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The aim of our work is to study vertex-reinforced jump processes with super-linear weight function w(t) = t α , for some α > 1. On any complete graph G = (V, E), we prove that there is one vertex v ∈ V such that the total time spent at v almost surely tends to infinity while the total time spent at the remaining vertices is bounded.

Introduction

Let G = (V, E) be a finite connected, undirected graph without loops, where V = {1, 2, ..., d} and E respectively stand for the set of vertices and the set of edges. We consider a continuous time jump process X on the vertices of G such that the law of X satisfies the following condition: i. at time t ≤ 0, the local time at each vertex v ∈ V has a positive initial value ℓ (v) 0 , ii. at time t > 0, given the natural filtration F t generated by {X s , s ≤ t}, the probability that there is a jump from X t during (t, t + h] to a neighbour v of X t (i.e. {v, X t } ∈ E) is given by w ℓ

(v) 0 + t 0 1 {Xs=v} ds • h + o(h)
as h → 0, where w : [0, ∞) → (0, ∞) is a weight function.

For each vertex v ∈ V , we denote by L(v, t) = ℓ 

Z t = L(1, t) ℓ 0 + t , L (2, 
t) ℓ 0 + t , ..., L(d, t) ℓ 0 + t stand for the (normalized) occupation measure on V at time t, where ℓ 0 = ℓ

(1)

0 + ℓ (2) 0 + • • • + ℓ (d)
0 . In our work, we consider the weight function w(t) = t α , for some α > 0. The jump process X is called strongly vertex-reinforced if α > 1, weakly vertex-reinforced if α < 1 or linearly vertex-reinforced if α = 1.

The model of discrete time edge-reinforced random walks (ERRW) was first studied by Coppersmith and Diaconis in their unpublished manuscripts [START_REF] Coppersmith | Random walks with reinforcement[END_REF] and later the model of discrete time vertex-reinforced random walks (VRRW) was introduced by Pemantle in [START_REF] Pemantle | Phase transition in reinforced random walk and RWRE on trees[END_REF] and [START_REF] Pemantle | Vertex-reinforced random walk[END_REF]. Several remarkable results about localization of ERRW and VRRW were obtained in [START_REF] Volkov | Vertex-reinforced random walk on arbitrary graphs[END_REF], [START_REF] Tarrès | Vertex-reinforced random walk on Z eventually gets stuck on five points[END_REF], [START_REF] Volkov | Phase transition in vertex-reinforced random walks on Z with non-linear reinforcement[END_REF], [START_REF] Benaïm | Strongly vertex-reinforced-random-walk on a complete graph[END_REF] and [START_REF] Cotar | Edge-and vertex-reinforced random walks with super-linear reinforcement on infinite graphs[END_REF]. Following the idea about discrete time reinforced random walks, Wendelin Werner conceived a model in continuous time so-called vertex reinforced jump processes (VRJP) whose linear case was first investigated by Davis and Volkov in [START_REF] Davis | Continuous time vertex-reinforced jump processes[END_REF] and [START_REF] Davis | Vertex-reinforced jump processes on trees and finite graphs[END_REF]. In particular, these authors showed in [START_REF] Davis | Vertex-reinforced jump processes on trees and finite graphs[END_REF] that linearly VRJP on any finite graph is recurrent, i.e. all local times are almost surely unbounded and the normalized occupation measure process converges almost surely to an element in the interior of the (d -1) dimensional standard unit simplex as time goes to infinity. In [START_REF] Sabot | Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model[END_REF], Sabot and Tarrès also obtained the limiting distribution of the centred local times process for linearly VRJP on any finite graph G = (V, E) with d vertices and showed that linearly VRJP is actually a mixture of time-changed Markov jump processes. The relation between VRJP, ERRW and random walks in random environment as well as its applications have been well studied in recent years (see, e.g. [START_REF] Disertori | Localization for a nonlinear sigma model in a strip related to vertex reinforced jump processes[END_REF], [START_REF] Sabot | Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model[END_REF], [START_REF] Sabot | The Vertex Reinforced Jump Process and a Random Schrödinger operator on finite graphs[END_REF], [START_REF] Zeng | How vertex reinforced jump process arises naturally[END_REF], [START_REF] Merkl | Convergence of vertex-reinforced jump processes to an extension of the supersymmetric hyperbolic nonlinear sigma model[END_REF], [START_REF] Sabot | Hitting times of interacting drifted Brownian motions and the vertex reinforced jump process[END_REF], and [START_REF] Lupu | Scaling limit of the VRJP in dimension one and Bass-Burdzy flow[END_REF]).

The main aim of our paper is to prove that strongly VRJP on a complete graph G = (V, E) almost surely have an infinite local time at some vertex v, while the local times at the remaining vertices remain bounded. The main technique of our proofs is based on the method of stochastic approximation (see, e.g. [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF][START_REF] Benaïm | A dynamical system approach to stochastic approximations[END_REF][START_REF] Benaïm | Vertex-reinforced random walks and a conjecture of Pemantle[END_REF][START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]). We organize the present paper as follows. In Section 2, we give some preliminary notations as well as some results of stochastic calculus being used throughout the paper. We show in Section 3 that the occupation measure process of strongly VRJP on a complete graph is an asymptotic pseudo-trajectory of a flow generated by a vector field.

We then prove the convergence towards stable equilibria in Section 4 and the non convergence towards unstable equilibria in Section 5, which yields our above-mentioned main result.

Preliminary notations and remarks

Throughout this paper, we denote by ∆ and T ∆ respectively the (d -1) dimensional standard unit simplex in R d and its tangent space, which are defined by 

∆ = {z = (z 1 , z 2 , ..., z d ) ∈ R d : z 1 + z 2 + • • • + z d = 1, z j ≥ 0, j = 1, 2, • • • , d}, T ∆ = {z = (z 1 , z 2 , ..., z d ) ∈ R d : z 1 + z 2 + • • • + z d = 0}.
Y ] t = 0<u≤t (∆Y u ) 2 .
In the next sections, we will use the following useful well-known results of stochastic calculus (see e.g. [START_REF] Protter | Stochastic integration and differential equations[END_REF] or [START_REF] Jacod | Limit theorems for stochastic processes[END_REF]):

1. (Change of variables formula) Let A = (A 1 t , A 2 t , . . . , A d t ) t≥0 be a càdlàg finite variation process in R d and let f : R d → R be a C 1 function. Then for t ≥ 0,

f (A t ) -f (A 0 ) = d i=1 t 0 ∂ i f (A u-)dA i u + 0<u≤t ∆f (A u ) - d i=1 ∂ i f (A u-)∆A i u .
2. Let M = (M t ) t≥0 be a càdlàg locally square-integrable martingale with finite variation in

R. A well-known result is that if E[[M] t ]
< ∞ for all t, then M is a true martingale. The change of variable formula implies that

M 2 t = M 2 0 + t 0 2M s-dM s + [M] t .
Let M denote the angle bracket of M, i.e. the unique predictable non-decreasing process such

that M 2 -M is a local martingale. Note that [M] -M is also a local martingale.
Let H be a locally bounded predictable process and denote by H • M the càdlàg locally squareintegrable martingale with finite variation defined by (H • M) t = t 0 H s dM s . Recall the following rules:

H • M t = t 0 H 2 s d M s and [H • M] t = t 0 H 2 s d[M] s .
Recall also that H •M is a square integrable martingale if and only if for all t > 0, E[

H •M t ] < ∞.
3. (Integration by part formula) Let X = (X) t≥0 and Y = (Y ) t≥0 be two càdlàg finite variation processes in R. Then for t ≥ s ≥ 0,

X t Y t -X s Y s = t s X u-dY u + t s Y u-dX u + [X, Y ] t -[X, Y ] s ,
where we recall that [X, Y ] is the covariation of X and Y , computed as [X, Y ] t = 0<u≤t ∆X u ∆Y u .

4. (Doob's Inequality) Let X = (X) t≥0 be a càdlàg martingale adapted to a filtration (F t ) t≥0 .

Then for any p > 1 and t ≥ s ≥ 0,

E[ sup s≤u≤t |X u | p F s ] ≤ p p -1 p E[|X t | p F s ].
5. (Burkholder-Davis-Gundy Inequality) Let X = (X) t≥0 be a càdlàg martingale adapted to a filtration (F t ) t≥0 . For each 1 ≤ p < ∞ there exist positive constants c p and C p depending on only p such that

c p E [X] p/2 t F s ≤ E sup s≤u≤t |X u | p F s ≤ C p E [X] p/2 t F s .

Dynamics of the occupation measure process

Using the method of stochastic approximation, we show in this section the connection between strongly VRJP and an asymptotic pseudo-trajectory of a vector field in order to study the dynamics and limiting behaviour of the model. For t > 0 which is not a jumping time of X t , we have (1)

dZ t dt = 1 ℓ 0 + t (-Z t + I[X t ]) ,
where for each matrix M, M[j] is the j-th row vector of M and I is as usual the identity matrix.

Observe that the process Z = (Z t ) t≥0 always takes values in the interior of the standard unit simplex ∆.

For fixed t ≥ 0, let A t be the d-dimensional infinitesimal generator matrix such that the (i, j) element is defined by

A i,j t :=      1 (i,j)∈E w (j) t , i = j; - k∈V,(k,i)∈E w (k) t , i = j,
where we have set w

(j) t = w(L(j, t)) = L(j, t) α for each j ∈ V . Also, let w t = w (1) t +w (2) t +• • •+w (d) t . Note that π t := w (1) t w t , w (2) 
t w t , • • • , w (d) t w t
is the unique invariant probability measure of A t in the sense that π t A t = 0. Since π t can be rewritten as a function of Z t , we will also use the notation π t = π(Z t ), where we define the function π : ∆ → ∆, such that for each z = (z 1 , z 2 , ..., z d ) ∈ ∆,

π(z) = z α 1 z α 1 + • • • + z α d , • • • , z α d z α 1 + • • • + z α d .
Now we can rewrite the equation ( 1) as

(2)

dZ t dt = 1 ℓ 0 + t (-Z t + π t ) + 1 ℓ 0 + t (I[X t ] -π t ).
Changing variable ℓ 0 + t = e u and denoting Zu = Z e u -ℓ 0 for u > 0, we can transform the equation

(2) as d Zu du = -Zu + π( Zu ) + (I[X e u -ℓ 0 ] -π e u -ℓ 0 ).
Taking integral of both sides, we obtain that

(3) Zt+s -Zt = t+s t -Zu + π( Zu ) du + e t+s -ℓ 0 e t -ℓ 0 I[X u ] -π u ℓ 0 + u du.
Let us fix a function f : {1, . . . , d} → R. For t > 0, define A t f : {1, . . . , d} → R by

A t f (i) = j A i,j
t f (j) and define the process M f by

M f t = f (X t ) -f (X 0 ) - t 0 A s f (X s )ds. Lemma 3.1. The process M f is a martingale, with [M f ] t = 0<s≤t (∆f (X s )) 2 and
(4)

M f t = t 0 A s f 2 (X s ) -2f (X s )A s f (X s ) ds.
Proof. Let us first prove that M f is a martingale. For small h > 0, we have

E[f (X t+h ) -f (X t )|F t ] = j∼Xt [f (j) -f (X t )]P[X t+h = j|F t ] = j∼Xt [f (j) -f (X t )]w (j) t .h + o(h) = A t f (X t ).h + o(h).
Let us fix 0 < s < t and define t j = s + j(ts)/n for j = 0, 1, . . . , n. Note that

E [f (X t ) -f (X s )| F s ] = E n j=1 E(f (X t j ) -f (X t j-1 ) | F t j-1 ) F s = E n j=1 A t j-1 f (X t j-1 )(t j -t j-1 ) + n • o t -s n F s .
Since the left hand side is independent on n, using Lebesgue's dominated convergence theorem and taking the limit of the random sum under the expectation sign on the right hand side, we obtain that

E [f (X t ) -f (X s )| F s ) = E t s A u f (X u )du | F s .
Thus, E[M f t | F s ] = M s . To prove (4), we calculate (to simplify the calculation, we will suppose that f (X 0 ) = 0).

(M f t ) 2 = f 2 (X t ) -2 M f t + t 0 A s f (X s )ds t 0 A s f (X s )ds + t 0 A s f (X s )ds 2 = M f 2 t + t 0 A s f 2 (X s )ds -2M f t t 0 A s f (X s )ds - t 0 A s f (X s )ds 2 = martingale + t 0 A s f 2 (X s )ds -2 t 0 M f s A s f (X s )ds -2 t 0 A s f (X s ) s 0 A u f (X u )du ds = martingale + t 0 A s f 2 (X s )ds -2 t 0 f (X s )A s f (X s )ds.
The lemma is proved.

Let M be the process in R d defined by

M t = I[X t ] - t 0 A s [X s ]ds for t ≥ 0.
Then for each j, M j is a martingale since M j = M δ j , with δ j defined by δ j (i) = 1 is i = j and δ j (i) = 0 is i = j. We also have that (5) E) is a complete graph and w(t) = t α with α > 0. Then almost surely

M j t = t 0 Λ j s ds, with Λ j defined by (6) Λ j t =      w (j) t if X t ∼ j, k∼Xt w (k) t if X t = j, 0 otherwise. Lemma 3.2. Assume that G = (V,
(7) lim t→∞ sup 1≤c≤C ct-ℓ 0 t-ℓ 0 I[X s ] -π s ℓ 0 + s ds = 0 for each C > 1.
Proof. Note that, for t ≥ 0,

π t -I[X t ] = 1 w t A t [X t ].
Using the integration by part formula, we obtain the following identity for each c ∈

[1, C] ct-ℓ 0 t-ℓ 0 π s -I[X s ] ℓ 0 + s ds = ct-ℓ 0 t-ℓ 0 A s [X s ] ds (ℓ 0 + s)w s = I[X ct-ℓ 0 ] ctw ct-ℓ 0 - I[X t-ℓ 0 ] tw t-ℓ 0 - ct-ℓ 0 t-ℓ 0 I[X s ] d ds 1 (s + ℓ 0 )w s ds - ct-ℓ 0 t-ℓ 0 dM s (s + ℓ 0 )w s .
Observe that for some positive constant k, w s ≥ ks α (which is easy to prove, using the fact

that L(1, t) + L(2, t) + • • • + L(d, t) = ℓ 0 + t).
We now estimate the terms in the right hand side of the above-mentioned identity. In the following, the positive constant k may change from lines to lines and only depends on C and ℓ 0 . First, ( 8)

I[X ct-ℓ 0 ] ctw ct-ℓ 0 - I[X t-ℓ 0 ] tw t-ℓ 0 ≤ k/t α+1 .
Second, for s ∈ [t, ct] which is not a jump time, we have d ds

1 (ℓ 0 + s)w s = - 1 (ℓ 0 + s) 2 w s + 1 (ℓ 0 + s)w 2 s dw s ds .
When s is not a jump time, it is easy to check that dws ds ≤ α(ℓ 0 + s) α-1 . Therefore, for s ∈ [t, ct] which is not a jump time, d ds

1 (ℓ 0 + s)w s ≤ k/s 2+α
and thus, ( 9)

ct-ℓ 0 t-ℓ 0 I[X s ] d ds 1 (ℓ 0 + s)w s ds ≤ k/t α+1 .
And at last (using first Doob's inequality), for i, j ∈ {1, 2,

• • • , d}, E sup 1≤c≤C ct-ℓ 0 t--ℓ 0 dM i s (ℓ 0 + s)w s 2 ≤ 4 E Ct-ℓ 0 t-ℓ 0 dM i s (ℓ 0 + s)w s 2 .
Observe that in our setting, for i ∈ {1, 2,

• • • , d}, (∆I i s ) 2 = 1 if s is a jump time between i and another vertex. Thus [M 1 ] t + [M 2 ] t + • • • + [M d ] t is just twice the number of jumps up to time t of X. So, for i, j ∈ {1, 2, • • • , d}, E Ct-ℓ 0 t-ℓ 0 dM i s (ℓ 0 + s)w s 2 = E Ct-ℓ 0 t-ℓ 0 d[M i ] s (ℓ 0 + s) 2 w 2 s ≤ k t 2(α+1) E [M i ] Ct-ℓ 0 -[M i ] t-ℓ 0 ≤ k t 2(α+1) (Ct) α (C -1)t,
where in the last inequality, we have used the fact that the number of jumps in [tℓ 0 , Ctℓ 0 ] is dominated by the number of jumps of a Poisson process with constant intensity (Ct

) α in [t -ℓ 0 , Ct -ℓ 0 ]. Therefore, E sup 1≤c≤C ct-ℓ 0 t-ℓ 0 dM s (ℓ 0 + s)w s 2 ≤ k t α+1 . ( 10 
)
From ( 8), ( 9), [START_REF] Davis | Vertex-reinforced jump processes on trees and finite graphs[END_REF] and by using Markov's inequality, we have [START_REF] Disertori | Localization for a nonlinear sigma model in a strip related to vertex reinforced jump processes[END_REF] P sup

1≤c≤C ct-ℓ 0 t-ℓ 0 I[X s ] -π s ℓ 0 + s ds ≥ 1 t γ ≤ k t α+1-2γ
for every 0 < γ ≤ α+1

2 . Using the Borel-Cantelli lemma, we thus obtain lim sup

n→∞ sup 1≤c≤C cC n -ℓ 0 C n -ℓ 0 I[X s ] -π s ℓ 0 + s ds = 0. Moreover, for C n ≤ t ≤ C n+1 , we have sup 1≤c≤C ct-ℓ 0 t-ℓ 0 I[X s ] -π s ℓ 0 + s ds ≤ t-ℓ 0 C n -ℓ 0 I[X s ] -π s ℓ 0 + s ds + sup 1≤c≤C min(ct,C n+1 )-ℓ 0 C n -ℓ 0 I[X s ] -π s ℓ 0 + s ds + sup 1≤c≤C max(ct,C n+1 )-ℓ 0 C n+1 -ℓ 0 I[X s ] -π s ℓ 0 + s ds ≤ 2 sup 1≤c≤C cC n -ℓ 0 C n -ℓ 0 I[X s ] -π s ℓ 0 + s ds + sup 1≤c≤C cC n+1 -ℓ 0 C n+1 -ℓ 0 I[X s ] -π s ℓ 0 + s ds .
This inequality immediately implies [START_REF] Cotar | Edge-and vertex-reinforced random walks with super-linear reinforcement on infinite graphs[END_REF].

From now on, we always assume that w(t) = t α , α > 1 and G = (V, E) is a complete graph.

Let us define the vector field

F : ∆ → T ∆ such that F (z) = -z + π(z) for each z ∈ ∆. We also remark that for each z = (z 1 , z 2 , • • • , z d ) ∈ ∆, F (z) = -z 1 + z α 1 z α 1 + • • • + z α d , • • • , -z d + z α d z α 1 + • • • + z α d . (12) 
A continuous map Φ : R + × ∆ → ∆ is called a semi-flow if Φ(0, •) : ∆ → ∆ is the identity map and Φ has the semi-group property, i.e. Φ(t + s, •) = Φ(t, •) • Φ(s, •) for all s, t ∈ R + . Now for each z 0 ∈ ∆, let Φ t (z 0 ) be the solution of the differential equation ( 13)

   d dt z(t) = F (z(t)), t > 0; z(0) = z 0 .
Note that F is Lipschitz. Thus the solution Φ t (z 0 ) can be extended for all t ∈ R + and Φ :

R + × ∆ → ∆ defined by Φ(t, z) = Φ t (z) is a semi-flow.
Theorem 3.3. Z is an asymptotic pseudo-trajectory of the semi-flow Φ, i.e. for all T > 0, ( 14) lim

t→∞ sup 0≤s≤T Zt+s -Φ s ( Zt ) = 0. a.s.
Furthermore, Z is an -α+1 2 -asymptotic pseudo-trajectory, i.e. for [START_REF] Merkl | Convergence of vertex-reinforced jump processes to an extension of the supersymmetric hyperbolic nonlinear sigma model[END_REF] lim sup

t→∞ 1 t log sup 0≤s≤T Zt+s -Φ s ( Zt ) ≤ - α + 1 2 a.s.
Proof. From the definition of Φ, we have

Φ s ( Zt ) -Zt = s 0 F (Φ u ( Zt ))du.
Moreover, from (3)

Zt+s -Zt = s 0 F ( Zt+u )du + e t+s -ℓ 0 e t -ℓ 0 I[X u ] -π u ℓ 0 + u du.
Subtracting both sides of the two above identities, we obtain that

Zt+s -Φ s ( Zt ) = s 0 F ( Zt+u ) -F (Φ u ( Zt )) du + e t+s -ℓ 0 e t -ℓ 0 I[X u ] -π u ℓ 0 + u du.
Observe that F is Lipschitz, hence

Zt+s -Φ s ( Zt ) ≤ K s 0 Zt+u -Φ u ( Zt ) du + e s+t -ℓ 0 e t -ℓ 0 I[X u ] -π u ℓ 0 + u du ,
where K is the Lipschitz constant of F . Using Grönwall's inequality, we thus have

(16) Zt+s -Φ s ( Zt ) ≤ sup 0≤s≤T e s+t -ℓ 0 e t -ℓ 0 I[X u ] -π u ℓ 0 + u du e Ks .
On the other hand, from Lemma 3.2, we have

(17) lim t→∞ sup 0≤s≤T e s+t -ℓ 0 e t -ℓ 0 I[X u ] -π u ℓ 0 + u du = 0. a.s.
The inequality ( 16) and ( 17) immediately imply [START_REF] Lupu | Scaling limit of the VRJP in dimension one and Bass-Burdzy flow[END_REF].

We now prove the second part of the theorem. From (11), we have 

P sup 0≤s≤T e s+t e t I[X u ] -π u ℓ 0 + u du ≥ e -γt ≤ ke -(α+1-2γ)t ,
I[X u ] -π u ℓ 0 + u du ≤ - α + 1 2 a.s.
Note that for nT ≤ t ≤ (n + 1)T and 0 ≤ s ≤ T ,

e s+t e t I[X u ] -π u ℓ 0 + u du ≤ 2 sup 0≤s≤T e s+nT e nT I[X u ] -π u ℓ 0 + u du + sup 0≤s≤T e s+(n+1)T e (n+1)T I[X u ] -π u ℓ 0 + u du .
Therefore, lim sup

t→∞ 1 t log sup 0≤s≤T e s+t e t I[X u ] -π u ℓ 0 + u du ≤ - α + 1 2 a.s. (18) 
Finally, [START_REF] Merkl | Convergence of vertex-reinforced jump processes to an extension of the supersymmetric hyperbolic nonlinear sigma model[END_REF] is obtained from ( 16) and [START_REF] Sabot | Hitting times of interacting drifted Brownian motions and the vertex reinforced jump process[END_REF].

Convergence to equilibria

Let C = {z ∈ ∆ : F (z) = 0}
stand for the equilibria set of the vector field F defined in [START_REF] Duflo | Algorithmes stochastiques. Mathematiques & Applications[END_REF]. We say an equilibrium z ∈ C is (linearly) stable if all the eigenvalues of DF (z), the Jacobian matrix of F at z, have negative real parts. If there is one of its eigenvalues having a positive real part, then it is called (linearly)

unstable.

Observe that C = S ∪ U, where we define

S = {e 1 = (1, 0, 0, • • • , 0), e 2 = (0, 1, 0, • • • , 0), • • • , e d = (0, 0, • • • , 0, 1)}
as the set of all stable equilibria and

U = {z j 1 ,j 2 ,••• ,j k : 1 ≤ j 1 < j 2 < • • • < j k ≤ d, k = 2, • • • , d}
as the set of all unstable equilibria, where

z j 1 ,j 2 ,••• ,j k stands for the point z = (z 1 , • • • , z d ) ∈ ∆ such that z j 1 = z j 2 = • • • = z j k = 1
k and all the remaining coordinates are equal to 0.

Indeed, for each z ∈ S, we have that DF (z) = -I. Moreover,

DF 1 d , 1 d , • • • , 1 d = (α -1)I - α d N,
where N is the matrix such that N n,m = 1 for all n, m and DF (z

j 1 ,j 2 ,••• ,j k ) = (D m,n ) where D m,n =            (α -1) -α k if m = n = j i , i = 1, • • • , k; -1 if m = n, m = j i , i = 1, • • • , k; 0 if m = n, m or n = j i , i = 1, • • • , k; -α k otherwise.
Therefore, we can easily compute that for each z ∈ U, the eigenvalues of DF (z) are -1 and α -1, having respectively multiplicity dk + 1 and k -1.

Theorem 4.1. Z t converges almost surely to a point in C as t → ∞.

Proof. Consider the map H : ∆ → R such that

H(z) = z α 1 + z α 2 + • • • + z α n .
Note that H is a strict Lyapunov function of F , i.e ∇H(z), F (z) is positive for all z ∈ ∆ \ C.

Indeed, we have

∇H(z), F (z) = d i=1 αz α-1 i -z i + z α i d j=1 z α j = α - d i=1 z α i + d i=1 z 2α-1 i d i=1 z α i = α H(z)   - d i=1 z α i 2 + d i=1 z 2α-1 i d i=1 z i   = α H(z) 1≤i<j≤d z i z j z α-1 i -z α-1 j 2 .
For z ∈ ∆ \ C, there exist distinct indexes j 1 , j 2 ∈ {1, 2, ..., d} such that z j 1 , z j 2 are positive and

z j 1 = z j 2 . Therefore, ∇H(z), F (z) ≥ α H(z) z j 1 z j 2 z α-1 j 1 -z α-1 j 2 2 > 0. Let L(Z) = t≥0 Z([t, ∞))
be limit set of Z. Since Z is an asymptotic pseudo-trajectory of Φ, by Theorem 5.7 and Proposition 6.4 in [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF], we can conclude that

L(Z) = L( Z) is a connected subset of C. Moreover, C
is actually an isolated set and this fact implies the almost sure convergence of Z t toward an equilibrium z ∈ C as t → ∞.

Lemma 4.2. Let z * be a stable equilibrium. Then for each small ǫ > 0 there exists δ ǫ > 0 such that z * attracts exponentially B δǫ (z

* ) := {z ∈ ∆ : z -z * < δ ǫ } at rate -1 + ǫ, i.e. Φ s (z) -z * ≤ e -(1-ǫ)s z -z *
for all s > 0 and z ∈ B δǫ (z * ).

Proof. We observe that

F (z) = (z -z * ).DF (z * ) T + R(z -z * ),
where we have set

R(y) = y. 1 0 DF (ty + z * ) T dt -DF (z * ) T .
Note that R(y) ≤ k y 1+β , where β = min(1, α-1) and k is some positive constant. Therefore, we can transform the differential equation ( 13) to the following integral form

z(t) -z * = (z(0) -z * )e tDF (z * ) T + t 0 R(z(s) -z * )e (t-s)DF (z * ) T ds.
Note that for z * ∈ S, we have DF (z * ) = -I. Therefore,

z(t) -z * ≤ e -t z(0) -z * + t 0 e -(t-s) R(z(s) -z * ) ds.
For each small ǫ > 0, if z(s)z * ≤ ǫ k 1/β for all 0 ≤ s ≤ t, then

e t z(t) -z * ≤ z(0) -z * + ǫ t 0 e s z(s) -z * ds.
Thus, by Gronwall inequality, if z(s)z * ≤ ǫ k 1/β for all 0 ≤ s ≤ t, then

z(t) -z * ≤ z(0) -z * e -(1-ǫ)t .
But this also implies that if z(0

) -z * ≤ ǫ k 1/β then z(t) -z * ≤ ǫ k 1/
β for all t ≥ 0. Hence, for all t ≥ 0 and any small ǫ > 0 and z(0

) such that z(0) -z * ≤ ǫ k 1/β , we have z(t) -z * ≤ e -(1-ǫ)t z(0) -z * .
Lemma 4.3. Let z * = e j be a stable equilibrium, with j ∈ V . Then, a.s. on the event {Z t → z * }, for all ǫ > 0,

i =j L(i, t) = o(t ǫ ).
Proof. Let us fix ǫ > 0 and let δ ǫ be the constant defined in Lemma 4.2. Note that on the event Γ(z * ) := {Z t → z * }, there exists T ǫ > 0 such that Zt ∈ B δǫ for all t ≥ T ǫ . Combining the results in Theorem 3.3, Lemma 4.2 and using Lemma 8.7 in [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF], we have a.s. on Γ(z * ), lim sup

t→∞ 1 t log Zt -z * ≤ -1 + ǫ
for arbitrary ǫ > 0. This implies that a.s. on Γ(z * ), that Z tz * = o(t -(1-ǫ) ). And the lemma easily follows.

Lemma 4.4. Let j ∈ V , ǫ ∈ (0, 1 -1/α) and C a finite constant. Set

A j,C,ǫ := i =j L(i, t) ≤ Ct ǫ , ∀t ≥ 1 . Then E[ i =j L(i, ∞)1 A j,C,ǫ ] < ∞.
Proof. For each n ≥ 1, set τ n := inf{t ≥ 1 : L(j, t) = n} and γ n = i∈V \{j} L(i, τ n ). Set also τ := inf{t ≥ 1 :

i =j L(i, t) > Ct ǫ }, τ ′ n = τ n ∧ τ and γ ′ n = i∈V \{j} L(i, τ ′ n ). Note that A j,C,ǫ = {τ = ∞} and on A j,C,ǫ , τ n = τ ′ n < ∞ and γ n = γ ′ n for all n ≥ 1. During the time interval [τ ′ n , τ ′ n+1 ]
, the jumping rate to j is larger than ρ 0 = n α and the jumping rate from j is smaller than ρ 1 = (C(n+1) ǫ ) α . This implies that on the time interval [τ ′ n , τ ′ n+1 ], the number of jumps from j to V \{j} is stochastically dominated by the number of jumps of a Poisson process with intensity ρ 1 . Since the time spent at j during [τ ′ n , τ ′ n+1 ] is L(j, τ ′ n+1 ) -L(j, τ ′ n ) ≤ 1, the number of jumps from j is stochastically dominated by a random variable N ∼ Poisson(ρ 1 ).

Therefore, γ ′ n+1γ ′ n , the time spent at V \ {j} during [τ ′ n , τ ′ n+1 ], is stochastically dominated by T := N i=1 ξ i , where ξ i , i = 1, 2, ..., N are independent and exponentially distributed random variables with mean value 1/ρ 0 . Therefore,

E[γ ′ n+1 -γ ′ n ] ≤ ρ 1 ρ 0 = C α (n + 1) αǫ n α = O 1 n α(1-ǫ) . Since lim n→∞ γ ′ n = i =j L(i, τ ), this proves that E i =j L(i, τ ) < ∞. This proves the lemma since i =j L(i, ∞)1 A j,C,ǫ ≤ i =j L(i, τ ).
Theorem 4.5. Let z * = e j ∈ S be a stable equilibrium, with j ∈ {1, 2, ..., d}. Then, a.s. on the

event {Z t → z * }, L(j, ∞) = ∞ and i =j L(i, ∞) < ∞.
Proof. Lemma 4.3 implies that for ǫ ∈ (0, 1 -1 α ), the event {Z t → z * } coincides a.s. with ∪ C A j,C,ǫ . Lemma 4.4 states that for all C > 0, a.s. on A j,C,ǫ , i =j L(i, ∞) < ∞. Therefore, we have that a.s. on {Z t → z * }, i =j L(i, ∞) < ∞.

We will show in the next section that if z * is an unstable equilibrium, then P(Z t → z * ) = 0 and thus obtain our following main result: Theorem 4.6. Assume that X t is a strongly VRJP in a complete graph with weight function w(t) = t α , α > 1. Then there almost surely exists a vertex j such that its local time tends to infinite while the local times at the remaining vertices remain bounded.

Non convergence to unstable equilibria

In this section, we prove a general non convergence theorem for a class of finite variation càdlàg processes. The proof follows ideas from proof of a theorem of Brandière and Duflo (see [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF] and [START_REF] Duflo | Algorithmes stochastiques. Mathematiques & Applications[END_REF]), but using a new idea presented in Section 5.1, where the fact that a pseudo-asymptotic trajectories of a dynamical system is attracted exponentially fast towards the unstable manifold of an unstable manifold. Then, in Section 5.2, we prove a non convergence Theorem towards an unstable equilibrium that has no stable direction. The proof essentially follows [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF] and [START_REF] Duflo | Algorithmes stochastiques. Mathematiques & Applications[END_REF]. We also point out in Remark 5.16 several inaccuracies in their proof.

The results proved in Sections 5.1 and 5.2 are then applied in Section 5.3 to strongly VRJP, showing in particular that the occupation measure process does not converge towards unstable equilibria with probability 1.

5.1.

Attraction towards the unstable manifold. In this section, we fix m ∈ {1, 2, . . . d}, a point z ∈ R d will be written as z = (x, y) where x ∈ R m and y ∈ R d-m . Let Π : R d → R m be defined by Π(x, y) = x (since Π is linear, we will often write Πz instead of Π(z)).

We let F : R d → R d be a C 1 Lipschitz vector field.

Let us consider a finite variation càdlàg process Z = (X, Y ) in R d , adapted to a filtration (F t ) t≥0 , satisfying the following equation

Z t -Z s = t s F (Z u )du + t s Ψ u du + M t -M s
where M t is a finite variation càdlàg martingale w.r.t (F t ) and Ψ t is a (F t )-adapted process.

Let z * = (x * , y * ) be an equilibrium of F , i.e. F (z * ) = 0. In the following, Γ denotes the event {lim t→∞ Z t = z * }. Hypothesis 5.1. There is γ > 0 such that for all T > 0, there exists a finite constant C(T ), such that for all t > 0,

E sup 0≤h≤T t+h t (Ψ u du + dM u ) 2 ≤ C(T )e -2γt .
Remark 5.2. Using Doob's inequality, Hypothesis 5.1 is satisfied as soon as there is a constant C > 0 such that for all t > 0, Ψ t ≤ Ce -γt and for all t > s > 0 and all 1 ≤ i ≤ d,

M i t -M i s ≤ Ce -2γs .
Lemma 5.3. If Hypothesis 5.1 holds, then Z is a γ-pseudotrajectory of Φ, the flow generated by F , i.e. a.s. for all T > 0 lim sup

t→∞ 1 t log sup 0≤h≤T Z t+h -Φ h (Z t ) ≤ -γ.
Proof. Follow the proof of Proposition 8.3 in [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]. 

) Y t -y * = O(e -βt ). 19 
Proof. This is a consequence of Lemma 8.7 in [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF].

Hypothesis 5.6. Suppose there are α > 1 and C > 0 such that for all 1 ≤ i ≤ m and all (x, y) ∈ N ,

|F i (x, y) -F i (x, y * )| ≤ C y -y * α .
Set G : R m → R m be the C 1 vector field defined by G i (x) = F i (x, y * ), for 1 ≤ i ≤ m and

x ∈ R m . For p > 0, denote

Γ p := Γ ∩ {∀t ≥ p : Z t ∈ N }.
Lemma 5.7. Under Hypotheses 5.1, 5.4 and 5.6, on Γ p , for all p < s < t,

X t -X s = t s G(X u )du + t s Ψu du + ΠM t -ΠM s ,
where Ψt = ΠΨ t + O(e -αβt ), for all β ∈ (0, β 0 ).

Proof. It holds that for 1

≤ i ≤ m, Ψi (t) = Ψ i (t) + F i (X t , Y t ) -F i (X t , y *
) and the lemma follows from Lemma 5.5.

Avoiding repulsive traps.

In applications, this subsection will be used for the process X defined in Lemma 5.7.

In this subsection, we let F : R d → R d be a C 1 Lipschitz vector field and we consider a finite variation càdlàg process Z in R d , adapted to a filtration (F t ) t≥0 , satisfying the following equation

Z t -Z s = t s F (Z u )du + t s Ψ u du + M t -M s
where M t is a finite variation càdlàg martingale w.r.t (F t ) and Ψ t = r t + R t , with r and R two (F t )-adapted processes.

Let z * ∈ R d and Γ an event on which lim t→∞ Z t = z * . Let N be a convex neighborhood of z * .

For p > 0, set

Γ p := Γ ∩ {∀t ≥ p : Z t ∈ N }.
Then, Γ = ∪ p>0 Γ p .

We will suppose that Remark 5.9. The second assumption is not necessary (see [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF], sections I.3 and I.4.) and we can suppose more generally that z * is a repulsive equilibrium, and by taking for λ a positive constant lower than the real part of any eigenvalue of DF (z * ). Our proof is however is a little easier to write with Hypothesis 5.8.

For all z ∈ R d , F (z) = F (z * ) + 1 0 DF (z * + u(z -z * )).(z -z * )du = λ(z -z * ) + J(z).(z -z * )
where we have set

J(z) = 1 0 (DF (z * + u(z -z * )) -DF (z * ))du.
Then, for all t ≥ s,

Z t -Z s = t s λZ u du + t s [Ψ u + J(Z u ).(Z u -z * )] du + M t -M s . (20) 
Let us fix p > 0. Note that [START_REF] Pemantle | Vertex-reinforced random walk[END_REF] implies that, for all t ≥ p, 

:= e -λt [R t + J(Z t ).(Z t -z * )].
We assume that the following hypothesis is fulfilled:

Hypothesis 5.10. There is a random variable K finite on Γ and there is a continuous function

a : [0, ∞) → (0, ∞) such that ∞ 0 a(s)ds < ∞, α 2 (t) := ∞ t a(s)ds = O
∞ t e -2λ(s-t) a(s)ds as t → ∞ and such that the following items (i) and (ii) hold. (i) For each i, M i t = t 0 Λ i s ds, with Λ i a positive (F t )-adapted process. Setting Λ = i Λ i , we have that a.s. on Γ, for all t > 0,

K -1 a(t) ≤ Λ(t) ≤ Ka(t), (22) 
d i=1 |∆M i t | ≤ Kα(t), (23) 
∞ 0 r s 2 a(s) ds ≤ K. ( 24 
) (ii) As t → ∞, E 1 Γ ∞ t R s ds 2 = o α 2 (t) . (25) 
For p > 0, define

G p = Γ p ∩ {sup t≥p J(Z t ) ≤ λ 2 } ∩ {sup t≥p Z t ≤ 1}.
Lemma 5.11. For all p > 0, as t → ∞,

E 1 Gp ∞ t Rs ds = o(e -λt α(t)). (26) 
Proof. Fix p > 0. Since Hypothesis 5.10-(ii) holds, to prove the lemma it suffices to prove that as t → ∞,

E 1 Gp ∞ t e -λs J(Z s ).(Z s -z * ) ds = o(e -λt α(t)).
To simplify the notation, we suppose z * = 0. For s < t, (using the convention:

z z = 0 if z = 0) Z t -Z s = λ t s Z u du + t s Z u Z u , J(Z u )Z u du + t s Z u- Z u- , dM u + t s Z u Z u , Ψ u du + s<u≤t 1 {Z u-=0} ∆ Z u - Z u- Z u- , ∆Z u .
Using the inequality z + δz ≥ z z , δ , we have for all u > p,

∆ Z u - Z u- Z u- , ∆Z u ≥ 0.
Furthermore, using Cauchy-Schwarz inequality, on the event G p ,

Z u Z u , J(Z u )Z u ≥ -J(Z u )Z u ≥ -sup t≥p J(Z t ) . Z u ≥ - λ 2 Z u
for all u > p. From the above it follows that on the event G p ,

Z t -Z s ≥ λ 2 t s Z u du + t s Z u- Z u- , dM u + t s Z u Z u , Ψ u du
for all t > s > p. As a consequence, using Doob's inequality and Hypothesis 5.10, we obtain that

λ 2 E 1 Gp ∞ t Z s ds 2 1 2 ≤ E 1 Gp sup T >t T t Z u- Z u- , dM u 2 1 2 + α(t)E 1 Gp ∞ t r u 2 a(u) du 1 2 + E 1 Gp ∞ t R u du 2 1 2 = O(α(t)).
Using Cauchy-Schwarz inequality, we have

E 1 Gp ∞ t e -λs J(Z s )Z s ds ≤ e -λt E 1 Gp sup s≥t J(Z s ) 2 1 2 E 1 Gp ∞ t Z s ds 2 1 2
.

Note that on G p , sup s≥t J(Z s ) ≤ λ/2 and lim t→∞ sup s≥t J(Z s ) = 0 almost surely. Therefore,

we conclude that E[1 Gp ∞ t e -λs J(Z s )Z s ds] = o(e -λt α(t)) as t → ∞.
Hypothesis 5.10 ensures in particular that a.s. on G p , ∞ p Ψs ds and M∞ are well defined and almost surely finite. Let L be a random variable such that

L = ∞ p Ψs ds + M∞ -Mp on G p .
Letting t → ∞ in [START_REF] Protter | Stochastic integration and differential equations[END_REF], λ being positive, we have L = -e -λp Z p a.s. on G p . We now apply Theorem 5.15 to the martingale Mt and to the adapted process Ψt . We have Mi t = t 0 Λi s ds, with Λi s = e -2λs Λ i s . We also have |∆ Mt | = e -λt |∆M t |. Hypothesis 5.10-(i) implies that (29), (30) and (31) are satisfied with the function ā(t) = e -2λt a(t). Finally, (32) follows from Lemma 5.11. Therefore, we obtain that P(G p ) = P(G p ∩ {L = -e -λp Z p }] = 0.

Since P(Γ) = lim p→∞ P(G p ) = 0, we have proved the following theorem: Theorem 5.12. Under Hypotheses 5.8 and 5.10, we have P(Γ) = 0. 5.3. Application to strongly VRJP on complete graphs. Recall from Section 3 that the empirical occupation measure process (Z t ) t≥0 satisfies the following equation

Z t -Z s = t s 1 u + ℓ 0 F (Z u )du + I[X s ] (s + ℓ 0 )w s - I[X t ] (t + ℓ 0 )w t (27) + t s Ψ u du + t s dM u (u + ℓ 0 )w u ,
where

Ψ t = I[X t ] d dt 1 (t + ℓ 0 )w t and M t = I[X t ] - t 0 A s [X s ]ds.
Recall that M j t = t 0 Λ j s ds, where Λ j is defined in [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF]. For t ≥ 0, let

Z t = Z e t -ℓ 0 + I[X e t -ℓ 0 ]
e t w e t -ℓ 0 .

Equation ( 27) is thus equivalent to

Z t -Z s = t s F ( Z u )du + t s Ψ u du + M t -M s , (28) 
where we have set Ψ t = e t Ψ e t -ℓ 0 + F (Z e t -ℓ 0 ) -F ( Z t ) and M t = e t -ℓ 0 0 dM s (s + ℓ 0 )w s , which are respectively an adapted process and a martingale w.r.t the filtration F t := F e t -ℓ 0 .

Note that M j t = t 0 Λ j s ds, with Λ j s = Λ j e s -ℓ 0 e t w 2 e s -ℓ 0

.

In this subsection, we will apply the results of Subsection 5.1 and Subsection 5.2 to the process ( Z t ) t≥0 and thus show that P [Z t → z * ] = P [ Z t → z * ] = 0 for each unstable equilibrium z * .

Lemma 5.13. There exists a positive constant K such that for all t > 0, a.s.

Ψ t ≤ Ke -(α+1)t , Λ j t ≤ Ke -(α+1)t and |∆ M j t | ≤ Ke -(α+1)t .
Proof. Let us first recall that w t ≥ k(t + ℓ 0 ) α for some constant k. Using that F is Lipschitz, we easily obtain the first inequality. To obtain the second inequality, observe that for each j,

Λ j t ≤ w t . Thus for all t > 0, Λ j t ≤ 1 e t w e s -ℓ 0 ≤ k -1 e -(α+1)t .
Finally,

|∆ M j t | = |∆I[X e t -ℓ 0 ]| e t w e t -ℓ 0 ≤ 1 e t w e t -ℓ 0 ≤ k -1 e -(α+1)t .
Theorem 5.14. Assume that z * is an unstable equilibrium of the vector field F defined by [START_REF] Duflo | Algorithmes stochastiques. Mathematiques & Applications[END_REF].

Then P[Z t → z * ] = 0.

Proof. Note first that Lemma 5.13 implies that Hypothesis 5.1 holds with γ = α+1 2 . Let z * = (x * , y * ) be an unstable equilibrium, where y * = 0 ∈ R d-m and x * = 1 m , 1 m , . . . , 1 m ∈ R m , with m ∈ {2, 3, . . . , d} (up to a permutation of indices, this describes the set of all unstable equilibriums).

Note also that there is a compact convex neighborhood N = N 1 × N 2 of z * and a positive constant h such that for all z ∈ N , H(z

) = i z α i ≥ h. Setting C(z) = 1 H(z)
, we have that for all i ∈ {1, 2, . . . , d -m},

F m+i (x, y) = -y i (1 + C(z)y α-1 i ).
Since α > 1, it can easily be shown that Hypothesis 5.4 holds for all µ ∈ (0, 1). Hypothesis 5.6 also holds (with the same constant α).

Therefore, Lemma 5.7 can be applied to the process ( Z t ) t≥0 defined by (28). Set X t := Π Z t and let G : R m → R m be the vector field defined by G i (x) = F i (x, 0). Then for all s < t,

X t -X s = t s G( X u )du + t s ru du + Π M t -Π M s ,
with rt = Π Ψ t + O(e -αβt ) on Γ, for all β < γ ∧ µ. Note that since µ can be taken as close as we want to 1 and since γ = α+1 2 > 1, β can be also taken as close as we want to 1. We now apply the result of Section 5.2, with Z, F , M, r and R respectively replaced by X, G, Π M , r and 0. The vector field G satisfies Hypothesis 5.8 with λ = α -1. Let us now check Hypothesis 5.10 with a(t) = e -(α+1)t . Choosing β ∈ ( α+1 2α , 1), we have that r satisfies [START_REF] Volkov | Vertex-reinforced random walk on arbitrary graphs[END_REF]. Set Λ = m j=1 Λ j . It remains to verify the inequality [START_REF] Robinson | Dynamical systems. Stability, symbolic dynamics, and chaos[END_REF] for Λ. Lemma 5.13 shows that for all t > 0,

Λ t ≤ m k e -(α+1)t = C + e -(α+1)t .
Fix ǫ ∈ (0, 1) and choose the neighborhood N sufficiently small such that for all z ∈ N and i ∈ {1, . . . , m}, mπ i (z) ∈ (1ǫ, 1 + ǫ). Therefore, if Z t ∈ N , we have that for i ∈ {1, . . . , m}, w

(j) t = w t π j (Z t ) ≥ k(1-ǫ) m (t + ℓ 0 ) α . Therefore, since m ≥ 2, if Z t ∈ N , we have that for all 1 ≤ i ≤ m Λ i t ≥ 1 {Xt=i} j =i,1≤j≤m w (j) t + 1 {Xt =i} w (i) t ≥ min 1≤j≤m w (j) u ≥ k(1 -ǫ) m (u + ℓ 0 ) α . Since w t ≤ d(t + ℓ 0 ) α , we have that if Z t ∈ N , Λ t ≥ k(1 -ǫ)e αt e t d 2 e 2αt = C -e -(α+1)t .
This proves that Hypothesis 5.10 is satisfied.

As a conclusion Theorem 5.12 can be applied, and this proves that P[Z t → z * ] = P[ X t →

x * ] = 0.

5.4.

A theorem on martingales. In this subsection, we prove a martingale theorem, which is a continuous time version of a theorem by Brandière and Duflo (see Theorem A in [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF] or Theorem 3.IV.13 in [START_REF] Duflo | Algorithmes stochastiques. Mathematiques & Applications[END_REF]).

Theorem 5.15. Let M be a finite variation càdlàg martingale in R d with M 0 = 0, r and R be adapted processes in R d with respect to a filtration

(F t ) t≥0 . Set Ψ t = r t + R t .
Let Γ be an event and let a : [0, ∞) → (0, ∞) be a continuous function such that ∞ 0 a(s)ds < ∞ and set α 2 (t) = ∞ t a(s)ds. Suppose that for each i, M i t = t 0 Λ i s ds, with Λ i a positive adapted càdlàg process. Set Λ = i Λ i . Suppose that there is a random variable K, such that a.s. on Γ, 1 < K < ∞ and for all t > 0,

K -1 a(t) ≤ Λ(t) ≤ Ka(t). ( 29 
) i |∆M i t | ≤ Kα(t). (30) ∞ 0 r s 2 a(s) ds ≤ K (31) and as t → ∞, E 1 Γ ∞ t R s ds = o(α(t)). (32)
Then, a.s. on Γ, S t := t 0 Ψ s ds + M t converges a.s. towards a finite random variable L and for all F p -measurable random variable η, p > 0, we have

P[Γ ∩ {L = η}] = 0.

Remark 5.16. Our theorem here is a continuous-time version of Theorem A by Brandière and

Duflo in [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF]. Their results is widely applied to discrete stochastic approximation processes, in particular to showing the non convergence to a repulsive equilibrium. Note that there is an inaccuracy in the application of the Burkholder's inequality in their proof. Beside of this, there is also a mistake in the application of their theorem to the proof of Proposition 4 in [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF] since the process S n defined in page 406 is not adapted.

Proof.

Simplification of the hypotheses: It is enough to prove the Theorem assuming in addition that the random variable K is non-random and that (29), (30) and (31) are satisfied a.s. on Ω.

Let us explain shortly why: The idea is due to Lai and Wei in [START_REF] Lai | A note on martingale difference sequences satisfying the local Marcinkiewicz-Zygmund condition[END_REF] (see aslo [START_REF] Duflo | Algorithmes stochastiques. Mathematiques & Applications[END_REF], p. 60-61).

For n ∈ N, let T n be the first time t such Λ(t) ∈ [n -1 a(t), na(t)] or |∆M i t | > nα(t) for some i or t 0 rs 2 a(s) ds > n. Then T n is an increasing sequence of stopping times and a.s. on Γ ∩ {K ≤ n}, T n = ∞.

Eventually extending the probability space, let N be a Poisson process with intensity a(t). For n ∈ N, i ∈ {1, . . . , d} and t > 0, set Mi t = M i t∧Tn + N t -N t∧Tn and rt = r t∧Tn .

Then, M and r satisfy (29), ( 30 Let Ω be the event that (29), ( 30) and ( 31) is satisfied with non-random positive constant K.

From now on, we suppose that K is non-random and that (29), ( 30) and (31) are satisfied a.s.

on Ω.

A first consequence is that, M, [M i ] -M i and M 2 -A, with A = i M i , are uniformly integrable martingales. Indeed, using Lemma VII.3.34 in [START_REF] Jacod | Limit theorems for stochastic processes[END_REF] Set G = Γ ∩ {L = 0}. For t ≥ 0, define ρ t = M ∞ -M t , τ t = ∞ t Ψ s ds and T t = ρ t + τ t . Then T t = L -S t and on G, T t = -S t .

Since for all t > 0, ( M s -M t 

≤ 2 c 0 α(t) E 1 G τ t + 2 c 0 α(t) E (1 Gt -1 G ) 2 1 2 E[ ρ t 2 ] 1 2 .
Note that

lim t→∞ E (1 Gt -1 G ) 2 = 0 and E[ ρ t 2 ] ≤ c + α 2 (t).
Thus, the second term converges to 0. For the first term, (using Cauchy-Schwarz inequality to obtain the first term on the right hand side) + o(α(t)) = o(α(t))

E 1 G τ t ≤ E 1 G ∞ t r s ds + E 1 G ∞ t R s ds ≤ α(t)E 1 G ∞ t
using Cauchy-Schwarz inequality, Lebesgue's Dominated Convergence Theorem and the hypotheses. We thus obtain that P(G) = lim t→∞ P(G t ) = 0.
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 5455 There are µ > 0 and N = N 1 × N 2 a compact convex neighborhood of z * (with N 1 and N 2 respectively neighborhoods of x * ∈ R m and of y * ∈ R d-m ) such that K := {z = (x, y) ∈ N : y = y * } attracts exponentially N at rate -µ (i.e. there is a constant C such that d(Φ t (z), K) ≤ Ce -µt for all t > 0). If Hypotheses 5.1 and 5.4 hold, then, setting β 0 := γ ∧ µ, for all β ∈ (0, β 0 ), on the event Γ, (

Hypothesis 5 . 8 .

 58 z * is a repulsive equilibrium, i.e. F (z * ) = 0 and all eigenvalues of DF (z * ) have a positive real part. Moreover DF (z * ) = λI, with λ > 0 and I the identity d × d matrix.

( 21 )p

 21 Z t = e λt e -λp Z p + t Ψs ds + Mt -Mp where Mt = t 0 e -λs dM s and Ψt = rt + Rt , with rt := e -λt r t and Rt

  ) and (31) a.s. on Ω, with K = n, and on the event {T n = ∞}, M = M and r = r. Now setL n = ∞ 0 (r s + R s )ds + M∞ ,which is well defined on Γ. Then a.s. on the event Γ n := Γ ∩ {K ≤ n}, we have L n = L.Suppose now that for all n, we have P[Γ n ∩ {L n = η}] = 0, then we also haveP[Γ ∩ {L = η}] = lim n→∞ P[Γ n ∩ {L = η}] = lim n→∞ P[Γ n ∩ {L n = η}] = 0.

p 0 R

 0 s ds -M p respectively, where β : [0, ∞) → (0, ∞) is some differentiable function such that β(0) = 1, lim t→∞ β(t) = 0 and β(t) = o(α(t)).
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  , p. 423, there are constant k 1 andk 2 such that E sup 0≤s≤t |M i s | 4 ≤ k 1 sup Kα(t) ≤ Kα(0) for all t ≥ 0. It implies that E( M t 4) is uniformly bounded and M is thus uniformly integrable.Without loss of generality, we also suppose that p = 0 and η = 0. Otherwise, one can replace F t , M t , r t and R t by F t+p , M t+p -M p , r t+p + β ′ (t) η -p 0 r s ds -M p and R t+p + β ′ (t) η -

	0≤s≤t,ω∈	Ω |∆M i t (ω)|	
	Recall from (29) and (30) that M i	t =	t 0 Λ i s ds ≤ K	t 0 a(s)ds < K

2 E M i 2 t 1/2 + k 2 E M i 2 t .

∞ 0 a(s)ds and |∆M i t | ≤

  2 -(A s -A t ), s ≥ t) is a uniformly integrable martingale, we have that for all t > 0,E[ ρ t 2 |F t ] = E A ∞ -A t |F t = E Lemma VII.3.34 in[START_REF] Jacod | Limit theorems for stochastic processes[END_REF] to the martingale (M s -M t , s ≥ t), we haveE |M i s -M i t | 4 |F t ≤ k 1 supHence, for all t > 0, there is a constantk such that E[ ρ 4 t F t ] ≤ kα 4 (t). Set c 0 = K -3 2 k -1 2 . Since E ρ t 2 |F t ≤ E ρ t |F t , we have that for all t, E[ ρ t |F t ] ≥ c 0 α(t).Let U be a Borel function from R d \ {0} onto the set of d × d orthogonal matrices such that U(a)[a/ a ] = e 1 (with e 1 = (1, 0, . . . , 0)). Then on G,T t e 1 + U(S t )T t = 0 ρ t e 1 + U(S t )ρ t ≤ 2 τ t . Set G t := {P(G|F t ) > 1 2 }.Then for all t > 0 (using in the second inequality that S t isF t -measurable and that E[ρ t |F t ] = 0) Gt E[ ρ t e 1 |F t ] Gt E[ ρ t e 1 + U(S t )ρ t |F t ] ≤ 1 c 0 α(t) E 1 G E[ ρ t e 1 + U(S t )ρ t |F t ] Gt -1 G )E[ ρ t e 1 + U(S t )ρ t |F t ]

	Using t≤u≤s,ω∈	Ω |∆M i u (ω)|	2	E M i	s -M i	t	2 |F t	1/2
	+ k 2 E M i	s -M i	t	2 |F t		
			s				s	
	≤ k 1 K 3 α 2 (t)		a(u)du + k 2 K 2	a(u)du
		t				t	
	2 3 E ρ t 3 P(G t ) ≤ 1 4 |F t ] 1 c 0 α(t) E 1 ≤ 1 c 0 α(t) E 1 + 1 c 0 α(t) E (1

∞ t Λ(s)ds|F t and therefore

K -1 α 2 (t) ≤ E[ ρ t 2 |F t ] ≤ Kα 2 (t).
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