst sim c).(Sim.zoom) ̸= 0R;

step_center : ∀ id sim c, step id = Some sim →
Location.eq (fst sim c).(Sim.center) c;

step_flexibility : ∀ id sim, step id = Some sim →
(0 ≤ snd sim ≤ 1)R

}.

Demons are streams of demonic actions. As such, they are naturally defined in COQ
as a coinductive object, through the use of coinductive streams.

Definition demon := Streams.t demonic_action.

Synchrony constraints (e.g. fairness) may be defined as coinductive properties on
demons, as detailed in [2,13]. Although COQ can accommodate more powerful def-
initions when necessary, we also provide notations for the usual temporal operators
for people familiar with them: for A a type, and Stream.t A the type of streams of
elements of type A, we define

(* Lifting a property on the current configuration to streams *)
Definition instant {A : Type} (P : A → Prop) := fun s ⇒ P (hd s).

http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.FlexibleFormalism.html


8 Thibaut Balabonski et al.

(* A property on execution that must hold at every step *)
CoInductive forever {A} (P : Streams.t A → Prop) (s : Streams.t A) :=
Always : P s → forever P (tl s) → forever P s.

(* A property on execution that must hold eventually *)
Inductive eventually {A} (P : Streams.t A → Prop) (s : Streams.t A) :=

| Now : P s → eventually P s
| Later : eventually P (tl s) → eventually P s.

For instance, being FSYNC is a property of the demon, stating that the step function
always assigns a referential and a ratio to every robot. Hence the option type returned
by step is never the empty value None.

(* Property of being fully synchronous at the first step. *)
Definition FullySynchronousInstant : demon → Prop :=

Streams.instant (fun da ⇒ ∀ g, step da g ̸= None).

(* A demon is fully synchronous if it is fully synchronous
at all steps. *)

Definition FullySynchronous : demon → Prop :=
Streams.forever FullySynchronousInstant.

The Pactole framework provides theorems that state the equivalence between
rigid movements models and flexible models when the ratio of actual movement is
always 1. Developments in a rigid context may thus be written free of cumbersome
irrelevant details dealing with the movement ratio which is relevant in the flexible
case but is always 1 in the rigid one.

Robogram. Robograms✑ may be naturally defined in a completely abstract manner,
without any concrete code, in our COQ model. They consist of an actual algorithm
pgm that represents the considered protocol and that takes a spectrum as input and re-
turns a location, and a compatibility property pgm_compat stating that target locations
are the same if equivalent spectra are given (for some equivalence on spectra).

Record robogram := {
pgm :> Spect.t → Location.t;
pgm_compat : Proper (Spect.eq ⇛ Location.eq) pgm }.

Execution of a round. The actual location of arrival for a robot is determined by
the protocol, which computes a local target from the perceived spectrum, and the
demon-provided ratio which is applied to the local target to obtain a chosen target.
If the distance between the robot’s original location and its (demon-) chosen tar-
get is more than δ then the robot stops at the chosen target, otherwise it reaches its
protocol-computed destination (local target). This concise way of proceeding ensures
that either the protocol-computed destination is reached or at least δ is travelled.

Definition round (δ : R)
(r : robogram) (da : demonic_action) (conf : Config.t) : Config.t :=

(* for a given robot, we compute the new configuration *)
fun id ⇒
let loc := conf id in (* loc is the current location of id

seen by the demon *)
match da.(step) id with (* Is the robot activated? *)

http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.CommonFormalism.html#Sig.robogram
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| None ⇒ loc (** If not activated, do nothing *)
| Some (sim, mv_ratio) ⇒ (** If activated

with similarity [sim (conf g)]
and move ratio [mv_ratio] *)

match id with
| Byz b ⇒ da.(relocate_byz) b (* Byzantine robots are relocated

by the demon *)
| Good g ⇒ (* configuration expressed in the frame of g *)
let frame_change := sim (conf (Good g)) in
let local_conf := Config.map frame_change conf in

(* apply r on spectrum *)
let local_target := r (Spect.from_config local_conf) in

(* the demon chooses a point on the line
from the target by mv_ratio *)

let chosen_target := Location.mul mv_ratio local_target in
(* let’s get back to demon ref *)

frame_change-1

(if δ ≤ Location.dist (frame_change-1 chosen_target) loc
then chosen_target
else local_target)

end
end.

3 Centre of Gravity Algorithms

Notations. In the sequel, we denote by: C a configuration, C(r) the location of Robot
r in Configuration C, and SC the global spectrum associated to C.

3.1 Centre of Gravity Algorithms Variants.

Cohen and Peleg [10,11] define the CoG algorithm as depicted in Algorithm 1. A
robot simply moves toward the centre of gravity of all robots locations. Since robots
may occupy the same location in space, the proper calculation of the centre of gravity
implies that the robots are capable of strong global multiplicity detection: for each
inhabited location, the robots can count the number of robots on that location.

Algorithm 1 Protocol CoG (for Robot r in Configuration C)
Move toward the centre of gravity of robot locations cpos =

1
|C| ×∑r∈C C(r)

We define the CoGiL algorithm in Algorithm 2. Here, we do not assume that
robots are capable of multiplicity detection, so robots simply move toward the centre
of gravity of inhabited locations. Note that the number of those inhabited locations is
not necessarily monotonically decreasing: although two robots at the same location
will compute the same destination (local_target in the definition of round), they
might end up in different locations due to the flexibility of their respective move-
ments.

Observe also that when robots are endowed with strong multiplicity detection,
the spectrum becomes a multiset of locations. Further discussion on this issue is del-
egated to Section 3.3.
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Algorithm 2 Protocol CoGiL (for Robot r in Configuration C)
Move toward the centre of gravity of inhabited locations cpos =

1
|SC |

×∑p∈SC
p

Although CoGiL is extremely similar to CoG, proving its correctness is not. For
example, Cohen and Peleg [10] first used in the conference version of their paper
moments of inertia as a monotonically decreasing measure to prove the convergence
of CoG:

I(q) =
1
|C|

× ∑
r∈C

∥C(r)−q∥2

Expressing this measure with the observed spectrum gives:

I(q) =
1

|SC|
× ∑

p∈SC

∥p−q∥2

Now, without strong global multiplicity detection, it is possible that this measure
does not decrease monotonically for cpos. For example, consider four robots in a one-
dimension metric space, localised at locations 0;17;18;19.

10 cpos

The centre of gravity of the inhabited locations cpos is at 13.5 and I(cpos) = 61.25.
Now, consider that δ = 0.1. A possible following configuration is that the robot at 0
has moved by δ toward cpos and the others have stopped at location 16.9.

10 cpos

The centre of gravity of the inhabited locations cpos is now at 8.5, and I(cpos) =
70.56, which is strictly greater than its previous value. So, the proof argument appear-
ing in Cohen and Peleg’s conference paper [10] does not extend to the case without
global strong multiplicity detection.

Fortunately, the underlying idea of the proof appearing in the journal version of
Cohen and Peleg [11] can be extended to the case without multiplicity detection. We
thus construct our certified proof along the main arguments of theirs.

3.2 Formalisation, and key points to prove correctness

Gathering in the context of flexible movements. A way to state Gathering and Conver-
gence has been already described in [2,13]. Those definitions take place in a context
where movements are rigid, and thus the specification of what a solution to Gathering
is has to be generalised for the case of flexible movements. We name gathered_at

pt✑ the property of a configuration the robots of which are all gathered at the same
location pt.

http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Gathering.FlexDefinitions.html#FlexGatheringDefs.gathered_at
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Definition gathered_at (pt : Loc.t) (conf : Config.t) :=
∀ g : G, Loc.eq (conf (Good g)) pt.

We say that a location pt and an execution enjoy the property Gather if all robots are
gathered at pt for all rounds of the (infinite) execution.
Definition Gather (pt: Loc.t) (e : execution) : Prop :=
Streams.forever (Streams.instant (gathered_at pt)) e.

WillGather pt e means that the (infinite) execution e is eventually Gathered for pt.
That is: there is a (finitely) reachable instant in e for which pt and what remains of e
fulfill Gather.
Definition WillGather (pt : Loc.t) (e : execution) : Prop :=
Streams.eventually (Gather pt) e.

We may now characterise that a robogram r is a solution to the Gathering prob-
lem for a demon d, in the context of δ -flexible movements. It takes into account the
minimal distance of travel δ that is necessary ✑to define the execution (the final the-
orem will be based on this characterisation, for any fully synchronous demon d and
any strictly positive distance δ ).
Definition FullSolGathering (r : robogram) (d : demon) δ :=

∀ config, ∃ pt : Loc.t, WillGather pt (execute δ r d config).

Expressing the protocol in Pactole. The space of locations is R2 and its type is R2.t
in the following. Writing the algorithm is straightforward in our framework, and the
COQ implementation is almost exactly an actual robot code. Let ffgatherR2_pgm

✑denote the code of the algorithm, which takes a spectrum as an input and returns a
location, and let ffgatherR2 denote the robogram, that is the code and its property of
invariance through equivalent spectra.
Definition ffgatherR2_pgm (s : Spect.t) : R2.t :=

let spect := Spect.elements s in
match spect with
| nil ⇒ (0, 0) (* no robot *)
| pt :: nil ⇒ pt (* gathered *)
| _ :: _ :: _ ⇒ barycenter spect

end.

The function computing the barycentre ✑is simply:

Definition barycenter (E: list R2.t) : R2.t :=
1 / (INR (List.length E)) * (List.fold_left R2.add E R2.origin).

where INR injects a natural number into reals.

The robogram can be expressed in the demon’s frame of reference. The input spec-
trum given to the code above is expressed in the robot’s frame of reference (it is a local
code). As noticed in [14], we establish explicitly and formally that it is sufficient to
reason about the protocol in the frame of reference of the demon. The geometrical
concepts in use in the protocol are invariant under the changes of frame that are al-
lowed: scaling, rotation, symmetry and translation, hence we can express the global
configuration after one round without making reference to the frames of each robot
(lemma round_simplify). ✑

http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Gathering.FlexDefinitions.html#FlexGatheringDefs.FullSolGathering
http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Gathering.InR2.FSyncFlexNoMultAlgorithm.html#GatheringinR2.ffgatherR2_pgm
http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Gathering.InR2.R2geometry.html#barycenter
http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Gathering.InR2.FSyncFlexNoMultAlgorithm.html#GatheringinR2.round_simplify
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Theorem round_simplify : ∀ da conf δ,
Config.eq (round δ ffgatherR2 da conf)

(fun id ⇒ match da.(step) id with
| None ⇒ conf id
| Some (f, r) ⇒

let s := Spect.from_config conf in
match Spect.elements s with
| nil ⇒ conf id (* only happen with no robots *)
| pt :: nil ⇒ pt (* done *)
| _ ⇒ let move := (r * (barycenter (Spect.elements s)

- (conf id)))R2 in
if Rle_bool δ (R2norm move)
then ((conf id) + move)R2

else barycenter (Spect.elements s)
end

end).

Eventually no-one moves. The main difficulty is to establish that after a finite number
of steps, no robot will change its location. This amounts to finding a measure that
decreases for a well founded ordering along the execution.

To this goal, we consider the maximal distance dm(C) between any two robots in
a configuration C.✑

Definition measure (conf: Config.t) : R :=
max_dist_spect (Spect.from_config conf).

where max_dist_spect is computed by two nested recursions (fold_right) over the
list of inhabited locations (Spect.elements spect):

(* Maximal distance from a point to a list of points. *)
Definition max_dist_R2_pt_list (pt: R2.t) (l: list R2.t) : R :=
fold_right (fun pt1 max → Rmax (R2.dist pt pt1) max) 0 l.

(* Maximal distance between points of two lists. *)
Definition max_dist_R2_list_list (l1: list R2.t) (l2: list R2.t): R :=
fold_right (fun pt0 max → Rmax max (max_dist_R2_pt_list pt0 l2))

0 l1.

(* Maximal distance between two points in a spectrum. *)
Definition max_dist_spect (spect: Spect.t) : R :=
max_dist_R2_list_list (Spect.elements spect)

(Spect.elements spect).

If this distance is less than δ then after one step all robots are gathered and we are
done, as stated by Theorem round_last_step:✑

Theorem round_last_step: ∀ d conf δ,
δ > 0 →
FullySynchronous d →
measure conf ≤ δ →
measure (round δ ffgatherR2 (head d) conf) = 0.

If this distance is not less than δ , we prove that if a configuration C1 is obtained after
one round from a configuration C0 such that dm(C0)> δ , then dm(C1)≤ dm(C0)−δ .
This part is established through Theorem round_lt_config:✑

http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Gathering.InR2.FSyncFlexNoMultAlgorithm.html#GatheringinR2.max_dist_spect_ex
http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Gathering.InR2.FSyncFlexNoMultAlgorithm.html#GatheringinR2.round_last_step
http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Gathering.InR2.FSyncFlexNoMultAlgorithm.html#GatheringinR2.round_lt_config
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Theorem round_lt_config: ∀ d conf δ,
δ > 0 →
FullySynchronous d →
δ < measure conf →
measure (round δ ffgatherR2 (head d) conf) ≤ measure conf - δ.

The crucial step in establishing this lemma is to prove that for any two inhabited
locations p1 and q1 in C1, ∥p1 − q1∥ ≤ dm(C0)− δ . Let us denote by b the location
of the barycentre of inhabited locations in C0. As locations p1 and q1 are inhabited in
C1, we can assume that some robots P and Q occupying them in C1 were previously
in C0 at respectively p0 and q0.

p0

q0

p1

q1

δ

δ

b

Now let us perform a case analysis on whether ∥p0 −b∥ and ∥q0 −b∥ are greater or
equal to δ ; the only interesting case is the non-degenerate one where both are greater.
In this case, P and Q move towards b, and in particular p1 = p0 +κ × (b− p0) and
q1 = q0 + µ × (b− q0) for κ,µ ∈ [0,1]. Let us suppose κ ≤ µ (the other case is
symmetrical) and write q′1 the point given by q′1 = q0 +κ × (b−q0).

p0

q0

p1

q1

δ

δ

b

q′1

By Thales’s Basic Proportionality Theorem we have

∥p1 −q′1∥= (1−κ)×∥p0 −q0∥ (1)
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and thus
∥p1 −q′1∥ ≤ (1−κ)×dm(C0) (2)

To conclude we need two lemmas. One states that the distance from any robot to the
barycentre of locations b is less than or equal to dm(C0):

Lemma barycenter_dist_decrease:
∀ (E: list R2.t) (dm: R) (c: R2.t),
E ̸= nil →
(∀ p1 p2, In p1 E → In p2 E → R2.dist p1 p2 ≤ dm) →
c = barycenter E →
∀ p, In p E → R2.dist p c ≤ dm.

where the predicate In p E means that the point p is in the list E. Using this lemma
we have

∥p0 −b∥ ≤ dm(C0) (3)

from which we deduce

∥p1 −b∥ ≤ (1−κ)×dm(C0) (4)

The other lemma states that the length of a segment contained in a triangle is smaller
than the length of at least one of the sides of the triangle:

Lemma inner_segment :
∀ A B S K,
not R2.eq A B →
on_segment A B K →
R2.dist S K ≤ R2.dist S A ∨ R2.dist S K ≤ R2.dist S B.

where on_segment A B K means that the point K is between A and B.

S

K

A

B

From this lemma we have either

∥p1 −q1∥ ≤ ∥p1 −q′1∥ (5)

or
∥p1 −q1∥ ≤ ∥p1 −b∥ (6)

Then using equation 2 or 4 we conclude

∥p1 −q1∥ ≤ (1−κ)×dm(C0) (7)

and finally
∥p1 −q1∥ ≤ dm(C0)−δ (8)
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which concludes the proof of round_lt_config. □
Finally, the lemmas round_last_step and round_lt_config being proved, we

may then take as a relevant indication for a configuration C the natural number
m(C) = ⌈ dm(C)

δ
⌉ and define accordingly the ordering we use:

Definition lt_config δ x y :=
(Z.to_nat (up(measure x / δ))) < (Z.to_nat (up(measure y / δ))).

which is well-founded over the naturals.

Robots stay gathered forever. As there is only one phase in the algorithm, the com-
puted target is always the barycentre of the inhabited locations, which is the same for
all robots. We need however technical lemmas to complete the final proof. Firstly that
when robots are gathered, they will stay forever at the same location, namely: ✑

Lemma gathered_at_OK : ∀ δ d conf pt, gathered_at pt conf
→ Gather pt (execute δ ffgatherR2 d conf).

The counterpart is that a robot that is not at the barycentre of inhabited locations
will actually move (that is, it will change its location). ✑

Lemma not_barycenter_moves: ∀ δ d conf gid, δ > 0
→ FullySynchronous d
→ ¬ R2.eq (conf gid) (barycenter (Spect.elements (!! conf)))
→ ¬ R2.eq (round δffgatherR2 (Streams.hd d) conf gid) (conf gid).

We are now ready to tackle the final proof.
The final theorem ✑states that for all positive δ , the robogram ffgatherR2 is a

solution to the gathering problem in FSYNC.
Theorem FSGathering_in_R2 : ∀ δ d, δ > 0
→ FullySynchronous d
→ FullSolGathering ffgatherR2 d δ.

It is proven via well-founded induction over lt_config and by case analysis: if the
robots are already gathered or will be gathered at the next step then we are done, else
we use round_lt_config. That last proof is about 20 lines of COQ.

3.3 Certifying Cohen and Peleg’s Gathering Algorithm

As the informal proof argument is similar between Cohen and Peleg’s algorithm [10,
11] (that makes use of multiplicity detection) and ours, it is worth investigating
whether their certified proof arguments can be somewhat reused. In this section, we
report how minor changes in the proof of our CoGIL algorithm permit to obtain a for-
mal certified proof of the CoG FSYNC gathering algorithm by Cohen and Peleg [10,
11].

The core difference between the two approaches lies in the definition of the spec-
trum (that is a multiset in the Cohen and Peleg’s approach, while ours uses a simple
set), as the algorithm remains the same (taking the spectrum as input). Only few tech-
nical changes (e.g., with respect to the properties that are associated to the spectrum)
are necessary before the new proof is obtained.

More specifically, the instanciation of the spectrum for the CoGIL algorithm was:

http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Gathering.InR2.FSyncFlexNoMultAlgorithm.html#GatheringinR2.gathered_at_OK
http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Gathering.InR2.FSyncFlexNoMultAlgorithm.html#GatheringinR2.not_barycenter_moves
http://pactole.lri.fr/pub/cffg2d_v86/html/Pactole.Gathering.InR2.FSyncFlexNoMultAlgorithm.html#GatheringinR2.FSGathering_in_R2
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Module Spect := SetSpectrum.Make(Loc)(N)(Names)(Info)(Config).

For Cohen and Peleg’s CoG algorithm, the instanciation simply becomes:

Module Spect := MultisetSpectrum.Make(Loc)(N)(Names)(Info)(Config).

Note that this is the only noticeable change in the definitions.

4 Discussion and Perspectives

We presented the first FSYNC gathering protocol, CoGiL, that does not require robots
to be capable of multiplicity detection (nor any other extra assumptions), closing the
only remaining open case in Prencipe’s set of impossibility results [19]. We advocate
that proofs for even small variants of oblivious mobile robot protocols (such a CoGiL,
which is a minor variant of Cohen and Peleg’s CoG protocol) should be thoroughly
checked from the beginning, using mechanised support such as a proof assistant. This
methodology enabled the possibility to present a proof for our protocol, whose cor-
rectness can be certified. Our framework also permitted to certify the correctness of
Cohen and Peleg’s solution that uses multiplicity detection, demonstrating the ver-
satility of our approach and its ability to cope with various assumptions and model
hypotheses.

We want to stress that, even if the actual development of a formal proof remains
a difficult task, the specifications of properties and protocols in our framework do not
require a strong expertise with the COQ proof assistant. As an illustration, many of
the specifications appearing in this paper, most notably the specification of the actual
protocol, were developed by one of the authors while a M1-level trainee (first year
master, Bologna process).

Whith respect to the number of lines of code in the COQ development, we distin-
guish the specification part and the proof part. When the problem and space domain
(this paper considers an Euclidean continuous space, yet recent advances [4] pro-
vide COQ foundations for robots evolving in discrete spaces, i.e. graphs) are already
defined in our framework, a user in charge of specifying may only have to provide
the code of the algorithm itself, along with the statements of its invariance through
equivalent spectra, the statement of the main theorem (that is, the correctness of the
protocol), which is rather short. Being very parametric, our framework simplifies
nonetheless the writing of extensions (i.e., specification of new properties) and our
current effort is targeted toward including as many classical notions and variants that
appear in the literature, facilitating the specification of new problems and protocols
as much as possible.

We believe a thorough revision of other published results in the context of obliv-
ious mobile robots will lay a solid foundation for further research advances. Thanks
to the collaborative effort of the Pactole framework, reuse of previous achievements
is facilitated and encouraged.
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A Axioms of the formalisation

In the main file Gathering/InR2/FSyncFlexNoMultAlgorithm.v, the last command:
Print Assumptions Gathering_in_R2 shows all the axioms upon which the proof of correct-
ness of our algorithm for gathering in R2 relies, in total 31 axioms. Here, we break them down. They can
be classified in three categories:

– The first category is the axiomatisation of reals numbers from the COQ standard library. It represents
by far the biggest number of axioms (26), and they are not listed here.

– The second category is the description of the problem.

nG : nat
Hyp_nG : 2 ≤ nG

As one can see, it simply means that our proof is valid for any number nG of robots greater than or
equal to 2. Notice that with one robot or less, the problem is not interesting (trivially solved).

– The third category contains three usual geometric properties that are not part of our library. These
three axioms are the only ones which could be seen as real axioms to be proved, the previous two
categories being the parameters of the problem. On the one hand, there are some properties about
barycentres that we think could be provable from its axiomatisation but are currently left as axioms:
that the barycentre is unique and that the result of the function computing the barycentre is indeed a
barycentre:

barycenter_n_unique : ∀ (E : list R2.t) (a b : R2.t),
is_barycenter_n E a → is_barycenter_n E b → R2.eq a b

barycenter_n_spec : ∀ E : list R2.t,
is_barycenter_n E (barycenter E)

On the other hand, there is the proof that similarities can be expressed with an orthogonal matrix M,
a zoom factor λ and a translation t: for any similarity s, we can find M ∈ O2(R), λ ∈ R+ and t ∈ R2

such that s = λM+ t. For convenience, the orthogonal matrix and the zoom factor are combined into
two column vectors u and v: we have λM = (u v) with u ⊥ v and ∥u∥= ∥v∥= λ .

similarity_in_R2 : ∀ sim : Sim.t, ∃ u v t : R2.t,
R2norm u = Sim.zoom sim

∧ R2norm v = Sim.zoom sim
∧ perpendicular u v
∧ (∀ pt : R2.t,

sim pt = (product u pt * u + product v pt * v + t)R2)

These types of axioms can be discharged through the connection with COQ libraries dedicated to
geometry.
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