
HAL Id: hal-01894065
https://hal.science/hal-01894065

Submitted on 12 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Change management of BPM-based software
applications

Mourad Bouneffa, Adeel Ahmad

To cite this version:
Mourad Bouneffa, Adeel Ahmad. Change management of BPM-based software applications. 15th In-
ternational Conference on Enterprise Information Systems (ICEIS), Jul 2013, Angers, France. pp.280-
295. �hal-01894065�

https://hal.science/hal-01894065
https://hal.archives-ouvertes.fr


Change management of BPM-based software applications

Mourad Bouneffa, Adeel Ahmad

Université Lille Nord de France

Laboratoire d’Informatique Signal et Image de la Côte d’Opale

50, rue Ferdinand Buisson BP 719 62228 Calais Cedex France
{bouneffa, ahmad}@lisic.univ-littoral.fr

Keywords: BPM, Software Evolution, Change impact propagation, Graph rewriting Rules, Process change management

Abstract: Business process models are decision making tools intended to describe operations, constraints, and poli-

cies of an organisation. In this paper, we present an approach to control the evolution of Business Process

Model (BPM) based software applications. We define a BPM change taxonomy and focus on the change af-

fecting the BPMs and its impact propagation, through traceability relationships, to the software applications

implementing them. From a formal point of view, our work consists of specifying a BPM meta-model using

a typed attributed graph and a BPM change operations taxonomy based on graph rewriting rules. The specifi-

cations are then implemented using an integrated software change management platform appearing as a set of

the Eclipse Workbench plug-ins.

1 INTRODUCTION

The communication means and interfaces between

human users and the automated information systems

are rapidly developing for the past decade. Thus,

the idea to automate most of the information system

processes, destined to managing an organization, is

far from being a utopia. It is therefore possible for

an external user of the organization to communicate

with the information system of such an organization

through various types of communication media and

interfaces such as voice systems, applications running

on smart-phones, etc. Moreover, these entry points

to information systems can be provided by the vari-

ous devices of operational systems to facilitate a co-

herent integration of the different organizational ac-

tors, management processes, and software applica-

tions supporting these processes.

This leads to the emergence of new soft-

ware development tools and approaches based on

the Business Process Model (BPM) (Weske, 2007;

Weske, 2012) concept. In these approaches the

BPMs are specified by means of some standard

notations like BPMN (Silver, 2009; Allweyer, 2010)

and XPDL (Van der Aalst, 2003; Haller et al., 2008).

The BPMs are then transformed into executable pro-

grams that are generally deployed as multi-tiered dis-

tributed applications using platforms like J2EE, .NET,

etc. The executable programs are often built as

macro programs implementing the well known con-

cept of programming in the large (Emig et al., 2005).

These programs contain invocations of web ser-

vices (Gottschalk et al., 2002) provided by the vari-

ous software applications which have been deployed

inside or sometimes outside the information system

boundaries. The Business Process Execution Lan-

guage (BPEL) (Juric, 2006) is one of the most known

programming in the large language.

In this paper, we precisely consider the study of

this new generation of applications. Our goal is to

demonstrate the feasibility of the implementation of a

process to control the change impact which may af-

fect these applications. For this purpose, we elaborate

a meta-model permitting to represent the most signif-

icant elements of a BPM. The major objective is to

formally construct a structure to express the several

BPM change operations.

The meta-model is formalized using typed and at-

tributed graphs. Our modelling choice of formally

specifying BPM allows to describe change operations

using graph rewriting or transformation rules. Such

rules can, indeed, permit a visual definition of the

effective change operations. These are adapted to

study the software artifact changes which are often

expressed by the graph change operations. A taxon-

omy is then elaborated to define the construction rules

and BPM transformations. The obtained specification

is aimed at defining a change impact not only on BPM

itself but also on concerned components of the BPM



based software applications. Our goal includes the

traceability between software applications, deploy-

ment platforms, software system actors and BPMs.

The main objective being to control the change impact

propagation through all, or a specified part of such a

software system.

In Section 2 we present, the meta-model for the

BPM formalization and the notions relevant to BPM

and BPM-based software applications. In section

3, we specify a taxonomy of BPM change opera-

tions and we give the formalization of these oper-

ations by the graph rewriting rules. The section

4 presents the change impact analysis and propa-

gation process along with its formalization by the

graph rewriting rules. The section 5 shows the pro-

totype implementation of our specifications in re-

gard to the integrated platform to control the software

changes(M.O. et al., 2010). The section 6, summa-

rizes the contribution by a conclusion with the dif-

ferent perspectives of this work.

2 BPM FORMALIZATION AND

META-MODELING

Before explaining the formalization and meta-

modeling of BPM, we first explain the concept of

BPM and especially the life cycle of software appli-

cations based on the BPM. As shown in Fig. 1, the de-

velopment, deployment, and evolution of BPM based

software applications obey a life cycle. The phases

of BPM life cycle are described in the following sec-

tions :

Figure 1: The life cycle of BPM based applications

2.1 The BPM Modeling

This phase involves BPM Modeling in terms of tasks

or activities which are necessary to implement the

process, the order of tasks accomplishment, the hu-

man actors involved in the performance of these tasks,

etc. In recent years, several models or notations have

been defined to model the BPM. At first, designing a

BPM is an activity within the scope of the informa-

tion system cartography. It was most often performed

as a part of BPR (Business Process Re-engineering)

projects (Lee et al., 2011). Thus, many models and

methods have been implemented such as the OS-

SAD method(Dumas et al., 1990), etc. Our present

work is particularly related to the BPM as a means

of specification, development, and deployment of au-

tomated processes. We selected the widely consid-

ered and used notations in this area, particularly the

BPMN (OMG, 2011). Fig. 2 shows an example of

such a process. In this figure, the process is a par-

tial description of the Sales Chain Management. We

first distinguish two important actors : the Client and

the Process Order. At the beginning, a start event rep-

resent the fact that Place Order is the first task. This

first task performed by the Client consists of the gen-

eration of an order that is sent as a message to the

Check Availability task, which is linked to a gateway

involving the Check Payment task. If the products are

available or the Cancel Order otherwise, etc. The pro-

cess ends by end events linked with Confirm Order

and Cancel Order tasks.

2.2 The Development and the

deployment of the BPM

The development and the deployment of a BPM are

two separate activities that can be performed manu-

ally, automatically, or usually semi-automatically. In

principle, these activities can be considered as classi-

cal operations for code generation, where the BPM

plays the role of a detailed design and the code is

represented by an application, deployed most often

on a web platform. There exists also software tools

to automate the deployment of such applications al-

most transparently. Some of these tools are Bonita1,

Intalio2, BizAgi3 and Barium Live!4, etc. In these

tools a web application is generated and is hosted

by a Java servlet engine or in the form of ASP.NET

pages, etc. Without going to the full automation and

complete transparent development and deployment of

BPM based applications, there are intermediate lan-

guages playing the role of orchestrators or macro pro-

grams involving software components already encap-

sulated by web services. BPEL is one of the main

1Bonita Open Solution url:
http://www.bonitasoft.com/

2Intalio—BPMS : http://www.intalio.com/
3Bizagi BPM Suite : http://www.bizagi.com/
4Barium Live! : http://www.bariumlive.com/

http://www.bonitasoft.com/
http://www.intalio.com/
http://www.bizagi.com/
http://www.bariumlive.com/


Figure 2: An example of Business Process Model Notation

languages of this type and appears like a sort of stan-

dard in the matter. In one perspective of Model Driven

Engineering (MDE) (Schmidt, 2006), BPMN can be

considered as a Platform Independent Model (PIM)

and BPEL as a Platform Specific Model (PSM) con-

sisting of implementing BPMN in an environment us-

ing web services as a means of communication and

interoperability.

Fig. 3 shows an example of BPEL implement-

ing the BPM shown in Fig. 2. In this figure the

BPEL is a kind of web services orchestration. To do

this, the BPEL contains calls or invocations to web

Figure 3: An example of Business Process Execution Lan-
guage

services like Check Availability, Check Payment and

Cancel Order and flow management nodes like se-

quence for a sequential execution of web services in-

vocations or If for conditional branches. It is use-

ful to remark that the programming in the large con-

cepts are quite similar to the programming in the

small (DeRemer and Kron, 1975) ones. For our ex-

ample, the tasks or activities of the BPMs are imple-

mented by web service calls while gateways are im-

plemented by If nodes.

2.3 The execution and monitoring of the

BPM

The execution of the application is generally as-

sured by a web platform which is usually on

multi-tiered architecture etc. The BPM execution

provides generally some interesting data such as

response time, resource consumption, etc. These

data are necessary for the purpose of analyzing

the process quality. Indeed, business managers

define performance indicators (Key Performance

Indicator (Parmenter, 2007)) for each process, to

measure the performance of activities implemented

by processes. Some of these informations can be

obtained by dynamic analysis by means of pro-

gram profiling techniques (Ahmad et al., 2008b;

Ahmad and Basson, 2009; Ahmad et al., 2009).

Other information are exclusively provided by human

experts and will be explicitly taken into account by

some organizational process. They are generally the

derived data from activities within the framework of

customer satisfaction, etc. In (Dadam et al., 2007),

the authors propose, during the execution of pro-

cesses, to consider particularly the exceptions. In

some other areas, such as medical processes, it is

not possible to foresee all possible cases and to

model them through the processes. Thus, the authors

in (Dadam et al., 2007) propose and implement an

exception handler, able to propose an alternative

implementation or implementations of processes on



the fly. A system of corporate knowledge about ex-

ceptions can then eventually propose improvements

to the initial process to take into account the various

exceptions.

2.4 The BPM improvement

The process improvement is a generic term that refers

primarily to the evolution of BPM processes. In real-

ity, the improvement is expected but what is actually

done, is an evolution of a process embodied by the

change affecting the BPM processes. The goal is to

fix certain performance anomalies or simply to com-

plete the automation of processes, a part of which is

manual, etc. In the literature, the improvement is seen

only on the process side and it ignores the software

implementation problems. In our case, we consider

both aspects, analyzing in particular the BPM change

impacts on the software and vice versa.

2.5 A meta-model of graph-based BPM

We propose a meta-model to represent the concepts

involved in the definition of BPMs. This meta-model

has been formalized by a typed graph that we im-

plement particularly in the context of the AGG5.

The result of this modeling is shown schematically

in the Fig. 4. This figure represents the main con-

cepts emerging from the BPMN. The process concept

represents the processes that contain what is called

flow objects. These objects can be tasks or activi-

ties, sub-processes or macro-tasks, refined by the pro-

cesses, events or gateways. A process has an actor

which is called the owner which may be one user, or

more, who has defined the process and is authorized

to change this process. The process is implemented

by an application which is deployed and which can

host the execution of multiple instances or cases of

this process. Every instance involves actors that are

the users interacting with the various tasks performed

during the instance life cycle.

3 The taxonomy of change

operations

In the development and the deployment of BPM-

oriented applications, the change seems inevitable. It

enrolls in fact, in the usual life cycle of this kind of ap-

plications. We define it as a taxonomy of change op-

erations that may affect one of the important compo-

nents of these applications to know the BPM. We con-

5 http://user.cs.tu-berlin.de/˜gragra/agg/

sider two kind of changes : the atomic change opera-

tions and composite or complex change operations.

3.1 The atomic change operations

The formalization of a BPM as a typed attributed

graph allows us to compile a list of atomic change op-

erations. It is important to notify that, ”each change

operation corresponds to an insertion, deletion or

modification of a node or an edge of this graph”. We

thus obtain the following change operations :

• Insert a process

• Delete a process

• Modify a process (name, description, etc.)

• Insert a new task

• Delete a task

• Modify a task

– Modify an attribute of the task (name, descrip-

tion, etc.)

– Modify the type of a task (automatic, manual,

etc.)

• Insert an event

• Delete an event

• Modify an event (start event to intermediate event,

etc.)

• Insert a gateway

• Delete a gateway

• Modify a gateway (condition of application: OR

to XOR, etc.)

• Insert an edge or link (between two flow objects)

• Delete an edge between two flow objects

• Et cetera.

Each defined atomic change operation is then for-

malized by graph rewriting rules. A graph rewriting

rule is in fact a production rule where the left and right

sides of the rule are graphs. In other words, a pro-

duction rule that transform a part of the graph which

match or corresponds to the left hand side (LHS) of

the production by another subgraph represented by

the right hand side (RHS) of the production. There

are also preconditions called negative or NAC, which

specify the need for non existence of certain sub-

graph for the rule to run.

Visually such a rule can be outlined as in the

Fig. 5. This figure depicts the partial creation or in-

sertion of a new task. It shows the three components

of a rule called InsertTask which represents the inser-

tion of a task in a process. The LHS of the rule states

http://user.cs.tu-berlin.de/~gragra/agg/


Figure 4: A UML based representation of BPM meta-model

that there must be a node in the graph of process type.

It would then match a process node of the graph with

that of the rule. This matching can be done manually

by the user or automatically by the graph rewriting

system following many methods that are out of the

scope of this paper. The RHS of the rule shows the

creation of a task called x connected to the process by

the relationship ”contains”. The NAC of the rule pro-

hibits the creation of a task named x if there is already

a task in the process with the same name.

Figure 5: A rule to insert a task

3.2 The composite change operations

The composite change operations can be expressed in

the form of compositions of atomic operations. We

did not set a precise or exhaustive taxonomy of these

operations but we consider the most significant and

frequent ones. It is also possible to define new com-

posite change operations.

The example of composite change operations :

• The merger of two tasks

• The decomposition of a task into two

• The merger of two processes

• The breaking down of a task into subprocess.

4 The change impact analysis

This section deals with the BPM change impact man-

agement. A simulation of the change impact genera-

tion is presented formerly, using graph rewriting rules

and then in later part impact propagation is elaborated

to the various artifacts through the different type of re-

lationships.

4.1 The change impact generation

All change operations are defined by the precondi-

tions, which in the case of a graph rewriting rules

consist of the LHS (positive preconditions) and the

NAC (negative preconditions) and the postconditions

symbolized by the RHS. We therefore consider the

impact of a change M given the result of its execu-

tion (symbolized as the RHS), in the case of a viola-

tion of the precondition. In the case of graph rewriting

rules, this is translated into the creation of a node of

Impact type, connected to the nodes affected by the

impact and containing an attribute called explanation

which contains a narrative of the impact (see Fig. 6).

We simulate the creation of the impact by setting rules

without NAC and therefore tolerate the enforcement

of the rule with the result, in addition to that provided



by the original rule, appending a node of impact type

linked to the nodes it affects. In Fig. 6, we define a

rule to delete a task that provokes the creation of an

Impact node affecting the tasks related to the task that

has been deleted.

Figure 6: A rule for change impact analysis of a task dele-
tion

4.2 The change impact propagation

The change impact propagation is a process of prop-

agating the impact to all nodes indirectly affected

by the impact. This propagation is done through a

link or relationship between nodes. Thus, some re-

lationships are identified as change impact conduc-

tor (Ahmad et al., 2008a) and propagate the impact in

one way or another. For example, the Fig. 7 shows

the propagation of the impact affecting a task to the

author of this task with the associated explanation.

We distinguish here two types of change impact

propagations :

• The horizontal change impact propagation is to

propagate the change impact between artifacts be-

longing to the same phase of the development life

cycle of an application. This is the case of the rule

as shown in Fig. 7. It shows the impact propaga-

tion between tasks and actors.

• The vertical change impact propagation corre-

sponds to the change impact flow between arti-

facts belonging to different phases of the develop-

ment life cycle of an application. This is the case

of the change impact propagation between a task

and a web service that implements a part of this

task and vice versa.

To show how we deal the vertical change impact

propagation, we first define a kind of mapping rela-

tionships that are useful for the traceability purpose.

These relationships are :

Figure 7: A rule for change impact propagation

• The mapedTo relationship between a BPMN pro-

cess and a BPEL process. In fact, we defined a

meta-model of BPEL processes like we have done

with the BPMN but the BPEL process contains

objects like web services, etc.

• The ImplementedBy relationship between a task

of the BPM and a web service of the BPEL.

We know that this set of mapping relationships is a

restrictive one since it is generally possible that a task

may be implemented by more than one web service,

it may also be implemented by a process. In another

hand a BPMN process may be implemented by a set

of BPEL, ones. But we just want to demonstrate the

feasibility of our approach at this initial stage and then

refine it more deeply in the future works.

The mapping relationships are then used by the

graph rewriting rules generating or propagating the

impact. So, the Fig. 8 shows the impact generated

by the composite change consisting of the merging of

two tasks. The question here is what to do with web

services implementing these tasks?

Figure 8: Rule for the impact generated by the composite
change

On the other hand, we consider three kinds of

change impact propagation processes.

• The total change impact propagation simulates the

change operation and then execute all possible

rules of its impact propagation.

• The selective change impact propagation only

propagates the change impacts induced by a sub-

set of nodes relationships.

• The Propagation of type changes-and-

fix (Rajlich and Gosavi, 2004; Rajlich, 1997)



which is to simulate a change, directly addresses

the impact of this operation (in terms of direct

neighbours). This treatment or correction of the

change impact will be a transaction which itself

will directly impact the address, and so on.

5 The prototype of validation

We use the graph rewriting system as a mean to for-

mally describe the BPM change operations. We also

use such systems as an execution engine to evaluate

the different strategies we may adopt for the impact

management. For an operational validation of the

proposed change impact analysis and meta-model, we

implement an integrated platform prototype. It allows

friendly experimentations of graph structures associ-

ated to a software development project. Our platform,

named as Architect is a change impact analysis tool

for distributed software applications. It is built as a

set of Eclipse6 IDE plug-ins. An Eclipse project man-

ages a set of resources that can be source code files,

libraries, BPEL, and BPMN files etc. Architect ana-

lyzes these heterogeneous sources and parses their el-

ements to represent them as a homogenous interactive

graph. The Architect Graph extension of eclipse visu-

alizes the elements of the corresponding editor view.

This prototype contains a graph editor which provides

in a very simple way the nodes and arcs of the struc-

tural graph.

We have used the Java Universal Net-

work/Graph (JUNG)7 Framework. This is a software

library that can be re-used for the modeling, analysis,

and the visualization of data as a graph or network.

This library allows to define the structure of data

Graph and also to use certain graph primitives for

the construction of user interfaces associated with the

graph manipulation tools. We used it in interaction

with the built-in capabilities of Java API, as well

as those of other existing third party Java libraries

i.e Drools8. We have specialized the class Graph

available in the JUNG library in a class that we

called ArchitectGraph. The large software related

information can be stored and manipulated through

a semi-automated knowledge-based system. The

Drools is a business logic platform which provides

an integrated unified platform for the graph rewriting

rules, workflow and the event processing. We use it

for writing dynamic expert rules as well as general

rules of propagation to improve the interactivity of

generated graph.

6 http://www.eclipse.org/
7http://jung.sourceforge.net/
8http://www.jboss.org/drools/

By using our platform, one can friendly specify a

change affecting a node. Which may be a BPM task,

a web service specification, or a Java class, etc. The

various rules implementing the change impact propa-

gation may then be fired. As a result the new graph

is displayed containing nodes of type ”impacted” re-

lated to the different impacted artifacts along with the

explanation of the propagated impact.

6 Concluding remarks and future

work

In this paper, we present an approach based on a

BPM meta-model intended to serve as a BPM arti-

facts repository data schema. We also defined the ini-

tial BPM change operations taxonomy. It involves the

formalization of the change and the analysis of its im-

pact propagation by graph rewriting rules. The graph

rewriting rules have been implemented with AGG that

as a graph rewriting system. This implementation can

be considered as an operational or constructive speci-

fication.

We observe that it is possible to define a change

impact propagation process concerning both the BPM

processes artifacts and their implementations which

can be BPEL processes, etc.The main concept of our

approach is implemented by a set of tools integrated

as ECLIPSE plug-ins. These plugins are parts of a

more general integrated framework which is built to

deal with the software artifacts change impact propa-

gations.

We are continuing the work by enriching the ap-

proach, in a more detailed way, with the different kind

of mapping relationships related to the BPM artifacts

and their implementation. The main goal is to be

able to automatically track the change impact prop-

agation. To achieve this, we must explicitly represent

knowledge concerning the semantic of BPM elements

and their relationships. We are then using the BPMN

ontology (Penicina, 2013) that is expressed using the

owl language (Motik et al., 2012). We plan to enrich

this ontology by concepts representing the various as-

pects of change impact and the relationships propa-

gating such impacts. The use of the owl language

makes it possible to define, in an explicit way, the

relationship hierarchy based on the impact propaga-

tion. It is also possible to explicitly define some se-

mantical characteristics of relationships like transitiv-

ity, etc. The reasoning capabilities provided by the

ontology languages (like owl) may assist the change

experts to define change impact rules.

Another goal is to provide some forward and re-

verse engineering tools in order to implement some

http://www.eclipse.org/
http://jung.sourceforge.net/
http://www.jboss.org/drools/


Figure 9: Screen shot of a change impact propagation scenario in Architect

important tasks like defining flexible and adaptable

tools for the generation of BPM implementations and

some others for the generation of BPMs from the pro-

cess implementations.

REFERENCES

Ahmad, A. and Basson, H. (2009). Software evolution mod-
elling: an approach for change impact analysis. In
Proceedings of the 7th International Conference on
Frontiers of Information Technology, FIT ’09, pages
56:1–56:4, New York, NY, USA. ACM.

Ahmad, A., Basson, H., and Bouneffa, M. (2008a). Soft-
ware evolution control: Towards a better identifica-
tion of change impact propagation. In ICET’08: Pro-
ceedings of the 4th IEEE International Conference on
Emerging Technologies, pages 286–291. IEEE Com-
puter Society.

Ahmad, A., Basson, H., and Bouneffa, M. (2009). Rule-
based approach for software evolution management.
In IEEE APSSC 2009: IEEE Asia-Pacific Services
Computing Conference.

Ahmad, A., Basson, H., Deruelle, L., and Bouneffa, M.
(2008b). Towards a better control of change impact
propagation. In INMIC’08: 12th IEEE International
Multitopic Conference, pages 398–404. IEEE Com-
puter Society.

Allweyer, T. (2010). BPMN 2.0 : Introduction to the Stan-
dard for Business Process Modeling. Books on De-
mand, Norderstedt.

Dadam, P., Reichert, M., Rinderle, S., Jurisch, M., Acker,
H., Pser, K. G. A., Kreher, U., and Lauer, M. (2007).
Adept2 - next generation process management tech-
nology. In Proceedings Fourth Heidelberg Innovation
Forum, Aachen. D.punkt Verlag.

DeRemer, F. and Kron, H. (1975). Programming-in-the
large versus programming-in-the-small. SIGPLAN
Not., 10(6):114–121.

Dumas, P., Charbonnel, G., and Calmes, F. (1990). La
méthode OSSAD - Pour maı̂triser les technologies de
l’information - Tome 2: Guide pratique, Les Editions
d’Organisation, Paris.

Emig, C., Momm, C., Weisser, J., and Abeck, S. (2005).
Programming in the Large based on the Business
Process Modeling Notation. In Jahrestagung der
Gesellschaft für Informatik (GI), Bonn.

Gottschalk, K., Graham, S., Kreger, H., and Snell, J. (2002).
Introduction to web services architecture. IBM Syst.
J., 41:170–177.

Haller, A., Gaaloul, W., and Marmolowski, M. (2008). To-
wards an xpdl compliant process ontology. In SER-
VICES I, pages 83–86.

Juric, M. B. (2006). Business Process Execution Language
for Web Services BPEL and BPEL4WS 2nd Edition.
Packt Publishing.

Lee, Y.-C., Chu, P.-Y., and Tseng, H.-L. (2011). Corpo-
rate performance of ict-enabled business process re-
engineering. Industrial Management and Data Sys-
tems, 111(5).

M.O., H., Deruelle, L., Basson, H., and Ahmad, A. (2010).
A change propagation process for distributed software
architecture. In ENASE 2010: Proceedings of the 5th
International Conference on Evaluation of Novel Ap-
proaches to Software Engineering.

Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A.,
and Lutz, C. (2012). Owl 2 web ontology language:
Profiles. w3c recommendation (27 october 2009).

OMG (2011). Business process model and no-
tation (bpmn) version 2.0. OMG Document
Number: formal/2011-01-03, Standard document
URL: http://www.omg.org/spec/BPMN/2.0 Ac-
cessed 2011-03-18.

http://www.omg.org/spec/BPMN/2.0


Parmenter, D. (2007). Key Performance Indicators (KPI):
Developing, Implementing,and Using Winning KPIs.
John Wiley & Sons, Inc., New York, NY, USA.

Penicina, L. (2013). Choosing a bpmn 2.0 compatible up-
per ontology. In The 5th International Conference on
Information, Process, and Knowledge Management,,
pages 89 – 96, Nice, France. IARIA.

Rajlich, V. (1997). A model for change propagation based
on graph rewriting. In Proceedings of the Interna-
tional Conference on Software Maintenance, pages
84–91, Washington, DC, USA. IEEE Computer So-
ciety.

Rajlich, V. and Gosavi, P. (2004). Incremental Change
in Object-Oriented Programming. IEEE Softw.,
21(4):62–69.

Schmidt, D. (2006). Guest editor’s introduction: Model-
driven engineering. Computer, 39(2):25 – 31.

Silver, B. (2009). BPMN Method and Style: A levels-based
methodology for BPM process modeling and improve-
ment using BPMN 2.0. Cody-Cassidy Press.

Van der Aalst, W. M. P. (2003). Patterns and XPDL: A
critical evaluation of the XML process definition lan-
guage. Technical Report BPM-03-09, BPMcenter.org.

Weske, M. (2007). Business process management concepts,
languages, architectures. Springer, 1 edition.

Weske, M. (2012). Business process management architec-
tures. In Business Process Management, pages 333–
371. Springer Berlin Heidelberg.


	Introduction
	BPM formalization and meta-modeling
	The BPM Modeling
	The Development and the deployment of the BPM
	The execution and monitoring of the BPM
	The BPM improvement
	A meta-model of graph-based BPM

	The taxonomy of change operations
	The atomic change operations
	The composite change operations

	The change impact analysis
	The change impact generation
	The change impact propagation

	The prototype of validation
	Concluding remarks and future work



