
HAL Id: hal-01894503
https://hal.science/hal-01894503v2

Submitted on 20 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multilevel Monte Carlo covariance estimation for the
computation of Sobol’ indices

Paul Mycek, Matthias de Lozzo

To cite this version:
Paul Mycek, Matthias de Lozzo. Multilevel Monte Carlo covariance estimation for the computation
of Sobol’ indices. SIAM/ASA Journal on Uncertainty Quantification, 2019, 7 (4), pp. 1323-1348.
�10.1137/18M1216389�. �hal-01894503�

https://hal.science/hal-01894503v2
https://hal.archives-ouvertes.fr


Multilevel Monte Carlo covariance estimation for the computation of Sobol’
indices

Paul Mycek∗ and Matthias De Lozzo†

Abstract. Crude and quasi Monte Carlo (MC) sampling techniques are common tools dedicated to estimating
statistics (expectation, variance, covariance) of a random quantity of interest. We focus here on
the uncertainty quantification framework where the quantity of interest is the output of a numerical
simulator fed with uncertain input parameters. Then, sampling the output involves running the
simulator for different samples of the inputs, which may be computationally time-consuming. To
reduce the cost of sampling, a first approach consists in replacing the numerical simulator by a
surrogate model that is cheaper to evaluate, thus making it possible to generate more samples of
the output and therefore leading to a lower sampling error. However, this approach adds to the
sampling error an unavoidable model error. Another approach, which does not introduce any model
error, is the so-called multilevel MC (MLMC) method. Given a sequence of levels corresponding
to numerical simulators with increasing accuracy and computational cost, MLMC combines samples
obtained at different levels to construct an estimator at a reduced cost compared to standard MC
sampling. In this paper, we derive and analyze multilevel covariance estimators and adapt the
MLMC convergence theorem in terms of the corresponding covariances and fourth order moments.
We propose a multilevel algorithm driven by a target cost as an alternative to typical algorithms
driven by a target accuracy. These results are used in a sensitivity analysis context in order to derive
a multilevel estimation of Sobol’ indices, whose building blocks can be written as covariance terms in
a pick-and-freeze formulation. These contributions are successfully tested on an initial value problem
with random parameters.

Key words. Monte Carlo, Multilevel Monte Carlo, Parameter estimation, Covariance, Uncertainty quantifica-
tion, Sensitivity analysis, Sobol’ indices.

AMS subject classifications. 65C05, 65N55, 62L12, 62D05, 68Q25.

1. Introduction. Computational models are widely used to represent a quantity of interest
by solving complex systems of equations that transcribe real life phenomena into mathemat-
ical language and that are discretized on dedicated meshes. Such simulators can take many
numerical and explanatory variables as input parameters. They may be used in computer ex-
perimentation to explore the relationship between the variables and increase the knowledge of
the real life phenomenon, while an accurate in situ experimentation would be too costly [47],
even impossible in the case of forecasting purposes. However, these numerical simulators often
have a large number of uncertain input parameters, which can lead to an important uncertainty
over the model output [11, 36].

Commonly, in a probabilistic uncertainty quantification (UQ) framework, the uncertain
input variables are modeled by random quantities (variables, vectors, fields) with prescribed
probability distributions and propagated through the model. Their impact on the output
are then quantified, usually by computing statistics such as their expectation, variance, prob-
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ability density function or threshold exceedance probability [17]. Sensitivity analysis (SA)
methods [46] can be used to attribute shares of output randomness to individual input pa-
rameters or subsets thereof in interaction. The conclusions drawn SA may then help reduce
the model output uncertainty by enhancing the characterization of the most influential input
parameters and by using nominal deterministic values for the non-significant ones. Lastly, re-
maining input uncertainties can be controlled by data assimilation of real life measures facing
the corresponding model output values [2].

Among the sensitivity measures used in SA studies, Sobol’ indices [49] are particularly
popular and powerful, and will be the focus of this paper. In UQ studies, such sensitivity indices
are commonly estimated using Monte Carlo (MC) or quasi-Monte Carlo (QMC) sampling
methods [44, 6, 40]. Precisely, the simulator is evaluated over a design of experiments whose
elements are obtained from a set of independent realizations of the input random variables
in the MC case or from a deterministic sequence of variables approaching such realizations
efficiently in the QMC case. While the simplicity of these techniques is a significant advantage,
the slow convergence of MC and QMC estimators with respect to the sample size represents a
serious drawback when the simulator is computationally expensive.

A common way to address that limit is to compute the estimators from a cheap surrogate
model parametrized by the statistical learning of a few evaluations of the simulator [15, 17].
Gaussian processes [43] and polynomial chaos (PC) expansions [39, 53] are examples of popular
and widely-used surrogate models for UQ. In the case of PC surrogates, Sobol’ indices can
be directly retrieved from the expansion without requiring to re-sample the surrogate [50, 9].
One of the downsides of using a surrogate model, however, is that it introduces a model
approximation error. In addition, constructing such a surrogate might be computationally
expensive, especially when the number of uncertain input parameters is large. When the
PC surrogate corresponds to the approximate solution of a stochastic problem sought in a
tensor product space, as is the case in the stochastic Galerkin method [18, 39, 53], low-rank
tensor techniques may be used to circumvent this so-called curse of dimensionality [42, 14, 12].
However, such formulations typically lead to dedicated methods for solving stochastic partial
differential equations that do not allow for the non-intrusive use of the deterministic numerical
simulator as a black box, which may be impractical when using, for instance, closed-source
software.

When the accuracy of the numerical simulator and its associated computational cost can
be adjusted, by changing the mesh resolution, for example, multilevel Monte Carlo (MLMC)
sampling [28, 30, 29, 19, 20] can also be used to construct an estimator at a reduced cost
compared to standard (Q)MC sampling. Early MLMC research in the late 1990s was con-
ducted by Heinrich for the approximation of high dimensional parameter dependent integrals
by MC sampling [28, 30, 29]. He developed for this purpose a multilevel variance reduction
technique, popularized a decade later by Giles [19] who gave this method its modern name of
MLMC. The main idea of MLMC consists in introducing a sequence of so-called levels, usually
corresponding to a hierarchy of numerical simulators with increasing accuracy and associated
cost of individual simulations. In practice, the different levels usually correspond to simulators
having increasingly fine (spatial and/or temporal) mesh resolutions, so that simulators with
a poor accuracy correspond to so-called “coarse” levels, while accurate simulators correspond
to “fine” levels. The MLMC estimator is obtained by combining samples obtained from the
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simulator at different levels in a specific way. In favorable cases, many samples come from
cheap coarse levels in order to reduce the statistical error, while only few come from expensive
fine levels to correct the resulting bias. This efficient combination leads to a reduced compu-
tational cost of estimating the statistics, in some cases with asymptotically the same cost as
that of a single deterministic run of the simulator at the finest level.

From there, several extensions have appeared over the past decade, including methodologi-
cal advances such as the combination of MLMC with QMC sampling [24], the use of antithetic
variates [22, 23] and the possibility to define levels independently in each (space and/or time)
direction, inspired from sparse grid ideas, leading to the so-called multiindex MC (MIMC)
method [26]. Initially developed to estimate the expected solution of stochastic partial differ-
ential equations in computational finance [19, 21], MLMC has since been applied to various
problems such as biological systems [41] or pollutant dispersion [35]. These techniques have
also been developed in different areas of engineering and applied mathematics, for instance
in reliability [1], for the estimation of covariance matrices in inverse problems [38], or for the
construction of kriging metamodels in stochastic experiments [45]. A review of the most sig-
nificant advances in the MLMC methodology, as well as codes and examples from different
fields of application, can be found in [20].

Recent work has extended the MLMC estimate of expectation to the case of variance [3]
and higher order central moments [4]. The case of covariance has also been addressed for the
case of the covariance matrix used in the ensemble Kalman filter [32] for data assimilation.
In this paper, we extend theorems of MLMC theory dedicated to estimating these statistics
to the more general case of estimating arbitrary statistical parameters. We demonstrate in
particular that covariance estimation fits in this framework by deriving upper bounds for the
variance of the associated multilevel estimator. The resulting MLMC covariance estimator is
then used in the context of global SA to estimate Sobol’ indices, whose building blocks can
be written as covariance terms in a pick-and-freeze formulation [34]. To our knowledge, this
is the first contribution to the deployment of MLMC methods for variance-based sensitivity
indices. We also devise an adaptive algorithm for choosing on the fly the optimal number of
levels and sample sizes on each level, driven by a target overall computational budget. These
theoretical and algorithmic contributions are successfully tested on an initial value problem
with random parameters.

The paper is organized as follows. Section 2 presents the theoretical aspects by first de-
scribing the framework for the MLMC estimation of the expectation and of arbitrary statistics.
Then our theoretical contributions to the MLMC estimation of the covariance are presented,
as well as practical considerations leading to an adaptive algorithm for selecting on-the-fly
optimal sample sizes on each level according to a given overall computational budget, rather
than a target accuracy. Section 3 applies this MLMC estimator to the Sobol’ indices and
presents numerical results for an ordinary differential equation with random parameters. Fi-
nally, concluding remarks and prospects for further work are given in Section 4.

2. Multilevel Monte Carlo techniques for statistical parameter estimation. We consider
an abstract numerical simulator described by the function:

(2.1)
f : X → R

x 7→ f(x) ≡ y,
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whose scalar input parameters (x1, . . . , xd) = x ∈ X ⊆ Rd are uncertain, leading to an un-
certainty in the output value y. In a probabilistic uncertainty quantification framework, these
uncertain parameters are commonly described by random variables defined on a probability
space (Ω,A,P). The input vector x is then replaced by a X -valued random vector X : Ω→ X
whose components are independent random variables with probability distributions given by
expert knowledge; as a consequence, Y ≡ f(X) is a random variable whose distribution is
unknown. In this probabilistic context, we introduce the expectation operator E

(2.2) E[Z] ≡
∫

Ω
Z(ω) dP(ω),

for any random variable Z : Ω → R defined on (Ω,A,P). Furthermore, let Lp(Ω,P), with
1 ≤ p <∞, denote the space of random variables Z with finite Lp-norm

(2.3) Z ∈ Lp(Ω,P) ⇐⇒ ‖Z‖Lp(Ω,P) ≡ E[|Z|p]1/p <∞.

Of particular interest is the space L2(Ω,P) of so-called second-order random variables, which
is equipped with the inner product 〈·, ·〉L2(Ω,P) defined by:

(2.4) ∀Z,Z ′ ∈ L2(Ω,P), 〈Z,Z ′〉L2(Ω,P) = E[ZZ ′] =

∫
Ω
Z(ω)Z ′(ω) dP(ω),

from which the L2-norm is induced, i.e. ‖Z‖L2(Ω,P) = 〈Z,Z〉1/2L2(Ω,P).
In practice, the expectation of a random variable Z is approximated (estimated) by the

following Monte Carlo (MC) estimator

(2.5) EM [Z] ≡ 1

M

M∑
i=1

Z(i),

where
{
Z(1), . . . , Z(M)

}
is an M -sample of Z, that is to say that Z(1), . . . , Z(M) are M inde-

pendent and identically distributed (i.i.d.) replications of Z. The error of the MC estimator
EM [Z], measured by the root mean square error (RMSE)

(2.6) RMSE(EM [Z],E[Z]) ≡ E
[
(EM [Z]− E[Z])2

]
1/2,

is O(M−1/2), see, e.g., [44]. Reducing this error by a factor of r thus implies increasing the
sample size by a factor of r2. In practice, for the quantity of interest Y , obtaining a realization
of the estimator EM [Y ] requires M calls to the numerical simulator f , specifically at the
elements of the M -sample

{
X(1), . . . ,X(M)

}
of X

(2.7) EM [Y ] =
1

M

M∑
i=1

f(X(i)).

In uncertainty quantification, we are usually interested in the first central moments of Y
and in quantiles or probabilities of threshold overrun [17]. Moreover, SA indices such as Sobol’
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indices are commonly studied to quantify the shares of output variability attributable to the
different input parameters [49]. Nevertheless, an accurate estimation of these statistical objects
by standard MC sampling approaches requires a large number M of calls to the simulator f ,
namely M = O(ε−2) for an accuracy of O(ε), which is not always possible when the numerical
simulator is computationally expensive and the CPU time budget is limited. When “coarser”
simulators are available, for instance by degrading the mesh resolution of the original simula-
tor, one can take advantage of the different levels of accuracy and associated computational
cost by combining samples obtained from different levels in a multilevel variance reduction
manner. This is the framework of MLMC sampling, which we now describe for the estimation
of arbitrary statistical parameters.

2.1. MLMC estimator of the expectation. We first briefly recall the original MLMC
estimator of the expectation [19]. Let (f`)`≥0 be a sequence of simulators with increasing
accuracy and computational cost. In practice the different levels usually correspond to sim-
ulators having increasingly fine (spatial and/or temporal) mesh resolutions. For that reason,
we will hereafter refer to small values of ` as “coarse” levels, while larger values of ` will be
referred to as “fine” levels.

We denote by Y` the random variable f`(X), and we assume that lim`→∞ E[Y`] = E[Y ].
The expectation E[YL] can be expressed as a telescoping sum

(2.8) E[YL] = E[Y0] +
L∑
`=1

E[Y`]− E[Y`−1],

which can be interpreted as a sum of corrections to an initial, coarse representation E[Y0]. For
convenience, we let Y−1 ≡ 0 by convention and we write

(2.9) E[YL] =
L∑
`=0

E[Y`]− E[Y`−1].

Note that this telescoping sum converges to E[Y ] as L → ∞. Based on this rewriting, each
expectation may be approximated by a standard MC estimator at the corresponding level of
correction

(2.10) EML
L [Y ] =

L∑
`=0

E
(`)
M`

[Y`]− E
(`)
M`

[Y`−1],

where E(`)
M`

[Y`′ ] is the standard MC estimator of E[Y`′ ]

(2.11) E
(`)
M`

[Y`′ ] =
1

M`

M∑̀
i=1

Y
(`,i)
`′ , with Y (`,i)

`′ ≡ f`′(X(`,i)), and `′ ∈ {`− 1, `},

and where the random input vectors X(`,i) are i.i.d. replications of X. Replacing the single
level MC estimators by their expression, Eq. (2.10) becomes

(2.12) EML
L [Y ] =

L∑
`=0

1

M`

M∑̀
i=1

[
Y

(`,i)
` − Y (`,i)

`−1

]
=

L∑
`=0

1

M`

M∑̀
i=1

[
f`(X

(`,i))− f`−1(X(`,i))
]
,
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highlighting the fact that the correction at each level ` is computed from the same input
M`-sample {X(`,i)}i=1,...,M`

, but using calls to different numerical simulators, f` and f`−1.

2.2. MLMC estimator of arbitrary statistical parameters. The multilevel formulation
described above, originally designed for the estimation of expected values, may be directly
extended to the estimation of more general statistical parameters. Specifically, let θ be the
parameter to be estimated, let (θ`)`≥0 be a sequence of approximations of θ = lim`→∞ θ`. We
then have

(2.13) θL =
L∑
`=0

T`, with T` ≡ θ` − θ`−1 and by convention θ−1 ≡ 0.

Similarly to the case of the expectation above, the MLMC estimator θ̂ML
L of θ may then be

expressed as

(2.14) θ̂ML
L =

L∑
`=0

T̂
(`)
M`
,

where each T̂ (`)
M`

is a Monte Carlo estimator of T` using anM`-sample. The multilevel estimator
EML
L [Y ] of the expectation E[Y ], introduced above in Eq. (2.10), fits in this framework with

T̂
(`)
M`

= E
(`)
M`

[Y`]− E
(`)
M`

[Y`−1].
We now introduce the bias of θ̂ as an estimator of a parameter θ as

(2.15) Bias(θ̂, θ) ≡ E[θ̂]− θ.

If Bias(θ̂, θ) = 0, i.e. E[θ̂] = θ, we say that θ̂ is an unbiased estimator of θ. It is well-known
that the mean square error (MSE) of θ̂ as an estimator of θ can be decomposed into a sum of
two contributions, namely the variance of the estimator and its squared bias

(2.16) MSE(θ̂, θ) ≡ E
[
(θ̂ − θ)2

]
= V[θ̂] + Bias(θ̂, θ)2.

The root mean square error (RMSE) is simply defined as the square-root of the MSE, that is
to say RMSE(θ̂, θ) ≡ MSE(θ̂, θ)1/2. For the multilevel estimator θ̂ML

L defined in Eq. (2.14), it
is easy to see that

(2.17) Bias(θ̂ML
L , θ) = Bias(θ̂ML

L , θL) + (θL − θ),

where

(2.18) Bias(θ̂ML
L , θL) =

L∑
`=0

Bias(T̂
(`)
M`
, T`).

It is clear from that expression that if T̂ (`)
M`

is an unbiased estimator of T` on each level ` ≤ L,
then Bias(θ̂ML

L , θL) = 0. In that case, the total bias reduces to Bias(θ̂ML
L , θ) = θL− θ and thus

the MSE becomes

(2.19) MSE(θ̂ML
L , θ) = V[θ̂ML

L ] + (θL − θ)2 .
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In that case, the first term of the MSE, V[θ̂ML
L ], can be seen as pure sampling error, and the

second term, (θL − θ)2, can be seen as pure discretization error. It is important to note that
the latter only involves the finest level L. Consequently, if the MSE remains large compared
to the sampling error, an additional, finer level may need to be considered. Conversely, if the
discretization error is small compared to the MSE, new multilevel simulations are required
on the existing levels [19, 20]. Finally, we notice that if the estimators T̂ (`)

M`
are mutually

uncorrelated, then V[θ̂ML
L ] =

∑L
`=0 V[T̂

(`)
M`

]. In the sequel, we will solely consider estimators

T̂
(`)
M`

that are mutually independent, and therefore uncorrelated.
Theorem 2.1 below is an essential theorem that ensures the convergence of the multilevel

estimator at a bounded cost.

Theorem 2.1. Let θ be a statistical parameter and (θ`)`≥0 be a sequence of approximations
of θ such that lim`→∞ θ` = θ. Let (T̂

(`)
M`

)`≥0 be a sequence of mutually independent estimators,

each T̂
(`)
M`

estimating T` ≡ θ` − θ`−1 using an M`-sample, with θ−1 ≡ 0 by convention. Let
C` denote the computational cost of evaluating a single member of the M`-sample used for the
computation of T̂ (`)

M`
, and let (n`)`≥0 be a sequence of positive integers satisfying n` h s` for

some fixed s > 1.
Assume that there exists a fixed finite m ∈ N0 such that V[T̂

(`)
M`

] ≤ V`/(M` −m), where V`
is independent of M`. Moreover, assume that there exist constants α, β, γ > 0 such that, for
any ` ≥ 0,

(i) |Bias(θ̂ML
` , θ)| . n−α` ,

(ii) V` . n−β` ,

(iii) C` . nγ` .

Then for any tolerance 0 < ε < e−1, there exist a level L ≥ 0 and a sequence of integers
(M`)

L
`=0, satisfying M` > m for all 0 ≤ ` ≤ L, such that RMSE(θ̂ML

L , θ) ≤ ε and

(2.20) Costε(θ̂
ML
L ) . ε−

γ
α1min(β,γ)>2α + ε−2

(
1β>γ + (log ε)21β=γ + ε−

γ−β
α 1β<γ

)
,

where Costε(θ̂
ML
L ) denotes the total cost of computing such a multilevel estimator.

In the theorem above, . and h have the same meaning as in [7, 3]. That is, for a, b > 0,
a . b means that a/b is bounded above by a constant independent of any parameters, and
a h b means that a . b and b . a. Furthermore, with a slight abuse of the indicator function
notation, for any logical proposition P , we define 1P as

(2.21) 1P =

{
1 if P is true,
0 otherwise.

Theorem 2.1 is an adaptation of the abstract convergence theorem introduced in [51, Theo-
rem 4.1] to make it applicable to unbiased variance and covariance estimation (see sections 2.3
and 2.4 below). The main difference is that we require V[T̂

(`)
M`

] ≤ V`/(M` − m) so that as-

sumption (ii) implies V[T̂
(`)
M`

] . (M` −m)−1n−β` , while [51, Theorem 4.1], primarily designed
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for the estimation of expected values, requires V[T̂
(`)
M`

] . M
−1/δ
` n−β` , where δ = 1 for MC

and δ ∈ (1/2, 1] for QMC. The proof of Theorem 2.1 is along the same lines as that of [7,
Theorem 1] and [51, Theorem 4.1].

Remark 2.2. When each T̂ (`)
M`

is an unbiased estimator of T`, assumption (i) in Theorem 2.1
can be relaxed and it is sufficient to have |θ` − θ`−1| . n−α` instead (see Appendix A).

Remark 2.3. It should be noted that there are cases where MLMCmay fail or be ineffective.
For instance, for coarse discretizations, the error may not be in the asymptotic regime, possibly
preventing the assumptions of exponential bias and variance decay rate from holding for coarse
levels. Furthermore, the geometry of the spatial computational domain is typically impacted
by the discretization. For complex industrial problems, this may incur significant additional
error and thus shift the asymptotic regime to finer discretizations. In such cases, one may opt
for other methods (e.g. using a surrogate model) or design specific workarounds for MLMC.

2.3. MLMC covariance and variance estimator. In this work, we are particularly inter-
ested in estimating the covariance between two random variables (and, as a special case, the
variance of a random variable). We define the MLMC estimator CML

L [Y, Z] of the covariance
C[Y,Z] between two second-order random variables Y and Z as

(2.22) CML
L [Y, Z] =

L∑
`=0

C
(`)
M`

[Y`, Z`]− C
(`)
M`

[Y`−1, Z`−1],

where C(`)
M`

[Y`′ , Z`′ ] is the single-level MC estimator

C
(`)
M`

[Y`′ , Z`′ ] =
M`

M` − 1
E

(`)
M`

[(
Y`′ − E

(`)
M`

[Y`′ ]
)(

Z`′ − E
(`)
M`

[Z`′ ]
)]

=
M`

M` − 1

(
E

(`)
M`

[Y`′Z`′ ]− E
(`)
M`

[Y`′ ]E
(`)
M`

[Z`′ ]
)
.

(2.23)

It can easily be seen that C(`)
M`

[Y`′ , Z`′ ] is an unbiased estimator of C[Y`′ , Z`′ ], implying that
Bias(CML

L [Y,Z],C[Y,Z]) = C[YL, ZL]−C[Y,Z]. The multilevel estimator V ML
L [Y ] of the vari-

ance V[Y ] = C[Y, Y ] is obtained from the special case Y = Z

(2.24) V ML
L [Y ] ≡ CML

L [Y, Y ] =
L∑
`=0

V
(`)
M`

[Y`]− V
(`)
M`

[Y`−1], V
(`)
M`

[Y`′ ] ≡ C
(`)
M`

[Y`′ , Y`′ ],

and, as a consequence, Bias(V ML
L [Y ],V[Y ]) = V[YL]− V[Y ].

Remark 2.4. For covariance estimation, sometimes it may not be possible — or desirable
— to consider different levels for both random variables. This may be the case for instance
when interested in the covariance between an input parameter and the output of a numerical
simulator. In such a case, the multilevel estimator

(2.25) C̃ML
L [Y, Z] =

L∑
`=0

C
(`)
M`

[Y,Z`]− C
(`)
M`

[Y, Z`−1] =
L∑
`=0

C
(`)
M`

[Y,Z` − Z`−1]

can be used, where, by symmetry, the roles of Y and Z can be interchanged.
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2.4. Variance of the multilevel estimators. Theorem 2.1 shows that it is essential to
know an upper bound for the variance of the multilevel estimators. In this section, we first
recall known expressions for the variance of some single-level MC estimators, then we use them
to derive upper bounds for the variance of multilevel estimators.

For the sake clarity, we drop the unnecessary level-related sub- and superscripts for the
single-level MC estimators. The variance of the MC estimators EM [Y ], CM [Y, Z] and VM [Y ]
defined previously in Eq. (2.11), (2.23) and (2.24) can be expressed as

(2.26) ∀Y ∈ L2(Ω,P),∀M > 0, V[EM [Y ]] = V[Y ]/M,

(2.27) ∀Y,Z ∈ L4(Ω,P), ∀M > 1,

V[CM [Y,Z]] =
M4[Y,Z]

M
− (M − 2)C[Y, Z]2 − V[Y ]V[Z]

M(M − 1)
,

(2.28) ∀Y ∈ L4(Ω,P), ∀M > 1, V[VM [Y ]] =
M4[Y ]

M
− M − 3

M(M − 1)
V[Y ]2,

where M4[Y ] ≡ E
[
(Y − E[Y ])4

]
and M4[Y, Z] ≡ E

[
(Y − E[Y ])2(Z − E[Z])2

]
. The expression

for the expectation estimator is a standard result of estimation theory, while the expressions for
the variance and covariance estimators can be found in [3, Corollary 4.2]. Note that Eq. (2.28)
is simply a special case of Eq. (2.27), since VM [Y ] = CM [Y, Y ]. We can then derive the upper
bounds

(2.29) V[CM [Y, Z]] ≤ 1

M − 1

√
M4[Y ] M4[Z], V[VM [Y ]] ≤ 1

M − 1
M4[Y ],

for M > 1, see Appendix B. From these single-level results, we can derive upper bounds, or
identity for the expectation, for the multilevel estimators defined in Eq. (2.10), (2.22) and
(2.24):

(2.30) V
[
EML
L [Y ]

]
=

L∑
`=0

1

M`
V[∆Y

` ],

(2.31) V
[
CML
L [Y,Z]

]
≤ 1

2

L∑
`=0

1

M` − 1

[√
M4[∆Y

` ] M4[ΣZ
` ] +

√
M4[∆Z

` ] M4[ΣY
` ]

]
,

(2.32) V
[
V ML
L [Y ]

]
≤

L∑
`=0

1

M` − 1

√
M4[∆Y

` ] M4[ΣY
` ],

where ∆Y
` ≡ Y` − Y`−1 and ΣY

` ≡ Y` + Y`−1. The expression for the expectation can be found
in the original multilevel Monte Carlo paper [19], while the bound for the covariance estimator
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is derived in Appendix C, following an idea similar to that for the variance estimator in [3,
Theorem 5.1]. This derivation also bears resemblance with the analysis in [32]. The main idea
relies on the assumption that the correction estimators T̂ (`)

M`
are mutually independent, so that

V
[
CML
L [Y, Z]

]
=
∑L

`=0 V[T̂
(`)
M`

], and the rest of the proof thus essentially consists in bounding

each individual V[T̂
(`)
M`

] as required by Theorem 2.1, i.e. V[T̂
(`)
M`

] ≤ V`/(M` − m). Table 1
summarizes main properties of the multilevel estimators derived above, with an additional
property for C̃ML

L [Y,Z] that is straightforward to obtain.

Table 1: Summary of properties of the multilevel estimators.

Parameter ML estimator Correction at level ` Variance contribution at level `
θ θ̂ML

L T̂
(`)
M`

V`

E[Y ] EML
L [Y ] E

(`)
M`

[Y`]− E
(`)
M`

[Y`−1] V[∆Y
` ]

C[Y,Z] CML
L [Y, Z] C

(`)
M`

[Y`, Z`]− C
(`)
M`

[Y`−1, Z`−1]

√
M4[∆Y

` ]M4[ΣZ
` ] +

√
M4[∆Z

` ]M4[ΣY
` ]

2

C[Y,Z] C̃ML
L [Y, Z] C

(`)
M`

[Y,Z`]− C
(`)
M`

[Y,Z`−1]
√
M4[Y ] M4[∆Z

` ]

V[Y ] V ML
L [Y ] V

(`)
M`

[Y`]− V
(`)
M`

[Y`−1]
√
M4[∆Y

` ] M4[ΣY
` ]

From these results, we can derive Theorem 2.5 for the multilevel covariance estimator as
a special case of Theorem 2.1.

Theorem 2.5. Let Y and Z be random variables, and let Y` and Z` denote their respective
approximations at level `. Let C` be the cost of evaluating a single member of the M`-sample
used for the computation of C(`)

M`
[Y`, Z`]−C

(`)
M`

[Y`−1, Z`−1], and let (n`)`≥0 be an exponentially
increasing sequence of positive integers satisfying n` h s` for some fixed s > 1. Moreover,
assume that {M4[Y`]}`≥0 and {M4[Z`]}`≥0 are uniformly bounded and that there exist constants
α, β, γ > 0 such that, for any ` ≥ 0,

(i) |C[Y`, Z`]− C[Y`−1, Z`−1]| . n−α` ,

(ii) M4[∆Y
` ]1/2 + M4[∆Z

` ]1/2 . n−β` ,

(iii) C` . nγ` .

Then for any tolerance 0 < ε < e−1, there exist an integer L ≥ 0 and a sequence of integers
(M`)

L
`=0, satisfying M` > 1 for all 0 ≤ ` ≤ L, such that

(2.33) RMSE(CML
L [Y, Z],C[Y, Z]) ≤ ε

and

(2.34) Costε(C
ML
L [Y,Z]) . ε−

γ
α1min(β,γ)>2α + ε−2

(
1β>γ + (log ε)21β=γ + ε−

γ−β
α 1β<γ

)
.
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Assumption (i) results from the fact that the level corrections C(`)
M`

[Y`, Z`]−C
(`)
M`

[Y`−1, Z`−1]
are unbiased estimators of C[Y`, Z`] − C[Y`−1, Z`−1], so the relaxed assumption can be used
(see Remark 2.2). Furthermore, if {M4[Y`]}`≥0 and {M4[Z`]}`≥0 are uniformly bounded, then
so are {M4[ΣY

` ]}`≥0 and {M4[ΣZ
` ]}`≥0, and thus assumption (ii) of Theorem 2.1 holds (see

Appendix C).

Remark 2.6. It should be stressed that the bounds and the corresponding MLMC theorems
can be adapted to the case of random fields, using appropriate spaces and norms as described
in [3] for the expectation and variance MLMC estimators.

2.5. Adaptive MLMC algorithms. Given a sequence of discretization levels described,
e.g., by the number of grids points n` on each level `, the choice of L and (M`)`≤L in The-
orem 2.1 depends on the inequality constants in assumptions (i)–(iii). We extend here the
adaptive algorithm designed in [19, 7, 20] to estimate on the fly the optimal number of levels
L and samples M` on each level.

First, we consider that T̂` is an unbiased estimator of T` on each level and that the as-
sumptions of Theorem 2.1 hold. Second, we remark that in order to achieve a RMSE smaller
than or equal to some target ε, it is sufficient to have, for some given ρ ∈ (0, 1),

(2.35) |Bias(θ̂ML
L , θ)| ≤ ρ1/2ε ≡ εb, and V ≤ (1− ρ)ε2 ≡ ε2

v,

where V ≡
∑

`≤L V`/(M` −m). From these considerations, we propose adaptive algorithms
to select the optimal values of L and (M`)`≥0 where the objective function can be either the
accuracy of the MLMC estimator or its computational cost.

2.5.1. Target accuracy approach. Following an approach similar to that of [7, 20], we de-
termine that the number of samplesM` on each level required to achieve some target accuracy
V = ε2

v for a minimal total cost C =
∑

`≤LM`C` is given by:

(2.36) ∀` ≤ L, M` = m+ 1 +
⌊
ε−2

v SL
√
V`/C`

⌋
> m, SL ≡

∑
`≤L

√
V`C`,

where b·c denotes the floor function. This naturally leads to the adaptive procedure described
in Algorithm 1, adapted from [20, Algorithm 1].

It should be stressed that this algorithm relies on the additional assumptions that

(2.37) ∀` > 1, d` ≡ θ` − θ`−1 = s−αd`−1 and V` = s−βV`−1.

The first identity implies that

(2.38) Bias(θ̂ML
L , θ) = θL − θ = −

∑
`>L

d` = −(sα − 1)−1dL,

where dL can be approximated on the fly using available samples, see [20, Section 3.1].
Roughly speaking, the algorithm starts with a small number of coarse levels, e.g. 3, and a

small number of samples on each level, from which the variance contributions V` are estimated
in order to compute the optimal sample sizes M` using Eq. (2.36). Note that these sample
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Algorithm 1: Simplified MLMC algorithm for target accuracy strategy, adapted
from [20, Algorithm 1].
1 Choose Lmin ≥ 2, Minit > m, ε < e−1 and ρ ∈ (0, 1);
2 Set L = Lmin and M` = Minit samples on levels ` ≤ L;
3 while extra samples need to be evaluated do
4 evaluate extra samples on each level 0 ≤ ` ≤ L;
5 compute/update estimates for d` and V` from samples on levels ` ≤ L;
6 update optimal number of samples M` using Eq. (2.36) on levels ` ≤ L;
7 if (sα − 1)−1|dL| > εb then
8 L← L+ 1;
9 initialize VL from VL−1 using Eq. (2.37);

10 define optimal number of samples ML using Eq. (2.36);
11 end if
12 end while

sizes may be under- or over-estimated due to the limited initial number of samples, so in
practice, this process is repeated until the estimated optimal sample sizes stop increasing.
This guarantees that V ≤ ε2

v. Then the bias is computed using Eq. (2.38). If it satisfies
|Bias(θ̂ML

L , θ)| ≤ εb, then the RMSE achieves the prescribed tolerance ε, and the algorithm
can stop. Otherwise, a new level needs to be created. The second identity in Eq. (2.37) is used
to estimate VL from VL−1 for a newly created level L, then Eq. (2.36) is used to estimate the
optimal number of samples on this new level. The overall process is repeated until the bias is
sufficiently small. More details regarding the actual implementation of such an algorithm can
be found in [20, Section 3.4].

Remark 2.7. Note that more involved strategies have been proposed in the literature. For
instance, in [8] the authors propose a continuation MLMC (CMLMC) algorithm that iteratively
applies MLMC with a sequence of decreasing tolerances, until the final target accuracy is
reached. The number of levels is updated at every iteration, as well as the splitting parameter
ρ (see Eq. (2.35)), and the variance contribution V` is estimated using a Bayesian setting. In
addition, the authors exploit the asymptotic normality of the MLMC expectation estimator
to enforce the tolerance criterion on the statistical error with a confidence level 1 − δ, for
some prescribed failure probability δ ∈ (0, 1). This iterative CMLMC approach computes
increasingly accurate estimates of the bias and statistical error, which directly impact the
estimation of the optimal number of samples per level, as well as the creation of new levels.
In [27], the authors also discuss optimal mesh hierarchies and optimal error splitting.

2.5.2. Target cost approach. From a practical point of view, it may not be easy to
prescribe a target accuracy. On the contrary, one may want to prescribe a target cost depending
on a given available CPU budget. Using a technique similar to that proposed in Section 2.5.1,
we find that the number of samples required to achieve some target cost C = η > 0 with a
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minimal total V ≡
∑

`≤L V`/(M` −m), is given by

(2.39) ∀` ≤ L, M` = m+ 1 +
⌊
(η̃L/SL)

√
V`/C`

⌋
> m, η̃L ≡ η −m

∑
`′≤L
C`′ .

Based on this expression, a similar algorithm to that for a target accuracy could be used.
However, whenever a new level needs to be created, the resulting additional samples on the
newly created level would cause the target cost to be exceeded. So instead, we resort to an
algorithm inspired by that proposed in [24, Section 5], [20, Algorithm 2] and [37] for multilevel
QMC. Starting from a small initial number of levels and initial number of samples on each
level, it selects the “optimal” level on which to increase the sample size by a factor τ > 1.
Specifically, it selects the level `∗ for which the ratio between the variance reduction and the
additional computational effort is maximal,

(2.40) `∗ = arg max
0≤`≤L

V`
(M` −m)(τM` −m)C`

.

Whenever the overall variance becomes too small compared to the squared bias in the sense
of Eq. (2.35), specifically whenever ρV ≤ (1 − ρ) Bias(θ̂ML

L , θ)2, a new (finer) level is created.
The approach is outlined in Algorithm 2. Similarly to the CMLMC algorithm mentioned
previously, the factor τ > 1 allows for a moderate growth of the sample sizes during the early
iterations of the algorithm, thus preventing poor estimations of V` from inducing unnecessarily
large increases on fine levels. A more involved version of the algorithm could allow for τ to take
different values τ` depending on the level, typically larger values on coarse levels and smaller,
more conservative values on fine levels.

Algorithm 2: Simplified MLMC algorithm for target cost strategy, inspired by [24]
and [20, Algorithm 2].
1 Choose Lmin ≥ 2, Minit > m, ρ ∈ (0, 1), τ > 1;
2 Set L = Lmin, C = 0 and M` = Minit samples on levels ` ≤ L;
3 while C ≤ η do
4 evaluate extra samples on each level ` ≤ L and update C =

∑
`≤LM`C`;

5 compute/update estimates for d`, V` and V from samples on levels ` ≤ L;
6 if ρ(sα − 1)2V > (1− ρ)d2

L then
7 select level `∗ based on Eq. (2.40);
8 M`∗ ← dτM`∗e;
9 else

10 L← L+ 1;
11 ML ←Minit;
12 end if
13 end while

Algorithm 2 differs from that proposed in [24, 20, 37] in that it is designed to comply with
a given computational budget, as opposed to seeking to achieve a target accuracy. Another
minor difference is the way the optimal level `∗ is chosen (see Eq. (2.40)).



14 P. MYCEK, M. DE LOZZO

3. Application to the MLMC estimation of Sobol’ indices. When the input parameters
of a numerical simulator f are subject to uncertainties, two important questions arise: “how
uncertain is the simulator output?” and “how do the different input uncertainties contribute
to this output uncertainty?”. Both issues occur in the framework of uncertainty quantification
and risk management. The second one corresponds to the engineering branch called sensitivity
analysis, whose objective is to highlight the contributions of the different uncertain input
parameters X1, . . . , Xd of the model f to the output Y = f(X); see, e.g., [46]. In this section,
we focus on Sobol’ indices, which are global sensitivity measures based on a decomposition of
the output variance. Specifically, we demonstrate how to apply the MLMC methodology for
covariance estimation to the computation of such indices, in order to reduce the overall cost
of their estimation.

3.1. Sobol’ indices. Under the assumption that f(X) is square-integrable, i.e. E[f2(X)] <
∞, and that the random variablesX1, X2, . . . , Xd are independent, there is a unique orthogonal
output decomposition [31, 25, 13, 49, 52]

(3.1) f(X) =
∑
∅⊆u⊆Id

fu(Xu),

with the iterative construction

(3.2)

f∅(X∅) ≡ f∅ ≡ E[f(X)],

fu(Xu) ≡ Eū[f(X)|Xu]−
∑
∅⊆v(u

fv(Xv), ∀∅ ( u ⊆ Id,

where Id ≡ {1, . . . , d}, Xu ≡ {Xi}i∈u for any ∅ ( u ⊆ Id, and ū ≡ Id\u. For clarity, the
subscript in the expectation notation (and subsequently in the variance notation) indicates
the indices of the variables over which the integration is performed. The subscript is omitted
whenever the integration is performed over all the variables.

Then, it is straightforward to decompose the output variance V[f(X)] with respect to
the different combinations of input parameters Xu and to analyze the different shares of
variance. Precisely, the Sobol’ index associated to Xu is defined as the share of output variance
attributable to Xu individually [49]:

(3.3) Su =
Vu[fu(Xu)]

V[f(X)]
=

Vu
V[f(X)]

−
∑
∅(v(u

Sv, Vu ≡ Vu[Eū[f(X)|Xu]],

for any ∅ ( u ⊆ Id. Similarly, the total-order Sobol’ index associated to Xu is defined as the
share of output variance attributable to Xu individually and in interaction:

(3.4) STu =
∑

u⊆v⊆Id

Sv = 1− Vū
V[f(X)]

.

As mentioned in the introduction, Sobol’ indices may be estimated by direct MC or QMC
sampling of the numerical simulator [44, 6, 40]. Alternatively, a surrogate model (e.g. a
Gaussian process [43] or a PC surrogate [39, 53, 50, 9]) may first be constructed to reduce the
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sampling cost. In this paper, we focus on applying the MLMC methodology to the estimation
of Sobol’ indices. In particular, we are interested in the estimation of Vu, which is at the basis
of the construction of both Su and STu , and which may be rewritten as a covariance term,
leading to the so-called pick-and-freeze formulation [34] (see [33, Section 3.1.2, Lemma 1] for
the proof)

(3.5) Vu ≡ Vu[Eū[f(X)|Xu]] = C[f(Xu ⊕Xū), f(Xu ⊕X′ū)] = C[f(X), f(Xu ⊕X′ū)],

where
• Xu⊕X′ū denotes the Rd-valued random vector whose ith component is Xi if i ∈ u and
X ′i otherwise, where Xi and X ′i are i.i.d.; and
• Xu ⊕Xū = X.

In other words, Vu represents the covariance between the outputs Y ≡ f(Xu ⊕Xū) and Yu ≡
f(Xu⊕X′ū) where the second output is obtained by “freezing” the inputs Xu corresponding to
parameters indexed by i ∈ u, and considering an i.i.d. “copy” of the other parameters, hence
the term “pick-and-freeze.”

Remark 3.1. This formulation also shows that Sobol’ indices can be expressed in terms of
correlation coefficients, specifically

(3.6) ∀∅ ( u ⊆ Id, Su = ρY,Yu −
∑
∅(v(u

Sv,

where ρY,Z ≡
C[Y, Z]√
V[Y ]V[Z]

denotes the Pearson correlation coefficient between the random

variables Y and Z. In particular, first-order Sobol’ indices may be defined as

(3.7) ∀i ∈ Id, Si ≡ S{i} = ρY,Yi .

Remark 3.2. It should be stressed that the terms in Eq. (3.3), i.e. Vu, V[f(X)] and∑
∅(v(u Sv are estimated independently. Here we focus on the estimation of the covariance

term Vu. The denominator V[f(X)] is a normalizing constant so that the indices can be
thought of as shares of the total output variance. This constant may be estimated once and
for all since it does not depend on u. It may also be omitted when one simply seeks to com-
pare the contributions of (groups of) inputs, in which case one would typically be interested
in estimating

(3.8) Vu[fu(Xu)] = Vu −
∑
∅(v(u

Vv[fv(Xv)].

The last term,
∑
∅(v(u Sv, arises from the iterative construction. When estimating Su, the

estimates of lower-order indices Sv, already available (since v ( u), are reused. It is clear from
this construction that the estimates of Sobol’ indices accumulate error from the estimation
of the lower-order indices. This is nonetheless how Sobol’ indices are typically estimated in
MC-like sampling methods (plain MC, QMC), hence the focus on Vu.
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3.2. Numerical experiments. We consider the following initial value problem with growth
coefficient λ ∈ R and initial condition u0 ∈ R

(3.9)


du

dt
(t) = λu(t), t ∈ (0, 1],

u(0) = u0,

whose solution is given by u(t) = u0e
λt. We define the abstract function F that maps a pair

of parameter values (u0, λ) ∈ R2 of the input parameters and a time t ∈ [0, 1] to the solution
of (3.9) at time t with those parameters

(3.10)
F : R2 × [0, 1]→ R

(u0, λ, t) 7→ u0e
λt.

Let us now consider the input parameters as uncertain and investigate the sensitivity of the
output to the uncertain inputs. For any t ∈ (0, 1], we have (see Appendix D)

VU0(t) ≡ C[F (U0,Λ, t), F (U0,Λ
′, t)] = E[eΛt]2 V[U0],(3.11)

VΛ(t) ≡ C[F (U0,Λ, t), F (U ′0,Λ, t)] = E[U0]2 V[eΛt],(3.12)

V (t) ≡ V[F (U0,Λ, t)] = E[U2
0 ]E[e2Λt]− E[U0]2 E[eΛt]2,(3.13)

where U0 and Λ are independent random variables representing the input uncertainty and
U ′0 and Λ′ are i.i.d. copies of U0 and Λ, respectively. In addition, letting Λ ∼ N (µ, σ2) and
U0 ∼ N (µ0, σ

2
0), we obtain the following first-order Sobol’ indices

(3.14) SU0(t) =
σ2

0e
−σ2t2

σ2
0 + µ2

0(1− e−σ2t2)
, SΛ(t) =

µ2
0(1− e−σ2t2)

σ2
0 + µ2

0(1− e−σ2t2)
,

as well as the Sobol’ index for the interaction effects between U0 and Λ:

(3.15) SU0,Λ(t) =
σ2

0(1− e−σ2t2)

σ2
0 + µ2

0(1− e−σ2t2)
.

Moreover, the total variance is given by

(3.16) V (t) = e2µt+σ2t2 [σ2
0e
σ2t2 + µ2

0(eσ
2t2 − 1)].

Finally, in what follows, we consider the following hyper-parameters for the distributions of
U0 and Λ:

(3.17) µ = −1, σ = 0.25, µ0 = 10, σ0 = 2,

which correspond to the values given in [48, Example 10.10] for the same problem. The Sobol’
indices with these particular hyper-parameters are plotted as a function of time in Fig. 1. At
the initial time, the growth coefficient λ is absent from the solution of the differential equation
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(3.9); only the initial condition u0 intervenes. The result is a first-order Sobol’ index equal to
1 for the random variable U0 which totally explains the variance of F (U0,Λ, 0) and a Sobol’
index equal to 0 for Λ. This is reflected in the formulas (3.14) as well as in Fig. 1. Furthermore,
as t → ∞, the first-order Sobol’ index for Λ increases and tends to 25/26 ≈ 0.96 while that
for U0 decreases and tends to 0, and that for the interaction between U0 and Λ increases from
0 and tends to 1/26 ≈ 0.04. Lastly, U0 and Λ contribute in the same way to the variance of

F (U0,Λ, t) when t = σ−1
√

ln(1 + σ2
0µ
−2
0 ) = 4

√
ln(1.04) ≈ 0.79.
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Figure 1: Evolution of the Sobol’ indices defined in Eq. (3.14) and (3.15) as a function of time
t, with Λ ∼ N (µ, σ2) and U0 ∼ N (µ0, σ

2
0) and the hyper-parameters in Eq. (3.17).

We now focus on the solution u at time t = 1. We thus define an abstract function f as

(3.18)
f : R2 → R

(u0, λ) 7→ F (u0, λ, t = 1) = u0e
λ,

and we define the output random variable of interest as Y ≡ f(U0,Λ). At t = 1, denoting
S1
? ≡ S?(t = 1), the Sobol’ indices defined above take the values

(3.19) S1
U0
≈ 0.374, S1

Λ ≈ 0.602, S1
U0,Λ ≈ 0.024,

and their numerators V 1
? ≡ V?(t = 1) = S1

? × V (t = 1) are given by

(3.20) V 1
U0
≈ 0.577, V 1

Λ ≈ 0.929, V 1
U0,Λ ≈ 0.037,

since V (t = 1) ≈ 1.543. Furthermore, we define a sequence of abstract numerical simulators
(f`)`≥0 as

(3.21)
f` : R2 → R
(u0, λ) 7→ un`` (u0, λ),
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where

(3.22)
u0
` : R2 → R, and, ∀k = 1, . . . , n`, u

k
` : R2 → R,

(u0, λ) 7→ u0 (u0, λ) 7→
uk−1
` (u0, λ)

1− λ/n`
.

In other words, f` maps a pair of values (u0, λ) ∈ R2 to the corresponding numerical solution
at time t = 1 using a backward Euler scheme with n` time steps. The discrete counterpart of
Y on level ` is therefore Y` ≡ f`(U0,Λ).

We assume that evaluating f` for a given input pair (u0, λ) requires O(n`) operations. This
corresponds to a realistic numerical time integration procedure where the solution at a given
time step is computed from the solution at the previous time step, thus requiring to propagate
the solution from the initial time t = 0 up to t = 1. In the following numerical experiments,
we set n0 = 16 equally spaced time steps on the coarsest level ` = 0 to discretize the time
interval (0, 1], and we define n` = n02` as the number of time steps at level ` > 0. Thus, n`
clearly satisfies n` h s` with s = 2 and the computational cost of f` is O

(
nγ`
)
with γ = 1.

The purpose of our numerical experiments is to study the advantage of MLMC sampling
over standard MC sampling for the estimation of V 1

U0
and V 1

Λ , the numerators of the Sobol’
indices S1

U0
and S1

Λ. The MLMC estimators V̂ 1
U0

and V̂ 1
Λ of V 1

U0
and V 1

Λ , respectively, are
naturally defined by

(3.23) V̂ 1
U0
≡ CML

L [f(U0,Λ), f(U0,Λ
′)] and V̂ 1

Λ ≡ CML
L [f(U0,Λ), f(U ′0,Λ)],

for a given finest level L.
First, Fig. 2 shows the convergence properties of the numerical simulator when the number

of time steps n` increases by a factor of s = 2 at each level `. It allows to verify that the
assumptions of Theorem 2.5 are satisfied before computing the MLMC estimators V̂ 1

U0
and

V̂ 1
Λ . Based on the relaxed assumption for unbiased corrections, we see that the biases of the

MLMC estimators CML
` [f(U0,Λ), f(U0,Λ

′)] and CML
` [f(U0,Λ), f(U ′0,Λ)] decrease in O(n−α` )

with α = 1. Furthermore, denoting Y` ≡ f`(U0,Λ), Z` ≡ f`(U0,Λ
′) and Z̃` ≡ f`(U

′
0,Λ), we

remark that M4[∆Y
` ] = M4[∆Z

` ] = M4[∆Z̃
` ], so we conclude from Fig. 2 that

(3.24) M4[∆Y
` ]1/2 + M4[∆Z

` ]1/2 = M4[∆Y
` ]1/2 + M4[∆Z̃

` ]1/2 = 2M4[∆Y
` ]1/2

decreases in O(n−β` ) with β = 2. Moreover, we note from the figure on the right-hand-
side that {M4[Y`]}`≥0 is uniformly bounded, and thus so are {M4[Z`]}`≥0 and {M4[Z̃`]}`≥0.
Consequently, all the assumptions of Theorem 2.5 hold, and thus the theorem applies for both
V̂ 1
U0

and V̂ 1
Λ . In other words, given a target accuracy ε, there exists a discretization level L

with n0 × 2L time steps and a sequence of sampling sizes (M`)
L
`=0 such that the root mean

square error of the MLMC estimator V̂ 1
U0

(and, likewise, V̂ 1
Λ ) is lower than this accuracy and

its computational cost is O(ε−2).
On the other hand, the computational cost of standard Monte Carlo is O(ε−3), consisting

in O(ε−2) simulations of the finest level fL described by O(ε−1) time steps. From the reverse
point of view, the accuracy measured in terms of root mean square error isO(C−1/2) for MLMC
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Figure 2: Convergence properties of the numerical simulator, where Y` ≡ f`(U0,Λ), Z` ≡
f`(U0,Λ

′) and Z̃` ≡ f`(U
′
0,Λ). We recall that M4 denotes the fourth-order central moment

defined for any random variable Y ∈ L4(Ω,P) as M4[Y ] ≡ E[(Y − E[Y ])4] (see section 2.4).
The statistics are estimated using M = 107 samples on each level.

sampling and O(C−1/3) for standard MC sampling, where C denotes the computational cost
of computing the estimator. These theoretical convergence rates of the RMSE as functions of
the normalized cost C (see Remark 3.3 below) are numerically reflected in Fig. 3, based on 100
replications of the experiments. In particular, for the estimation of V 1

U0
(Fig. 3a), we observe

that with a normalized computational cost of C ≈ 3× 103, the MLMC estimator achieves
an accuracy of about 2× 10−3, while the MC estimator only has an accuracy of about 10−2.
Again, from the reverse point of view, using standard MC sampling to obtain an accuracy of
2× 10−3 requires about 300 times more computational effort, i.e. a normalized cost C ≈ 106,
than when using MLMC. Similar observations can be made for the estimation of V 1

Λ (Fig. 3b).
To summarize, we see that multilevel Monte Carlo covariance estimators converge faster than
the standard Monte Carlo ones, with a theoretical accuracy gain εMC/εML in O(C1/6), here
numerically O(C0.21) and O(C0.29) for U0 and Λ, respectively, and a theoretical speedup
CMC/CML in O(ε−1).

Finally, Fig. 4 shows the evolution of the average sample size per level as a function of
the total cost. For any given level `, the sample size M` increases with the total cost. For
the lower costs, only the first (coarsest) four levels out of a potential total of eleven are used.
Then, as the total budget increases and coarsest corrections T̂` have a small enough variance
as compared to the discretization bias, finer levels are created and sampled in order to reduce
the bias.

Remark 3.3. The cost is here arbitrarily normalized by the correction cost C8 on level
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Figure 3: Evolution of the RMSE as a function of the normalized cost for the MC and MLMC
estimation of V 1

U0
(Fig. 3a) and V 1

Λ (Fig. 3b), obtained by applying Algorithm 2 with τ = 1.5
and ρ = 0.25. These statistics are estimated from 100 replications of the experiment.

` = 8. Specifically, because C` = 2`C0 = 2`−8C8, we have

(3.25) C ≡ C−1
8

L∑
`=0

M`C` =
L∑
`=0

2`−8M`.

Note that the normalized cost C only differs from the absolute cost
∑

`≤LM`C` by a fixed
multiplicative factor, so that the convergence rates are unaffected by the normalization.

4. Conclusion. In computer experimentation, uncertainty quantification studies deal with
the estimation of statistics (expectation, variance, quantile, probability, . . . ) or sensitivity
indices associated to the output of a numerical simulator. The accuracy of crude Monte Carlo
estimators is severely limited when the computer code is time-expensive, allowing only a small
number of executions and leading to an important variance which is inversely proportional to
the number of simulation runs. An alternative would be to replace the numerical simulator
by a surrogate model, which could be evaluated at low cost during the Monte Carlo sampling,
significantly reducing the sampling error but adding a model one. Another one would be to
replace the Monte Carlo sampling by quasi Monte Carlo techniques in order to slightly reduce
the estimator’s variance.

In this paper driven by the estimation of Sobol’ indices, we considered another alternative
based on the Monte Carlo sampling of different simulator versions ranked by their exponentially
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Figure 4: Evolution of the average sample size per level as a function of the normalized cost
for the MC and MLMC estimation of V 1

U0
(Fig. 4a) and V 1

Λ (Fig. 4b), obtained by applying
Algorithm 2 with τ = 1.5 and ρ = 0.25. These statistics are estimated from 100 replications
of the experiment.

increasing accuracy and computational cost. Precisely, we proposed a unified framework for the
MLMC approach where the unbiased Monte Carlo estimator of the quantity of interest based
on the finest level can be written as the telescoping sum of unbiased Monte Carlo estimators
based on the lower levels. This framework can be used for different statistics with an unbiased
estimator, such as the covariance present in the construction of a Sobol’ index. We analyzed in
particular the case of covariance estimation and we adapted the MLMC convergence theorem
in terms of the corresponding covariances and fourth order moments. This theorem may be
applied to the estimation of the covariance between two output instances, as well as between an
output instance and the corresponding input. We also extended an existing iterative algorithm
selecting the optimal number of runs at each level and the finest level by declining different
optimal criteria. Whereas existing approaches typically consist in achieving a target accuracy
for the estimator, our algorithm aims at complying with a given overall computational budget.
This strategy may be more appropriate for engineering studies where one looks to reach the best
accuracy under the constraint that the total simulation time is lower than a given requirement.

The proposed approach was efficiently studied and validated on an ordinary differential
equation, for which a closed-form solution is available, with random parameters, namely a ran-
dom initial condition and a random growth coefficient. In particular, we estimated covariance
terms involved in the construction of the pick-and-freeze formulation of Sobol’ indices, and



22 P. MYCEK, M. DE LOZZO

showed that MLMC had a better convergence rate than standard MC, which was confirmed
numerically.

The results are promising for further MLMC developments dedicated to uncertainty quan-
tification and management, such as sensitivity analysis with sensitivity indices based on output
variance decomposition [49], output partial derivatives [10], output probability distribution [5]
or other goal-oriented sensitivity indices [16]. It would also be appropriate to continue this
work by proposing extensions of MLMC algorithms for the estimation of a group of sensitivity
indices, along the same line as what was proposed in [20, Section 2.5] for multi-dimensional
output functionals1. Finally, further improvement may be obtained by combining the approach
with QMC or randomized QMC sampling as in [24] or with the use of antithetic variates as
in [22, 23].

Appendix A. Relaxed assumption for unbiased corrections. If T̂ (`)
M`

is an unbiased
estimator of T` on each level ` ≥ 0, then

(A.1) Bias(θ̂ML
` , θ) = θ` − θ = −

∑
k>`

θk − θk−1.

Assume n` h s` for some fixed s > 1 and |θ` − θ`−1| . n−α` , i.e. there exist positive constants
a, b, c such that

(A.2) as` ≤ n` ≤ bs` and |θ` − θ`−1| ≤ cn−α` .

Then we have

(A.3) |Bias(θ̂ML
` , θ)| ≤

∑
k>`

|θk − θk−1| ≤ a−αc
∑
k>`

s−αk = a−αc
s−α`

sα − 1
. n−α` .

Appendix B. Upper bound for the single-level MC estimators. Let Y,Z ∈ L4(Ω,P).
From Eq. (2.27) we notice that

V [CM [Y,Z]] =
M4[Y,Z]

M
+

V[Y ]V[Z]

M(M − 1)
− (M − 2)C[Y,Z]2

M(M − 1)
(B.1)

≤ M4[Y,Z]

M
+

V[Y ]V[Z]

M(M − 1)
, ∀M > 1.(B.2)

Furthermore, from the Cauchy-Schwarz inequality, we have

(B.3) M4[Y,Z] =
∣∣∣〈Ȳ 2, Z̄2

〉
L2(Ω,P)

∣∣∣ ≤ ‖Ȳ 2‖L2(Ω,P)‖Z̄2‖L2(Ω,P) =

√
M4[Y ] M4[Z],

with the notation Ū ≡ U − E[U ] for any random variable U and using the fact that U ∈
L4(Ω,P) =⇒ Ū2 ∈ L2(Ω,P). Finally, using Jensen’s inequality, we have

(B.4) (V[Y ] V[Z])2 = E[Ȳ 2]2 E[Z̄2]2 ≤M4[Y ] M4[Z],

1attributed by the author to Tigran Nagapetyan.
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leading to the bound in Eq. (2.29) for the covariance. The bound for the variance is obtained
by taking Y = Z.

Appendix C. Upper bound for the multilevel covariance estimator.
Following the approach for the proof of [3, Theorem 5.1], we notice that

(C.1) V
[
CML
L [Y, Z]

]
=

L∑
`=0

V
[
T̂

(`)
M`

]
=

L∑
`=0

E
[(
T̂

(`)
M`
− T`

)
2
]

=
L∑
`=0

E[J2
` ],

where J` ≡ T̂
(`)
M`
− T` and

(C.2) T` ≡ C[Y`, Z`]− C[Y`−1, Z`−1], T̂
(`)
M`
≡ C(`)

M`
[Y`, Z`]− C

(`)
M`

[Y`−1, Z`−1].

Furthermore, we have the identities

C[Y`, Z`]− C[Y`−1, Z`−1] = C[∆Y
` , Z`] + C[Y`−1,∆

Z
` ](C.3)

= C[∆Y
` , Z`−1] + C[Y`,∆

Z
` ](C.4)

=
1

2

(
C[∆Y

` ,Σ
Z
` ] + C[ΣY

` ,∆
Z
` ]
)
,(C.5)

and, likewise,

(C.6) C
(`)
M`

[Y`, Z`]− C
(`)
M`

[Y`−1, Z`−1] =
1

2

(
C

(`)
M`

[∆Y
` ,Σ

Z
` ] + C

(`)
M`

[ΣY
` ,∆

Z
` ]
)
.

Thus, we have

(C.7) J2
` =

1

4
(A` +B`)

2 ≤ 1

2
(A2

` +B2
` ),

with

(C.8) A` ≡ C
(`)
M`

[∆Y
` ,Σ

Z
` ]− C[∆Y

` ,Σ
Z
` ], B` ≡ C

(`)
M`

[ΣY
` ,∆

Z
` ]− C[ΣY

` ,∆
Z
` ].

Using the bound in Eq. (2.29) for E[A2
` ] = V[C

(`)
M`

[∆Y
` ,Σ

Z
` ]] on the one hand, and for E[B2

` ] =

V[C
(`)
M`

[ΣY
` ,∆

Z
` ]] on the other hand, we obtain Eq. (2.31).

Furthermore, suppose that {M4[Y`]}`≥0 and {M4[Z`]}`≥0 are uniformly bounded, i.e. there
exist constants cY ≥ 0 and cZ ≥ 0, independent from any parameters, such that

(C.9) ∀` ≥ 0, M4[Y`] ≤ cY and M4[Z`] ≤ cZ .

We then have

M4[ΣY
` ] =

∥∥(Ȳ` + Ȳ`−1)2
∥∥2

L2(Ω,P)
≤ 4

∥∥Ȳ 2
` + Ȳ 2

`−1

∥∥2

L2(Ω,P)
(C.10)

≤ 4
(
M4[Y`]

1/2 + M4[Y`−1]1/2
)2
≤ 16cY .(C.11)
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The same naturally holds for Z, i.e. M4[ΣZ
` ] ≤ 16cZ . Denoting c ≡ 2 max(cY , cZ)1/2, it follows

that

(C.12) V
[
CML
L [Y, Z]

]
≤ c

∑
`≤L

1

M` − 1

[
M4[∆Y

` ]1/2 + M4[∆Z
` ]1/2

]
.

Appendix D. Statistics of the solution of the initial value problem.
We provide here the detailed derivation of Eqs. (3.11) to (3.16). By definition, and because

U0, U ′0, Λ and Λ′ are independent, we have

VU0(t) = C[F (U0,Λ, t), F (U0,Λ
′, t)] = C[U0e

Λt, U0e
Λ′t](D.1)

= E[U2
0 e

ΛteΛ′t]− E[U0e
Λt]E[U0e

Λ′t] = E[U2
0 ]E[eΛt]2 − E[U0]2 E[eΛt]2(D.2)

= E[eΛt]2(E[U2
0 ]− E[U0]2) = E[eΛt]2 V[U0].(D.3)

Likewise,

(D.4) VΛ(t) = C[U0e
Λt, U ′0e

Λt] = E[U0]2 E[e2Λt]− E[U0]2 E[eΛt]2 = E[U0]2 V[eΛt],

(D.5) V (t) = E[U2
0 e

2Λt]− E[U0e
Λt]2 = E[U2

0 ]E[e2Λt]− E[U0]2 E[eΛt]2.

Then, for the particular case where Λ ∼ N (µ, σ2) and U0 ∼ N (µ0, σ
2
0), it is easy to show that

E[U2
0 ] = σ2

0 + µ2
0, E[eΛt] = eµt+

σ2t2

2 ,(D.6)

E[e2Λt] = e2(µt+σ2t2), V[eΛt] = (eσ
2t2 − 1)e2µt+σ2t2 ,(D.7)

leading to Eqs. (3.14), (3.15) and (3.16).
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