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Fractional-order Control for Robust Position/Yaw
Tracking of Quadrotors with Experiments

C. Izaguirre-Espinosa1, A.J. Muñoz-Vázquez2∗, A. Sánchez-Orta3, V. Parra-Vega3, I. Fantoni4,5

Abstract—Quadrotors are highly maneuverable light weight
drones, which are prone to aerodynamic disturbances, vibra-
tions and uncertainties. These factors stand for a problem that
demands robust control laws. For position tracking, the control
problem is exacerbated because the plant is underactuated
in the coordinates of interest, requiring a high performance
attitude tracking to resolve underactuation. In this paper, a
novel fractional-order controller is proposed by considering a
well-posed map that relates the position/yaw control to desired
attitude references. The attitude control is continuous and en-
forces and sustains a sliding motion in finite-time for exponential
convergence of the tracking errors to fulfill a “virtual” position
controller. The resulting closed-loop system is robust against
continuous disturbances that are not necessarily differentiable in
the conventional sense. A numerical study based on simulations
is presented to analyze the advantages of the fractional actions
to design a physically realizable controller, and experiments are
discussed to expose the reliability of the proposed fractional
scheme implemented in an ‘X’ configuration quadrotor.

Index Terms—Unmanned Aerial Vehicles; Robust Attitude
Control; Position/Yaw Tracking; Fractional-order Control; Dis-
turbance Rejection

I. INTRODUCTION

QUADROTORS have attracted the worldwide attention
since their vertical take off and landing (VTOL) capa-

bilities outperform other robotic unmanned drones. However,
to obtain the expected aerodynamic advantages of quadrotors,
the full dynamic model must be studied, which, unfortunately,
is highly nonlinear, coupled and underactuated, furthermore,
its lightweight structure is prone to aerodynamic disturbances,
[1], [2]. The control design of quadrotors has mainly been
addressed neglecting the full dynamic model, due to inherent
difficulties to deal with the underactuated nonlinear model, and
in particular for zero yaw. In [3], an output feedback scheme
is proposed for semiglobal stability based on backstepping
algorithm, and [4] reports backstepping sliding modes. A
geometric control based on SE(3) is presented in [5] proposing
a hierarchical control law for the position stabilization of a
VTOL. Nonetheless, these schemes assume yaw zeroing and
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Cedex 3, France. Email: isabelle.fantoni@ls2n.fr
*Corresponding author

depend on the exact model, either assuming knowledge of
the regressor, and/or plant parameters to build some sort of
feedback linearization, [6]. In addition, the robust position
tracking is proposed in [7] using well-posed attitude repre-
sentation based on unit quaternions to avoid singularities of
the Euler representation [8], [9]. The robust position tracking,
including time-varying yaw, when the dynamic model is un-
known and subject to non-differentiable disturbances, is yet an
open problem for singularity free kinematics. Also, fractional
control schemes have been proposed for quadrotor control
in [21], [22], based on sliding modes, but the problem of
not necessarily differentiability disturbance rejection by means
of a continuous attitude controller to enforce exponentially a
virtual position controller has been overlooked.

The contributions of this paper can be enlisted as follows:
• A novel fractional-order controller for quadrotors to guar-

antee robust exponential tracking of attitude dynamics.
• A continuous control signal to alleviate chattering while

guaranteeing robustness against continuous but non-
differentiable disturbances.

• Underactuation is solved based on a virtual position
control concept.

• Experimental results are presented.
Next Section presents the dynamical model as well as the

control problem. Section III presents fundamentals on Frac-
tional Calculus. Sections IV and V show the control design,
and Sections VI and VII present simulation and experimental
results. Finally, conclusions are given in Section VIII.

II. THE DYNAMIC MODEL

The quadrotor dynamic model is represented by three cou-
pled nonlinear subsystems: the position dynamics, the kinody-
namic constraint and the attitude dynamics. These subsystems
describe the motion of a rigid body evolving in a three-
dimensional space subject to one main thrust T , and three
moments with respect to the center of mass (CoM), [10],
provided by each thrust force fi of each propeller, see Fig.
1. Let I = {e1, e2, e3} and A = {ebx, eby, ebz} be the earth
fixed (inertial) and body fixed frames, whose origin coincides
with the CoM. The orientation of the rigid body is described
by an orthogonal rotation matrix R ∈ SO(3) : A → I, which
can be parameterized by Euler angles (ϕ, θ, ψ)T ∈ I, roll,
pitch and yaw, respectively. The dimension of the actuation
space is 4 for the 6 dimensional quadrotor, thus, the main
concerns is fourfold: i) to resolve underactuation in order
to control the translational coordinates (x, y), ii) to reject
attitude/position aggressive disturbances, iii) to establish a
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Fig. 1. Motors Mi provide the main thrust T and moments by controlling the
thrust force of each motor, fi = kiw

2
pi

, for ki an aerodynamical constant,
and wpi the angular velocity of the i-th propeller.

well-posed attitude kinematic representation, and iv) to provide
a continuous controller to avoid high frequencies that may
deplete the limited onboard batteries or be too complicated
for the rotor drivers to handle.

A. Position Dynamics

The Newton’s second law gives rise to the position dynam-
ics of the quadrotor as

mξ̈ = −T Rez +mgez + dp(t) (1)

where ξ = (x, y, z)T ∈ I denotes the position of the CoM,
m is the mass of the quadrotor, ez = (0, 0, 1)T , g ∈ R
represents the the gravitational acceleration, and dp(t) ∈ I
stands for external unknown position disturbances.

The 3D position dynamics has only 1 control input given
by the scalar thrust T =

∑4
1 fi, for fi = kw2

pi the vertical
force provided by each propeller rotating at angular velocity
wpi , which is located at a symmetrical distance d wrt the
CoM, see Fig. 1. On actuation space, notice that T Rez =
T (r13, r23, r33)

T ∈ R3 but T ∈ R, thus T r13, T r23 and
T r33 can be declared as virtual inputs to control position,
which requires a scheme to resolve underactuation.

B. Attitude Dynamics

The Newton-Euler formulation yields

Ṙ = Rω×, (2)
Jω̇ = −ω×Jω + τ + da(t) (3)

where ω = (ω1, ω2, ω3)
T ∈ A denotes the angular velocity,

ω× is the skew-symmetric of the vector ω, J ∈ R3×3 models
the inertia wrt the CoM in A, τ ∈ A represents three
independent control inputs, and da(t) ∈ A stands for the
attitude disturbance. There are 3 independent controllers for
the attitude dynamics (3), which are given by the moments
τ = (Mϕ, Mθ, Mψ)

T ∈ R3, more precisely Mϕ =
d√
2
(f3 + f4 − f1 − f2), Mθ = d√

2
(f2 + f3 − f1 − f4), and

Mψ = κ1(f2+f4−f1−f3), where κ1 is a constant, therefore,
by controlling fi unique and independent moments can be
produced.

In outdoor conditions, gust winds are expected to involve
drag side force and lift aerodynamic disturbances, related
to the position dynamics, while the attitude suffers from
the aerodynamic moments of rolling, pitching and yawing.
For indoor conditions, flights are disturbed by gust winds
generated through aerodynamic flows that circumvent the

quadrotor, similar to the ground effect when an helicopter
lands or a ceiling effect when a quadrotor establishes contact
to the upper limit of a room. In addition, the gyroscopic
moments of the quadrotor’s rotors are present, regardless of the
flying regimen [4]. Moreover, aerodynamic disturbances may
render non-smooth behaviors, [11], which have been reported
in association to some physical phenomena such as turbulence
flows produced by multi-phase regimes in fluid dynamics,
[12]. This particular class of disturbances are not necessarily
Lipschitz and may include fractional-order terms, which are
not everywhere differentiable, but with well-posed derivatives
of some orders less than one, therefore, attitude disturbances
da(t) = (dθ(t), dϕ(t), dψ(t))

T are assumed continuous with
fractional derivatives of some critical order less than one, [16].

C. The Control Problem

Noticing that the yaw angle ψ and the altitude z can
be controlled independently, the problem is how to design
U ≜ (T , τ)T such that the stabilization of the underactuated
translational axes (x, y), subject to unknown uncertainties and
disturbances is guaranteed. To this end, notice that if roll ϕ
and pitch θ are designed to produce controlled displacement
along (x, y), while T controls the altitude z, then, the desired
trajectories (θd, ϕd) can be designed in such a way that a
virtual position controller (ux, uy) enforces convergence of
(x, y) to (xd, yd). This is one way to resolve underactua-
tion, which requires to solve the map between (θd, ϕd) and
(ux = T r13, uy = T r23). However, this scheme needs very
fast convergence of (ψ, θ, ϕ) → (ψd, θd, ϕd), with a well-
posed attitude representation.

Thus, considering the properties of quaternions, [7], and the
characteristics of fractional-order control, [16], it is proposed
to solve the stated problem through a virtual position control
that is achieved when the attitude tracking is exponentially
assured, in addition with robustness to continuous but non-
differentiable disturbances and without chattering.

III. PRELIMINARIES ON FRACTIONAL CALCULUS

Fractional Calculus is based on differintegral operators of
fractional-order, [13]. These operators possess inherent struc-
tural properties, which allow the modeling of nonlocal effects
as well as the designing of control schemes with extended
and improved features, [14], [15]. Consider the following
differintegrals of order ν ∈ (0, 1):

• Riemann-Liouville fractional integral

t0I
ν
t f(t) =

1

Γ(ν)

∫ t

t0

f(ζ)

(t− ζ)1−ν
dζ. (4)

• Extended Caputo fractional derivative

C
t0D

ν
t f(t) =

f(t)− f(t0)

Γ(1− ν)(t− t0)ν
+

ν

Γ(1− ν)

∫ t

t0

f(t)− f(ζ)

(t− ζ)ν+1
dζ, (5)

The operator (5) was proposed in [16] to study the topological
properties of regular enough continuous, but not necessarily
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integer-order differentiable, functions, and it is well-defined
in the sense that complies to

C
t0D

ν
t t0I

ν
t f(t) = f(t) and t0I

ν
t
C
t0D

ν
t f(t) = f(t)− f(t0),

for sufficiently good functions, [16]. In addition, opera-
tor (5) coincides with the conventional Caputo operator(
C
t0D

ν
t f(t) = t0I

ν
t ḟ(t)

)
, [13], for differentiable functions.

IV. ATTITUDE CONTROL DESIGN

A. A Singularity-free Kinematic Representation

A rotation R : A → I of a vector v⃗ ∈ A can be
parameterized by a unit quaternion q ∈ S(3). That is,

∀v⃗ ∈ A ∃q = (q0, q⃗
T )T ∈ S3 such that Rv⃗ = q⊗v⃗⊗q∗ ∈ I,

where q satisfies qT q = q20 + q⃗T q⃗ = 1, for scalar q0 and
q⃗ ∈ R3, q∗ = (q0, − q⃗T )T is the conjugated of q. For
two arbitrary quaternions p and q their quaternion product
yields p⊗ q = ([pq]0, p⊙ q)T resulting [pq]0 = p0q0 − p⃗T q⃗,
and p ⊙ q = p0q⃗ + q0q⃗ + p⃗ × q⃗. Then, the rotation of an
angle ϑ along the unit vector λ⃗ can be expressed in terms of
q = cos(ϑ/2) + λ⃗ sin(ϑ/2). Hence, the orientation of a rigid
body in SO(3) with respect to I is expressed by a rotation
R : A → I, resulting

R = I + 2(q⃗×)2 + 2q0q⃗
×. (6)

The differential kinematics that maps angular velocities to
quaternion rate is given by

q̇ =
1

2

(
−q⃗T

[q0I + q⃗×]

)
ω (7)

which provides differential angle representation free of singu-
larities, useful to design the attitude tracking controller.

B. Design of the Error Manifold in Quaternions

Inspired by [7], [17], let the orientation error manifold be

Sq = ω − ωr, (8)

where ωr is the nominal velocity reference given by

ωr = ωd − αRT
d q⃗e + Sd (9)

where qe = q ⊗ q∗d = (q0e, q⃗
T
e )
T is the attitude quaternion

tracking error, α > 0, and Rd represents the desired rotation
matrix parameterized in terms of the desired unit quaternion
qd, and Sd = S(t0)e

−κ(t−t0), with κ > 0. Substituting (9)
into (8), the latter becomes

Sq = S − Sd, sliding surface (10)

S = ωe + αRT
d q⃗e, nonlinear error manifold (11)

where ωe = ω−ωd, for ωd the desired angular velocity. Notice
that Sq(t0) = 0 for any initial condition and (6) suggests that
Rd = I + 2(q⃗×d )

2 + 2q0dq⃗
×
d . Moreover, from (7), the desired

quaternion rate can be written as

q̇d =
1

2

(
−q⃗Td

[q0dI + q⃗×d ]

)
ωd

such that,

q̇e =
1

2

(
−q⃗Te

[q0eI + q⃗×e ]

)
Rdωe. (12)

The motivation to design this quarternion-based error manifold
is now clear: if a controller ensures that Sq = 0 for some
finite time, then ωe = −αRT

d q⃗e + Sd. Since Sd vanishes
exponentially fast independently of any state of the system,
assume S ≈ 0 at time ts, then,

q̇0e =
α

2
(1− q20e) and ˙⃗qe = −α

2
q0eq⃗e, (13)

whose solution is exponential without singularities of repre-
sentation, leading to exponential attitude tracking, [18].

C. Open-loop Error Dynamics

Aiming at designing a controller that enforces Sq = 0 as a
sliding surface in finite-time, let the open-loop error dynamics
be, by adding −Jω̇r to (3),

JṠq = τ − Jω̇r − ω×Jω + da(t) (14)

Assuming J is uncertain, (14) becomes

JṠq = τ + φ(t) (15)

for φ(t) = −Jω̇r − ω×Jω + da(t). It is clear that the
topological properties of φ(t) are intrinsically related with
those of da. At this point, the control problem is to design a
continuous chatter-less controller τ such that q → qd, ω → ωd
for a continuous but not necessarily differentiable disturbance
φ(t), which is solved if τ stabilizes Sq = 0 in finite-time.

D. Design of the Fractional Attitude Controller

Assume that, for some ς ∈ (0, 1), the derivatives of every
order ν ∈ (0, ς) of da(t) are bounded on any compact domain
Ω ⊂ R, then sup(a,b)⊂Ω

∥∥C
aD

ν
t φ(t)

∥∥
t=b

∈ R ∀ν ∈ (0, ς), and,
when a given maximum ςmax satisfies the above conditions it
is known as the critical order of φ(t), [16].

Now, consider the following model-free fractional control

τ(t) = −k t0I
ν
t sign(Sq(t)) (16)

for ν < ςmax, and k a feedback gain. Substituting (16) into
(15), the term-wise closed-loop attitude dynamics for the i-th
component of Sq is

JiiṠqi = JiiṠqi(tn)− k tnI
ν
t sign(Sqi) + tnI

ν
t
C
aD

ν
t φ

′
i (17)

where Jij is the ij-entry of J, φ′
i(t) = −Jω̇r−ω×Jω+da(t)+∑

j ̸=i JijSqj + ϱi(t), and the term ϱi(t) is the memory effect
before tn, which affects the system behavior for any t ≥ tn.
This term is casted as an endogenous disturbance to allows the
application of the resetting memory principle proposed in [19].
Such principle consists in reestablishing the lower terminal
at each time instant when Sqi(t) crosses the origin, that is,
when Sqi(tn) = 0, obtaining the monotonously increasing
sequence of nonnegative real numbers ⟨tn⟩n∈N. Thus, consider
the following Theorem.

Theorem 1: Consider the closed-loop equation (17), with
ν ∈ (0, 1), and let c = sup |CaDν

t φ
′
i(t)| ∈ R. Then, for
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k > 3+ν
1−ν c, there exists a finite time ts ∈ R such that

(Sqi(t), Ṡqi(t)) = (0, 0) ∀t ≥ ts.
Proof: Proof is similar to that in Theorem 1 of [19].

However, in contrast to [19], the fractional integral is not reset
for computing the control signal. This demonstrates that

|Ṡqi(tn)| ≤ µn|Ṡqi(t0)|, ∀n ∈ N,

for µ = k+c
k−c (1 + ν) − 1 < 1, then, Ṡqi(tn) → 0. The time

instant ts, such that (Sq(t), Ṡq(t)) = (0, 0) ∀t ≥ ts, is given
by the geometric series ts = t0 +

∑∞
n=0(tn+1 − tn), thereby,

ts ≤ t0 +
[
Jii|Ṡqi(t0)|Γ(ν+2)

k−c

]1/ν
1

1−µ1/ν ∈ R.

E. Solving Underactuation: Desired Attitude design

Theorem 1 establishes that qe → 0 at t ≥ ts, and conse-
quently, (ψ, θ, ϕ)T → (ψd, θd, ϕd)

T exponentially. Thus,
consider the desired position control be u = T Rdez , whose
magnitude is T > 0 (since it sustain the quadrotor on the air)
with a direction Rdez . Since ∥u(t)∥ = ∥T ∥∥rd3∥ = ∥T ∥,
where rd3 = Rdez is the third column of the desired rotation
matrix, one has that rd3 = u(t)/T , which leads to

ϕd = arcsin
(
u1 sinψd−u2 cosψd

T

)
(18)

θd = arctan
(
u1 cosψd+u2 sinψd

u3

)
, (19)

depending solely on u = (u1, u2, u3)
T and ψd, such that,

u3 > 0 compensates gravity effects. The solution of the
kinodynamic constraint (2) gives rise to a well-posed desired
angular velocity ωd = (ω1d, ω2d, ω3d)

T , producing

ω1d = (T γd − δdṪ )/T h0 − ψ̇dβd/h1 (20)

ω2d = (αdu3 − u̇3βd)h0/T h21 + ψ̇dδdu
2
3/T h1 (21)

ω3d = ψ̇du
2
3h0/T h1 − (αdu3 − u̇3βd) δd/T h21 (22)

where h20 = T 2 − δ2d > 0 and h21 =
(
β2
d + u23

)
> 0, for

αd = u̇1 cosψd − u1ψ̇d sinψd + u̇2 sinψd + u2ψ̇d cosψd

βd = u1 cosψd + u2 sinψd

γd = u̇1 sinψd + u1ψ̇d cosψd − u̇2 cosψd + u2ψ̇d sinψd

δd = u1 sinψd − u2 cosψd

Ṫ = (u1u̇1 + u2u̇2 + u3u̇3)/T

Note that, when the desired angular velocity is computed
to resolve underactuation, the time derivative of u is required,
which can be computed following a similar procedure as that
proposed in [18].

V. POSITION CONTROL DESIGN

By considering the virtual control u = T Rez , system (1)
can be written as

mṠp = −u+ φp (23)

where φp = mgez − mξ̈r + dp(t) includes endogenous and
exogenous effects, for

Sp = ξ̇ − ξ̇r extended error manifold (24)

ξ̇r = ξ̇d − αpξe + S̄d − γσ nominal reference (25)
σ̇ = tanh(λpSξ) dynamic extension (26)

with λp, αp and γ positive definite diagonal matrices, ξd is the
smooth desired position, ξe = ξ − ξd stands for the tracking
error and S̄d = Sξ(t0)e

−κ̄(t−t0) for κ̄ > 0. Notice that,
for large enough elements of λp, it can be considered that
tanh(λpSξ) ≈ sign(Sξ). Equations (25)-(26) allow equation
(24) to be rewritten as

Sp = Sξ − S̄d sliding surface (27)

Sξ = ξ̇e + αpξe linear error manifold (28)

The quasi-continuous sliding motion condition is demon-
strated in the following Theorem.

Theorem 2: Consider the position dynamics (1) in closed-
loop with

u = KdSp (29)

Then, robust exponential convergence to a small vicinity of
the origin is assured for large enough elements of the positive
definite feedback matrices γ and Kd.

Proof: The proof follows similar arguments of [17] and
[18], however, essentially it is shown that a quasi-sliding mode
is established at ∥Sξ∥ ≤ c0, where c0 can be made arbitrarily
small by tuning λp and Kd.

VI. ANALYSIS BASED ON SIMULATIONS

A comparison analysis based on simulations is carried out
to highlight the advantages of the fractional control.

The Simulator. Two simulations, for ν = 0 and ν = 0.5, are
considered. It is important to note that ν = 0 corresponds
to the classical sliding mode control. Simulations run on
Simulink in Matlab 2013a, based on the Euler integrator with a
sampling rate of 10KHz, and the CRONE method to compute
differintegrals, with a transfer function of 100-th order on
[1mHz, 1KHz].

The plant and the task. Consider an UAV quadrotor with
m = 0.442, and J ≈ diag{0.002, 0.002, 0.004} kgm2. The
task is xd = −0.5 + 0.5 cos(0.2t), yd = 0.5 sin(0.2t), zd =
0.3 + 0.4 sin(0.2t), and ψd = 0.1 sin(0.1t).

Control Parameters. For all cases consider the position
control parameters Kd = 20I3×3, γ = 0.1I3×3, λp = 10I3×3,
αp = 0.2I3×3, and κ̄ = 1. The attitude control gains are κ = 5,
α = 20, c = 0.7, k = c(3+ν)/(1−ν), for both ν = 0 and 0.5.
Consider da(t) = [sin(t), sin(t+ 2π/3), sin(t+ 4π/3)]T +
(1, 1, 1)T 0I

0.6
t random(0,20)(t) for the attitude disturbance,

see Figure 2, with a random function of mean equal 0 and
variance of 20.

Results. For both cases, ν = 0 and ν = 0.5, almost the same
position performance is obtained since the (virtual) position
control results from integrating two times the attitude control,
then, high frequency effects of τ in the position dynamics
cannot be clearly appreciated. Thus, only attitude control and
sliding surfaces signals are shown.

Fig. 3 highlights that the system performance is improved as
the order of integration increases. However, a large value of ν
implies a lack of robustness wrt more aggressive disturbances.
Then, the tuning of ν allows to design preciser actions of
control by considering further properties neglected in the
integer-order case. Note that exact rejection is achieved just
in the fractional-order case.
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Fig. 2. Continuous but non-differentiable disturbance: t vs da(t).
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(a) ν = 0: t vs τ
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(b) ν = 0.5: t vs τ
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(c) ν = 0: t vs Sq
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(d) ν = 0.5: t vs Sq

Fig. 3. Numerical results based on simulations

VII. EXPERIMENTAL STUDY

Experimental tests were developed in the Heudiasyc Labo-
ratory at the Université de Technologie de Compiègne. The
equipment is composed of a motion capture system Opti-
track that provides position and ψ in the quadrotor frame,
and a Parrot AR Drone 2.0 quadrorotor with custom made
programming platform onto two personal computers, one to
process data from the Optitrack and other to handle bilat-
eral communication to the quadrotor. An SDK provided by
Parrot allows the quadrotor to be controlled. However, it is
not possible to directly implement our controllers since the
quadrotor has closed architecture. We solved this problem
through the autopilot Paparazzi developed by teams from TU
Delft university, [23]. In this platform, the communication
protocols between the onboard main processor and the periph-
eral devices have been decoded, and by using these protocols
and our own software framework, the proposed controller can
be directly implemented. The controller is embedded on the
quadrotor processing system using Gumstix architecture that
handles additionally all onboard processing and interruptions
of comms, sensors and actuators, while the Optitrack PC send
ψ, x, y, z DoFs, and ϕ and θ are obtained reading an IMU.
The time base runs at 200Hz, and the whole programming
is coded in C++ within Linux Mint 17 KDE environment
using CodeBlocks 10. The Grünwald-Letnikov method [13]
is programmed to compute numerical differintegrals with a
maximum of 5000 memory elements in each iteration. Figure
4 shows the main elements of the control architecture. As
it is customary, the control input is saturated to protect the
integrity of the equipment, corresponding to the normalized
sum of the desired control signals less than or equal to 1.
Roughly speaking, the virtual position control is computed
on the onboard processor of the quadrotor, which receives
the translational position and velocity from the Optitrack via
Wifi. Once the position control is calculated, it passes through

the mapping generating the desired quaternion and angular
velocities. Using this information with data from the IMU,
the attitude control is calculated. Finally, the output from the
attitude control is mapped to the corresponding desired angular
velocities of the propellers (wpi for i ∈ {1, 2, 3, 4}), which are
handled by the rotors’ drivers, see in Figure 5.

A. Experimental Conditions

Initial conditions are z(t0) = 0.75m, and desired opera-
tional trajectory stands for the circle [xd, yd] = [0.5 sin(0.2t)+
offset, 0.5 cos(0.2t)+offset]m while zd = 0.4 sin(0.2t)+0.75,
and a yaw ramp ψd = 15ot. The offset is tuned to comply with
small error on initial conditions, under a trial-and-error basis.
Attitude and position control gains are ν = 0.6, κ = 1, α =
9, k = 0.8, Kd = 0.35I3×3, αp = 4I3×3, λp = 10I3×3,
γ = 0.15I3×3, κ̄ = 5.

B. Experimental Results

Desired positions are quite demanding to exhibit the strong
couplings of the nonlinear dynamics to test the control capa-
bilities. In Fig. 6, position tracking is presented where the
apparent lag is due to the multi-sampling and latency of
multiple processes implemented to run the experiments, as
well as sensor noise and quantization, typical of this sort of
experiments. The same Fig. 6 shows the continuous control
signals handled by the rotors’ drivers in a normal operational
regime. Fig. 7 shows ψ tracking the ramp reference, and the
virtual position control, which is certainly smooth for such
large λp = 10I3×3.

VIII. CONCLUSIONS

A model-free position tracking control for quadrotors is pre-
sented based on the virtual control concept. In order to succeed
in position tracking, the attitude control induces a fractional
sliding mode that rejects not necessarily differentiable distur-
bances, inducing exponentially the virtual position controller.

Optitrack

(motion capture system)

Parrot AR Drone 2.0

Motors

NavBoard

(IMU and sensors)

Gumstix processor

(ARM Cortex A8 1GHz)

Vertical and horizontal 

onboard cameras

Ground station

Wifi

Fig. 4. Control architecture of the experimental platform

Gumstix

Optitrack

Virtual
position
control

Map
Attitude
control

IMU

Rotor
drivers

Fig. 5. Scheme of the control algorithm
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(a) x vs t (b) τϕ vs t

(c) y vs t (d) τθ vs t

(e) z vs t (f) τψ vs t

Fig. 6. Experiments. Position tracking (left) and control signals (right).

(a) ψ vs t (b) u vs t

Fig. 7. Experiments. Yaw tracking ψ and virtual position controller u.

A comparison analysis based on simulations highlights the
advantages of the fractional-order control actions, and rigor-
ous experimental developments are tested in a soft real-time
platform. Future work includes to enhance the performance of
the attitude controller with a hard real-time patch based on
Xenomai, as well as to increase the onboard processing for
more endurance testing.
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