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Abstract: This work presents an extensive evaluation of the Crocus snowpack model over a rugged
and highly glacierized mountain catchment (Arve valley, Western Alps, France) from 1989 to 2015.
The simulations were compared and evaluated using in-situ point snow depth measurements, in-situ
seasonal and annual glacier surface mass balance, snow covered area evolution based on optical
satellite imagery at 250 m resolution (MODIS sensor), and the annual equilibrium-line altitude of
glaciers, derived from satellite images (Landsat, SPOT, and ASTER). The snowpack simulations
were obtained using the Crocus snowpack model driven by the same, originally semi-distributed,
meteorological forcing (SAFRAN) reanalysis using the native semi-distributed configuration, but also
a fully distributed configuration. The semi-distributed approach addresses land surface simulations
for discrete topographic classes characterized by elevation range, aspect, and slope. The distributed
approach operates on a 250-m grid, enabling inclusion of terrain shadowing effects, based on the same
original meteorological dataset. Despite the fact that the two simulations use the same snowpack
model, being potentially subjected to same potential deviation from the parametrization of certain
physical processes, the results showed that both approaches accurately reproduced the snowpack
distribution over the study period. Slightly (although statistically significantly) better results were
obtained by using the distributed approach. The evaluation of the snow cover area with MODIS sensor
has shown, on average, a reduction of the Root Mean Squared Error (RMSE) from 15.2% with the
semi-distributed approach to 12.6% with the distributed one. Similarly, surface glacier mass balance
RMSE decreased from 1.475 m of water equivalent (W.E.) for the semi-distributed simulation to
1.375 m W.E. for the distribution. The improvement, observed with a much higher computational time,
does not justify the recommendation of this approach for all applications; however, for simulations
that require a precise representation of snowpack distribution, the distributed approach is suggested.
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1. Introduction

The dynamics of the accumulation and melting of snow and ice in mountain areas has major
effects on the timing and level of discharge from rivers in downstream areas. One-sixth of the
Earth’s population depends directly on the water supply from snow and ice melt in mountain areas [1].
Thus, significant research effort has been applied to the study of snow and ice dynamics in these
regions [2–5], with particular focus on mountain hydrology [6–9]. The snowpack dynamics and
its spatial extent also control many mountain processes, including soil erosion, plant survival [10],
and glacier surface mass balance [11–13].

Some of the most dangerous natural hazards in mountain areas are also directly related to the
distribution of the snowpack and ice, and their evolution over time. This is the case for snow avalanches [14],
and floods in mountain rivers and downstream areas [15]. To enable anticipation of the occurrence of
snow-related hazards and to reduce the threat to populations and infrastructure [16,17]; various models
have been developed to reproduce and forecast the evolution of the snowpack on a daily or sub-daily basis.

Detailed snowpack models [18,19] are increasingly used together with hydrological models to simulate
river discharges, and this depends on reliable simulation of snow and ice melting [20–22]. The more
accurate the information on snowpack dynamics, the more accurate the discharge forecasts based on
hydrological models. However, the spatio-temporal distribution of the snowpack is highly variable in
mountain areas [4,23,24], and the runoff from mountain catchments depends on many interrelated processes
that are highly variable in space and time, including infiltration, surface runoff, groundwater recharge,
freezing of soil, and the snowpack distribution [25]. For example, in areas where snow persists throughout
the year, the snowpack dynamics has a major impact on groundwater storage [26]. Finally, snowpack
models are also combined with other models and techniques to forecast avalanche hazards [18,27].

Reproducing snowpack dynamics in heterogeneous mountain areas remains challenging.
Some snowpack processes, including wind-induced redistribution and small scale topographic control on
the snow distribution [28–32] have not yet been fully integrated into numerical snowpack models which
can be used operationally. Moreover, the additive nature of snowpack dynamics involves discrepancies
between observed and simulated snowpacks, which can accumulate over the simulation period (e.g., [33]).

The various approaches available for running snowpack simulations range from punctual
simulations (snowpack dynamics simulated for a particular location having specific characteristics) to
semi-distributed and distributed approaches that simulate snow dynamics over broad areas.

The semi-distributed approach, based on an unstructured grid design, involves simulating the
snowpack evolution over areas defined using discrete values for topographic variables including
altitude, aspect, and slope [34,35]. The French numerical chain S2M (SAFRAN-SURFEX/ISBA-
Crocus-MEPRA; [36]), simulates the snowpack evolution using a semi-distributed approach. In this
chain the SURFEX/ISBA-Crocus snowpack model ([19]; hereafter referred to as Crocus) is applied
over a semi-distributed discretization of the French mountain ranges for various topographic classes.
Semi-distributed hydrological simulations are also widely used, which involve discretizing catchments
into hydrologic response units (HRU), with the flow contribution from the HRUs being routed and
compounded into an overall catchment discharge [37]. This simulation method is also applied to river
discharge simulations in mountain areas, with the output of semi-distributed snowpack simulations
used as inputs to the hydrological models [21].

The other modeling approach to simulating snowpack dynamics over extended areas is distributed
simulations. This method involves simulation of the temporal evolution of environmental variables
(e.g., snowpack or other hydrological variables) over a gridded representation of the terrain. In this
approach the terrain is not discretized in classes. Rather, it explicitly considers the characteristics
(e.g., elevation, slope, aspect) for each pixel when simulating its snowpack evolution.

Distributed and semi-distributed approaches have advantages and disadvantages, particularly
the lower computing resource requirements of semi-distributed simulations, and the fact that
terrain representation of distributed simulations is closer to reality. Some snowpack processes
cannot be accurately reproduced using the semi-distributed approach, including wind-induced snow
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redistribution, small scale topographic control of precipitation, and terrain shadowing effects [32,38,39].
However, evaluating the performance of these simulation approaches depends on the intended use of
the simulations [40,41]. Similarly, the results obtained will depend on the spatial scale and the quality
of the meteorological forcing model, and whether it is distributed or semi-distributed [42,43].

As far as the authors know, no attempt to compare distributed and semi-distributed snowpack
simulations results has been made to date. This is significant because the implementation of the
most promising advances in simulation is mainly considered for distributed simulations. This is the
case for assimilation of satellite data [44–46]; the inclusion of small scale processes in simulations,
including snow redistribution by wind [30,32]; and gravitational or topographic controls on snow
movements [29,47,48]. Semi-distributed simulations may also allow the implementation of satellite
data assimilation techniques (as suggested in [49]) but would require specific methods for aggregating
observations into the semi-distributed clustering of the simulation domain and they would reduce
potential benefits of high resolution satellite observations.

The impact of effects solely arising from the representation of the topography on snowpack
simulations has not yet been assessed in detail. For example, the influence of terrain shadowing effects
on Crocus model outputs, allowed in distributed simulations of sufficiently high spatial resolution,
has not been analyzed specifically.

Optical remote sensing data are increasingly used to extensively evaluate snowpack simulations
over large areas and for long time periods [42,50,51]. However, such data do not provide detailed
information about snowpack bulk variables such as snow depth and snow water equivalent [52–54]
and thus must be combined with in-situ observations to provide a complete evaluation, such as the
snow depth evolution observed with automatic weather stations or glacier surface mass balance.

The main goal of this work is to study of the impact on the Crocus snowpack model simulation
of including terrain shadowing effects by comparing semi-distributed simulations (which do not
include terrain shadowing) and distributed simulations (which include terrain shadowing). The upper
Arve catchment (French Alps) was selected as the study area, since it is characterized by a high
spatial heterogeneity with an important altitudinal gradient and the presence of large glaciated
areas. The evaluation is based on the analysis of the Crocus model capabilities on simulating
different snowpack variables (mainly snow depth, snow water equivalent and snow covered
area) compared with in-situ observations as well as remote sensing observations. Consequently,
we assessed the ability of the model to simulate the snowpack evolution using a multi-criteria
approach (e.g., Hanzer et al., 2016). This way, we firstly assessed the ability of the model to simulate
the snowpack evolution at a local scale for specific stations having continuous snow observation
data. These punctual simulations enabled initial analysis of the capacity of the model to subsequently
evaluate the distributed and semi-distributed approaches to simulating the snowpack dynamics over
a broader area. The simulation results from both approaches were compared with observations for the
snow covered area based on MODIS satellite sensors, the glacier surface mass balance (winter, summer,
and annual), and the glacier equilibrium-line altitude derived from satellite images (Landsat, SPOT,
and ASTER). This enabled assessment of the use of semi-distributed or distributed simulations for
analysis of snow and ice dynamics. The simulations were based on data for the upper Arve catchment
for the 26 years from 1989 to 2015.

2. Study Area and Period

The upper Arve catchment is located in the western Alps, France, between the northeast slopes of
the Mont Blanc massif and the southwest slopes of the Aiguilles Rouges massif. The catchment extends
from the headwaters of the Arve River to the town of Chamonix (Figure 1), and includes major tributaries
carrying melt water from three glacierized areas (Arveyron de la Mer de Glace, Arveyron d’Argentière, and Bisme
du Tour) to the main river. The upper Arve catchment covers 205 km2 and has a high degree of topographic
heterogeneity, with steep slopes in some areas, and gentle slopes on large glacierized areas and at the lower
elevation zones of the valley, which is a typical U-shaped glacial valley. Elevation ranges from 1020 to
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4225 m.a.s.l., with 65% of the surface area above 2000 m.a.s.l. Glaciers cover 33% of the area [55], and 22%
is covered by forests, mainly in the lower elevation areas. Chamonix climatology is classified as a Cfb
Köpen-Geiger type with a mean annual precipitation of 1055 mm., and a mean annual temperature of 7.3 ◦C
(observed in the 1981–2015 time period). The water discharge regime is strongly dependent on the snow
melt dynamics during spring and early summer, with the major contribution of melt water from glacierized
areas occurring during late summer and autumn; this is termed a nivo-glacial regime of river discharge [56].
The Mont Blanc and Aiguilles Rouges massifs are also highly spatially heterogeneous, having various
slopes and aspects over a wide range of elevations in glacierized and non-glacierized areas; this affects the
spatio-temporal evolution of snow and ice.

The area is subject to severe flood hazard. This is a consequence of the steepness of the terrain,
which results in a rapid hydrological response to precipitation, the typically rapid meteorological changes
that occur in this mountain area (mainly associated with convective episodes during spring and summer).
Such hazards are particularly significant in the town of Chamonix in the bottom of the valley, featuring
high population densities and infrastructure especially in summertime at the peak of the tourism season.
The study period spams from 1989 to 2015 in order to evaluate simulations with different seasonal conditions.

Figure 1. Upper Arve catchment study area. The white shaded area shows the extent of the glaciers in
2012 (Gardent et al., 2014). The inner maps show various magnifications of the Alps and the location of
the Arve valley within the mountain range. The red points show the position of the five Météo-France
stations located in the study area.
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3. Observation Datasets

3.1. Punctual Snow Depth Observations

The Météo-France observation network has 5 stations in the study area (Figure 1), located at different
elevations. Some of these stations acquired data during all snow seasons throughout the entire study period,
including the Nivose Aiguilles Rouges (2365 m.a.s.l.), Chamonix (1025 m.a.s.l.), and Le Tour (1470 m.a.s.l.)
automated stations. The other two stations started measurements later, and provided manual observational
data since the 1994–1995 snow season (Lognan station; 1970 m.a.s.l) and since the 2003–2004 snow season
(La Flegere station; 1850 m.a.s.l.). At these stations the temporal evolution of the snow depth was observed at
daily or sub-daily time intervals, and these data were used to evaluate SAFRAN–Crocus in non-glacierized
areas during winter and spring (periods with snow presence).

3.2. Snow Cover Area Distribution Based on the MODIS Sensor

3.2.1. Processing of the MODIS Data to Estimate the Snow Covered Area

Many studies have demonstrated the usefulness of MODIS images for snow cover mapping in
mountain areas [52,53,57]. The MODIS mission database provides long temporal coverage (the mission
was launched in 2000, and obtains daily images), which enabled a comparison between the simulated
and observed snow cover evolution for 14 snow seasons (out of the 26) simulated on an almost daily
basis (comparisons were limited by cloud cover in the study area). Sub-pixel snow monitoring of
the snow cover at 250-m spatial resolution was performed using MODImLab software, designed
specifically to address the effect of complex terrain on the satellite signal. The processing chain is
described in [58,59]. Multispectral fusion between MOD02HKM (500 m; bands 3–7) and MOD02QKM
(bands 1 and 2) [60], enable this software to generate images at 250 × 250 m spatial resolution to
derive various snow and ice products. MODImLab snow products have been already validated with
Landsat [59] and SPOT [61] optical imagery showing a strong agreement.

We used the unmixing_wholesnow (UWS, [62]) product, as it has been shown to outperform other
snow and ice products for assessing the evolution of the Snow Covered Area (SCA) using a spectral
unmixing technique developed by [50]. We also considered the cloudiness product in MODImLab
to determine the fraction of the catchment affected by cloud cover. The generation of the UWS and
cloudiness products in MODImLab software was based on the same DEM used for the snowpack
simulations. This ensured a direct match between of observation and simulation pixels. To avoid errors
related to cloud presence in the study area, only days having cloud cover representing <20% of the total
surface area were considered in the analysis. With this threshold, 54% of the available MODIS images
during the study period were discarded. Despite the fact that for particularly short time periods the
limitations of the availability of MODIS images did not enable the evaluation of SCA, the seasonal and
annual evaluation performed in this work are not affected by these potential limitations. For the worst
winter season (in terms of MODIS data availability), at least a 43% of dates are included, thereby having
a temporal distribution that enables an appropriate evaluation.

3.2.2. Thresholds to Assess whether a Pixel is Snow-Covered in MODIS Images and from Model
Output on the 250 m × 250 m Grid

Different thresholds of the unmixing_wholesnow (UWS) MODImLab product were considered in
order to distinguish whether a pixel is snow covered. The UWS values used in the sensibility test were
0.25, 0.35 and 0.45. Similarly, three simulated snow depth threshold values (0.10, 0.15, and 0.20 m [42,52]
were examined to consider a pixel as snow-covered in the simulations as a sensitivity test.

3.3. Glacier Surface Mass Balance

Glaciers located in the Mer de Glace and Argentière sub-catchments have been monitored, in a sufficient
number of measurement locations for our analysis, since 1995 by the French Service National d’Observation



Remote Sens. 2018, 10, 1171 6 of 32

GLACIOCLIM. During this period, field data were obtained twice per year, during the maximum
(end April–May) and minimum (around October) snow accumulation periods. These data enabled
calculation of the surface mass balance (SMB) for summer (annual difference between the maximum
and minimum acquisitions), winter (annual difference between the minimum of the previous year and
the maximum acquisitions), and annually (year to year differences in the minimum acquisitions) at each
individual point of the network (Figure 2). The observation procedure involves the use of glaciological
methods [63] to retrieve the surface mass balance for the various time periods. Stakes (markers over the
glaciers) are set up in both accumulation and ablation areas throughout the glaciers, and reflect the evolution
of the various zones of the glaciers. The spatial distribution of the stakes is shown in Figure 2. For further
information on the methods for SMB data collection, see [12].

Figure 2. Glacier surface mass balance (SMB) measurement locations for ablation and accumulation
areas in the Mer de Glace and Argentière glaciers.

3.4. Glacier Equilibrium-Line Altitude

The glacier equilibrium-line altitude (ELA) is the annual maximum elevation of the snow-ice
transition over glacierized areas. Since 1984 the temporal evolution of the ELA for the five largest
glaciers in the study area has been estimated using various satellite sensors [64,65]. Data on the
inter-annual evolution of the ELA for the Tour, Argentière, and Mer de Glace glaciers (and its main
tributaries, the Leschaux and Talèfre glaciers) was available for the entire study period, based on
images from Landsat 4TM, 5TM, 7 ETM+, SPOT 1–5, and ASTER. The spatial resolution of these images
ranges from 2.5 to 30 m. The method of snow line delineation using multispectral images combining
green, near-infrared, and short-wave infrared bands has been fully described by [66]. The satellite
acquisition date depends on various factors including the availability of satellite images for the study
area and cloud presence, but images obtained during the period of minimum snow accumulation (late
August to early October) were used to obtain the ELA.

4. Methods

4.1. Simulation Setup

We used the Crocus snowpack model to simulate the temporal evolution of snow and ice in the
upper Arve catchment. Crocus is a multilayer model that simulates snowpack evolution based on
the energy and mass exchanges between the various snow layers within the snowpack, and between
the snowpack and its interface with the atmosphere and the soil (i.e., the top and bottom of the snow
column). Crocus snowpack model includes the simulation of snow microstructure and their evolution
based on semi-quantitative notions as sphericity and dendriticity of snow grains, providing high detail
on the evolution of internal snowpack properties. The model was developed [67] as a one-dimensional
multilayer physical scheme, simulating energy and mass transfers (radiative balance, turbulent heat,
ground heat flux . . . ). The simulated snowpack is vertically discretized in a maximum of 50 layers.
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Different rules are designed to develop a realistic of snowpack layering. Crocus is implemented in the
externalized surface model SURFEX [19]. Within SURFEX [68], Crocus is coupled to the multilayer land
surface model ISBA-DIF (Interaction between Soil, Biosphere and Atmosphere; diffusion version; [69].

The meteorological forcing required to drive the temporal evolution of the simulations was
obtained from the SAFRAN meteorological reanalysis [27,70]. This provides the atmospheric
variables needed to run Crocus at hourly time step, including air temperature, specific humidity,
long wave radiation, direct and diffuse short-wave radiation, wind speed, and precipitation phase
and rate. SAFRAN was specifically developed to provide meteorological forcing for mountain areas
at a suitable altitudinal resolution for performing snowpack simulation addressing the impact of
elevation differences on snow conditions for particular terrain classes. SAFRAN and Crocus have
been applied for several decades in French mountain regions, contributing to operational avalanche
warning and snow monitoring activities of Météo-France, in a semi-distributed mode [36,70].

The SAFRAN meteorological reanalysis system provides outputs for punctual simulations,
or semi-distributed outputs. In the first case the analysis is performed directly for the elevations of the points
of interest, and takes into account the direct solar radiation masks associated to the surrounding topography.
In the semi-distributed mode, SAFRAN outputs are provided for 300-m elevation bands. The spatial extent
of this analysis is approximately 1000 km2. This corresponds roughly to the spatial domain from which
in-situ meteorological observations are used to generate the reanalysis product. These regions are referred to
as “massifs” [27,70]. This study uses only the Mont-Blanc massif, which covers the entire study catchment.

4.2. Punctual, Semi-Distributed, and Distributed Approaches

The temporal evolution of snow and ice was simulated using punctual, semi-distributed,
and distributed approaches, based on the same meteorological forcing and using the same Crocus
model version. In order to compare the outcome of the two spatialized simulation strategies,
their results are either produced natively on a 250 m grid, or either distributing the semi-distributed
SAFRAN–Crocus model runs onto the 250 m grid using the corresponding topographical classes.
This spatial resolution was selected because it renders slopes sufficiently well to describe small
valleys with significant shadowing effects. The 250 m grid cell size of the simulations also enables
a direct comparison with optical satellite products at the same spatial resolution. It will also allow for
exploring snow mechanical stability in future avalanche hazard forecasting applications, with slope at
this resolution being steep enough for avalanche.

4.2.1. Punctual Simulation

Punctual snowpack simulations were performed for the five Météo-France meteorological and
snow observing stations within the study area, based on the elevation, slope, and aspect for each
station. Punctual simulations included a topographic mask from a 50-m digital elevation model (DEM)
from the French Geographical Institute (Institut National de l’information Géographique et forestière),
to account for any terrain shadowing effect on simulation of the incoming shortwave radiation. For the
location of each of these five meteorological stations a separate snowpack simulation was obtained.
Each of these simulations was run with the specific characteristics of its location, forcing Crocus model
with the meteorological forecast extracted for the specific position of the station.

4.2.2. Semi-Distributed Simulation

Semi-distributed simulations were carried out based on the following topographic classes:

• altitude: 300-m elevation bands from 900 m.a.s.l. to 4100 m.a.s.l
• aspect: eight aspect classes (north, northeast, east, southeast, south, southwest, west, and northwest)
• slope: flat terrain, 20◦ and 40◦

These topographic classes are the same as those used for snow monitoring and avalanche
forecasting [36]. To consider snow and ice evolution on glacierized and non-glacierized areas,
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two distinct simulations were run for all terrain classes, one initialized using bare ground, and another
involving a given thickness of ice to initialize the simulation on glacierized areas (see Section 4.3).

In a final stage, the snowpack semi-distributed simulations (which have an unstructured grid
design) were assigned or re-projected onto the pixels of 250 × 250 m grid used for the distributed
simulations). The pixels were categorized according to the semi-distributed terrain classes: slopes
from 0◦ to 10◦ were considered flat, those from 10 to 30◦ were assigned to the 20◦ slope class, and those
higher than 30◦ were assigned to the 40◦ class. From this categorization of the DEM, the snowpack
simulation outputs were assigned to each terrain class for all time steps. Therefore, for each time step,
a snow and ice distribution map was generated, which distributed the semi-distributed snowpack
simulation obtained for the various terrain classes.

4.2.3. Distributed Simulation

The distributed snowpack simulations were performed in a DEM having 250× 250 m grid spacing
over the study area. The altitudinal resolution of SAFRAN elevation bands was defined to account
for substantial changes on snowpack conditions to forecast avalanche hazard in a semi-distributed
configuration. This meteorological forcing was spatially distributed over the 250-m grid DEM as
follows: For each pixel of the 250-m grid, the meteorological variables at a given altitude were linearly
interpolated between the closest 300-m elevation bands of the SAFRAN reanalysis, following [43].

The distributed Crocus simulations were performed, accounting for the elevation, aspect, slope
but also soil, and land cover characteristics for each pixel derived from ECOCLIMAP-II/Europe;.
This surface database combines the information of CLC 2000 (Corine Land Cover) and GLC2000 (Global
Land Cover). Moreover, it includes information of the leaf area index from MODIS observations and
the normalized difference vegetation index from SPOT, derived from the 1999 to 2005 time period [71].
ECOCLIMAP-II/Europe is only used in one time step for the initialization of soil. Topographic
shadowing effect of short wave radiation [29] was accounted for in the distributed simulations.
The inclusion of particular pixel features and topographic shadowing are the main differences between
the semi-distributed and distributed simulations. Figure 3 shows a schematic representation of
distributed and semi-distributed approaches.

Figure 3. Schematic representation of the approaches used to account for mountain spatial heterogeneity
when simulating snowpack dynamics.
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4.3. Modeling of Glacierized Areas

As Crocus is a multilayer snowpack model that simulates the energy and mass exchanges between the
various snowpack layers, it also enables simulation of the glacier surface mass balance [58,72–74]. However,
the model does not simulate glacier dynamics. The extent of glacierized areas was based on the most recent
data on their surface area, inventoried in 2012 [65]. Although other historic surface inventories of glacierized
areas within the upper Arve catchment were available (1986 and 2003; [55]), the most recent inventory was
used for simplicity throughout the entire simulation period, because the change in the glacierized surface
area between the inventoried dates represents less than a 1% of the total study surface area.

4.4. Treatment of Forested Area

Since snowpack simulations in forested areas were not configured to account for sub-canopy
processes and satellite observations can be significantly biased by the presence of the trees, these areas
were masked out in the SCA analysis.

4.5. Time Span and Initialization of the Simulations

As previously described, simulations were run for the period 1989–2015. Starting from an initial
vertical temperature profile of the ground layers corresponding to the mean annual temperature,
a spin-up simulation for the 1988–1989 snow year (1 August 1988 to 31 July 1989) was repeated
iteratively 10 times, to ensure a realistic ground state when launching simulations. This approach has
been found to allow for a reasonable initialization for the simulations of the full time period studied.

Glacierized areas were reinitialized at the beginning of each snow season (1 August) to a value of
40-m thickness of ice, if the total ice thickness was lower than this value, which ensured that ice would be
present for the entire snow season (from 1 August of one year to 31 July of the next year). In the case where
snow was present on top of ice in a glacierized part on the date of reinitialization, additional ice was added
below the snow surface, so that the state of the surface would not change but the total ice amount would be
adjusted. The six deepest Crocus layers (these that simulate ice evolution) were initialized with a density
value of 917 kg/m3 and a temperature of 273.16 K. The thickness of these layers were set to progressively
transition from a shallow thickness for the upper ice layer (0.01 m) to thicker layers in the deepest part of the
ice (with a 5-fold difference factor between one layer and the one above), resulting in a total ice thickness of
39.06 m. The ice initialization was also performed during the spin-up so that ground layers below the ice
covered areas would also reach a reasonable thermodynamic equilibrium.

4.6. Evaluation Strategy

The availability of direct snow and ice observations for mountain areas is limited. Broadly,
when the time between observations is short, the spatial extent is limited and oppositely, when large
areas are observed, the temporal frequency is low. Consequently, evaluation of the performance of
a model in reproducing the snowpack evolution is difficult because of a lack of information. Although
we did not evaluate a hydrological model; in this study, the “observation scale” defined by [75]
aided the assessment of the representativeness of the available observations. The observation scale
is defined by: (i) the spatial/temporal extent (coverage) of a dataset; (ii) the spacing (space and time
resolution) between samples; and iii) the integration volume (time) of a sample (also known as support).
These three criteria can rarely be optimized simultaneously. Hanzer et al. [54] provided an overview of
the various characteristics and complementary features of various methods, which can be used for
evaluation of snow/glacier/hydrological simulations in mountainous catchments. In this study we
used the following four observation datasets described on Section 3:

• In situ snow depth from Météo-France stations within the simulation domain.
• Snow covered area (SCA) from MODIS images at 250 m resolution, using a dedicated method to

address the influence of complex topography on satellite images.
• Seasonal and annual glacier surface mass balance (SMB) for in-situ stakes measurements.
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• Glacier equilibrium-line altitude (ELA) from Landsat/SPOT/ASTER.

Based on the radar charts presented by [54], shown in their Figures 4 and 5, the four datasets
used in this study cover almost the full radar chart space (“optimal” validation dataset, which would
be perfect if it would be completely covered), thus providing almost an optimal evaluation of the
simulation performance.

Figure 4. Observed (black squares) and simulated (red lines) snow depth evolution for the 2007–2008 (upper
panel) and 2012–2013 (bottom panel) snow seasons. The elevations of the stations are: Chamonix: 1025 m.a.s.l.;
Le Tour: 1470 m.a.s.l.; La Flegere: 1850 m.a.s.l.; Lognan: 1970 m.a.s.l.; and Aiguilles Rouges: 2365 m.a.s.l.

Figure 5. Spatial distribution of the Snow Water Equivalent (SWE) simulated with distributed (left
panels) and semi-distributed (middle panels) approaches for the 28 February 2003 (upper panels) and
for the 24 April 2003 (lower panels). Right maps show the UWS MODImLab product for same dates.
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The four datasets allowed performing a multi-criteria, multi-spatial and multi-temporal evaluation of
the simulations with all observations available within the study area. However, not all simulations (punctual,
semi-distributed, and distributed) were evaluated using all four observation datasets. The punctual snow
depth simulations only provided a preliminary evaluation of the simulation setup in terms of reproducing
the temporal snowpack evolution, so only punctual snow depth observations were used in the evaluation of
this simulation approach. The three other datasets (SCA, and glacier SMB and ELA) were used in evaluating
the semi-distributed and distributed simulations, as these datasets had the appropriate spatial and temporal
extents needed to assess the performance of these two approaches.

4.6.1. In Situ Snow Depth Evaluation

With this database has been calculated the root mean squared error (RMSE) and the bias of the
punctual simulations for the time periods with data available.

4.6.2. Snow Covered Area Evaluation from MODIS Images:

Statistical Framework for the Comparison between MODIS Images and Model Output

The temporal evolution of the snow covered area (SCA) within the study area predicted by each
simulation approach (semi-distributed and distributed) was compared to SCA observations in terms of
the root mean squared error (RMSE), the mean absolute error (MAE), and R2 calculated on the basis of
daily values spanning the entire simulation period during which MODIS data are available (14 years).
Special care was taken to ensure the statistical significance of the difference in skill between semi-distributed
and distributed simulations since there is a high variability of the skill of a snowpack model from one
season to another [76,77]. As a result, the skill of a simulation configuration can change depending on the
selected years for evaluation. To assess whether the results obtained with distributed and semi-distributed
simulations are significantly different in comparison with the inter-annual variability of the model skill,
the uncertainty of the scores was quantified by a bootstrap approach [78]. A total of 100 samples from
14 complete years were randomly selected among the 2000–2014 time series of observed and simulated
SCA values. Indeed, a stability test (not shown here) showed that results were stable after 100 repetitions.
The sampling was applied on an annual basis instead of individual dates to avoid being affected by the high
temporal autocorrelation of the skill during the same snow season. From the 100 samples, we computed
the standard deviation of each score, considered as a random variable. Thus, the scores samples of the
semi-distributed and distributed simulations could be compared by a t-student test.

In addition, in order to better understand and analyze the statistical results, the temporal evolution
of the SCA for selected snow seasons was also analyzed to assess the difference between observations
and simulations in different time periods within the season. Error metrics obtained on these snow
seasons were compared to average values from the bootstrapped sample.

Evaluation of Spatial Similarity

The spatial similarity between the observed and simulated SCA was evaluated for each simulation
approach based on two similarity metrics: the Jaccard index (J), and the average symmetric surface
distance (ASSD). The spatial similarity must be evaluated using both metrics simultaneously, in order
to avoid mishandling the extreme case where one feature is fully included in the other one, even if
there is a large discrepancy. Based on the UWS and snow depth thresholds previously selected from the
analysis described above, binary maps (snow presence and absence) were generated for all observation
and simulation datasets, by design sharing the same grid, and used to perform these evaluations.
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The Jaccard index is the ratio of the intersection between the observed (O) and the simulated (S)
snow covered area and their union (Equation (1)). The index values range from 0 to 1, with a value of 1
representing a perfect match between the observed and simulated SCA.

J =
|O ∩ S|
|O ∪ S| (1)

The ASSD quantifies the distance between the boundaries of the observed and simulated snow
covered area. The ASSD is based on the modified directed Hausdroff distance between boundaries [79];
see [42,59] for more details). ASSD values are expressed in meters, and the smaller the distance the
better the match between surface boundaries. The Jaccard index and ASSD were calculated for the
2001–2002 to the 2014–2015 snow seasons. To assess the performance of the two simulation approaches
for specific periods, the 2006–2007 and 2007–2008 snow seasons (characterized by lower than average
snow conditions) and the 2011–2012 and 2012–2013 snow seasons (characterized by higher than average
snow conditions) were analyzed for both the accumulation period (January, February, and March; JFM)
and the melt period (May, June, and July; MJJ).

4.6.3. Surface Mass Balance Evaluation from In-Situ Stakes

In this study, we directly used SMB seasonal and annual components at 65 locations encompassing
different glaciers, which were directly compared to model simulations corresponding to these locations.
RMSE, MAE and R2 coefficient values were computed for each sub-basin for the winter, summer
and annual SMB components. These three error metrics were calculated by computing the difference
between the observed and the simulated SMB (difference of the simulated snow water equivalent
between consecutive observation dates) for the simulation pixels in which observation stakes are
located. Similar to the SCA evaluation, the significance of the differences between the distributed and
semi-distributed approaches was assessed using a bootstrap method based on the resampling of the
20 available observation years

Finally the simulated (distributed and semi-distributed) and observed temporal evolutions of
the SMBs were compared for several elevation bands (the average and standard deviation for all
locations within each band were calculated). To address the elevational dependence of the SMB,
the seasonal evolution of the observed and simulated seasonal and annual SMB were compared for
two snow seasons having opposite characteristics (high (2012–2013) and low (2007–2008) levels of
snow accumulation) for the Mer de Glace glacier.

4.6.4. Equilibrium Line Altitude Evaluation from Landsat/SPOT/ASTER

The simulated ELA was calculated for the same dates as the satellite acquisitions. Because of
the difference in the spatial resolution of the simulation (250 m) and satellite observations (≤30 m),
the average elevation and its standard deviations of the ELA were compared.

5. Results

5.1. Punctual Snow Depth

The observed and simulated snow depth evolution for the 2007–2008 and 2012–2013 snow seasons
(lower than and higher than average snow conditions, respectively) for the five stations are shown
in Figure 4. The snow depth evolution shows the ability of the SAFRAN–Crocus model chain to
reproduce the temporal evolution of snow at these observation stations, taking into account their
altitude and terrain shadowing masks, based on a meteorological analysis performed at the scale of
the entire Mont-Blanc massif.

Some snow accumulation events were underestimated or overestimated in the SAFRAN–Crocus
simulations, compared to observations, as illustrated by the discrepancies between the simulated and
observed snow depths, including for the Le Tour (overestimation) and La Flégère (underestimation)
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stations for the 2007–2008 snow season. If these large discrepancies, mainly coming from deviations
on the forecasted snow precipitations amounts are neglected (for instance the observed and simulated
snow depths are forced to match just after accumulation events), then we can conceive that the snow
depth temporal evolution is well reproduced. This can be well visualized for Lognan station or for
La Flegere station on 2007/2008. Table 1 shows the RMSE and bias errors between observations and
simulations at the five stations. There is a high level of variability between the errors for the various
stations. It is noteworthy that the number of observations available and the time periods (which could
have marked differences on total seasonal snow accumulation) affected the significance of the RMSE
and bias for the various stations (Table 1). The RMSE values ranged from 20.8 to 66.6 cm and the
bias ranged from −19.1 to 49.4 cm. These values are small relative to the total snowpack thickness
(snow depth observations were commonly >200 cm, and in some cases exceeded 300 cm). However,
for the Aiguilles Rouges station the RMSE and bias estimates were higher than for the other stations.
This may be because this station is exposed to major wind-induced snow transport episodes that
were not accounted for in the simulation. In addition to these events, this station is also affected by
errors related to the meteorological forcing, such as the large underestimation for the first snowfall
in 2007–2008.

Table 1. Error statistics (bias and Root Mean Squared Error (RMSE)) between simulated and in situ
snow depth observations for the five meteorological stations in the study area for periods for which
observations were available. The locations of the stations are shown in Figure 1.

Observatory RMSE (cm) Bias[cm] Period Num. Obs.

Chamonix 23.3 12.1 1983–2015 6704
Le Tour 29.6 13.0 1985–2015 6323

Nivose Aiguilles Rouges 66.6 49.4 1983–2015 5902
La Flegere 45.0 −19.1 2003–2015 1231

Lognan 20.8 1.9 1994–2015 5964

5.2. Snow Cover Area Distribution

Table 2 shows the SCA simulation results estimated tested against 0.1, 0.15 and 0.2 m snow
depth thresholds compared with the various UWS thresholds tested, for the 2008–2009 and 2009–2010
snow seasons (average snow accumulations) and for the semi-distributed and distributed approaches.
It shows that the evaluation metrics are only slightly sensitive to the choice of these thresholds and
that for every threshold and metrics the ranking of the two approaches remains the same. In light of
the results of the sensitivity tests, we selected a 0.15 m snow depth threshold for the simulations and
0.35 SCA threshold for MODImLab UWS product for classifying a pixel as snow-covered or not.

Table 2. Unmixing_wholesnow (UWS) threshold selection for various snow thicknesses selected
as thresholds for the 2008–2009 and 2009–2010 snow seasons for distributed and semi-distributed
simulations. Bold values indicate the selected snow depth and snow cover area (SCA) thresholds.

Threshold
Distributed Approach Semi-Distributed Approach

R2 RMSE MAE R2 RMSE MAE
SCA [0, 1] SD (m)

0.25
0.10 0.803 13.84 9.85 0.790 15.48 10.36
0.15 0.807 13.75 9.54 0.793 15.04 9.79
0.20 0.806 13.79 9.60 0.789 16.41 12.05

0.35
0.10 0.821 12.64 8.36 0.809 14.31 9.79
0.15 0.828 12.51 8.24 0.815 13.59 9.60
0.20 0.815 12.86 8.54 0.811 14.90 10.49

0.45
0.10 0.812 13.47 9.33 0.798 15.29 10.47
0.15 0.813 13.69 9.58 0.805 14.31 9.81
0.20 0.813 13.38 9.24 0.80 16.29 11.17
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Figure 5 depicts the spatial distribution of the snow water equivalent (SWE) simulated (with both
approaches) for two dates: in the accumulation period (28 February 2003) and in the early melting period
(24 April 2003). Figure 5 also shows for both dates the UWS product from MODImLab. The overall SWE
spatial patterns and values are similar in both approaches. However, the semi-distributed simulation fails on
reproducing the accumulation on certain areas (for instance in low areas of Mer de Glace glacier see location
in Figure 1). Some of the discrepancies between the observed SCA and the simulated SWE are related with
deviations in the simulations but others also originated on deficiencies of remote sensing observations on
complex alpine terrain (highly rugged topography, vegetation and mixes pixels)”.

5.2.1. Snow Covered Area Dynamics

The results of simulation of the SCA in the study area for 5 of the 14 snow seasons allowing
a comparison with MODIS data are shown in Figure 6 (left panel). This figure shows that both
approaches were able to reproduce the SCA evolution based on MODIS images. In view of dispersion
graphs (Figure 6 right panel) the bias for low SCA values is more pronounced for semi-distributed
simulations than for distributed simulations. These discrepancies are mainly due to the differences
between observations and simulations on the late melting period.

Figure 6. (Left) Temporal evolution of the SCA (2005–2010) based on semi-distributed and distributed
simulations and MODIS sensor observations. The vertical bars associated with the MODIS observations
show the uncertainty associated with cloud presence for days having≤20% snow cover. (Right) Scatter
plot between observed (X axis) and simulated (Y axis) SCA obtained with semi-distributed and
distributed approaches for the whole time period with observations.

Figure 7 (left panel) shows the SCA evolution for four snow seasons, two having lower than
average snow conditions (2006–2007 and 2007–2008 seasons) and two having higher than average snow
conditions (2011–2012 and 2012–2013 seasons). In winter the simulation slightly overestimated the
SCA compared with observations, but during summer and autumn the simulations underestimated
the SCA. However, the distributed simulations reproduced the observed SCA more closely. For all
four seasons, the semi-distributed simulations generated larger underestimates of the SCA during
summer and early autumn than the distributed approach (Figure 7 right).
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Figure 7. (Left) Observed and simulated SCA evolution for a period of low level snowpack
accumulation (2006–2008; upper panel) and a period of high level snowpack accumulation (2011–2013
lower panel). The vertical bars for the MODIS observations show the uncertainty associated with
cloud presence for days having ≤20% snow cover. Red and blue shading for the distributed and
semi-distributed SCA simulations show the uncertainty associated with various snow depth thresholds
for determining whether a pixel was snow covered. The lower limit of the shading represents the SCA
evolution for a 0.1 m threshold, the upper limit of the shading represents a 0.2 m snow depth threshold,
and the middle line represents a 0.15 m snow depth threshold. (Right) Scatter plot between observed
(X axis) and simulated (Y axis) SCA obtained with semi-distributed and distributed approaches for
same time period of the left graphs (respectively 2006–2008 and 2011–2013).

Using the terrain aspect classification for semi-distributed simulations, it is possible to evaluate
the impact of terrain shadowing effects. From the eight orientation classes we identified two main
groups: those having a northern aspect (N, NW, NE) and those having a southern aspect (S, SE, SW).
Figure 8 shows the observed and simulated SCA evolution for higher than average and lower than
average snow accumulation seasons in relation to these two terrain classes. The variability in the
SCA was well captured for the two aspects by both the semi-distributed and distributed simulations.
Overall, the simulation underestimated the SCA during late spring and summer in northern aspects.
For southern aspects, the simulation of the SCA evolution was poorer during winter.
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Figure 8. Evolution of the SCA in relation to north and south aspect for the 2006–2008 (upper panel;
low level of snowpack accumulation) and 2011–2013 (lower panel; high level of snowpack
accumulation) snow seasons. Vertical bars for the MODIS observations show the uncertainty associated
with cloud presence for days having ≤20% snow cover. Red and blue shading for the distributed and
semi-distributed SCA simulations show the uncertainty associated with various snow depth thresholds
for determining whether a pixel was snow covered. The lower limit of the shading represents the SCA
evolution for a 0.1 m threshold, the upper limit of the shading represents a 0.2 m snow depth threshold,
and the middle line represents a 0.15 m snow depth threshold.

Error estimates for the SCA simulated for the whole study area, and for north and south aspects
(Tables 3–5), were lower for the distributed simulations than for semi-distributed ones. For instance the
average RMSE error for the SCA decreases from 15.2% for the semi-distributed approach to 12.6% for the
distributed simulations considering the whole study period. When accumulation period (January, February
and March) RMSE is computed, a value of 6.34% is obtained for semi-distributed simulations and 6.28% for
distributed ones. In contrast when these values are obtained for the melting period (May, June and July)
it is obtained a 21.08% RMSE for the semi-distributed approach and a 15.61% RMSE for the distributed
approach. RMSE and MAE standard deviations obtained from the bootstrapping (Table 3) were lower than
the difference between the scores obtained for distributed and semi-distributed approaches. The p-values
for these two error metrics were lower than 0.01 and thus the null hypothesis was rejected with a 99%
confidence interval, demonstrating that the skills of distributed and semi-distributed simulations are not
statistically equivalent. Conversely the R2 standard deviation of the SCA is high compared to the difference
between the scores of the two approaches. As a result, the high p-value indicated (in this case above 0.05) that
the null hypothesis should be accepted and that these scores are not statistically different between the two
approaches. R2, MAE and RMSE average values for snow conditions higher than average (2006–2007 and
2007–2008 snow seasons, Table 4) and lower than average (2011–2012 and 2012–2013 snow seasons, Table 5)
also show the better capacity of distributed simulations to reproduce SCA evolution. The t-student test
demonstrated that RMSE and MAE results for the approaches are statistically different, and that for all
aspects and time periods, the distributed simulations exhibits lower error statistics. We can conclude that
the distributed approach significantly better reproduce the SCA evolution.

The differences in the error metrics (RMSE and MAE) between distributed and semi-distributed
simulations are significant for both, north and south aspects but higher for north aspect. However,
it must be highlighted that for the whole catchment and for any aspect, the null hypothesis can be
accepted based on the R2 value between distributed and semi-distributed approaches. This means that
the added value of the distributed approach is not visible on this criterion.
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Table 3. R2, mean absolute error (MAE) and RMSE average and standard deviations values from
the 100 sample bootstrapping for the observed and simulated SCA (based on the distributed and
semi-distributed approaches) for the entire time period with SCA observation (2001–2015). Results for
the entire study area and for North and South Expositions are presented. Error metrics in bold note
p-values of the T-student test lower than 0.01 (99% confidence interval for rejecting null hypothesis).

Exposition Approach R2 MAE RMSE

Whole catchment
Semi-distributed 0.819 ± 0.022 10.40 ± 0.39 15.2 ± 0.71

Distributed 0.821 ± 0.021 8.34 ± 0.30 12.6 ± 0.77

North aspect Semi-distributed 0.721 ± 0.036 10.09 ± 0.52 15.98 ± 0.88
Distributed 0.726 ± 0.035 7.57 ± 0.38 12.73 ± 0.97

South aspect Semi-distributed 0.858 ± 0.018 10.17 ± 0.31 14.78 ± 0.64
Distributed 0.857 ± 0.016 9.83 ± 0.39 13.19 ± 0.70

Table 4. RMSE, MAE and R2 values for the observed and simulated SCA (based on the distributed and
semi-distributed approaches) for 2006–2008 time periods for the whole catchment, Northern aspect (N,
NE, NW) and Southern aspect (S, SE, SW).

Period Approach R2 MAE RMSE

Whole catchment
Semi-distributed 0.744 10.756 16.903

Distributed 0.756 8.74 14.82

Northern aspect Semi-distributed 0.58 11.26 18.36
Distributed 0.59 8.61 15.62

Southern aspect Semi-distributed 0.80 10.17 16.48
Distributed 0.815 10.34 16.21

Table 5. RMSE, MAE and R2 values for the observed and simulated SCA (based on the distributed and
semi-distributed approaches) for 2011–2013 time period for the whole catchment, Northern aspect (N,
NE, NW) and Southern aspect (S, SE, SW).

Period Approach R2 MAE RMSE

Whole catchment
Semi-distributed 0.881 11.56 15.58

Distributed 0.895 7.99 11.10

Northern aspect Semi-distributed 0.82 11.30 16.38
Distributed 0.84 7.79 11.69

Southern aspect Semi-distributed 0.902 10.98 15.09
Distributed 0.905 8.25 11.81

5.2.2. Evaluation of the Spatial Similarity

The temporal spatial similarity between the observed and simulated SCA is exemplified in the
temporal evolution of the Jaccard index and ASSD. Table 6 shows the average values for J and ASSD for
the entire study period and for the 2006–2007 and 2007–2008 snow seasons (lower than average snow
conditions) and the 2011–2012 and 2012–2013 snow seasons (higher than average snow conditions).

Table 6. Average values of the Jaccard index and average symmetric surface distance (ASSD) values
for each simulation approach for various time periods.

Period Approach Jaccard ASSD

Entire period (2001–2015) Semi-distributed 0.817 0.912
Distributed 0.832 0.975

2006–2007 to 2007–2008
Semi-distributed 0.783 0.920

Distributed 0.801 0.952

2011–2012 to 2012–2013
Semi-distributed 0.826 0.897

Distributed 0.836 0.952
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The higher scores found during seasons having high levels of snow accumulation were expected
because of the larger areas covered by snow. Figure 9 shows the temporal evolution of the Jaccard
index and ASSD for high and low level snow accumulation seasons. The difference between the
distributed and semi-distributed simulations was almost undetectable for most dates and only during
the last part of the melting season (August–September), distributed simulations were found to be
perform slightly better (higher J index and lower ASSD). This shows that except for some particular
time periods, differences in the spatial similarity with the observed SCA with the two simulation
approaches are minor.

Figure 9. Jaccard index and ASSD values for low level (2006–2007 and 2007–2008) and high level
(2011–2012 and 2012–2013) snow accumulation seasons.

Table 7 shows the average Jaccard and ASSD index values obtained for the JFM and MJJ periods
for the four snow seasons analyzed in detail (high and low level snow accumulation seasons).
Again, a minor improvement on capturing the spatial patterns in heterogeneous mountain terrain
was obtained with distributed snowpack simulations. Not surprisingly, the values in Table 7 also
show higher scores for the two simulations approaches during winter and early spring, when the SCA
was higher.

Table 7. Average values of the Jaccard index and ASSD for each simulation approach for the maximum
(January, February, March (JFM)) and minimum (May, June, July (MJJ)) snow accumulation periods.

Period Approach Jaccard Index ASSD

JFM MJJ JFM MJJ

2006–2007
Semi-distributed 0.9535 0.802 0.687 1.152

Distributed 0.9557 0.823 0.704 1.104

2007–2008
Semi-distributed 0.950 0.793 0.717 1.062

Distributed 0.951 0.809 0.724 1.043

2011–2012
Semi-distributed 0.968 0.756 0.711 0.983

Distributed 0.967 0.754 0.734 0.994

2012–2013
Semi-distributed 0.980 0.790 0.199 1.271

Distributed 0.990 0.799 0.198 1.250

5.3. Glacier Surface Mass Balance

Figures 10 and 11 show the simulated and observed temporal evolution of the surface mass balance
for the 300-m elevation bands. They show good agreement between observations and simulations with
respect to year-to-year SMB variability. During winter the snow accumulation at high elevations was
underestimated. For elevations above 2700 m.a.s.l. observations indicate higher positive glacier SMB than
the simulations, and the difference between the observed and simulated SMB increased at higher elevations.
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During summer, when solid precipitation has no or marginal influence in low elevation areas and little
influence at higher elevations, the observed and simulated SMB values were similar for elevations above
2100 m.a.s.l. for the Mer de Glace glacier, and above 2400 m.a.s.l. for the Argentière glacier. Nevertheless,
in high elevation areas the summer SMB deviation was also underestimated on the simulations.

The combination of the simulated winter SMB and summer SMB produced an annual SMB showing
underestimated snow accumulation at high elevations (>3000 m.a.s.l.) and understimated melting at
low elevations (2400 m.a.s.l. for the Argentière glacier, and <2100 m.a.s.l. for the Mer de Glace glacier).
Thus, the glacier annual SMB included summer and winter variations, which in some cases negated each
other. The contrasting performance of the simulations in reproducing the SMB between high and low
elevations is clearly illustrated in Figure 12. This shows the altitudinal dependence of the SMB for two snow
seasons, one having a lower than average level of snow accumulation and the other a higher than average
level. The simulated summer, winter and annual SMB values for the two approaches underestimated the
observed values at both low (higher negative loss of water equivalents observed) and high (lower positive
loss of water equivalents observed) elevation areas. Nevertheless, the SMB simulations at intermediate
elevations correctly reproduced the observed values, and the temporal evolution of the SMB for the 20 years
(Figures 10 and 11) was well reproduced by the simulations overall. These results are consistent with the
findings of [74] in another glacier of the French Alps using comparable modeling tools.

Figure 10. Temporal evolution of the observed and simulated (semi-distributed and distributed) SMB
for the Argentière glacier for the four 300-m elevation bands for the period 1994–2013. The points show
the average observation and simulation values for the same measurement locations, and the vertical
bars show the standard deviations for those values.
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Figure 11. Temporal evolution of the observed and simulated (semi-distributed and distributed) SMB
for the Mer de Glace glacier for the seven 300-m elevations bands for the period 1994–2013. The points
show the average observation and simulation values for the same measurement locations, and the
vertical bars show the standard deviations for those values.
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Figure 12. Altitudinal dependence of the observed and simulated (semi-distributed and distributed)
SMB for two snow seasons (2007–2008: low level snow accumulation; and 2012–2013: high level snow
accumulation) at the Mer de Glace glacier.

The performance of simulations in reproducing glacier SMB must take account of the areal extent
at differing elevations. Elevations > 3000 m.a.s.l. represent 37% and 52% of the surface areas of the
Argentière and Mer de Glace glaciers, respectively. The Argentière glacier has <10% of its surface area below
2400 m.a.s.l., and the Mer de Glace glacier has <7% below 2100 m.a.s.l. These relative extents of glacierized
surface area show that for large areas of the glaciers, the SMB was accurately reproduced by the simulations.
However, for large parts of the glacierized areas, there were marked differences between the observations
and simulations; although the year-to-year evolution was accurately reproduced, this demonstrates the
need to improve simulation methods.

In general, the distributed simulation values for the SMB were slightly closer to the observed SMB
values than were those from the semi-distributed simulations (in average the RMSE is reduced from
1.475 m of Water Equivalent (WE) for semi-distributed to 1.375 m W.E. for distributed simulations).
Table 8 shows RMSE, MAE and R2 means and standard deviations obtained from the 100-member
bootstrap sample (a stability test, not shown, showed that stable results were attained with this sample
size). For most of the error metrics, the standard deviations are lower than score differences and the
p-values are low enough to reject the null hypothesis. This shows that results obtained with the two
simulation approaches are statistically different. In winter, the SMB simulations show similar results.
For both glaciers, lower RMSE and MAE are obtained for distributed simulations and better R2 for
semi-distributed simulations. In contrast, during summer all scores show better results when the
distributed approach is used. The annual SMB also exhibit better results for distributed simulations.
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Table 8. R2, MAE and RMSE average and standard deviations values from the 100 sample bootstrapping
for the observed and simulated SMB for Mer de Glace (Mdg) and Argentière (Arg) glaciers (based on
the distributed and semi-distributed approaches. Error metrics in bold note p-values of the T-student
test lower than 0.01 (99% confidence interval for rejecting null hypothesis).

Glacier Period Approach RMSE MAE R2

Arg

WSMB
Semi-distributed 0.56 ± 0.027 0.43 ± 0.022 0.54 ± 0.065

Distributed 0.51 ± 0.028 0.42 ± 0.023 0.50 ± 0.073

SSMB
Semi-distributed 0.96 ± 0.057 0.78 ± 0.045 0.75 ± 0.031

Distributed 0.77 ± 0.049* 0.62 ± 0.047 0.84 ± 0.019

ASMB
Semi-distributed 1.21 ± 0.059 0.99 ± 0.055 0.72 ± 0.021

Distributed 1.18 ± 0.062 0.909 ± 0.054 0.71 ± 0.055

Mdg

WSMB
Semi-distributed 0.73 ± 0.031 0.57 ± 0.024 0.64 ± 0.041

Distributed 0.76 ± 0.026 0.58 ± 0.027 0.59 ± 0.045

SSMB
Semi-distributed 1.47 ± 0.093 1.18 ± 0.083 0.746 ± 0.049

Distributed 1.19 ± 0.069 0.86 ± 0.057 0.86 ± 0.014

ASMB
Semi-distributed 1.74 ± 0.095 1.36 ± 0.075 0.76 ± 0.041

Distributed 1.57 ± 0.088 1.16 ± 0.069 0.838 ± 0.020

5.4. Glacier Equilibrium Line Altitude

The temporal evolution of the ELA for the five largest glaciers in the study area is shown in
Figure 13. Despite differences in the spatial resolutions of simulations and observations of ELA,
simulations were able to capture changes in ELA during the 26 years of the study. For most of the
years and glaciers simulated, ELA values derived from the distributed approach were closer to those
observed. However, for certain years, better results were obtained with semi-distributed simulations.

Figure 13. Observed and simulated evolution of the equilibrium-line altitude (ELA) for the five glaciers
during the study period, based on the same dates as those for the satellite image acquisition.
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Table 9 shows the average absolute differences between observations and simulations and
the linear adjustments for the five glaciers. These results show a systematic positive bias on the
simulated ELA which is consistent with the underestimation of the summer SMB revealed by the
results introduced previously.

Table 9. Average differences, standard deviations, slope of the linear adjustment, and R2 values for the
observed and simulated ELA five glaciers of the study area.

Glacier Approach Avg Dif (m) Std. Dev (Differences) (m) Slope R2

Mer de Glace
Semi-distributed 155.11 69.62 0.715 0.420

Distributed 88.57 48.90 0.869 0.627

Leschaux
Semi-distributed 158.34 101.84 0.188 0.102

Distributed 110.73 109.67 0.560 0.586

Talèfre
Semi-distributed 105.14 59.25 0.4936 0.2336

Distributed 80.12 41.87 0.766 0.476

Le Tour
Semi-distributed 105.14 59.25 0.339 0.528

Distributed 84.33 68.71 0.625 0.715

Argentière Semi-distributed 63.89 42.87 0.270 0.103
Distributed 54.52 31.85 0.578 0.381

6. Discussion

6.1. Overview of SAFRAN–Crocus Performance

The observation dataset used in this study enabled a multi-criteria spatio-temporal evaluation of
the performance of snowpack simulations at the scale of a large alpine catchment, featuring a complex
topography and significant glacier coverage (32%). These analyses were accomplished using the
operational, semi-distributed version of SAFRAN–Crocus. This may constitute the most exhaustive
evaluation of this model chain over a large mountain area for a long time period. The analysis of the
results of semi-distributed and distributed simulations provided, in addition, a holistic evaluation of
the snow and ice dynamics in the study area. Overall, the SAFRAN–Crocus simulations have shown
a good capability for reproducing the temporal evolution and spatial variability of snow and ice during
the study period.

The simulations were evaluated using snow depth data from five Météo-France stations.
Their ability to reproduce a bulk variable such as snow depth suggests that the main simulation
processes were satisfactory, especially those related to the various components of the energy and
mass balance. These findings are consistent with previous evaluations of the SAFRAN–Crocus
system [36,70]. Crocus simulates the energy and mass exchanges with soil and atmosphere and also
within the snowpack layers in 1D, but it does not intrinsically simulate small scale topographic effects
on snow depth distribution in 2D and beyond, such as preferential deposition, wind-induced snow drift
and snow avalanches [29]. The goal of the present study was to assess specifically the added-value of
accounting for topography-driven radiative effects (topographical shadowing), which the distributed
approach allows, in contrast to the semi-distributed approach. Further studies will explore in more
detail how more sophisticated model approaches could further improve the performance of distributed
simulations, which is deliberately beyond the scope of the present study [31,80,81].

Distributed information on the snowpack evolution from the MODIS sensor enabled evaluation
of the simulation results on a suitable temporal scale. Although many MODIS images were discarded
because of cloud cover, they demonstrated the capacity of SAFRAN–Crocus to simulate the spatial
distribution of the SCA over time for large areas having high spatial heterogeneity. The 14-year time
period spanned is longer than in all the previous similar evaluations of this model choice, and at
a higher spatial resolution [42]. The evaluation of the spatial similarity between simulations and
observations (Jaccard index and ASSD) showed that the SCA spatial pattern was well reproduced.
The simulated SCA for winter was in close agreement with observations, as most of the study
area was covered by snow. In contrast, during summer the performance of simulations declined,
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as evidenced by the increase in ASSD and the decrease in the Jaccard index. As small scale topographic
effects, that control snow accumulation on preferential accumulation areas, were not included in the
simulations, deviations from observations could have increased for certain periods, particularly the
late melt period. These processes, which are mainly driven by small topographic features, can be
long-lasting during the late melt period [29,82]. This was particularity evident in comparisons of the
scores for the 2006–2007 and 2007–2008 periods (lower than average snow conditions) with those for the
2011–2012 and 2012–2013 periods (higher than average snow conditions) (Table 3). The differences in
response may have originated from the higher weight of glacier melt processes in years with shallower
than average snow depth. For these years, the good capability of the model on reproducing snow
melting is lumped because the snow distribution is not appropriately simulated.

The availability of observations of the glacier SMB over a long time period provided an opportunity
to evaluate the performance of the simulations in capturing the snow and ice temporal evolution over
a wide range of elevations over glacierized areas. Contrasting simulation performances were found in the
various elevation bands, and changed with the time period involved (summer, winter, or annual scales).
The performances in simulating the SMB for the Argentière and Mer de Glace glaciers differed at high
and low elevations. Although the observed SMB was always higher than the simulated one for elevations
exceeding 2700 m, the opposite was observed for areas having elevations below 2100–2400 m. As the
temporal variability of solid precipitation generally explains the temporal variability of the winter SMB [12],
it is important to consider differences between simulated and observed solid precipitation, and how these
could affect underestimation of the SMB in simulations. Studies in the same study area and nearby
glaciers suggest that at high elevations the SAFRAN reanalysis may underestimate solid precipitation at
ratios ranging from 1:1.2 at 2000 m.a.s.l. and 1:2.0 at 3200 m.a.s.l., with an average of 1:1.5 at the glacier
scale [12,56,72,74]. This mainly results from the lack of precipitation observations at high elevations available
for assimilation into the SAFRAN reanalysis; consequently divergences increase with elevation. Despite this
shortcoming, the simulations captured the inter-annual fluctuation of the winter SMB for all elevation bands.
During summer, SMB is mainly driven by temperature variations in the two glaciers [12], thus simulations
results are closer to observations, particularly at higher elevations. In summer, most precipitation is liquid,
and so has a lower impact on the energy balance of the glaciers [83]; this may explain the improvement in
summer simulations for most elevations.

For the entire study period the SAFRAN–Crocus simulations effectively reproduced the observed
inter-annual evolution of the study area glacier ELA. However, some differences were evidenced,
particularly on steeper glaciers, because the high spatial heterogeneity was not well captured by the
simulations. For mid-latitude mountain glaciers, the annual evolution of the ELA can be considered
to be a good proxy for the glacier surface mass balance [66]. Thus, observations of the glacier SMB,
together with the ELA, provide for a complete evaluation of glacier temporal evolution.

6.2. Distributed vs. Semi-Distributed Approaches

In this study we performed distributed and semi-distributed snowpack simulations using the
same, originally semi-distributed, meteorological forcing (SAFRAN), the same snowpack model
(Crocus), and the same evaluation setup. Thus, the two approaches were affected by the same
methodological limitations, and differences in performance can directly be traced to differences in
the approaches themselves. The simulation results were consistent with the observed SCA evolution
using the two approaches. However, better results were obtained from the distributed simulations
during late summer. Similarly, an improvement on simulation results was obtained with distributed
simulations. This is probably due to the fact that the energy balance is more accurately simulated
in the distributed approach, as it accounts for terrain shadowing effects on incoming solar radiation.
Therefore, for aspects and/or time periods for which the differences on simulation of the incoming
solar radiation have a critical weight, differences on snowpack simulation between the two approaches
are more pronounced.
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Based on the glacier SMB scores and their temporal evolution, it was found that the ranking of the
simulation approach could be different depending on the season. The winter SMB evaluation showed
similar results for the two methods. In contrast, the distributed approach was better at simulating the
summer SMB. The distributed approach exhibited better skill at the annual scale.

The distributed simulation of the ELA generally showed closest agreement with observations,
but not for every year. This may be related to the coarse pixel size, which did not enable to capture
the effects of the high spatial heterogeneity of the terrain. The annual ELA covers a small area of the
glaciers (it represents the snow line limit between snow-free and snow-covered areas), and thus the
effect of spatial heterogeneity is likely to be significant.

Overall, the distributed simulations were slightly better at reproducing observational data during
the whole study period. For SCA and SMB, the improvements described above are significant according
to the bootstrap results analysis. However, it should be noticed that the bootstrap method applied
here only compares the difference of skill between two simulations with the inter-annual variability of
the scores. In addition it has been shown how, that for particular dates and/or specific time periods,
semi-distributed simulations do not appropriately reproduce snowpack distribution, since are not
able to take into account the influence of terrain shadowing. This is particularly evident during
melting period. This way, the SCA spatial distribution and the SMB seasonal and inter-annual
evolution obtained with distributed simulations is closer to reality at the end of the snow season
than semi-distributed simulations, from which we can expect a superior performance of distributed
simulations on reproducing SWE. Despite no observation database was available to evaluate the SWE
distribution over the whole study area, the (potential) better capacity of distributed simulations is
very-likely to be non-negligible regarding hydrological issues such as streamflow evolution.

Nevertheless, the differences involved by the spatial discretization (distributed vs semi-distributed)
can still be lower than other sources of uncertainties common to the two approaches. For example,
the two simulations are performed with the same snowpack model and share the same errors in the
physical parameterizations of various processes (liquid water percolation, compaction, metamorphism,
turbulent surface fluxes, etc.) and the same missing physical processes (e.g., snow redistribution by the
wind). Furthermore, the two simulations are forced with the same meteorological reanalysis and share
the same meteorological errors. Ensemble simulations based on multiphysics modelling systems [77] and
on ensemble meteorological forcings [84], applied to the two approaches, could be performed (with much
higher numerical costs) to investigate the significance of the impact of these approaches compared to these
uncertainties. Although this is beyond the scope of this work, the significance of the improvements obtained
with the distributed discretization should be considered depending on the magnitude of simulations errors
resulting from meteorological and snowpack model errors [33,76,85].

Furthermore, depending on the purpose of the simulations and the accuracy required, other factors
must be considered. The total CPU time for simulating one complete snow season with the distributed
approach is 20 h for a domain of about 10,000 grid cells. Therefore, running several years, several
experiments, or larger domains generally require parallel computing resources to improve the real
execution time compared to the CPU time. When sufficient resources are available, the superior results
of distributed simulations encourage this choice. In the contrary, semi-distributed simulations have
lower computing resource requirements, on the order of a factor 100 for this study (about 0.2 CPU
hours). A good example of an application in which the computational requirements have a determinant
weight are ensemble simulations for projections in several climate scenarios (e.g., [86]), which can be
expensive to run and analyze in a distributed configuration, without a substantial added value.

6.3. Limitations of the Satellite Evaluation Datasets

Data on the spatial extent of SCA derived from MODIS images enabled distributed evaluation
of the simulations. However, its usefulness in analysis of the performance of spatial simulations is
limited, as it does not provide information on other snowpack variables, and imposes restrictions
on the spatial resolution. Satellite observations also involve uncertainty, depending on the routines
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applied for generating the final product and the thresholds used to decide whether a pixel area as
covered by snow. After a sensibility test we adopted a 0.35 UWS threshold for considering a pixel
as snow covered in satellite imagery [50,61]. We also performed an analysis to select the simulated
snow depth threshold for considering a pixel to be snow covered. The 0.15 m threshold selected is
consistent with values reported in previous studies [42,52]. Despite mountain areas having a high
spatial heterogeneity which also affects snowpack distribution, these thresholds enabled a binary
representation of snow presence/absence which finally ensured a consistent SCA evaluation of both
simulation approaches.

Such binary classification is a well-established snowpack variable to evaluate its temporal
evolution over extended areas [52]. However further investigations analysing in detail fractional
snow cover [87,88], compared to simulated snowpack, which at the moment produce constant snow
for each pixel; would allow the evaluation of higher spatial resolution snowpack simulations. This is
not possible with the binary classification performed in this work.

In addition to the above issues, satellite products can have errors for specific dates. For a small
number of days during the study period the SCA obtained from MODIS images did not describe the
real extent of snow cover. For these days the SCA did not match the temporal SCA evolution observed
on previous and later dates. Furthermore, days having the maximum cloud cover allowed in our
analysis could have ±20% SCA variability. This induces uncertainty in the observation for certain
dates which can be greater than this of the pixel classification as snow covered in the simulations (note
the ±0.05 m snow depths threshold tested). In addition, pixels classified as snow covered in which
bare soil may have a non-negligible extension (pixels close to the 0.35 UWS threshold) could introduce
discrepancies between observations and simulations, mainly during summer.

Some issues were also evident in evaluation of the ELA. For the smallest glaciers, a reduced
number of pixels having the 250-m pixel resolution were considered. As the ELA observations were
based on Landsat, SPOT and ASTER satellite images (2.5–30 m resolution) the spatial variability
of the simulation made it difficult to identify the glacier margins. The combination of problems in
delimitating glacierized areas over smaller ice bodies, and the smooth topography characterizing the
simulations compared with real terrain, could cause simulation errors for smaller glaciers.

6.4. Future Perspectives on Distributed Snowpack Simulations

Simulating the snowpack evolution in mountain areas is challenging and will remain so for the
decades to come. Although advances in meteorological/snowpack models and simulation approaches
are improving the prediction of observational data, inaccuracies remain. Many studies have highlighted
the potential to improve snowpack modeling by assimilating observational data [46,89]. Satellite data
enables the distribution of the snowpack over large areas to be determined, and the assimilation of such
data into snowpack models has been shown to significantly improve the simulation results in theory [44].
In distributed snowpack simulations, almost direct satellite data can be assimilated, in contrast to the
semi-distributed approach which needs aggregation methods to enable satellite data assimilation, thereby
losing part of the information in this process. Additionally, meteorological forcing models featuring higher
spatial resolution are improving simulations of the spatial pattern of meteorological variables in mountain
areas [43,90,91]. This will improve snowpack simulations [42,92]; even though it is challenging to combine
high resolution numerical weather prediction models with precipitation measurements assimilation in
analysis systems. Interest in distributed snowpack simulations will be enhanced when reliable high spatial
resolution meteorological forcing data are available, as only this simulation approach can take full advantage
of such data.

Further research is needed on parameterizing small scale snowpack processes for incorporation
in modeling, including wind driven snow transport [93,94], avalanche snow redistribution [47],
and topographic control on snow distribution [29]. Inclusion of these processes, together with the
incorporation of reliable meteorological forcing and satellite data, assimilation will improve the
accuracy of snowpack simulations over extensive mountain areas.
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7. Conclusions

This study provided a detailed assessment of the ability of the SAFRAN–Crocus system to
simulate the snow and ice dynamics in complex alpine terrain using distributed and semi-distributed
simulation approaches. The study was undertaken in the upper Arve catchment in the western French
Alps, with simulations run for the 1989–1990 to the 2014–2015 snow seasons.

The simulations were evaluated based on observations of snow depth derived from five
meteorological stations within the study area. This was only performed using punctual snowpack
simulations, in order to provide an assessment of model performance over glacier-free terrain. Despite
some discrepancies between observations and simulations, the model reliably reproduced the snow
depth time series, especially during melt periods.

In regard to the spatial scale of snowpack simulations over extended areas, the semi-distributed and
distributed simulations were compared using the same observation datasets, including: (i) the temporal
evolution of the snow-covered area based on data from the MODIS sensor, specifically processed to address
the impact of complex topography on satellite observation; (ii) measurements of surface mass balance
of glaciers within the upper Arve catchment; and (iii) observational data on the annual evolution of the
equilibrium-line altitude for the various glaciers considered based on high resolution satellite imagery.
Detailed treatment of the effects of complex terrain on the satellite signal such as the one implemented
in MODImLab enables an accurate evaluation of the snowpack simulations. Such satellite products are
especially useful for assessing in detail the impact of including complex terrain induced shading in the
snowpack simulations.

The two simulation methods reproduced quite accurately, and with similar skill, the evolution
of the SCA during accumulation events, which was expected because they relied on the same
meteorological forcing data. From the winter to early spring period, when the study area is almost
completely covered by snow, there was little difference between the two approaches. However, for the
melting period the distributed simulations better reproduced the observations.

The simulations for low elevations and elevations > 2700 m.a.s.l. underestimated (negative
underestimation in low elevations and positive in high) the observed glacier SMB. Nevertheless,
the results of the two simulations were in close agreement with observations at mid-elevation areas,
and adequately reproduced the observed annual glacier SMB at all elevations. Overall, the distributed
simulations yielded slightly better results.

Based on comparison with ELA data obtained from various satellites at the end of summer,
the SAFRAN–Crocus accurately reproduced the inter-annual variability of the snowpack over
glacierized areas. However, differences between observations and simulations were shown,
particularly for the smallest glacierized areas, where the spatial resolution of the simulations did
not enable the high spatial variability of the topography to be included.

Overall, the results of this study demonstrated that distributed simulations reproduce slightly better
(but statistically significantly) snowpack dynamics in the alpine terrain of our study area during the
whole study period. Distributed simulations take into account the specific topographic characteristics
of each pixel (local values of aspect, slope and elevation) and more importantly the effects of terrain
shadowing by surrounding areas. Accounting for these two effects over long time periods led to statistically
significant better results for the distributed approach. However, the lower computational requirements
of semi-distributed simulations together with the flexibility on the design and application scale of the
simulation; makes this approach suitable to simulate snowpack evolution for applications that do not require
the highest simulation performance and in which the interpretation of results allows higher uncertainties.
The intrinsic added value of distributed simulations in our case is limited over the semi-distributed approach
when regarding global values but it is better able to reproduce snowpack distribution over complex
terrain, leading to improved results on simulating snow spatial distribution. Moreover the methodological
framework introduced here paves the way for future assessments of the performance of more sophisticated
method, using spatially distributed meteorological forcing and/or relying on satellite data assimilation to
improve model predictions during the course of the snow season.
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15. Gaál, L.; Szolgay, J.; Kohnová, S.; Hlavčová, K.; Parajka, J.; Viglione, A.; Merz, R.; Blöschl, G. Dependence
between flood peaks and volumes: A case study on climate and hydrological controls. Hydrol. Sci. J. 2015,
60, 968–984. [CrossRef]

https://glacioclim.osug.fr
http://dx.doi.org/10.1038/nature04141
http://www.ncbi.nlm.nih.gov/pubmed/16292301
http://dx.doi.org/10.1029/2008GL035545
http://dx.doi.org/10.1029/2011GL048927
http://dx.doi.org/10.1016/j.advwatres.2012.08.010
http://dx.doi.org/10.1002/hyp.9618
http://dx.doi.org/10.1002/hyp.7346
http://dx.doi.org/10.1623/hysj.49.5.787.55135
http://dx.doi.org/10.1002/hyp.10091
http://dx.doi.org/10.1029/2006WR005653
http://dx.doi.org/10.1007/s10584-009-9546-x
http://dx.doi.org/10.5194/tc-10-681-2016
http://dx.doi.org/10.3189/2013JoG13J015
http://dx.doi.org/10.1016/j.coldregions.2007.04.009
http://dx.doi.org/10.1080/02626667.2014.951361


Remote Sens. 2018, 10, 1171 29 of 32

16. Berghuijs, W.R.; Woods, R.A.; Hutton, C.J.; Sivapalan, M. Dominant flood generating mechanisms across the
United States. Geophys. Res. Lett. 2016, 43, 2016GL068070. [CrossRef]

17. Tacnet, J.-M.; Dezert, J.; Curt, C.; Batton-Hubert, M.; Chojnacki, E. How to manage natural risks in mountain
areas in a context of imperfect information? New frameworks and paradigms for expert assessments and
decision-making. Environ. Syst. Decis. 2014, 34, 288–311. [CrossRef]

18. Bartelt, P.; Lehning, M. A physical SNOWPACK model for the Swiss avalanche warning: Part I: Numerical
model. Cold Reg. Sci. Technol. 2002, 35, 123–145. [CrossRef]

19. Vionnet, V.; Brun, E.; Morin, S.; Boone, A.; Faroux, S.; Le Moigne, P.; Martin, E.; Willemet, J.-M. The detailed
snowpack scheme Crocus and its implementation in SURFEX v7.2. Geosci. Model Dev. 2012, 5, 773–791.
[CrossRef]

20. Avanzi, F.; De Michele, C.; Morin, S.; Carmagnola, C.M.; Ghezzi, A.; Lejeune, Y. Model complexity and
data requirements in snow hydrology: Seeking a balance in practical applications. Hydrol. Process. 2016, 30,
2106–2118. [CrossRef]

21. Braun, L.N.; Brun, E.; Durand, Y.; Martin, E.; Tourasse, P. Simulation of discharge using different methods of
meteorological data distibution, basin discretization and snow modelling. Nord. Hydrol. 1994, 25, 129–144.
[CrossRef]

22. Lehning, M.; Völksch, I.; Gustafsson, D.; Nguyen, T.A.; Stähli, M.; Zappa, M. ALPINE3D: A detailed model
of mountain surface processes and its application to snow hydrology. Hydrol. Process. 2006, 20, 2111–2128.
[CrossRef]

23. Scipión, D.E.; Mott, R.; Lehning, M.; Schneebeli, M.; Berne, A. Seasonal small-scale spatial variability in
alpine snowfall and snow accumulation. Water Resour. Res. 2013, 49, 1446–1457. [CrossRef]

24. Seidel, F.C.; Rittger, K.; Skiles, S.M.; Molotch, N.P.; Painter, T.H. Case study of spatial and temporal variability
of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain snowpack
derived from imaging spectroscopy. The Cryosphere 2016, 10, 1229–1244. [CrossRef]

25. Seyfried, M.S.; Wilcox, B.P. Scale and the Nature of Spatial Variability: Field Examples Having Implications
for Hydrologic Modeling. Water Resour. Res. 1995, 31, 173–184. [CrossRef]

26. Hood, J.L.; Hayashi, M. Characterization of snowmelt flux and groundwater storage in an alpine headwater
basin. J. Hydrol. 2015, 521, 482–497. [CrossRef]

27. Durand, Y.; Giraud, G.; Brun, E.; Merindol, L.; Martin, E. A computer-based system simulating snowpack
structures as a tool for regional avalanche forecasting. J. Glaciol. 1999, 45, 469–484. [CrossRef]

28. Mott, R.; Schirmer, M.; Bavay, M.; Grünewald, T.; Lehning, M. Understanding snow-transport processes
shaping the mountain snow-cover. The Cryosphere 2010, 4, 545–559. [CrossRef]

29. Revuelto, J.; Vionnet, V.; López-Moreno, J.I.; Lafaysse, M.; Morin, S. Combining snowpack modeling and
terrestrial laser scanner observations improves the simulation of small scale snow dynamics. J. Hydrol. 2016,
533, 291–307. [CrossRef]

30. Schirmer, M.; Wirz, V.; Clifton, A.; Lehning, M. Persistence in intra-annual snow depth distribution:
1.Measurements and topographic control. Water Resour. Res. 2011, 47, W09516. [CrossRef]

31. Trujillo, E.; Ramírez, J.A.; Elder, K.J. Topographic, meteorologic, and canopy controls on the scaling characteristics
of the spatial distribution of snow depth fields. Water Resour. Res. 2007, 43, W07409. [CrossRef]

32. Vionnet, V.; Martin, E.; Masson, V.; Guyomarc’h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.
Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled
snowpack/atmosphere model. The Cryosphere 2014, 8, 395–415. [CrossRef]

33. Raleigh, M.S.; Lundquist, J.D.; Clark, M.P. Exploring the impact of forcing error characteristics on physically
based snow simulations within a global sensitivity analysis framework. Hydrol. Earth Syst. Sci. 2015, 19,
3153–3179. [CrossRef]

34. Fiddes, J.; Gruber, S. TopoSUB: A tool for efficient large area numerical modelling in complex topography at
sub-grid scales. Geosci. Model Dev. 2012, 5, 1245–1257. [CrossRef]

35. Fiddes, J.; Gruber, S. TopoSCALE v.1.0: Downscaling gridded climate data in complex terrain. Geosci. Model Dev.
2014, 7, 387–405. [CrossRef]

36. Lafaysse, M.; Morin, S.; Coléou, C.; Vernay, M.; Serça, D.; Besson, F.; Willemet, J.M.; Giraud, G.;
Durand, Y. Towards a new chain of models for avalanche hazard forecasting in French mountain ranges,
including low altitude mountains. In Proceedings of the International Snow Science Workshop Grenoble,
Chamonix Mont, France, 7–11 October 2013.

http://dx.doi.org/10.1002/2016GL068070
http://dx.doi.org/10.1007/s10669-014-9501-x
http://dx.doi.org/10.1016/S0165-232X(02)00074-5
http://dx.doi.org/10.5194/gmd-5-773-2012
http://dx.doi.org/10.1002/hyp.10782
http://dx.doi.org/10.2166/nh.1994.0024
http://dx.doi.org/10.1002/hyp.6204
http://dx.doi.org/10.1002/wrcr.20135
http://dx.doi.org/10.5194/tc-10-1229-2016
http://dx.doi.org/10.1029/94WR02025
http://dx.doi.org/10.1016/j.jhydrol.2014.12.041
http://dx.doi.org/10.1017/S0022143000001337
http://dx.doi.org/10.5194/tc-4-545-2010
http://dx.doi.org/10.1016/j.jhydrol.2015.12.015
http://dx.doi.org/10.1029/2010WR009426
http://dx.doi.org/10.1029/2006WR005317
http://dx.doi.org/10.5194/tc-8-395-2014
http://dx.doi.org/10.5194/hess-19-3153-2015
http://dx.doi.org/10.5194/gmd-5-1245-2012
http://dx.doi.org/10.5194/gmd-7-387-2014


Remote Sens. 2018, 10, 1171 30 of 32

37. Nester, T.; Kirnbauer, R.; Parajka, J.; Blöschl, G. Evaluating the snow component of a flood forecasting model.
Hydrol. Res. 2012, 43, 762–779. [CrossRef]

38. Grünewald, T.; Schirmer, M.; Mott, R.; Lehning, M. Spatial and temporal variability of snow depth and
ablation rates in a small mountain catchment. The Cryosphere 2010, 4, 215–225. [CrossRef]

39. Revuelto, J.; López-Moreno, J.I.; Azorin-Molina, C.; Vicente-Serrano, S.M. Topographic control of snowpack
distribution in a small catchment in the central Spanish Pyrenees: Intra- and inter-annual persistence.
Cryosphere 2014, 8, 1989–2006. [CrossRef]

40. Carpenter, T.M.; Georgakakos, K.P. Intercomparison of lumped versus distributed hydrologic model
ensemble simulations on operational forecast scales. J. Hydrol. 2006, 329, 174–185. [CrossRef]

41. Orth, R.; Staudinger, M.; Seneviratne, S.I.; Seibert, J.; Zappa, M. Does model performance improve with
complexity? A case study with three hydrological models. J. Hydrol. 2015, 523, 147–159. [CrossRef]

42. Queno, L.; Vionnet, V.; Dombrowski-Etchevers, I.; Lafaysse, M.; Dumont, M.; Karbou, F. Snowpack modelling
in the Pyrenees driven by kilometric-resolution meteorological forecasts. The Cryosphere 2016, 10, 1571–1589.
[CrossRef]

43. Vionnet, V.; Dombrowski-Etchevers, I.; Lafaysse, M.; Quéno, L.; Seity, Y.; Bazile, E. Numerical Weather
Forecasts at Kilometer Scale in the French Alps: Evaluation and Application for Snowpack Modeling.
J. Hydrometeorol. 2016, 17, 2591–2614. [CrossRef]

44. Charrois, L.; Cosme, E.; Dumont, M.; Lafaysse, M.; Morin, S.; Libois, Q.; Picard, G. On the assimilation of
optical reflectances and snow depth observations into a detailed snowpack model. The Cryosphere 2016, 10,
1021–1038. [CrossRef]

45. Dumont, M.; Durand, Y.; Arnaud, Y.; Six, D. Variational assimilation of albedo in a snowpack model and
reconstruction of the spatial mass-balance distribution of an alpine glacier. J. Glaciol. 2012, 58, 151–164.
[CrossRef]

46. Thirel, G.; Salamon, P.; Burek, P.; Kalas, M. Assimilation of MODIS snow cover area data in a distributed
hydrological model using the particle filter. Remote Sens. 2013, 5, 5825–5850. [CrossRef]

47. Bernhardt, M.; Schulz, K. SnowSlide: A simple routine for calculating gravitational snow transport.
Geophys. Res. Lett. 2010, 37, L11502. [CrossRef]

48. Christen, M.; Kowalski, J.; Bartelt, P. RAMMS: Numerical simulation of dense snow avalanches in
three-dimensional terrain. Cold Reg. Sci. Technol. 2010, 63, 1–14. [CrossRef]

49. Mary, A.; Dumont, M.; Dedieu, J.-P.; Durand, Y.; Sirguey, P.; Milhem, H.; Mestre, O.; Negi, H.S.;
Kokhanovsky, A.A.; Lafaysse, M.; et al. Intercomparison of retrieval algorithms for the specific surface
area of snow from near-infrared satellite data in mountainous terrain, and comparison with the output of
a semi-distributed snowpack model. The Cryosphere 2013, 7, 741–761. [CrossRef]

50. Charrois, L.; Dumont, M.; Sirguey, P.; Morin, S.; Lafaysse, M.; Karbou, F. Comparing different MODIS
snow products with distributed distributed simulation of the snowpack in the French Alps. In Proceedings
of the International Snow Science Workshop Grenoble—Chamonix Mont-Blanc—2013, Grenoble, France,
7–11 October 2013; pp. 937–941.

51. Dressler, K.A.; Leavesley, G.H.; Bales, R.C.; Fassnacht, S.R. Evaluation of gridded snow water equivalent and
satellite snow cover products for mountain basins in a hydrologic model. Hydrol. Process. 2006, 20, 673–688.
[CrossRef]

52. Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sánchez, R. A snow cover
climatology for the Pyrenees from MODIS snow products. Hydrol. Earth. Syst. Sci. 2015, 19, 2337–2351.
[CrossRef]

53. Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images—Potential for snow cover mapping.
Water Resour. Res. 2008, 44. [CrossRef]

54. Hanzer, F.; Helfricht, K.; Marke, T.; Strasser, U. Multilevel spatiotemporal validation of snow/ice mass
balance and runoff modeling in glacierized catchments. The Cryosphere 2016, 10, 1859–1881. [CrossRef]

55. Gardent, M.; Rabatel, A.; Dedieu, J.-P.; Deline, P. Multitemporal glacier inventory of the French Alps from
the late 1960s to the late 2000s. Glob. Planet. Chang. 2014, 120, 24–37. [CrossRef]

56. Viani, A.; Condom, T.; Vincent, C.; Rabatel, A.; Bacchi, B.; Sicart, J.E.; Revuelto, J.; Six, D.; Zin, I. Glacier-wide
summer surface mass-balance calculation: hydrological balance applied to the Argentière and Mer de Glace
drainage basins (Mont Blanc). J. Hydrol. 2018, 64, 119–131. [CrossRef]

http://dx.doi.org/10.2166/nh.2012.041
http://dx.doi.org/10.5194/tc-4-215-2010
http://dx.doi.org/10.5194/tc-8-1989-2014
http://dx.doi.org/10.1016/j.jhydrol.2006.02.013
http://dx.doi.org/10.1016/j.jhydrol.2015.01.044
http://dx.doi.org/10.5194/tc-10-1571-2016
http://dx.doi.org/10.1175/JHM-D-15-0241.1
http://dx.doi.org/10.5194/tc-10-1021-2016
http://dx.doi.org/10.3189/2012JoG11J163
http://dx.doi.org/10.3390/rs5115825
http://dx.doi.org/10.1029/2010GL043086
http://dx.doi.org/10.1016/j.coldregions.2010.04.005
http://dx.doi.org/10.5194/tc-7-741-2013
http://dx.doi.org/10.1002/hyp.6130
http://dx.doi.org/10.5194/hess-19-2337-2015
http://dx.doi.org/10.1029/2007WR006204
http://dx.doi.org/10.5194/tc-10-1859-2016
http://dx.doi.org/10.1016/j.gloplacha.2014.05.004
http://dx.doi.org/10.1017/jog.2018.7


Remote Sens. 2018, 10, 1171 31 of 32

57. Klein, A.G.; Barnett, A.C. Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin
for the 2000–2001 snow year. Remote Sens. Environ. 2003, 86, 162–176. [CrossRef]

58. Dumont, M.; Gardelle, J.; Sirguey, P.; Guillot, A.; Six, D.; Rabatel, A.; Arnaud, Y. Linking glacier annual mass
balance and glacier albedo retrieved from MODIS data. The Cryosphere 2012, 6, 1527–1539. [CrossRef]

59. Sirguey, P.; Mathieu, R.; Arnaud, Y. Subpixel monitoring of the seasonal snow cover with MODIS at
250 m spatial resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment.
Remote Sens. Environ. 2009, 113, 160–181. [CrossRef]

60. Sirguey, P.; Mathieu, R.; Arnaud, Y.; Kahn, M.M.; Chanussot, J. Improving MODIS spatial resolution for snow
mapping using wavelet fusion and ARSIS concept. IEEE Geosci. Remote Sens. Lett. 2008, 5, 78–82. [CrossRef]

61. Dedieu, J.-P.; Carlson, B.Z.; Bigot, S.; Sirguey, P.; Vionnet, V.; Choler, P. On the Importance of High-Resolution
Time Series of Optical Imagery for Quantifying the Effects of Snow Cover Duration on Alpine Plant Habitat.
Remote Sens. 2016, 8, 481. [CrossRef]

62. Sirguey, P. MODImLAB User’s Manual V.1.2.5.d, July 2016; Copyright Pascal Sirguey; Univerity of Otago:
Dunedin, New Zealand, 2016.

63. Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Academic Press Inc.: Amsterdam, The Netherlands, 2010.
64. Rabatel, A.; Dedieu, J.-P.; Vincent, C. Spatio-temporal changes in glacier-wide mass balance quantified

by optical remote-sensing on 30 glaciers in the French Alps for the period 1983–2014. J. Glaciol. 2016, 62,
1153–1166. [CrossRef]

65. Rabatel, A.; Letréguilly, A.; Dedieu, J.-P.; Eckert, N. Changes in glacier equilibrium-line altitude in the
western Alps from 1984 to 2010: Evaluation by remote sensing and modeling of the morpho-topographic
and climate controls. The Cryosphere 2013, 7, 1455–1471. [CrossRef]

66. Rabatel, A.; Dedieu, J.-P.; Vincent, C. Using remote-sensing data to determine equilibrium-line altitude
and mass-balance time series: Validation on three French glaciers, 1994–2002. J. Glaciol. 2005, 51, 539–546.
[CrossRef]

67. Brun, E.; David, P.; Sudul, M.; Brunot, G. A numerical model to simulate snow-cover stratigraphy for
operational avalanche forecasting. J. Glaciol. 1992, 38, 13–22. [CrossRef]

68. Masson, V.; Le Moigne, P.; Martin, E.; Faroux, S.; Alias, A.; Alkama, R.; Belamari, S.; Barbu, A.; Boone, A.;
Bouyssel, F.; et al. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of
earth surface variables and fluxes. Geosci. Model Dev. 2013, 6, 929–960. [CrossRef]

69. Decharme, B.; Boone, A.; Delire, C.; Noilhan, J. Local evaluation of the Interaction between Soil Biosphere
Atmosphere soil multilayer diffusion scheme using four pedotransfer functions. J. Geophys. Res. Atmospheres
2011, 116, D20126. [CrossRef]

70. Durand, Y.; Laternser, M.; Giraud, G.; Etchevers, P.; Lesaffre, B.; Mérindol, L. Reanalysis of 44 Yr of Climate in
the French Alps (1958–2002): Methodology, Model Validation, Climatology, and Trends for Air Temperature
and Precipitation. J. Appl. Meteorol. Climatol. 2009, 48, 429–449. [CrossRef]

71. Faroux, S.; Kaptué Tchuenté, A.T.; Roujean, J.-L.; Masson, V.; Martin, E.; Le Moigne, P. ECOCLIMAP-II/Europe:
A twofold database of ecosystems and surface parameters at 1-km resolution based on satellite information for
use in land surface, meteorological and climate models. Geosci. Model Dev. 2013, 6, 563–582. [CrossRef]

72. Gerbaux, M.; Genthon, C.; Etchevers, P.; Vincent, C.; Dedieu, J.P. Surface mass balance of glaciers in the
French Alps: Distributed modeling and sensitivity to climate change. J. Glaciol. 2005, 51, 561–572. [CrossRef]

73. Lejeune, Y.; Bertrand, J.-M.; Wagnon, P.; Morin, S. A physically based model of the year-round surface energy
and mass balance of debris-covered glaciers. J. Glaciol. 2013, 59, 327–344. [CrossRef]

74. Réveillet, M.; Six, D.; Vincent, C.; Rabatel, A.; Dumont, M.; Lafaysse, M.; Morin, S.; Vionnet, V.; Litt, M.
Relative performance of empirical and physical models in assessing seasonal and annual glacier surface
mass balance in the French Alps. The Cryosphere 2018, 12, 1367–1386. [CrossRef]

75. Blöschl, G.; Sivapalan, M. Scale issues in hydrological modelling: A review. Hydrol. Process. 1995, 9, 251–290.
[CrossRef]

76. Essery, R.; Morin, S.; Lejeune, Y.; Menard, C. A comparison of 1701 snow models using observations from
alpine site. Adv. Water Resour. 2013, 55, 131–148. [CrossRef]

77. Lafaysse, M.; Cluzet, B.; Dumont, M.; Lejeune, Y.; Vionnet, V.; Morin, S. A multiphysical ensemble system of
numerical snow modelling. The Cryosphere 2017, 11, 1173–1198. [CrossRef]

78. Efron, B. Bootstrap methods: Another look at the jackknife. In En Breakthroughs in Statistics; Springer:
New York, NY, USA, 1992; pp. 569–593.

http://dx.doi.org/10.1016/S0034-4257(03)00097-X
http://dx.doi.org/10.5194/tc-6-1527-2012
http://dx.doi.org/10.1016/j.rse.2008.09.008
http://dx.doi.org/10.1109/LGRS.2007.908884
http://dx.doi.org/10.3390/rs8060481
http://dx.doi.org/10.1017/jog.2016.113
http://dx.doi.org/10.5194/tc-7-1455-2013
http://dx.doi.org/10.3189/172756505781829106
http://dx.doi.org/10.1017/S0022143000009552
http://dx.doi.org/10.5194/gmd-6-929-2013
http://dx.doi.org/10.1029/2011JD016002
http://dx.doi.org/10.1175/2008JAMC1808.1
http://dx.doi.org/10.5194/gmd-6-563-2013
http://dx.doi.org/10.3189/172756505781829133
http://dx.doi.org/10.3189/2013JoG12J149
http://dx.doi.org/10.5194/tc-12-1367-2018
http://dx.doi.org/10.1002/hyp.3360090305
http://dx.doi.org/10.1016/j.advwatres.2012.07.013
http://dx.doi.org/10.5194/tc-11-1173-2017


Remote Sens. 2018, 10, 1171 32 of 32

79. Dubuisson, M.P.; Jain, A.K. A modified Hausdorff Distance for Object Matching. In Proceedings of the
12th IAPR International Conference on Computer Vision & Image Processing; IEEE: Piscataway, NJ, USA,
1994; pp. 566–568.

80. Cristea, N.C.; Breckheimer, I.; Raleigh, M.S.; HilleRisLambers, J.; Lundquist, J.D. An evaluation of terrain-
based downscaling of fractional snow covered area datasets based on Lidar-derived snow data and
orthoimagery. Water Resour. Res. 2017, 53, 6802–6820. [CrossRef]

81. Deems, J.S.; Fassnacht, S.R.; Elder, K.J. Fractal Distribution of Snow Depth from Lidar Data. J. Hydrol. 2006,
7, 285–297. [CrossRef]

82. Sturm, M.; Wagner, A.M. Using repeated patterns in snow distribution modeling: An Arctic example.
Water Resour. Res. 2010, 46, W12549. [CrossRef]

83. Hock, R. Glacier melt: A review of processes and their modelling. Prog. Phys. Geogr. 2005, 29, 362–391.
[CrossRef]

84. Vernay, M.; Lafaysse, M.; Mérindol, L.; Giraud, G.; Morin, S. Ensemble forecasting of snowpack conditions
and avalanche hazard. Cold Regions Sci. Technol. 2015, 120, 251–262. [CrossRef]

85. Sauter, T.; Obleitner, F. Assessment of the uncertainty of snowpack simulations based on variance
decomposition. Geosci. Model Dev. Discuss. 2015, 8, 2807–2845. [CrossRef]

86. Verfaillie, D.; Lafaysse, M.; Déqué, M.; Eckert, N.; Lejeune, Y.; Morin, S. Multi-component ensembles of
future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range,
Northern French Alps. The Cryosphere 2018, 12, 1249–1271. [CrossRef]

87. Pimentel, R.; Herrero, J.; Polo, M.J. Subgrid parameterization of snow distribution at a Mediterranean site
using terrestrial photography. Hydrol. Earth Syst. Sci. 2017, 21, 805–820. [CrossRef]

88. Pimentel, R.; Herrero, J.; Polo, M.J. Quantifying Snow Cover Distribution in Semiarid Regions Combining
Satellite and Terrestrial Imagery. Remote Sens. 2017, 9, 995. [CrossRef]

89. Griessinger, N.; Seibert, J.; Magnusson, J.; Jonas, T. Assessing the benefit of snow data assimilation for runoff
modeling in Alpine catchments. Hydrol. Earth Syst. Sci. 2016, 20, 3895–3905. [CrossRef]

90. Schirmer, M.; Jamieson, B. Verification of analysed and forecasted winter precipitation in complex terrain.
The Cryosphere 2015, 9, 587–601. [CrossRef]

91. Weusthoff, T.; Ament, F.; Arpagaus, M.; Rotach, M.W. Assessing the Benefits of Convection-Permitting
Models by Neighborhood Verification: Examples from MAP D-PHASE. Mon. Weather Rev. 2010, 138,
3418–3433. [CrossRef]

92. Förster, K.; Meon, G.; Marke, T.; Strasser, U. Effect of meteorological forcing and snow model complexity on
hydrological simulations in the Sieber catchment (Harz Mountains, Germany). Hydrol. Earth Syst. Sci. 2014,
18, 4703–4720. [CrossRef]

93. Dadic, R.; Mott, R.; Lehning, M.; Burlando, P. Parameterization for wind–induced preferential deposition of
snow. Hydrol. Process. 2010, 24, 1994–2006. [CrossRef]

94. Winstral, A.; Marks, D.; Gurney, R. Simulating wind-affected snow accumulations at catchment to basin
scales. Adv. Water Resour. 2012, 55, 64–79. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/2017WR020799
http://dx.doi.org/10.1175/JHM487.1
http://dx.doi.org/10.1029/2010WR009434
http://dx.doi.org/10.1191/0309133305pp453ra
http://dx.doi.org/10.1016/j.coldregions.2015.04.010
http://dx.doi.org/10.5194/gmdd-8-2807-2015
http://dx.doi.org/10.5194/tc-12-1249-2018
http://dx.doi.org/10.5194/hess-21-805-2017
http://dx.doi.org/10.3390/rs9100995
http://dx.doi.org/10.5194/hess-20-3895-2016
http://dx.doi.org/10.5194/tc-9-587-2015
http://dx.doi.org/10.1175/2010MWR3380.1
http://dx.doi.org/10.5194/hess-18-4703-2014
http://dx.doi.org/10.1002/hyp.7776
http://dx.doi.org/10.1016/j.advwatres.2012.08.011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Period 
	Observation Datasets 
	Punctual Snow Depth Observations 
	Snow Cover Area Distribution Based on the MODIS Sensor 
	Processing of the MODIS Data to Estimate the Snow Covered Area 
	Thresholds to Assess whether a Pixel is Snow-Covered in MODIS Images and from Model Output on the 250 m  250 m Grid 

	Glacier Surface Mass Balance 
	Glacier Equilibrium-Line Altitude 

	Methods 
	Simulation Setup 
	Punctual, Semi-Distributed, and Distributed Approaches 
	Punctual Simulation 
	Semi-Distributed Simulation 
	Distributed Simulation 

	Modeling of Glacierized Areas 
	Treatment of Forested Area 
	Time Span and Initialization of the Simulations 
	Evaluation Strategy 
	In Situ Snow Depth Evaluation 
	Snow Covered Area Evaluation from MODIS Images: 
	Surface Mass Balance Evaluation from In-Situ Stakes 
	Equilibrium Line Altitude Evaluation from Landsat/SPOT/ASTER 


	Results 
	Punctual Snow Depth 
	Snow Cover Area Distribution 
	Snow Covered Area Dynamics 
	Evaluation of the Spatial Similarity 

	Glacier Surface Mass Balance 
	Glacier Equilibrium Line Altitude 

	Discussion 
	Overview of SAFRAN–Crocus Performance 
	Distributed vs. Semi-Distributed Approaches 
	Limitations of the Satellite Evaluation Datasets 
	Future Perspectives on Distributed Snowpack Simulations 

	Conclusions 
	References

