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Abstract 

Mathematical model of oil flow in fluid film bearing in field of centrifugal forces is developed. Centrifugal 

forces for planet wheel bearing sliding surfaces and oil gap are formulated. This model is based on 

modification of two-dimensional Reynolds equation taking into account inertia centrifugal forces for oil 

film. Required modification of Reynolds equation is received from Navier-Stokes and continuity 

equations taking into account centrifugal forces acting on planet wheel bearing. Modified 2D Reynolds 

equation is solved numerically using finite-element discretization.  

Developed mathematical model is verificated at comparison with solution of full Navier-Stokes 

equations system obtained in commercial software package. Results for pressure distribution for 

bearing with fixed axis and for planet wheel bearing are received and compared. The sufficient 

influence of centrifugal inertia forces in oil layer of planet wheel bearing on pressure distribution, 

bearing carrying force and attitude angle is shown for specific shaft journal eccentricity ratio, eccentricity 

direction and rotation velocity. 
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INTRODUCTION 

Planetary gears have a wide application in different 

areas of industry. At present moment, they find application 

in perspective geared turbofan aircraft engine [1]. 

Integration of planetary gear in gas turbine engine as a 

mechanism for transmitting of rotation from low-pressure 

rotor to fan rotor gives an opportunity for choosing of 

optimal aerodynamic and structural parameters of both 

rotors [2]. In present moment a single-row planetary gear 

(Figure 1a) is used for current purposes. Fluid film bearings 

used in supports for high speed or heavy-loaded gears. 

Main characteristics of fluid film bearing such as stiffness 

and damping based upon hydrodynamic fluid pressure 

caused by relative motion of sliding surfaces. In most of 

applications, fluid inertia forces are negligible in comparison 

with hydrodynamic forces, but if some applications their 

influence on bearing characteristics could be sufficient and 

should be taken into account. Planet wheel journal bearing 

are an example where influence of fluid inertia forces have 

an influence on bearing characteristics.  

Parameters of fluid flow in bearing with fixed axis 

usually calculated by Reynolds equation [3]. However, 

conventional Reynolds equation form received from Navier-

Stokes and continuity equations while neglecting inertia 

forces. Sufficient linear velocity of planet wheel bearing 

rotating around carrier velocity leads to increasing of 

contribution of centrifugal inertia forces in pressure 

distribution in bearing, bearing carrying force value and 

direction. For taking into account inertia forces acting on oil 

film in journal bearing of planet wheel the conventional 

mathematical model for oil flow in journal bearing based on 

Reynolds equation requires modification.

1. INERTIA FORCES

For any type of planetary gear each planet wheel (2) 

participating in compound motion: rotation with carrier (H) 

with angular speed ȦH and rotation about self-axis with 

angular speed Ȧ2 (Figure 1a). Relation between carrier and 

planet wheel angular speeds for single-row planetary gear is 

as follows 
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where z2 and z3 are number of teeth of planet wheel and 

epicycle correspondingly.  

One sliding surface of bearing is a part of carrier and 

another is a part of planet wheel. The relative motion of 

sliding surfaces with angular speed Ȧ2 causes fluid velocity 

distribution and therefore hydrodynamic pressure in bearing 

gap. Planet wheel participating in compound motion: rotation 

with carrier (H) with angular speed ȦH and rotation around 

planet wheel bearing axis with angular speed Ȧ2. Thus both 

sliding surfaces “H” and “2” (Figure 1b) of planet wheel 

journal bearing rotating with angular speed ȦH about axis OH. 

And sliding surface “2” also rotating about axis O2. 

Accelerations in fluid film are defined by sliding surfaces 

motion. Accelerations for sliding surfaces in bearing are 
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shown in Figure 1b. Acceleration in fluid film are consist of 

vector sum of transfer (ae), relative (alub) and Coriolis (ac) 

acceleration components which are determined as follows 

in cylindrical coordinate system O2rφz. 
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where R is a bearing radius, rH = OHO2 is a planet wheel 

center radius, u and v are the fluid velocity components as 

they shown in Figure 2. In Figure 2: h is a fluid film  

thickness. Acceleration components expressions (2) allows 

to write a unit inertia force in fluid film as follows 
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where fs, fy’ and fz are fluid inertia force components in 

coordinate system O2rφz. Fluid inertia force in form (3) 

should be taken into account in mathematical model of fluid 

flow in bearing.  

 

 

a) b) 

Fig. 1. Planetary gear; a) structure: 1 – sun wheel; H – carrier; 2 – planet wheel; 3 – ring wheel; b) accelerations on sliding surfaces 

of journal bearing 

 

Fig. 2. Velocities in lubrication gap 
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2. MATHEMATICAL MODEL 
 

Required modification of Reynolds equation taking 

into account mean values of fluid inertia force (3) one can 

receive from Navier-Stokes and continuity equations [4] 

applying assumptions for fluid flow in thin film. These 

assumptions allow introducing dimensionless variables, 

coordinates and constants in following form [5] 
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where V = Ȧ2R is a specific linear velocity on sliding 

surfaces, hm is an average fluid film thickness, ρ and η are 

fluid film density and dynamic viscosity correspondingly. 

Taking into account nondimensionalization (4) Navier-Stokes 

equations for laminar isothermal flow of incompressible fluid 

in bearing can be written in coordinate system sy’z (Figure 2) 

as follows 
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where dimensionless fluid inertia forces 
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All dimensionless variables and their derivatives have 

same order of magnitude. Thus order of magnitude of 

terms in (5) and (6) are specified by coefficient ȥ~10-3 and 

Reynolds number Re. While neglecting of terms with less 

order of magnitude in (5) and (6) the Navier-Stokes 

equations will have form 
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and modification of Reynolds equation with taking into 

account centrifugal inertia forces for planet wheel bearing will 

receive from (7) as follows 
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Numerical solution of Reynolds equation (8) carried 

out using finite-element discretization procedure. Special 

triangular finite element for fluid film pressure is used. 

Developed bearing model taking into account carrier and 

planet wheel rotations and allows calculating pressure 

distribution in bearing for various relations between ȦH and 

Ȧ2 for any shaft journal eccentricity caused by gears of 

planet wheel with sun wheel and epicycle. 
 

3. MODEL VERIFICATION AND RESULTS 
 

Bearing mathematical model was verified for the case 

of long bearing by comparison with analytical solution and 

numerical solution in STAR-CD software based on full 

Navier-Stokes equations. Calculations was performed for 

parameters: bearing radius R = 15 mm, distance between 

planet wheel and carrier centers rH = 167 mm, radial gap in 

bearing δ = 0,05 mm, oil viscosity η = 0,02 Pa·s and density 

ρ = 900 kg/m3, planet wheel rotation frequency 

n2 = 15000 rpm, carrier rotation frequency nH = 6000 rpm, 

ambient pressure p0 = 0,1 MPa. A model of long bearing was 

created in STAR-CD for verification (Figure 3). Simulation of 

long bearing was performed by special boundary conditions 

on bearing calculation model faces: Velocity and acceleration 

components in direction Oz is equal to zero. STAR-CD 

model is used a full Navier-Stokes equation for laminar flow 

at constant temperature distribution without slipping motion 

of fluid. Finite volumes method is used for calculation. 

Bearing model in STAR-CD take into account all components 

of fluid inertia force (3). Centrifugal inertia forces regarding to 

planet wheel rotation around carrier center are simulated by 
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rotation of coordinate system with center in O2 around 

coordinate system with center in OH. 

Verification results presented in Figure 4a for three 

values of eccentricity ratio Ȥ: 0.2, 0.4 and 0.6. Comparison 

of results shows good correspondence of two models. In 

Figure 4с the pressure distribution for two models for 

conditions of rotating carrier and nonrotating planet wheel 

(n2 = 0 rpm, nH = 6000 rpm) shows that centrifugal fluid 

inertia forces producing positive relative pressure in zone 

the most distant from carrier center and negative relative 

pressure in zone most close to carrier center.  

Oil pressure in bearing presented in Figures 4, 5 and 

6 are absolute due to boundary conditions for ambient 

pressure taken into account. Both Reynolds and STAR-CD 

mathematical models obtaining in results negative absolute 

pressure values. Negative value of oil pressure is shown by 

dash line only in Figure 4 for better understanding of 

comparison between Reynolds and STAR-CD models. In 

zone where absolute pressure less then ambient pressure 

the cavitation effects take place and absolute pressure in 

this zone is not less than zero. Current models (Reynolds 

and STAR-CD) don’t take into account discontinuous flow 

of fluid. However pressure in unpressurized zone gives 

small income to bearing carrying force and can be 

neglected. Thus in verificated model of journal bearing based 

on Reynolds equation (Figure 5) all pressures less than zero 

are set equal to zero. 

Pressure distribution in bearing for listed above 

parameters for bearing with length to diameter ratio (l/d) 

equal to 1 is calculated for different shaft journal eccentricity 

in bearing. In Figures 5 and 6 pressure distribution for 

different directions of constant shaft journal eccentricity 

(eccentricity ratio Ȥ = 0,3) is shown. Centrifugal forces have 

divergent influence on total planet bearing pressure 

depending upon direction of bearing eccentricity related to 

line connected carrier and planet wheel centers and 

corresponding to eccentricity hydrodynamic pressure. Thus 

for hydrodynamic pressure concentrated in fluid film most 

distant from carrier center (for example: angles π/2 and π in 

Figures 5 and 6) centrifugal forces increasing total oil 

pressure in bearing. For hydrodynamic pressure 

concentrated in fluid film most close to carrier center (for 

example: angles 0 and 3π/2 in Figure 5) total oil pressure 

decreasing. This also leads for decreasing of positive 

pressure zone for some eccentricity directions. In Figures 5 

and 6: for angle 0 pressure zone increasing, and for angle 

3π/2 – decreasing.  

 

 

Fig. 3. STAR-CD model
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a) b) 

 

c) 

Fig. 4. Pressure distribution in bearing: a) comparison of STAR-CD and Reynolds models for rotating and fixed carrier; b) scheme 

of shaft journal displacements in bearing; c) contribution of pressure caused by centrifugal forces 
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Fig. 5. Pressure distribution on bearing for different eccentricity directions 
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Fig. 6. Pressure distribution on bearing for different eccentricity directions 
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a) χ = 0.2 b) 
Fig. 7. Bearing carrying forсe for different eccentricity directions

 

 

a) χ = 0.2 b) 
Fig. 8. Attitude angle for different eccentricity directions

 

a) b) 
Fig. 9. Bearing carrying force ratio for carrying force in bearing with fixed axis 

 
 
 
 

Results for pressure distribution for constant 

eccentricity ratio and various eccentricity directions provide 

variable bearing carrying force (Figure 7) and attitude angle 

(Figure 8). Under the bearing carrying force F the integral 

force of oil pressure in bearing which is equilibrating rotor 

reaction in bearing is represented. For full 360° bearing with 

smooth sliding surfaces and fixed axis the carrying force is 

constant for constant eccentricity. However centrifugal inertia 

forces action leads to cyclic change of carrying force with 

maximum value at angle φe = 123° and minimum value at 

angle φe = 295°. Maximal force value greater then carrying 

force in bearing with fixed axis for 35.2% and minimum value 
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is less for 35.4%. There are two angles φe = 23° and 

φe = 218° for which centrifugal inertia forces have a 

negligible influence.  

Centrifugal inertia forces provide a fixed contribution 

in bearing pressure for constant rotation frequencies. 

Centrifugal inertia forces will have a smaller influence on 

total pressure in case of eccentricity value growing. This is 

explained by growing of hydrodynamic pressure for growing 

eccentricity while centrifugal inertia pressure leaves 

constant. It is demonstrated on graph in Figure 9 where 

bearing carrying forces ratio (Figure 9a) and relative 

changing in percent (Figure 9b) for two cases of fixed 

bearing axis and planet wheel bearing are shown.  

 

CONCLUSION 
 

Developed mathematical model based on modified 

Reynolds equation taking into account centrifugal and 

Coriolis forces acting in fluid in bearing gap. This model 

gives ability for more accurate determination of planet 

wheel position in bearing and calculation of bearing 

carrying force depending upon load comes from gear. 

The sufficient influence of centrifugal inertia forces 

on pressure distribution in bearing and correspondingly 

on carrying force and attitude angle is shown. Changing 

of carrying force due to action of centrifugal forces in 

range of eccentricity ratio values Ȥ = 0.2..0.6 are in range 

from 35% for eccentricity ratio 0.2 to 16% for eccentricity 

ratio 0.6 (in percent of carrying force for fixed axis bearing, 

Figure 9b). 
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