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Abstract. The goal of these lecture notes is to present in a unified way
various models for the dynamics of aligning self-propelled rigid bodies
at different scales and the links between them. The models and methods
are inspired from [12,13], but, in addition, we introduce a new model
and apply on it the same methods. While the new model has its own
interest, our aim is also to emphasize the methods by demonstrating
their adaptability and by presenting them in a unified and simplified
way. Furthermore, from the various microscopic models we derive the
same macroscopic model, which is a good indicator of its universality.
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1 Introduction

Collective behavior arises ubiquitously in nature: fish schools, flocks of birds,
herds, colonies of bacteria, pedestrian dynamics, opinion formation, are just some
examples. One of the main challenges in the investigation of collective behavior
is to explain its emergent properties, that is, how from the local interactions
between a large number of agents, large-scale structures and self-organization
arise at a much larger scale than the agents’ sizes. Kinetic theory provides a
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mathematical framework for the study of emergent phenomena with the rig-
orous derivation of equations for the large-scale dynamics (called macroscopic
equations) from particle or individual-based models. The derivation of macro-
scopic equations establishes a rigorous link between the particle dynamics and
the large-scale dynamics. Moreover, the simulation of macroscopic equations
have the advantage of being, generally, computationally far more efficient than
particle simulations, especially as the number of agents grows large.

Tools for the derivation of macroscopic equations were first developed in
Mathematical Physics, particularly, in the framework of the Boltzmann equation
for rarefied gases [7,9,26]. However, compared to the case of classical equations
in Mathematical Physics, an additional difficulty arises here in the study of
living systems: the lack of conservation laws. In classical physical systems, each
macroscopic quantity corresponds to a conservation law (like the conservation
of the total mass, momentum and energy). However, in the models that we will
consider here, the number of conserved quantities is less than the number of
macroscopic quantities to be determined. To overcome this difficulty we will use
the methodological breakthrough presented in [16]: the Generalized Collision
Invariant (GCI). This new concept relaxes the condition of being a conserved
quantity, and has then been used in a lot of works related to alignment of self-
propelled particles [4,10,11,12,13,14,15,17,18,19,22]. The goal of this exposition
is precisely to clearly illustrate the application of this methodology to models
for collective dynamics based on alignment of the body position.

Specifically, in the models that will be considered in this exposition each agent
is described by its location in the three-dimensional space and the orientation
of its body, represented by a three-dimensional frame. Each agent perceives
(directly or indirectly) the orientations of the bodies of the neighboring agents
and tends to align with them. This type of collective motion can be found,
e.g., in sperm dynamics and animals (birds, fish), and it is a stepping stone to
modeling more complex agents composed of articulated bodies (corpora [8]). For
more examples and applications based on body attitude coordination see [25]
and references therein.

Our models are inspired by time-continuous versions of the Vicsek model,
introduced in the 90’s [28]. The Vicsek model is now a classic in the field of
collective motion: self-propelled particles move at constant speed while trying
to align their direction of movement with their neighbors up to some noise. We
consider time-continuous versions of the Vicsek model since they are more prone
to mathematical studies, as pointed out in [16]. However, there is no obvious
unique way of writing a time-continuous version. In [16] and then in [19], two
different continuous versions have been proposed that differ by the way agents
approach the aligned state: in the first one the particles’ velocities align gradually
over time towards an aligned state, and in the second one the velocities make
discontinuous jumps at discrete times towards an aligned state. Interestingly,
both models in [16] and in [19] give rise to the same hydrodynamic/macroscopic
limit (with different values for the constants in the equations). Inspired by this,
here we will present two models for alignment of rigid bodies, one given by
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a time-continuous gradual alignment (taken from the references [12,13]), and
another one for alignment based on a jump process on the velocities, that we
present here for the first time.

The reason for considering here these two types of models is the following.
The main difficulty in applying the Generalized Collision Invariant method to ob-
tain the macroscopic equations lays, precisely, on finding the explicit form of the
Generalized Collision Invariants. Indeed, in [12,13] that was the main mathemat-
ical difficulty. However, we will see that in the jump model it is straightforward
to obtain the GCI but, at the same time, the computation of the macroscopic
limit keeps the same structure as in the previous results [12,13]. Particularly, we
will obtain the same macroscopic equations (though with different values for the
coefficients). The jump model constitutes, therefore, an excellent framework for
a didactic exposition of the GCI methodology. With this, the proofs in [12,13]
will become more accessible to the reader.

Here, to model alignment of the orientations of the agents seen as rigid bodies
(and not only the alignment of their velocities as in the original Vicsek model), we
represent the body orientation of an agent as a three-dimensional frame, obtained
by the rotation of a fixed frame. Therefore, we will represent the orientations of
the agents as rotations. But, as we will see in Section 2, in the three-dimensional
space rotations can be equivalently represented by rotation matrices and uni-
tary quaternions. Using rotation matrices, the modeling at the individual-based
level is more natural and intuitive. However, in terms of numerical efficiency,
quaternions require less memory usage (it only requires storing 4 entries rather
than 9 entries for matrices) and are less costly to renormalize (while obtaining
a rotation matrix from an approximate matrix typically requires a polar de-
composition, obtaining a unit quaternion from an approximate quaternion only
requires dividing by the norm). We will also see that working with quaternions
can give rise to a better presentation of the macroscopic equations.

We conclude by noting that the study of collective behavior based on the
Vicsek model and its variations is a fertile field. Among many of the existing
mathematical works, we highlight [16] where the hydrodynamic limit has been
computed as well as [11], where the emergence of phase transitions is investi-
gated. Many refinements have been proposed to incorporate additional mecha-
nism, such as, to cite only a few of them, volume exclusion [18], presence of lead-
ers [21] or polarization of the group [6]. We refer the interested reader to [12,13]
and the references therein for more on this topic.

The structure of the document is as follows. We start by introducing some
notations and recalling some useful properties on matrices, rotations and quater-
nions in Sec. 2. We present the individual-based models in Sec. 3. From there we
derive the mesoscopic models in Sec. 4. Finally we compute the hydrodynamic
limit in Sec. 5 and discuss the results in Sec. 6.
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2 Preliminaries: matrices, rotations and quaternions

We present in this section some notations and useful properties on matrices,
rotations, and quaternions. We first introduce some notations and present some
properties on matrices and rotation matrices. In a second subsection we detail
the link between rotations in R3 and unit quaternions.

The main drawback in using quaternion to represent a rotation is that two
opposite quaternions represent the same rotation. In analogy with the theory
of rodlike polymers [20], where two opposite unit vectors represent the same
orientation, we also present in this first subsection the formalism of Q-tensors,
which will be helpful for the modeling. Most of the results will be given without
detailed proofs, which can be found in Section 5 of [13].

2.1 Matrices, rotation matrices and R3

We start by introducing a few notations. We will use the following matrix spaces:

– M is the set of three-by-three matrices,
– S is the set of symmetric three-by-three matrices,
– A is the set of antisymmetric three-by-three matrices,
– O3(R) is the orthogonal group in dimension three,
– SO3(R) is the special orthogonal group in dimension three.

For a matrix A ∈ M, we denote by AT its transpose, and we write TrA its
trace, TrA =

∑
iAii. The matrix I is the identity matrix in M. We use the

following definition of the dot product on M: for A, B ∈ M,

A ·B :=
1

2

3∑

i,j=1

AijBij .

The choice of this dot product (note in particular the factor 1
2 ) is motivated

by the following property: for any u = (u1, u2, u3) ∈ R3, define the antisymmetric
matrix [u]× such that

[u]× :=




0 −u3 u2

u3 0 −u1

−u2 u1 0


 ,

(or equivalently such that for any v ∈ R3, we have [u]×v = u× v). Then we have
for any u, v ∈ R3:

[u]× · [v]× = u · v.
The following properties will be useful in the sequel. We state them without

proof but the interested reader can find them in Ref. [12].

Proposition 1 (Space decomposition in symmetric and antisymmetric
matrices). We have

S ⊕ A = M and A ⊥ S.
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Proposition 2 (Tangent space to SO3(R), and projection). For a ma-
trix A ∈ SO3(R), denote by TA the tangent space to SO3(R) at A. Then

M ∈ TA if and only if there exists P ∈ A s.t M = AP,

or equivalently the same statement with M = PA. Consequently, the orthogonal
projection of a matrix M on TA is given by

PTA
(M) =

1

2
(M −AMTA), (1)

and we have that M ∈ T⊥
A if and only if M = AS (or equivalently M = SA),

for some S ∈ S.

We end up by recalling the polar decomposition of a matrix.

Proposition 3. Let M ∈ M. There exist A ∈ O3(R) and S ∈ S such that

M = AS.

Furthermore, if detM 6= 0, then A and S are unique. In this case, we write

PD(M) := A.

2.2 Quaternions, rotations and Q-tensors

Besides rotation matrices, another common representation of rotations in R
3 is

done through the unit quaternions, which will be denoted by H1. Recall that
any quaternion q can be written as q = a + bi + cj + dk with a, b, c, d ∈ R.
Quaternions form a four dimensional (non commutative) division algebra, by
the rules i2 = j2 = k2 = ijk = −1. The real part Re(q) of the quaternion q is a
and its imaginary part, denoted Im(q) is bi+cj+dk. The three-dimensional space
of purely imaginary quaternions is then identified with R3, therefore whenever
in the paper we have a vector in R3 which is used as a quaternion, it should be
understood that it is a purely imaginary quaternion thanks to this identification.
For instance, the vector e1 ∈ R3 (resp. e2, e3) is identified with the quaternion i
(resp. j, k). The conjugate of the quaternion q is given by q∗ = Re(q) − Im(q),
therefore we get qq∗ = |q|2 = a2 + b2 + c2 + d2 > 0.

We now explain how the group H1 (the unit quaternions q, such that |q| = 1)
provides a representation of rotations. Any unit quaternion q ∈ H1 can be written
in a polar form as q = cos(θ/2)+sin(θ/2)n, where θ ∈ [0, 2π) and n ∈ S2 (a purely
imaginary quaternion with the previous identification). With this notation, the
unit quaternion q represents the rotation of angle θ around the axis given by
the direction n, anti-clockwise. More specifically, for any vector u ∈ R3, the
vector quq∗ (which is indeed a pure imaginary quaternion whenever q ∈ H1

and u is a pure imaginary quaternion, so it can be seen as a vector in R3) is the
rotation of u of angle θ around the axis given by the direction n (note that θ
and n are uniquely defined except when q = ±1: in this case the associated
rotation is the identity, and any direction n ∈ S2 is suitable).
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The underlying map from the group of unit quaternions to the group of
rotation matrices is then given by

Φ :
H1 → SO3(R)

q 7→ Φ(q) :
R3 → R3

u 7→ quq∗.
(2)

It is then straightforward to get that Φ is a morphism of groups: for any q and q̃
in H1, we have Φ(qq̃) = Φ(q)Φ(q̃) and Φ(q∗) = Φ(q)T.

An important remark is that two opposite unit quaternions represent the
same rotation:

∀q ∈ H1, Φ(q) = Φ(−q). (3)

More precisely, the kernel of Φ is given by {±1}, so that Φ induces an isomor-
phism between H1/{±1} and SO3(R).

We finally briefly introduce the notion of Q-tensors. Indeed, since a unitary
quaternion and its opposite correspond to the same rotation matrix, we can
see an analogy with the theory of suspensions of rodlike polymers [20]. Those
polymers are also modeled using unit vectors (in this case, in R3), and two
opposite vectors are describing the same orientation. Their alignment is called
nematic. One relevant object in this theory is the so-called Q-tensor associated
with the unit quaternion q, given by the matrix Q = q ⊗ q − 1

4 I4, where q is
seen as a unit vector in R4, and I4 is the identity matrix of size four. This
object is a symmetric and trace free four by four matrix, which is invariant
under the transformation q 7→ −q. We denote by S0

4 the space of symmetric
trace free 4 × 4 matrices (a vector space of dimension 9), and endow it with the

dot product known as “contraction of tensors”; more precisely if Q, Q̃ are in S0
4 ,

their contraction Q : Q̃ =
∑

i,j QijQ̃ij is the trace of QQ̃T. We then get a map

Ψ :
H1 → S0

4

q 7→ q ⊗ q − 1
4 I4,

whose image can also be identified with H1/{±1}. Indeed, the preimage of Ψ(q)
is always equal to {q,−q}. We therefore have two ways to see H1/{±1} as a
submanifold of a nine-dimensional vector space : either as the image of Φ (in M),
which is exactly SO3(R), or as the image of Ψ (in S0

4 ). It appears that the dot
products on these spaces behave remarkably well, regarding the maps Φ and Ψ ,
as stated in the following proposition, from which we can also see that the images

are submanifolds of the spheres of radii
√

3
2 (in M) and

√
3

2 (in S0
4 ).

Proposition 4. For any unit quaternions q and q̃, we have

1

2
Φ(q) · Φ(q̃) = (q · q̃)2 − 1

4
= Ψ(q) : Ψ(q̃).

Proof. For the second equality, recall that for any quaternions q and q̃ we have
by definition (q ⊗ q̃)ii = qiq̃i, therefore Tr(q ⊗ q̃) = q · q̃ (this justifies the
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fact that Tr(q ⊗ q − 1
4 I4) = 0 when q is a unit quaternion). Using the fact

that (q ⊗ q)(q̃ ⊗ q̃) = (q · q̃) q ⊗ q̃, we get, when q and q̃ are unit quaternions:

Ψ(q) : Ψ(q̃) = Tr((q ⊗ q − 1
4 I4)(q̃ ⊗ q̃ − 1

4 I4))

= Tr((q ⊗ q)(q̃ ⊗ q̃ − 1
4 I4)) = (q · q̃)2 − 1

4
.

For the first equality, we first prove that Tr(Φ(q)) = 4Re(q)2 − |q|2 for any

quaternion q. Indeed we first have that Tr(Φ(q)) =
∑3

i=1 ei · Φ(q)ei. Writing q
as a + bi + cj + dk and using the identifications between R

3 and the purely
imaginary quaternions, we get for instance that e1 ·Φ(q)e1 = Re(i(qiq∗)∗), which
after computations is a2 + b2 − c2 − d2. At the end, with similar computations
for e2 and e3, we get Tr(Φ(q)) = 3a2 − b2 − c2 − d2 = 4Re(q)2 − |q|2. Therefore,
if q and q̃ are unit quaternions, we get

2Φ(q) · Φ(q̃) = Tr(Φ(q)Φ(q̃)T )

= Tr(Φ(qq̃∗)) = 4Re(qq̃∗)2 − |qq̃∗|2 = 4(q · q̃)2 − 1.⊓⊔

We will also make use of the two following properties regarding the differentia-
bility of the map Φ and the volume forms in SO3(R) and H1.

Proposition 5. The map Φ is continuously differentiable on H1. Denoting its
differential at q ∈ H1 by DqΦ : q⊥ −→ TΦ(q) , we have that for any p ∈ q⊥,

DqΦ(p) = 2 [pq∗]× Φ(q).

Here, we wrote TA the tangent space of SO3(R) at A = Φ(q), and q⊥ the orthog-
onal of q.

Proposition 6. Consider a function g : SO3(R) → R, then

∫

SO3(R)

g(A) dA =

∫

H1

g(Φ(q)) dq,

where dq and dA are the normalized Lebesgue measures on the hypersphere H1

and on SO3(R), respectively. Furthermore, if B ∈ SO3(R), then

∫

SO3(R)

g(A) dA =

∫

SO3(R)

g(AB) dA =

∫

SO3(R)

g(BA) dA.

3 Individual Based Modeling: alignment of self-propelled

rigid bodies

Our goal is to model a large number N of particles described, for n = 1, . . . , N ,
by their positions Xn ∈ R3 and their orientations as rigid bodies. The most
natural way to describe such an orientation is to give three orthogonal unit
vectors un, vn, and wn. For instance, one way to describe the full orientation of
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a bird, would be to set the first vector un as the direction of its movement (from
the center to the beak), the second vector vn as the direction of its left wing
(from the center to the wing), and the last one wn as the direction of the back,
so that un, vn and wn form a direct orthogonal frame. Therefore the matrix An

whose three columns are exactly un, vn and wn is a special orthogonal matrix.
This rotation matrix An represents the rotation that has to be done between a
reference particle the orthogonal vectors of which are exactly the canonical basis
of R3 (denoted by e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1)), and the particle
number n. A particle can then be described by a pair (Xn, An) ∈ R3 × SO3(R).

In the spirit of the Vicsek model [28], we want to include in the modeling the
three following rules :

– particles move at constant speed,

– particles try to align with their neighbors,

– this alignment is subject to some noise.

Up to changing the time units, we will consider that all particles move at
speed one. The first rule requires a direction of movement for each particle.
Therefore, in the following, we will suppose that the first vector un = Ane1

of the matrix An represents the velocity of the particle number n. Then, the
evolution of the position Xn will simply be given by

dXn

dt
= Ane1. (4)

In the quaternion framework, if the quaternion qn represents the orientation
of particle number n (meaning that Φ(qn) = An) then the equation correspond-
ing to (4) reads:

dXn

dt
= qne1q

∗
n. (5)

We now want to describe the evolution of qn (or of the rotation matrix An),
taking into account the two remaining rules.

3.1 Defining the target for the alignment mechanism

To implement the second rule in the modeling, in the spirit of the Vicsek model,
we need to provide for each particle a way to compute the “average orientation”
of the neighbors. In the Vicsek model, the idea was to take the sum of all the
velocities of the neighbors and to normalize it in order to have a unit target
velocity.

In our framework of rotation matrices, to apply the same procedure, if we
want the target orientation Ān (viewed from the particle number n) to be a
rotation matrix, we need a procedure of normalization which from any matrix
gives a matrix of SO3(R). Indeed, the sum of all rotations matrix Am of the
neighbors need not be a rotation matrix (nor a multiple of such a matrix). The
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choice that had been done in [12] was to take the polar decomposition : we
denote

J̄n =
1

N

N∑

m=1

K(Xm −Xn)Am (6)

Ān = PD(J̄n), (7)

where PD(J) (when det(J) 6= 0) denotes the orthogonal matrix in the polar
decomposition (see Prop. 3) of a matrix J , and K is an observation kernel,
which weights the orientations of neighbors. A simple example is K(x) = 1
if 0 6 |x| < R and K(x) = 0 if |x| > R. In that case all the neighbors located in
the ball of radius R and center Xn have the same influence on the computation
of the average matrix Ān, and all individuals located outside this ball have no
influence on this computation.

A first difficulty arises here when the polar decomposition is not a rotation
matrix, that is to say det(J̄n) 6 0. Indeed, due to random effects, we can expect
that the polar decomposition is almost surely defined (that is to say det(J̄n) 6= 0,
which happens on a negligible set), but we cannot expect that det(J̄n) > 0 almost
surely.

In the framework of unitary quaternions, things are slightly more compli-
cated. Indeed, since a unitary quaternion and its opposite correspond to the
same rotation matrix (see eq. (3)), the expression used to compute an “average
orientation” needs to be invariant by the change of sign of any of the quaternions
appearing in the formula. Using the Q-tensors as in the theory of suspensions of
rodlike polymers [20] is a good option. We are then led to averaging objects of
the form q⊗ q− 1

4 I4 which are invariant under the transformation q 7→ −q. The
average Q-tensor of the neighbors would then take the form

Q̄n =
1

N

N∑

m=1

K(Xm −Xn)(qm ⊗ qm − 1
4 I4). (8)

To define now an “average” quaternion from this Q-tensor Q̄n, we need a
procedure which provides a unit vector. We expect that if all quaternions qn are
all equal to a given q (or to −q), the procedures returns q or −q. Therefore, from
the form α(q⊗ q− 1

4 I4), with α > 0, it should return q or −q. These two vectors
are precisely the unit eigenvectors associated to the maximal eigenvalue (which
is equal to 3

4 , the other eigenvectors, orthogonal to q, being associated to the
eigenvalue −1

4 ). Therefore, in [13], we defined

q̄n = one of the unit eigenvectors of Q̄n of maximal eigenvalue. (9)

Note that the direction of q̄n is uniquely defined when the maximal eigenvalue
is simple. Since symmetric matrices with multiple maximal eigenvalues are neg-
ligible, we can expect this definition to be well-posed almost surely.

The first unexpected link found in [13] between this framework of quaternions
and the previous framework of average matrices, is that these two averaging
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procedures are actually equivalent (when the polar decomposition in formula (7)
actually returns a rotation matrix). This is due to the following observations [13]:

Proposition 7.

(i) If M ∈ M is such that det(M) > 0, then the polar decomposition of M is a
rotation matrix, and it is the unique maximizer of the function A 7→ A ·M
among all matrices A in SO3(R).

(ii) A unit eigenvector corresponding to the maximal eigenvalue of a symmetric
matrix Q maximizes the function q 7→ q ·Qq among all unit vectors q of H1.

(iii) If for all n we have Φ(qn) = An, and det(J̄n) > 0, then Φ(q̄n) = Ān,
where J̄n, Ān and q̄n are given by (6)-(7), and (8)-(9).

We therefore have now a good procedure to compute Ān thanks to the fol-
lowing maximization problem (instead of polar decomposition):

Ān = argmax {A ∈ SO3(R) 7→ A ·Mn} , (10)

where J̄n is defined in Eq. (6), and from now on we use this definition of Ān,
which ensures that it corresponds to the definition (9) of q̄n in the world of
quaternions.

Since the next part of the modeling will include some random effects, we can
expect that the configurations for which the average is not well-defined will be
of negligible probability.

We now need to have evolution equations for the orientations (either the
rotation matrices An or the unit quaternions qn). In the spirit of the time discrete
Vicsek model, it would correspond to saying An(t + ∆t) = Ān(t)+ “noise”,
or qn(t + ∆t) = q̄n(t)+ “noise”. However, as was pointed out in [16], in this
procedure ∆t is actually a parameter of the model, and not a time discretization
of an underlying process : indeed, this parameter controls the frequency at which
particles change their orientation, and changing the value of this frequency leads
to drastic changes in the behavior of the model. Regarding the mathematical
study of this type of time-discrete models, it is far from being clear how to go
beyond observations of numerical simulations. However, it is possible to build
models in the same spirit as the Vicsek model which will be much more prone
to mathematical study, in particular if we want to derive a kinetic description
(when the number of particles is large) and macroscopic limit (when the scale
of observation is large). In the next two subsections we present two ways of
building such models. The first one corresponds to a time-continuous alignment
mechanism as was proposed in [16], in which the orientation of one particle
continuously tries to align with its target orientation, up to some noise. This
leads to the models presented in [12] (in the framework of rotation matrices)
and in [13] (in the framework of unit quaternions). The second one, as in the
Vicsek model, corresponds to a process in which orientations undergo jumps
as time evolves, but where the jumps are not synchronous: instead of taking
place every time step for all particles, they all have independent times at which
they change from their orientations to their target orientations, up to some
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noise. This leads to a new model, which is different at the particle and kinetic
levels, but for which the derivation of the macroscopic model gives the same
system of evolution equations (up to the values of the constant parameters of the
model). This procedure was studied in [19] for the alignment mechanism of the
Vicsek model, and they also found that the macroscopic model corresponds to the
Self-Organized Hydrodynamic system of [16] (derived from the time continuous
alignment process).

3.2 Gradual alignment model

We first consider a time-continuous alignment mechanism. We have to take into
account the last two rules (particles try to align with their neighbors, and this
alignment is subject to some noise). For the sake of simplicity, we first present
the alignment dynamics without noise. We will add noise at the end of this
subsection.

The alignment is modeled by a gradual alignment of an agent’s body orien-
tation towards its local average defined in the previous subsection. We express
the evolution towards the average as the gradient of a polar distance between
the agent and the average. It takes the form, in the world of rotation matrices

dAn

dt
= ∇An

[
An · Ān

]
,

and in the world of unit quaternions

dqn

dt
= ∇qn

[
1

2
(qn · q̄n)2

]
,

where the strength of alignment (or equivalently the relaxation frequency) has
been taken to be one (which can be done without loss of generality by changing
time units), and ∇An

and ∇qn
represent the gradients on SO3(R) and H1 re-

spectively. For the quaternions, we took the square of the norm to account for
the fact that only the directions of the vectors qn and q̄n, and not their sign,
should influence the alignment dynamics (this is called nematic alignment, and
it is analogous to the case of rodlike polymers, as described in Subsec. 3.1).

The alignment forces can be rewritten respectively as

∇An

[
An · Ān

]
= PTAn

Ān,

for the matrices, where PTAn
is the orthogonal projection on the tangent space

of SO3(R) at An, given by Eq. (1) (see Prop. 2), and

∇qn

[
1

2
(qn · q̄n)2

]
= Pq⊥

n

[(
q̄n ⊗ q̄n − 1

4 I4

)
qn

]
.

for the quaternions, where Pq⊥
n

= I4 −qn ⊗qn is the projection on the orthogonal
of qn.

The second link found in [13] between the frameworks of quaternions and
rotation matrices, is that these alignment mechanisms are also equivalent.
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Proposition 8. Consider the system, for all n = 1..N ,

dAn

dt
= ∇An

[
An · Ān

]
, (11)

A(t = 0) = A0
n ∈ SO3(R), (12)

with Ān defined in (10), and the system, for all n = 1..N ,

dqn

dt
= ∇qn

[
1

2
(qn · q̄n)2

]
, (13)

q(t = 0) = q0
n ∈ H1, (14)

with q̄n defined in (9). If A0
n = Φ(q0

n) for n = 1..N , then, for any solution (qn)n

of the Cauchy problem (13)–(14), the N -tuple (An)n := (Φ(qn))n is a solution
of the Cauchy problem (11)–(12).

The proof of this proposition relies on two main properties: the equivalence
of the averaging procedures of Prop. 7 on one hand, and, on the other hand, the
computation of the differential of Φ in Prop. 5, which allows us to write a link
between the gradient operators on SO3(R) and on H1.

We finally describe the complete model by adding the third rule (the fact that
the alignment is subject to some noise). The natural way to introduce it is to
transform the ordinary differential equations (4)-(11) and (5)-(13), into stochas-
tic differential equations, which take the form of the two following systems:

{
dXn = Ane1 dt,

dAn = PTAn
◦
[
Āndt+ 2

√
D dB9,n

t

]
,

(15)

and {
dXn = qne1q

∗
n dt,

dqn = Pq⊥
n

◦
[(
q̄n ⊗ q̄n − 1

4 I4

)
qndt+

√
D/2 dB4,n

t

]
,

(16)

where (B9,n
t )n are matrices of M with coefficients given by standard inde-

pendent Brownian motions, and (B4,n
t )n are independent standard Brownian

motions on R
4, D > 0 representing the noise intensity. The stochastic differ-

ential equations have to be understood in the Stratonovich sense, which is well
adapted to write stochastic processes on manifolds [24].

Theorem 1 (Equivalence in law [13]). The processes (15) and (16) are
equivalent in law.

This theorem relies on the properties of the map Φ defined in (2), in the same
way as they are used to prove the equivalence of the alignment dynamics alone
in Proposition 8. However in that case the trajectories were exactly the same due
to the uniqueness of the solution of the Cauchy problem. Here, since the driving
Brownian motions do not belong to the same space (one is on a nine-dimensional
space, the other one in a four-dimensional one) we cannot easily give a sense to
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some pathwise equivalence. However, the projection of these driving Brownian
motions on the tangent space of the manifold we consider produce process which
are actually three-dimensional, in the sense that their trajectories are contained
in a three-dimensional manifold. This is why the equivalence is at the level of
the law of the trajectories. Working on the partial differential equations satisfied
by the densities of the laws of the processes, and relying on the equivalence of
measures in Prop. 6, we can make further use of the differential properties of Φ
to write a link between the divergence and Laplacian operators on SO3(R) and
on H1. We obtain that these partial differential equation are equivalent, which
give the equivalence in law. More precise details on the law of such a stochastic
differential equation is given in Subsection 4.1 for the case of a single individual
evolving in a given orientation field.

3.3 Alignment model with orientation jumps

In this section we describe an alternative alignment mechanism where the ori-
entations of the particles make jumps at random times. For this, we attach a
Poisson point process with parameter 1 to each particle n (for n = 1, . . . , N),
which corresponds to the times at which this particle updates its orientation.
The increasing sequence of positive times will be denoted by (tn,m)m>1, and can
be constructed by independent increments between two consecutive times, given
by exponential variables of parameter 1. This means that the unit of time has
been chosen in order that it corresponds to the average of the time between two
jumps of a given particle.

Next we need to define how the orientation (An or qn) of a particle changes
when there is a jump. Recall the definition of the averages Ān and q̄n in (10)
and (9) respectively. We want the new orientation to be drawn according to a
probability “centered” around Ān (resp. ±q̄n) and radially symmetric, that is,

it should have a density of the form A 7→ MĀn
(A) (resp. q 7→ M̃q̄n

(q)), which

only depends on the distance between A and Ān (resp. the distance between ±q
and ±q̄n). In the matrix world, the square of the norm of an orthogonal matrix
is 1

2 Tr(ATA) = 3
2 , therefore we have ‖A−Ān‖2 = 3−2A·Ān, we are thus looking

at a probability density only depending on A · Ān. Thanks to Prop. (4), in the
world of quaternions, it corresponds to a function only depending on (q · q̄n)2.

To fix the ideas, and to see analogies with the gradual alignment model,
we will take for MĀn

the von-Mises distribution centered around Ān and with

concentration parameter 1
D . We will indeed see that in this case, the results

of the computations for the macroscopic limits that were done in [12,13] can
directly be reused. Of course, the method that we present here still applies for
a generic smooth function of A · Ān.

The von-Mises distribution centered in Λ ∈ SO3(R) and with concentration
parameter 1

D is defined, for A in SO3(R), by

MΛ(A) =
1

Z
exp

(
1

D
A · Λ

)
,

∫

SO3(R)

MΛ(A) dA = 1, (17)
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where Z = ZD < ∞ is a normalizing constant such that this function is a
probability density on SO3(R).

Analogously, we define the von-Mises distribution on H1 as

Mq̄(q) =
1

Z ′ exp

(
2

D

(
(q̄ · q)2 − 1

4

))
,

∫

H1

Mq̄(q) dq = 1, (18)

where Z ′ = Z ′
D is a normalizing constant. Thanks to Prop. 4 and Prop. 6, if q

is a random variable on H1 distributed according to Mq̄, then A = Φ(q) is a
random variable on SO3(R) distributed according to MΛ, where Λ = Φ(q̄).

A useful property of SO3(R) (or H1) is that the dot product is invariant
by multiplication : we have that MĀn

(A) = MI3(ĀT
nA), since I3 · (ĀT

nA) =

Ān ·A. Furthermore, the measure on SO3(R) is also left-invariant. We therefore
only need to be able to draw random variable according to MI3 , thanks to the
following proposition.

Proposition 9. If B ∈ SO3(R) is a random variable distributed according to
the density MI3 , then ĀnB is a random variable distributed according to the
density MĀn

.
Analogously, if r ∈ H1 is a random variable distributed according to the den-

sity M1, then q̄nr is a random variable distributed according to the density Mq̄n
.

Proof. If U is a measurable set of SO3(R), then, by left invariance of the measure

P(ĀnB ∈ U) = P(B ∈ ĀT
nU)

=

∫

ĀT
n U

MI3(A)dA =

∫

U

MI3(ĀT
nA)dA =

∫

U

MĀn
(A)dA.

Notice that this proof does not rely on the particular expression of the von-Mises
distribution, and still applies if MĀn

(A) is a generic function of Ān ·A. The proof
is analogous for the quaternion version. ⊓⊔

We are now ready to construct the stochastic process corresponding to the
evolution of positions and orientations of the particles.

Definition 1. We are given:

– a probability density MI3 on SO3(R), with the property that MI3(A) only
depends on I3 ·A = 1

2Tr(A) (we will take the von-Mises distribution defined
in (17) in the following of the paper),

– some independent random variables Sn,m > 0 and ηn,m ∈ SO3(R), such that
for 1 6 n 6 N and m ∈ N, Sn,m is distributed according to an exponential
law of parameter 1 and ηn,m is distributed according to MI3 ,

– some initial positions Xn,0 ∈ R3 and initial body orientations An,0 ∈ SO3(R)
for 1 6 n 6 N .

The variables (Sn,m)m∈N represent the intervals of time between consecutive
jumps for particle number n. Therefore we define tn,m =

∑
06ℓ<m Sn,ℓ, which
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corresponds to the time at which particle number n changes its orientation for
the m-th time. The positions and orientations are then defined inductively (al-
most surely, all times tn,m are distinct) by





Xn(0) = Xn,0,

Xn(t) = Xn(tn,m) + (t− tn,m)An(t)e1, if t ∈ [tn,m, tn,m+1),

An(t) = An,0, if t ∈ [0, tn,1),

An(t) = Ān(t−n,m)ηn,m, if t ∈ [tn,m, tn,m+1),m > 1,

(19)

where Ān is the maximizer of the function A 7→ A · 1
N

∑N
l=1 K(Xl −Xn)Al.

Since all the independent random variables ηn,m are distributed according to a
law which has a density with respect to the Lebesgue measure on SO3, and the
set of configurations for which this maximizer Ān is not well defined are included
in low dimensional manifolds (compared to the configuration space), we expect
that this process is almost surely well defined. We do not give a detailed proof
of this fact here since we are interested in derivation of kinetic models which
will share the same issues, therefore we will focus on the formal derivation of
these model in the case where this maximizer is well defined everywhere. The
rigorous treatment of this issue is outside the scope of these lecture notes. It is
even far from being well understood, even in the case of the Vicsek model, for
which the only bad configurations are those with a zero average velocity. At the
kinetic level, the only known global existence of solutions requires very strong
assumptions of non-vanishing average velocity (which are not only assumptions
on the initial conditions) [23].

Analogously, we can define this process in the world of quaternions.

Definition 2. We are given:

– a probability density M1 on H1, with the property that M1(q) only depends
on (1 · q)2 = Re(q)2 (we will take the von-Mises distribution defined in (18)
in the following of the paper),

– some independent random variables Sn,m > 0 and ηn,m ∈ H1, such that
for 1 6 n 6 N and m ∈ N, Sn,m is distributed according to an exponential
law of parameter 1 and ηn,m is distributed according to M1,

– some initial positions Xn,0 ∈ R3 and initial body orientations qn,0 ∈ H1

for 1 6 n 6 N .

Again, we define tn,m =
∑

06ℓ<m Sn,ℓ, which corresponds to the time at which
particle number n changes its orientation for the m-th time. The positions and
orientations are then defined inductively (almost surely, all times tn,m are dis-
tinct) by





Xn(0) = Xn,0,

Xn(t) = Xn(tn,m) + (t− tn,m) qne1q
∗
n, if t ∈ [tn,m, tn,m+1),

qn(t) = qn,0, if t ∈ [0, tn,1),

qn(t) = q̄n(t−n,m)ηn,m, if t ∈ [tn,m, tn,m+1),m > 1,

(20)
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where q̄n is defined in (8)-(9).

Once again, we expect this process to be defined almost surely, and as we re-
marked, thanks to Prop. 4, these two definitions give rise to processes which are
equivalent in law, through the map Φ. A last remark is that these processes are a
particular case of Piecewise Deterministic Markov Processes (PDMP’s): between
two jumps, the configuration follows an Ordinary Differential Equation (which
in our case is nothing else than free transport). More comments on PDMP’s will
be made in Subsection 4.2.

4 Derivation of kinetic models

The aim of this section is to present a heuristic derivation of kinetic models
corresponding to the limit of the particle systems when the number of particles
is large. We present this derivation in the framework of rotation matrices, and
we will give the corresponding kinetic models in the framework of quaternions
at the end of this section.

To this aim, we introduce the so-called empirical distribution fN of the par-
ticles as the measure

fN (x,A, t) =
1

N

N∑

i=1

δXi(t)(x) ⊗ δAi(t)(A),

that is to say that if ϕ is a continuous and bounded function from R3 ×SO3(R)
to R, the integral of ϕ with respect to this measure (at time t) is given by

∫

R3×SO3(R)

ϕ(x,A)fN (x,A, t)dxdA =
1

N

N∑

i=1

ϕ(Xi(t), Ai(t)). (21)

This function is independent of the change of numbering of particles, we say
that particles are indistinguishable.

Notice that the average orientation Ān defined in (10) can be constructed
through the empirical distribution : if we define, for a given probability density f ,
the functions JK

f and ΛK
f by

JK
f (x) =

∫

R3×SO3(R)

K(x− y)Af(y,A) dy dA, (22)

ΛK
f (x) is a maximizer on SO3(R) of A 7→ A · JK

f , (23)

we get that the definition (6) can be written as J̄n = JK
fN (Xn). And therefore we

get Ān = ΛK
fN (Xn). Therefore we obtain that the interaction between particles

(which is only due to this target orientation Ān) corresponds to an interaction,
for each particle, with the field generated by the empirical distribution fN . The
type of limit we want to understand is called mean-field limit: when the number
of particles is large, correlations between finite numbers of particles tend to
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vanish, and a kind of law of large numbers gives that the empirical distribution
is well approached by the law of one single particle. This phenomenon is linked
to the notion of propagation of chaos, and we refer to [27] for an introduction.
This type of limit has been rigorously shown to be valid in various models of
collective behavior, such as [3] in a regularized Vicsek model, and [2,5] in cases
with less regularity. In our model, it is not straightforward to apply this strategy
(due to the regularity issues for the definition of ΛK

f ), therefore we only present
a heuristic derivation of the mean-field limit one would obtain if the empirical
distribution fN converges to the law of one single particle when N is large.

Let us now focus for the moment on a single particle model aligning with a
given “target field” Λ(x, t) ∈ SO3(R), and subject to some noise, as in the models
given in the previous section. This corresponds to replacing Ān(t) by Λ(Xn, t)
in the models given by (15) (for the gradual alignment model) and (19) (for the
alignment model by orientation jumps).

4.1 Gradual alignment of a single individual in an orientation field

We then consider the following stochastic differential equation, for the evolu-
tion of a particle at position Xt and body orientation At, in an orientation
field Λ(x, t) ∈ SO3(R) :

{
dXt = Ate1 dt,

dAt = PTAt
Λ(Xt, t) dt+ 2

√
DPTAt

◦ dB9
t ,

(24)

where B9
t is a matrix with independent coefficients given by 9 standard Brow-

nian motions on R, and the ◦ indicates that this has to be understood in the
Stratonovich sense. Let us see how this last fact ensures that the orientation A(t)
stays on SO3(R). Thanks to the classical chain rule satisfied by Stratonovich
SDE’s [24], for a smooth function ϕ(x,A), we have

ϕ(Xt, At) =ϕ(X0, A0)

+

∫ t

0

(
Dxϕ(Xs, As)[Ase1] + DAϕ(Xs, As)[PTAs

Λ(Xs, s)]
)

ds

+ 2
√
D

∫ t

0

(
DAϕ(Xs, As)[PTAs

(·)]
)

◦ dB9
s ,

(25)

where Dx and DA are the differentials with respect to x ∈ R3 and A ∈ M. Now,
if we take ϕ(x,A) = ATA−I3, we get that DAϕ(x,A)[H ] = ATH+HTA. Thanks
to the formula (1), we then get that the linear operator DAϕ(x,A)[PTA

(·)]
(from M to M) is given by

DAϕ(X,A)[PTA
H ] =

1

2
AT(H −AHTA) +

1

2
(HT −ATHAT)A

=
1

2
(ATHϕ(x,A) − ϕ(x,A)HTA).
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Therefore, if we define the linear operator L(Y, t) : H 7→ 1
2 (AT

t HY −Y HTAt)
and the process Yt = ϕ(Xt, At) = AT

t At − I3, Eq. (25) becomes

Yt = Y0 +

∫ t

0

L(Ys, s)[Λ(Xs, s)]ds+ 2
√
D

∫ t

0

L(Ys, s) ◦ dB9
s ,

hence the process Yt satisfies a linear SDE with initial condition 0, therefore it
is 0 for all time, which means that At stays in SO3(R) for all time.

Moreover, it is shown in Chapter 3 of [24] that for a manifold N embedded
in the euclidean space Rd, the generator of the SDE equation dZt = σPTZt

◦dBd
t

(where PTy
is the orthogonal projection on the tangent space Ty of N at y)

is σ2

2 ∆N , where ∆N is the Laplace-Beltrami operator on N (the solution of this
SDE is called Brownian motion on N ). This means that for a smooth function ϕ
on N ,

E[ϕ(Zt)] = E[ϕ(Z0)] +
σ2

2
E

[∫ t

0

∆Nϕ(Zs) ds

]
.

Using the Stratonovich chain rule, this means that

E

[
σ

∫ t

0

DZϕ(Zt)[PTZt
(·)] ◦ dBd

t

]
=
σ2

2
E

[∫ t

0

∆Nϕ(Zs) ds

]
.

In our case, if we write N = SO3(R), with the metric induced by the eu-
clidean metric in R9, this would mean that the expectation of the last term
of (25) is 2D

∫ t

0
∆Nϕ(Xs, As)ds. However, the metric we used for SO3(R) is

induced by the dot product (A,B) 7→ 1
2 Tr(ATB), which is half of what cor-

responds to the euclidean dot product in R9. The Riemannian metric is then
divided by 2, and the formula for the Laplace-Beltrami operator gives that it
is then multiplied by 2 (recall the condensed form ∆gϕ = 1√

|g|
∂i(
√

|g|gij∂iϕ),

where gij are the coefficients of the inverse of the metric tensor (gij)i,j). There-
fore we get ∆Aϕ = 2∆Nϕ. Finally, for an arbitrary test function ϕ with values
in R, taking the expectation in Eq. (25), and using the gradient formulation
instead of the differential, we get

E[ϕ(Xt, At)] = E[ϕ(X0, A0)]

+E

[∫ t

0

[∇xϕ(Xs, As) · Ase1 + ∇Aϕ(Xs, As) · PTAs
Λ(Xs, s)

+D∆Aϕ(Xs, As)]ds

]
.

(26)

Finally, we denote by f(x,A, t) the law of such a particle at time t, which
is defined by the formula E[ϕ(Xt, At)] =

∫
R×SO3(R)

ϕ(x, a)f(x,A, t)dAdx. Then,

the fact that Eq. (26) holds for any test function ϕ, corresponds exactly to the
fact that f is a weak solution of the following linear evolution equation:

∂tf + (Ae1) · ∇xf = −∇A · (PTA
Λf) +D∆Af. (27)
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4.2 Alignment by orientation jumps, for a single individual in a
field

We now turn to the model of alignment by orientation jumps. We then con-
sider the following process: given some independent random variables Sm > 0
and ηm ∈ SO3(R), such that for m ∈ N, Sm is distributed according to an ex-
ponential law of parameter 1 and ηm is distributed according to MI3 , an initial
position X0 ∈ R3 and orientation A0 ∈ SO3(R), we define tm =

∑
06ℓ<m Sℓ,

and the position and orientation at time t are then defined inductively (almost
surely, all times tm are distinct) by





Xt = Xtm
+ (t− tm)Ate1, if t ∈ [tm, tm+1),

At = A0, if t ∈ [0, t1),

At = Λ(Xtm
, t−m)ηm, if t ∈ [tm, tm+1), with m > 1,

(28)

Another way to describe this process (Xt, At) is to say that it is a (non au-
tonomous) Piecewise Deterministic Markov Process (PDMP) with jump rate 1,
with flow φ given by φ((X,A), t) = (X + tAe1, A) and with transition mea-
sure Qt((X,A), ·) = δX ⊗MΛ(X,t). The only difference with classical description
of PDMP’s (see for instance [1] for a review of recent results), except from the
fact that we work on a manifold rather than an open set of Rd, is that the
transition measure depends on time.

Let us explain how to derive the evolution equation for the law of the pro-
cess (Xt, At). We take once again a smooth test function ϕ(x,A), we fix a small
time interval δt, and we evaluate the expectation of ϕ(Xt+δt, At+δt). With prob-
ability 1 − δt + o(δt), there is no jump in (t, t + δt) and therefore At+δt = At,
and Xt+δt = Xt + δtAte1. With probability δt+ o(δt), there is exactly one jump
at time s in (t, o(δt)), and therefore At+δt = As which follows the distribu-
tion MΛ(Xs,s). Of course we have (t − s) = o(1). Finally, there are two or more
jumps in (t, t+ δt) with probability o(δt). We therefore get

E[ϕ(Xt+δt,At+δt)] = (1 − δt+ o(δt))E[ϕ(Xt + δtAte1, At)]

+ δtE

[∫

SO3(R)

ϕ(Xt + o(1), A′)MΛ(Xt+o(1),t+o(1))(A
′)dA′

]
+ o(δt),

which gives, by smoothness of ϕ, and if we assume that Λ and Λ 7→ MΛ are
smooth enough, that

1

δt

(
E[ϕ(Xt+δt,At+δt)] − E[ϕ(Xt, At)]

)
= E[∇xϕ(Xt, At) · Ate1] − E[ϕ(Xt, At)]

+ E

[∫

SO3(R)

ϕ(Xt, A
′)MΛ(Xt,t)(A

′)dA′
]

+ o(1),
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that is to say

d

dt
E[ϕ(Xt, At)] = E

[
∇xϕ(Xt,At) · Ate1 − ϕ(Xt, At)

+

∫

SO3(R)

ϕ(Xt, A
′)MΛ(Xt,t)(A

′)dA′
]
.

(29)

Finally, as in the previous subsection, we denote by f(x,A, t) the law of such
a particle at time t, defined by E[ϕ(Xt, At)] =

∫
R×SO3(R)

ϕ(x, a)f(x,A, t)dAdx.

Now, the fact that Eq. (29) holds for any test function ϕ corresponds exactly to
the fact that f is a weak solution of the following linear evolution equation:

∂tf + (Ae1) · ∇xf = ρfMΛ − f, (30)

where

ρf (x, t) =

∫

SO3(R)

f(x,A, t)dA. (31)

4.3 Kinetic mean-field models of alignment

Let us summarize the results of the two previous subsections: for the evolution
of a particle in an orientation field Λ(x, t) according to one of the models (24)
or (28), the law f of the particle is evolving according to one of the (linear)
kinetic equations (27) or (30) which is of the form:

∂tf + (Ae1) · ∇xf = ΓΛ(f), (32)

with

ΓΛ(f) =

{
−∇A · (PTA

Λf) +D∆Af in the gradual alignment model,

(ρfMΛ − f) in the jump model.
(33)

We are now ready to provide a formal derivation of the equation satisfied by
the law of one particle in the limit of a large number of particles. The heuristic
is as follows: if we consider that the empirical distribution fN of the particles
converges to a deterministic law f , either for the gradual alignment process (15)
or for the model with orientation jumps (19), then each particle will evolve in
the limit N → ∞ as a single particle in a orientation field Λ(x, t) corresponding
to ΛK

f(t,·)(x), given by the formulas (22)-(23). Therefore the evolution of the law

of one particle, in the limit N → ∞, is governed by the evolution equation (32)
where Λ is replaced by ΛK

f . This gives the following (now non-linear and non-
local) evolution equation:

∂tf + (Ae1) · ∇xf = ΓΛK
f

(f), (34)

where ΓΛ(f) is defined above in (33), and with

JK
f (x) =

∫

R3×SO3(R)

K(x− y)Af(y,A) dy dA,

ΛK
f (x) maximizes A 7→ A · JK

f (x) on SO3(R).
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This heuristic can be made rigorous if the map f 7→ Λf is regular (which is not
the case here, as there are configurations for which it is not even well defined).
Let us quickly present the coupling method (see for instance [27]) to understand
how we can indeed use the law of large numbers for independent processes. The
idea is first to construct a nonlinear process (for one single particle) which is the
natural limit of the evolution of one particle in the particle system corresponding
to (15) or (19), and for which the law is following the evolution equation (34).
For the gradual alignment process, given a Brownian motion B9

t as in (24), it
would be defined as follows





dXt = Ate1 dt,

dAt = PT
At

Λf(t,·)(Xt) dt+ 2
√
DPT

At

◦ dB9
t ,

f(t, ·) is the law of (Xt, At).

(35)

For the orientation by jumps, given random variables tm and ηm as in (28), it
would be given by





Xt = Xtm
+ (t− tm)Ate1, if t ∈ [tm, tm+1),

At = A0, if t ∈ [0, t1),

At = Λf(tm,·)(Xtm
)ηm, if t ∈ [tm, tm+1), with m > 1,

f(t, ·) is the law of (Xt, At).

(36)

These constructions can be seen as fixed point problems for the laws of the
trajectories, and this is where the regularity of f 7→ Λf can be used to prove
a contraction property in an appropriate space. Once these processes are well
defined, the second idea of the method of couplings is to introduce N of these
processes (35) or (36), for which the initial conditions and random variables
(Brownian motions B9

t , n or jump times tn,m and rotations ηn,m) are the same as
for the particle systems (15) and (19). By construction, these auxiliary nonlinear
processes (Xn(t), An(t)) are independent and identically distributed according
to the law f , solution of the kinetic equation (34). Therefore the last step of the
coupling method is to perform estimates of the differences between the trajec-
tories of the particle system and of the auxiliary process in order to let appear
quantities reminiscent of (21), but of the form

1

N

N∑

i=1

ϕ(X i(t), Ai(t)), (37)

for which the law of large numbers applies.
Let us finish this subsection by presenting the kinetic equation we obtain

(exactly in the same manner) when working with unit quaternions instead of
rotation matrices. The formal mean-field limit of the particle system (16) or (20)
is given by the following evolution equation, for the density f(t, x, q) of finding a
particle at position x with orientation given by the unit quaternion q at time t:

∂tf + Φ(q)(e1) · ∇xf = ΓqK
f
f, (38)
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with

Γq(f) =

{
−∇q · (Pq⊥ (q ⊗ q)q f) + D

4 ∆qf in the gradual alignment model,

(ρfMq − f) in the jump model,

(39)
where

ρf =

∫

H1

f(q)dq, (40)

QK
f (x) =

∫

R3×H1

K(x− y)(q ⊗ q − 1
4 I4)f(y, q)dy dq, (41)

qK
f (x) is an eigenvector of QK

f (x) of maximal eigenvalue. (42)

5 Macroscopic limit

In this section we derive the macroscopic dynamics for the kinetic equations (34)
and (38). This means that we are interested in the dynamics in the large time
as well as large-space scale. For this we first introduce a scaling with respect
to a small parameter ε. We then determine the local equilibria of the collision
operator, which depend on two macroscopic quantities, a density ρ and a local
orientation Λ. The final step is then the derivation of the evolution equations of
these macroscopic functions ρ and Λ. The first one comes from the conservation
of mass (a collision invariant), and the second one needs more work, and can
be derived using the concept of Generalized Collisional Invariants introduced
in [16]. The subsection presenting this concept and how to use it to obtain the
evolution equation for Λ is the main part of this section.

5.1 Scaling

We introduce the macroscopic temporal and spatial variables (t′, x′) given by

t′ = εt, x′ = εx,

where 0 < ε ≪ 1 is a scale parameter. We also consider the following rescaling
for the interaction kernel:

Kε(x) =
1

ε3
K
(x
ε

)
.

This corresponds to localized interactions as ε → 0 (see Rem. 1 below). Notice
that ∫

R3

Kε(x) dx =

∫

R3

K(x) dx = 1.

Define the function fε in the macroscopic variables as

fε(t′, x′, A) = f(t, x, A).
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Our goal is to determine the dynamics for this function as ε → 0. Firstly, one
can check that the evolution equation for fε is given by

ε(∂tfε + (Ae1) · ∇xfε) = ΓΛKε
fε

(fε), (matrix formulation), (43)

ε(∂tfε + Φ(q)(e1) · ∇xfε) = Γq̄Kε
fε

(fε), (quaternion formulation), (44)

where the primes have been skipped. We recall that the definition of the op-
erators ΓΛ and Γq̄ are given in (33) and (39) respectively, and the definitions

of the average orientations ΛKε

fε
and q̄Kε

fε
are given in (22)–(23) and (41)–(42)

respectively.

Next, we expand the collision operators in the parameter ε.

Lemma 1 (Expansion for localized interactions). The following expansion
holds:

JKε

f = Kε ∗x Jf = Jf + O(ε2),

where Jf (x) takes in account the dependence of f on the variable A only:

Jf (x) =

∫

SO3(R)

Af(x,A) dA. (45)

Consequently, we can recast Eq. (43) as

ε(∂tfε + (Ae1) · ∇xfε) = ΓΛfε
(fε) + O(ε2), (46)

where

Λf maximizes A 7→ A · Jf on SO3(R). (47)

Analogously, we have that

QKε

f = Kε ∗x Qf = Qf + O(ε2),

where

Qf (x) =

∫

R3×H1

(q ⊗ q − 1
4 I4)f(x, q) dq, (48)

and Eq. (44) is recast as

ε(∂tfε + Φ(q)(e1) · ∇xfε) = Γq̄fε
fε + O(ε2), (49)

where

q̄f is an eigenvector of Qf of maximal eigenvalue. (50)

Remark 1 (Localized interactions). Notice that in the leading order of the ex-
pansion of Kε, we obtain a delta distribution in x. This is why we say that this
kind of rescaling corresponds to localized interactions in the limit ε → 0.
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The proof of the expansions in Lem. 1 is straightforward using the Taylor
expansion and the fact that

∫

R3

xK(x) dx = 0,

for more details on this and the fact that Λf and q̄f are indeed defined as in
the lemma, the reader is referred to [12, Lem. 4.1] and [13, Lem. 4.2, Prop. 4.3],
respectively.

Our goal is to investigate the limit of fε as ε → 0. Firstly, notice that,
formally, from Eq. (46) we have that

if fε(t, x, ·) → f0(t, x, ·) as ε → 0 then f0(t, x, ·) ∈ ker(ΓΛf0(t,x,·)
), (51)

in the matrix formulation, or

if fε(t, x, ·) → f0(t, x, ·) as ε → 0 then f0(t, x, ·) ∈ ker(Γq̄f0(t,x,·)
), (52)

in the quaternion formulation. For this reason, we study next the kernel of the
operator ΓΛ (which is an operator acting on functions of A ∈ SO3(R) only) for
a fixed Λ ∈ SO3(R) (analogously Γq̄ for fixed q̄ ∈ H1) in the following section.

5.2 Study of the collision operator Γ

The goal of this subsection is to show that both the jump model and the gradual
alignment model have the same type of equilibria. More precisely, we show the
following proposition.

Proposition 10 (Equilibria, matrix formulation). Recall the definition of
the operator ΓΛ in Eq. (33), and the definition of the von Mises distribution MΛ

in Eq. (17). Then, for any f ≥ 0, we have

ΓΛf
(f) = 0 ⇐⇒ f = ρMΛ, for some ρ ≥ 0, Λ ∈ SO3(R). (53)

Furthermore, any element f of the form f = ρMΛ, with ρ ≥ 0 and Λ ∈ SO3(R)
satisfies the consistency relations

ρf = ρ, Jf = ρc1Λ, Λf = Λ, (54)

where c1 ∈ (0, 1) is an explicit constant, and ρf , Jf and Λf are defined in
Eq. (31), Eq. (45), and Eq. (47), respectively.

As a consequence, both the gradual alignment model and the jump model have
the same equilibria, and therefore, the same type of (formal) limit as ε → 0: we
can write

f0(t, x, A) = ρ(t, x)MΛ(t,x)(A),

for some ρ(t, x) ≥ 0 and Λ ∈ SO3(R) satisfying furthermore the consistency
relations

ρf0 (t, x) = ρ(t, x), Jf0 (t, x) = ρ(t, x)c1Λ(t, x), Λf0(t, x) = Λ(t, x). (55)
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Remark 2 (Variants in the jump-based model). In the jump-based model, the
result holds true formally if we replace (in the collision operator and in the result)
the von-Mises distribution by any distribution. Therefore, the jump-based model
can reproduce a great variety of behaviors in terms of equilibria.

The proof of Prop. 10 is done in [12] in the case of the gradual alignment
model. We summarize here the main ideas.

We first prove the consistency relations. Let us take a function f of the form

f = ρMΛ, (56)

for some ρ ≥ 0 and Λ ∈ SO3(R). Now, one can check by direct computation that
the following consistency relation holds for the average of MΛ (see proof in [12,
Lem. 4.4]):

∫

SO3(R)

AMΛ(A) dA = c1Λ, for some c1 ∈ (0, 1) explicit.

With this, integrating expression (56) against 1 and A in SO3(R) we obtain
the two first equalities of Eq. (54). To conclude the proof of Eq. (54), the last
equality is a consequence of the second one.

Now, in the gradual alignment model, it is proved in [12] that the opera-
tor ΓΛf

can be recast as

ΓΛf
(f) = D∇A ·

(
MΛf

∇A

(
f

MΛf

))
. (57)

Using expression (57), one can obtain that

ker(ΓΛf
) = {ρMΛf

for any ρ = ρ(t, x)}

(see detailed proof of this statement in [12, Lem. 4.3]), which, thanks to the
consistency relations proved before, is equivalent to Eq. (53).

In the case of the jump model, from the definition of the operator ΓΛf
it is

straightforward that its kernel is given by the functions f such that

f = ρfMΛf
,

that is, since we have taken MΛ to be the von-Mises distribution, and using
again the consistency relations, exactly Eq. (53).

Therefore, for both models, we can use Eq. (51) to see that the limit f0 must
be of the form

f0(t, x, A) = ρ(t, x)MΛ(t,x)(A), (58)

for some ρ = ρ(t, x) and Λ = Λ(t, x) ∈ SO3(R) to be determined, and which
satisfy the consistency relations.

Analogously, we obtain the same kind of results for the formulation with
quaternions. We write only the result on the limiting function.
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Lemma 2 (Equilibria, quaternion formulation). Recall the definition of
the operator Γq̄ in Eq. (39) and of the von Mises distribution Mq̄ in Eq. (18).
Then, both the gradual alignment model and the jump model have the same equi-
libria, and therefore, the same type of limit as ε → 0: we can write

f0(t, x, q) = ρ(t, x)Mq̄(t,x)(q),

for some ρ(t, x) ≥ 0 and q̄(t, x) ∈ H1 satisfying furthermore the consistency
relations

ρf0 (t, x) = ρ(t, x), q̄f0 (t, x) = q̄(t, x), (59)

where c1 ∈ (0, 1) is an explicit constant, and ρf and q̄f are defined in Eq. (40)
and Eq. (50), respectively.

The proof of this proposition is done in [13] in the case of the gradual align-
ment model. We only recall the main ideas here. First, the consistency relations
rely on the consistency relation satisfied by the von-Mises distribution on H1,
which is (see [13, Prop 4.4]):

the leading eigenvector of

∫

H1

(q ⊗ q − 1

4
I4)Mq̄ dq corresponds to q̄. (60)

Therefore, if we take any f of the form

f = ρMq̄,

multiplying this expression by 1 and (q⊗ q− 1
4 I4) and integrating on H1 we have

that

ρf = ρ, Qf = ρf

∫

H1

(q ⊗ q − 1

4
I4)Mq̄ dq,

where Qf is defined in Eq. (48). As a consequence of the last equality,

q̄f = q̄.

To compute the kernel of the collision operator, in the gradual alignment model

we use that the collision operator can be recast as

Γq̄f
(f) =

D

4
∇q ·

(
Mq̄f

∇q

(
f

Mq̄f

))
,

(proved in [13]). In the jump-based model the computation of the kernel is
straightforward.

We then use Eq. (52) to conclude the proposition.

In summary, we have seen that, formally, the limit of fε will be of the
form ρMΛ (or ρ̄Mq̄ for the quaternion case). We are left with determining the
dynamics of the functions ρ = ρ(t, x), ρ̄ = ρ̄(t, x), Λ = Λ(t, x) and q̄ = q̄(t, x)
(macroscopic quantities). This is done in the following section.
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5.3 The equation for the density ρ

We first compute the evolution for the density ρ = ρ(t, x). We integrate the
rescaled kinetic equation (46) over SO3(R) and divide by ε to obtain

∂t

(∫

SO3(R)

fε dA

)
+ ∇x ·

(∫

SO3(R)

Ae1 fε dA

)
= 0.

Importantly, the right-hand side has vanished in the integration. This cancella-
tion reflects the fact that the total mass is conserved, i.e., the number of particles
is preserved through the interactions. Now we can take formally the limit ε → 0
and since we know the limit of fε in Eq. (58) we have that

∂t

(∫

SO3(R)

ρMΛ(A) dA

)
+ ∇x ·

(∫

SO3(R)

(Ae1) ρMΛ(A) dA

)
= 0,

which corresponds to
∂tρ+ c1∇x · (ρΛe1) = 0, (61)

given the consistency relations (55). The equation for the density ρ in (61) cor-
responds to the continuity equation: the density of particles is transported with
a velocity equal to c1Λe1.

In the formulation with quaternions, analogous computations give the same
equation for ρ̄ with Φ(q̄)(e1) instead of Λe1, that is,

∂tρ+ c1∇x · (ρΦ(q̄)(e1)) = 0.

We are left with computing the evolution for Λ = Λ(t, x) and q̄ = q̄(t, x).
This is done in the following section.

5.4 The equation for the body orientation Λ

The natural path to obtain an equation for Λ = Λ(t, x) is to multiply the rescaled
kinetic equation (46) by A; integrate this expression in SO3(R); and use the con-
sistency relations (55) at the limit ε = 0. First multiplying by A and integrating
we obtain

∂t

∫

SO3(R)

Afε dA+

∫

SO3(R)

[A (Ae1 · ∇x)fε] dA =
1

ε

∫

SO3(R)

AΓΛfε
(fε) dA+ O(ε),

after dividing by ε on both sides. Notice that the limit of the first term indeed
will correspond to c1∂t(ρΛ) thanks to the second consistency relation in Eq. (55).
However, it is unclear how to deal with the ε−1 term on the right hand side as
we do not have enough information on the asymptotics of the integral (and the
same difficulty arises in the quaternion framework). In classical kinetic theory (in
Mathematical Physics), this difficulty does not arise: typically every macroscopic
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quantity corresponds to what is called a conserved quantity or collision invariant.
We say that a function ψ is a collision invariant if for all f (in a reasonable class
of functions) ∫

SO3(R)

ψΓΛf
dA = 0.

We have already seen that ψ = 1 is a collision invariant corresponding to the total
mass being conserved. However, here the body orientation Λ is not a conserved
quantity. The same kind of non-conservative property arises in the Vicsek model
for the momentum of the particles. To sort out this problem we will relax the
condition of being a collision invariant taking into account the constraint given
by the second equality in Eq. (55) for the limiting function. This gives rise to
the concept coined as the Generalized Collision Invariant in Ref. [16] and that
we explain in the following.

The Generalized Collision Invariant. Consider the following definition:

Definition 3 (Generalised Collision Invariant). A function ψΛ0 is a Gen-
eralized Collision Invariant (GCI) associated with Λ0 ∈ SO3(R) of the opera-
tor Γ if it holds that

∫

SO3(R)

ΓΛ0 (f)ψΛ0 = 0, for all f such that PTΛ0

(∫

SO3(R)

A f dA

)
= 0.

We denote by GCI(Λ0) this set of Generalized Collision Invariants associated
with Λ0.

In the quaternion formulation, we say that a function ψq0 is a Generalized
Collision Invariant associated to q0 ∈ H1 of the operator Γ if it holds that

∫

H1

Γq0 (f)ψq0 = 0, for all f such that Pq⊥

0

(∫

H1

(q ⊗ q − 1
4 I4)f(q) dq q0

)
= 0.

We also denote by GCI(q0) this set of Generalized Collision Invariants associated
with q0.

Remark 3 (On the constraints on the test functions). In the matrix formulation,
one can notice that the condition on the test functions f is equivalent to saying
that Jf ∈ T⊥

Λ0
, which is equivalent to Jf = Λ0S for some symmetric matrix S

(see Prop. 2). Taking S = ρc1I3 and Λ0 = Λf0 , we recover the second equality
in (55). That is, the limiting function f0 is an admissible test function in the
definition of the GCI (associated with Λf0). Something similar happens in the
case of the quaternions: the conditions on the test functions f is equivalent to
asking that Pq⊥

0
(Qf q0) = 0, which will hold true if q0 is an eigenvector of Qf ,

which is what happens, in particular, for f = f0 and q0 = q̄f0 by the second
equality in (59). Therefore, the limiting function f0 is an admissible test function
in the definition of the GCI (associated with q̄f0 ).
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Remark 4. It is straightforward to see that this notion extends the notion of
collision invariant. In particular, the mass ψ = 1, which is a collision invariant,
is also a GCI (associated with Λ0 for any Λ0 ∈ SO3(R) if we see ψ as a function
on SO3(R), and associated with q0 for any q0 ∈ H1 if we see ψ as a function
on H1). Note in particular that the definition of the GCI is non-empty.

We explain next how the GCI is useful. Multiplying Eq. (46) by a GCI
associated with Λfε

and integrating with respect to A we obtain

ε

∫ (
∂tfε + (Ae1 · ∇x)(fε)

)
ψΛfε

dA = 0.

Notice that, indeed, the right hand side vanishes since

∫

SO3(R)

ΓΛfε
(fε) ψΛfε

= 0,

given that fε satisfies the condition

PTΛfε

(∫

SO3(R)

Afε dA

)
= PTΛfε

Jfε
= PTΛfε

(SεΛfε
) = 0,

where Jfε
= SεΛfε

is the Polar Decomposition of Jfε
and Sε is a symmetric

matrix, therefore Jfε
∈ T⊥

Λfε
(see Prop. 2).

Now, dividing by ε and then making ε → 0, using (58) we obtain

∫

SO3(R)

(
∂t(ρMΛf0

) + (Ae1) · ∇x(ρMΛf0
)
)
ψΛf0

dA = 0. (62)

Consequently, if we can compute the Generalized Collision Invariants in an ex-
plicit form, then we will be able to make explicit the limit given in Eq. (62) and
we will be done. This is done in the following.

Description of the GCI. The explicit description of the GCI is given in the
following proposition. For this, we need to introduce h = h(r) the unique solution
(see Ref. [13]) of the following differential equation on (−1, 1):

(1 − r2)3/2 exp

(
2r2

d

)(−4

d
r2 − 3

)
h(r) +

d

dr

[
(1 − r2)5/2 exp

(
2r2

d

)
h′(r)

]

= r (1 − r2)3/2 exp

(
2r2

d

)
. (63)

The function h is odd: h(−r) = −h(r), and it satisfies for all r ≥ 0, h(r) ≤ 0 (by
maximum principle).
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Proposition 11 (Description of the GCI). Let Λ0 ∈ SO3(R) and q0 ∈ H1.
Then, it holds that

GCI(Λ0) = span
{

1, ∪P ∈AψP
Λ0

}
, (matrix formulation),

GCI(q0) = span
{

1, ∪β∈q0
⊥ψβ

q0

}
, (quaternion formulation),

where, for P ∈ A and β ∈ q⊥
0 ,

ψP
Λ0

(A) = P · (ΛT
0 A) k̄(Λ0 · A), (matrix formulation),

ψβ
q0

(q) := (β · q) h̄(q · q0), (quaternion formulation)
(64)

with h̄ given by, for r ∈ (−1, 1),

h̄(r) =

{
h(r) in the gradual alignment model,

r in the jump model,

where h is the unique solution of the differential equation (63), and k̄ given by,
for r ∈ (−1/2, 3/2),

k̄(s) =
h̄(1

2

√
2s+ 1)

1
2

√
2s+ 1

. (65)

The function k̄ is designed so that k̄(1
2 + cos θ) =

h̄(cos θ
2 )

cos θ
2

. It is negative in the

gradual alignment model and a constant equal to k̄ = 1 in the jump model.

Remark 5. The relation between the functions k̄ and h̄ in Eq. (65) is related to
the relation between dot products, see Prop. 4.

The first step to prove this proposition is a characterization of the GCI in
terms of the adjoint of the collision operator.

Lemma 3 (Characterization of the GCI). A function ψΛ0 : SO3(R) → R

(resp., ψq0 : H1 → R) is a GCI associated with Λ0 ∈ SO3(R) (resp., associated
with q0 ∈ H1) if and only if there exists P ∈ A (resp., β ∈ q⊥

0 ) such that ψΛ0

(resp., ψq0 ) is solution of

Γ ∗
Λ0
ψΛ0 (A) = P · ΛT

0 A, for all A ∈ SO3(R) (matrix formulation),

Γ ∗
q0
ψq0 (q) = (β · q)(q · q0), for all q ∈ H1 (quaternion formulation),

(66)

where Γ ∗
Λ0

denotes the adjoint in L2(SO3(R)) of the operator ΓΛ0 (resp., and Γ ∗
q0

denotes the adjoint in L2(H1) of Γq0 ).

Proof. We show the proof here for the matrix formulation. For the quaternion
formulation it is done analogously. Given f : SO3(R) → R and Λ0 ∈ SO3(R),



Alignment of rigid bodies: from particle systems to macroscopic equations 31

we have the following equivalences (in the second equivalence we use Prop. 2):

PTΛ0

(∫

SO3(R)

A f dA

)
= 0 ⇔

∫

SO3(R)

A f dA ∈ T⊥
Λ0
,

⇔ (Λ0P ) ·
∫

SO3(R)

A f dA = 0 for all P ∈ A,

⇔
∫

SO3(R)

P · (ΛT
0 A) f dA = 0 for all P ∈ A,

⇔ f ∈ G⊥,

where

G = {g ∈ L2(SO3(R)) | g(A) = P · ΛT
0 A, for some P ∈ A}.

Starting from Def. 3, we then get, for ψΛ0 : SO3(R) → R:

ψΛ0 ∈ GCI(Λ0) ⇔
∫

SO3(R)

ΓΛ0 (f)ψΛ0 = 0 for all f such that f ∈ G⊥,

⇔
∫

SO3(R)

fΓ ∗
Λ0

(ψΛ0 ) = 0 for all f such that f ∈ G⊥,

⇔ Γ ∗
Λ0

(ψΛ0 ) ∈ (G⊥)⊥ = G,

where Γ ∗
Λ0

is the adjoint of Γ ∗
Λ0

in L2(SO3(R)). The last equality comes from the
fact that the space G is a finite-dimensional subspace of L2. The last equivalence
therefore implies that ψΛ0 is a GCI if and only if there exists P ∈ P such that ψΛ0

is solution of (66). ⊓⊔
One can check that, in the matrix formulation, for ψ : SO3(R) → R, the

adjoint is given by

Γ ∗
Λ0

(ψ) =

{
D∇A · (MΛ0 ∇Aψ) (gradual alignment model),∫

SO3(R)
ψ(A)MΛ0 (A) dA− ψ (jump model),

(67)

and in the quaternion formulation we have, for ψ̄ : H1 → R:

Γ ∗
q0

(ψ̄) =

{
D∇q · (Mq0 ∇qψ̄) (gradual alignment model),∫
H1
ψ̄(q)Mq0 (q) dq − ψ̄ (jump model).

The end of the proof of Prop. 11 for the gradual alignment model relies on
the application of Lax-Milgram theorem. It is done in references [12] (for the
matrix formulation) and [13] (for the quaternion formulation). We do not repeat
it here.

In the case of the jump model, for the matrix formulation it is a direct check
that for any P ′ ∈ A, the function ψP ′

Λ0
defined by

ψP ′

Λ0
(A) = P ′ · ΛT

0 A,
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satisfies Eq. (66) with P = −P ′ and is, therefore, a GCI. As noticed in Rem. 4,
the constant function ψ = 1 is also a GCI. Conversely, using the explicit form (67)
of the adjoint operator Γ ∗

Λ0
, it is also direct to see that any solution ψΛ0 of

Eq. (66) for some P ∈ A satisfies

ψΛ0 (A) = −P · ΛT
0 A+

∫

SO3(R)

ψΛ0 (A′) MΛ0(A′) dA′ ∈ span
{

1, ψ−P
Λ0

}
.

Analogously, one can check that for any β′ ∈ q⊥
0 , the function ψ = ψβ′

q0
given

in Eq. (64) is indeed a GCI using Eq. (66) with β = −β′ and the consistency
relation (60). Conversely, one can check that any solution ψ of Eq. (66) for
some β ∈ q⊥

0 belongs to span
{

1, ψ−β
q0

}
.

Limiting equation. Now that we have an explicit form for the GCI, we can
go back to the limiting equation (62) (in the matrix formulation) and substitute
its value. This way we have that for all P ∈ A it holds:

∫

SO3(R)

(
∂t(ρMΛ) + (Ae1 · ∇x)(ρMΛ)

)
(P · ΛTA) dA = 0.

This is equivalent to:

P ·
[∫

SO3(R)

(
∂t(ρMΛ) + (Ae1 · ∇x)(ρMΛ)

)
ΛTA dA

]
= 0 for all P ∈ A,

which implies thanks to Prop. 1 that
∫

SO3(R)

(
∂t(ρMΛ) + (Ae1 · ∇x)(ρMΛ)

)
ΛTA dA ∈ S,

or, in other words,
∫

SO3(R)

(
∂t(ρMΛ) + (Ae1 · ∇x)(ρMΛ)

)
(ΛTA−ATΛ) dA = 0.

It remains only to compute this expression. This expression is exactly the same
is in Ref. [12, Equation (4.25)] with the function ψ̄0 appearing in this reference to
be taken equal to one. Therefore, here we do not repeat again the computation
for this expression and put directly the result in Th. 2 (Eq. (70)) in the following
section.

5.5 Main results

To introduce the results on the matrix formulation we need to introduce first
some notation: For a smooth function Λ from R3 to SO3(R), and for x ∈ R3, we
define the matrix Dx(Λ) such that

(w · ∇x)Λ = [Dx(Λ)w]×Λ, for any w ∈ R
3.
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This matrix is well defined (see [12, Sec. 4.5]). With this, we define the following
first-order operators

δx(Λ) = Tr(Dx(Λ)), [rx(Λ)]× = Dx(Λ) − Dx(Λ)T .

In order to present the results on the quaternion formulation, we first intro-
duce the (right) relative differential operator on H1: for a function q = q(t, x)
where q(t, x) ∈ H1 and for ∂ ∈ {∂t, ∂x1 , ∂x2 , ∂x3}, let

∂relq := (∂q)q∗,
(

= Im((∂q)q∗)
)
, (68)

where ∂q belongs to the orthogonal space of q, and the product has to be un-
derstood in the sense of quaternions. Notice that, effectively, ∂relq is a purely
imaginary quaternion, since Re((∂q)q∗) = q · ∂q = 0 (by the fact that q is a unit
quaternion), and it can be identified with a vector in R3. With this, we define
the (right) relative space differential operators

∇x,relq = (∂xi,relq)i=1,2,3 = ((∂xi
q)q∗)i=1,2,3 ∈ (R3)3 ⊂ H

3,

∇x,rel · q =
∑

i=1,2,3

(∂xi,relq)i =
∑

i=1,2,3

((∂xi
q)q∗)i ∈ R,

where ((∂xi
q)q∗)i indicates the i-th component of (∂xi

q)q∗.

With these notations, we can state the main result:

Theorem 2 ((Formal) macroscopic limit). The following results hold true
for both the jump model and the gradual alignment model. When ε → 0 in the
kinetic equations (46) (matrix representation) and (49) (quaternion representa-
tion) it holds (formally) that

fε → f = f(t, x, A) = ρMΛ(A), with Λ = Λ(t, x) ∈ SO3(R), ρ = ρ(t, x) ≥ 0,

fε → f = f(t, x, q) = ρ̄Mq̄(q), with q̄ = q̄(t, x) ∈ H1, ρ̄ = ρ̄(t, x) ≥ 0,

for the matrix representation and the quaternion representation, respectively.
Moreover, if the convergence is strong enough and the pair functions (ρ, Λ), (ρ̄, q̄)
are regular enough, then they satisfy the following systems, respectively:

∂tρ+ ∇x · (c1ρΛe1) = 0, (69)

ρ(∂tΛ+ c2((Λe1) · ∇x)Λ)

+ [(Λe1) × (2c3∇xρ+ c4ρrx(Λ)) + c4ρδx(Λ)Λe1]× Λ = 0,
(70)

and

∂tρ̄+ ∇x · (c1e1(q̄)ρ̄) = 0, (71)

ρ̄(∂tq̄ + c′
2(e1(q̄) · ∇x)q̄)

+ c3 [e1(q̄) × ∇xρ̄] q̄ + c4ρ̄ [∇x,relq̄ e1(q̄) + (∇x,rel · q̄)e1(q̄)] q̄ = 0,
(72)
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where the (right) relative differential operator ∇x,rel is defined in Eq. (68); and

e1(q̄) = Im(q̄e1q̄
∗),

and where ci, i = 1, . . . , 4 are explicit constants. To define them we use the
following notation: for two real functions g, w consider

〈g〉w :=

∫ π

0

g(θ)
w(θ)∫ π

0
w(θ′)dθ′ dθ.

Then the constants are given by

c1 =
2

3
〈1/2 + cos θ〉m(θ) sin2(θ/2),

c2 =
1

5
〈2 + 3 cos θ〉m(θ) sin4(θ/2)h̄(cos(θ/2)) cos(θ/2),

c′
2 =

1

5
〈1 + 4 cos θ〉m(θ) sin4(θ/2)h̄(cos(θ/2)) cos(θ/2),

c3 =
D

2
,

c4 =
1

5
〈1 − cos θ〉m(θ) sin4(θ/2)h̄(cos(θ/2)) cos(θ/2),

where

m(θ) := exp

(
1

D

(
1

2
+ cos θ

))
,

with h̄ given by, for r ∈ (−1, 1),

h̄(r) =

{
h(r) in the gradual alignment model,

r in the jump model,

where h is the unique solution of the differential equation (63).

Note that the matrix product in the fourth term of Eq. (72) has to be un-
derstood as a matrix product, giving rise to a scalar product in H:

∇x,relq̄ e1(q̄) = ((∂xi,relq̄) · e1(q̄))i=1,2,3 .

We now state the equivalence of the matrix formulation and the quaternion
formulation:

Theorem 3 (Equivalences of the equations [13]). Let ρ0 = ρ0(x) ≥ 0.
Let q̄0 = q̄0(x) ∈ H1 and Λ0 = Λ0(x) ∈ SO3(R) represent the same rotation,
i.e., Λ0(x) = Φ(q̄0(x)) for all x ∈ R3. Then the system (69)–(70) and the sys-
tem (71)–(72) are equivalent (in the sense that any solution (ρ, Λ = Φ(q̄)) of the
system (69)–(70) is a solution (ρ̄, q̄) of (71)–(72)).

Therefore the equations in the matrix formulation and in the quaternion
formulation are equivalent. For an explicit term-by-term equivalence, the reader
is referred to [13, Sec. 5.3.3]. Moreover, we have the following corollary:
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Corollary 1. The jump model and the gradual alignment model give rise to the
same macroscopic equations with different constants when the equilibria in the
jump model is given by a von-Mises distribution.

We conclude this section by giving a short interpretation of the macroscopic
equations obtained in Th. 2. For a full description and justification we refer the
reader to [12,13]. Since by Th. 3 we know that the systems (69)–(70) and (71)–
(72) are equivalent, we will restrict ourselves to interpreting the matrix formu-
lation (for more details on the quaternion formulation the reader is referred
to [13]).

Eq. (69) is the continuity equation for ρ and ensures mass conservation. The
convection velocity is given by c1Λe1 and Λe1 gives the direction of motion.
Eq. (70) gives the evolution of the mean orientation Λ. We remark that every
term in Eq. (70) belongs to the tangent space at Λ in SO(3); this is true for the
first term since (∂t + c2(Λe1) · ∇x) is a differential operator and it also holds for
the second term because it is the product of an antisymmetric matrix with Λ
(see Prop. 2).

The term corresponding to c3 in (70) gives the influence of ∇xρ (pressure
gradient) on the body attitude Λ. It has the effect of rotating the body around the
vector directed by (Λe1)×∇xρ at an angular speed given by c3

ρ ‖(Λe1)×∇xρ‖, so

as to align Λe1 with −∇xρ (for more details on this, see [12]). Therefore, the ∇xρ
term has the same effect as a pressure gradient in classical hydrodynamics. In
this case the pressure gradient has the effect of rotating the whole body frame.

If we had that c3 = c4 = 0, then we would recover the Self-Organized Hydro-
dynamic (SOH) model. The SOH model corresponds to the macroscopic equa-
tions of the Vicsek model [16]. The SOH model bears analogies with the com-
pressible Euler equations, where (69) is obviously the mass conservation equation
and (70) is akin to the momentum conservation equation. There are however ma-
jor differences. The first one is that we preserve the constraint Λ(t) ∈ SO3(R)
for all times and so the mass convection speed is |c1Λ(t)e1| = c1 for all times,
while the velocity in the Euler equations is an arbitrary vector. The second one
is that the convection speed c2 is a priori different from the mass convection
speed c1. This difference is a signature of the lack of Galilean invariance of the
system, which is a common feature of all dry active matter models.

The major novelty of the present model are the terms with constants c3

and c4. They influence the transport of the direction of motion Λe1. The over-
all dynamics tends to align the velocity orientation Λe1, not opposite to the
density gradient ∇xρ but opposite to a composite vector (c3∇xρ+ c4ρ rx). The
vector rx gives rise to an effective pressure force which adds up to the usual
pressure gradient. In addition to this effective force, spatial inhomogeneities of
the body attitude also have the effect of inducing a proper rotation of the frame
about the direction of motion. This proper rotation is proportional to δx. For an
interpretation of rx, δx, see [12].

Finally, we add the following interpretation based on the quaternion for-
mulation. First, note that considering ∂ = ∂t the time derivative, for a func-
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tion q = q(t, x) with values in H1 the vector ∂t,relq = ∂tq q
−1 is half of the

angular velocity of a solid of orientation represented by q. By analogy, the vec-
tor ∂xi,relq = ∂xi

q q−1 for i = 1, 2, 3 is half of the angular variation in space of
a solid of orientation represented by q. Now, in the quaternion formulation the
evolution equation for the body attitude can be rewritten as

ρ̄(∂t,relq̄ + c2(e1(q̄) · ∇x,rel)q̄)

+ c3e1(q̄) × ∇xρ̄+ c4ρ̄ [∇x,relq̄ e1(q̄) + (∇x,rel · q̄)e1(q̄)] = 0,

simply by multiplying Eq. (72) by q̄−1 on the right. This equation lives in R3

(since ∂relq̄ lives in R3), and it only involves the following physical quantities:
the macroscopic density ρ (and its space gradient), the macroscopic direction of
movement e1(q̄), and the macroscopic angular time/space variations of the body
attitude 2∂relq̄.

6 Conclusion

In these notes, we have formally derived macroscopic models, starting from the
description of particle systems, and using an intermediate kinetic model to link
the two scales. The two limits (N → ∞ for the particle system, and ε → 0 for
the rescaled kinetic equations) are formal derivations, but some steps towards
a rigorous limit can be done. A way to recover a rigorous mean-field limit is
to change the model in such a way that the singular behavior of the alignment
is removed, as in [3], but it introduces a phenomenon of phase transition as
in [10,11]. The study of this phase transition is an ongoing work. Another issue
to have a better understanding of the limit ε → 0 is to have well-posedness of
the macroscopic system (69)-(70), so we need to study its hyperbolicity. This is
also an ongoing work.
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