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Abstract: We study a general k dimensional in�nite server queues process with Markov

switching, Poisson arrivals and where the service times are fat tailed with index α ∈ (0, 1).

When the arrival rate is sped up by a factor nγ , the transition probabilities of the

underlying Markov chain are divided by nγ and the service times are divided by n, we

identify two regimes ("fast arrivals", when γ > α, and "equilibrium", when γ = α) in

which we prove that a properly rescaled process converges pointwise in distribution to

some limiting process. In a third "slow arrivals" regime, γ < α, we show the convergence

of the two �rst joint moments of the rescaled process.

AMS 2000 subject classi�cations: Primary 60G50, 60K30, 62P05, 60K25.

Keywords and phrases: In�nite server queues, Incurred But Not Reported (IBNR)

claims, Markov modulation, Rescaled process.

1. Introduction and notation

1.1. Model and related work

The classical in�nite server queue consists of a system where tasks or customers arrive accord-

ing to a general arrival process and begin receiving service immediately. Such a model was

studied extensively, under various assumptions on the interarrival and service time distribu-

tions, in [18, Chapter 3, Section 3]. Several variants or extensions have been considered, in

particular where arrivals and service times are governed by an external background Markovian

process [14, 5, 6, 4, 11, 3], or where customers arrive in batches [12]. An extension to a network

of in�nite-server queues where arrival and service rates are Markov modulated is studied in

[9].
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We consider yet another generalization of this model with Markov switching described as

follows. Let {Nt, t ≥ 0} be a Poisson process with intensity λ > 0, corresponding jump times

(Ti)i∈N satisfying T0 = 0, such that (Ti−Ti−1)i≥1 is a sequence of independent and identically

distributed (iid) random variables with same exponential distribution with parameter λ > 0,

denoted by E(λ). Let (Lij)i∈N,j=1,...,k be a sequence of independent random variables such

that the sequence of vectors ((Li1, . . . , Lik))i∈N is iid (with entries Li1,. . . ,Lik having di�erent

distributions for each i). Finally, for some K and k in N∗ we consider the discrete set S =

{0, . . . ,K}k and a stationary �nite Markov chain (Xi)i∈N with state space S. Then, for all i,

Xi is a vector of the form Xi = (Xi1, . . . , Xik) with Xij ∈ {0, . . . ,K}, j = 1, . . . , k. We then

de�ne the following k dimensional process {Z(t) = (Z1(t), . . . , Zk(t)), t ≥ 0} with values in

Nk as

Zj(t) =

Nt∑
i=1

Xij1[t<Lij+Ti] =

∞∑
i=1

Xij1[Ti≤t<Lij+Ti], j = 1, ..., k. (1)

The process de�ned by (1) has many applications, of which we list two most important ones:

• incurred but not reported correlated claims: in an actuarial context, Z(t) = (Z1(t), . . . , Zk(t))

represents a set of branches where Zj(t) is the number of incurred but non reported

(IBNR) claims in the jth branch of an insurance company. Here Xij is the number of

such claims arriving in that branch at time Ti, and Lij is the related delay time before

the claim j is reported. From another point of view, Xij ∈ [0,+∞) may also represent

the amount (say, in euros) of the claim occurring at time Ti in the jth branch, in which

case Zj(t) is the total amount of undeclared claims which have occurred by time t. An-

other application is when K = 1, in which case Xij = 0 means that the claim in branch j

occurring at time Ti is reported and dealt with immediately by the policyholder, whereas

Xij = 1 means that some e�ective lag in the report is observed. The Markovian nature

of (Xi)i∈N here is important from a practical point of view, as a claim amount at time

Ti may impact the one at time Ti+1, or because a policyholder may decide to grant a

long report delay for the claim at time Ti+1 with high probability if the claim at time

Ti is reported immediately.

• in�nite server queues with batch arrivals and Markov switching: Z(t) = (Z1(t), . . . , Zk(t))

represents a set of k correlated queues with an in�nite number of servers, such that cus-

tomers arrive at each time Ti, with Xij customers arriving in queue j ∈ {1, ..., k}, with

corresponding (same) service times Lij (as an example, the basic case where Xij = 1
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for all i ∈ N and j = 1, ..., k corresponds to k customers arriving simultaneously at each

instant Ti). Zj(t) can also be seen as the number of customers of class j in a (single)

in�nite-server queue, as illustrated in [15, Figure 1]. Other in�nite-server queue, such as

one where the customers within a batch arriving at time Ti have di�erent service times,

may be inferred from the model (1) by choosing an appropriate value of k and Markov

chain (Xi)i∈N, see [15, Section 6]. Here, the Markov switching is a major novelty in the

present model because it allows for some dependence between the successive number of

incoming customers. One simple example is when K = 1, so that Xij = 0 means that an

incoming customer at time Ti in queue j is rejected from the system, whereas Xij = 1

means that it is accepted: a classical situation would then be that if a customer is re-

jected at time Ti then the next one could be accepted with high probability, at time Ti+1.

In other words, this Markov switching can help model tra�c regulation mechanisms.

The present paper follows [16], which studies the transient or limiting distribution of a dis-

counted version of Z(t) of the form

Zj(t) =

Nt∑
i=1

Xije
−a(Lij+Ti)1[t<Lij+Ti] =

∞∑
i=1

Xije
−a(Lij+Ti)1[Ti≤t<Lij+Ti], j = 1, ..., k, (2)

for t ≥ 0. The main di�erence with [16] is that the latter has more general assumptions on the

interarrival and service distributions, whereas we focus here on Poisson arrivals. Even though

the assumptions are more restrictive than in [16], the goal here is di�erent in that we are trying

to exhibit di�erent behaviours for the limiting models when the arrival rate is increased and

the service times are decreased by suitable factors, whereas [16] is more focused on analytical

stochastic properties such as the moments of Z(t) or its limiting distribution as t→∞. The

discounting factor a ≥ 0 in (2) is important in situations e.g. where, in an actuarial context,

Xije
−a(Lij+Ti) represents the value of the claim amount at the actual realization time Lij +Ti.

Furthermore, the state space S = {0, . . . ,K}k, although seemingly arti�cially complex, allows

in fact for some �exibility and enables us to retrieve some known models. In particular, consider

a Markov-modulated in�nite-server queue, i.e. a queueing process {Z(t), t ≥ 0} of which

interarrivals and service times are modulated by a background continuous time Markov chain

{Y (t), t ≥ 0} with state space say {1, ..., κ}, i.e. such that customers arrive on the switching

times of the Markov chain, with service times depending on the state of the background process

(see [12], [11, Model II]). Then [16, Section 6] explains how this process {Z(t), t ≥ 0} can
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be embedded in a process {Z(t), t ≥ 0} de�ned by (1) with an appropriate choice of k, K

in function of κ, as well as of the Markov chain (Xi)i∈N and the sequence (Lij)i∈N,j=1,...,k of

service times. Thus, studying a general process {Z(t), t ≥ 0} in (1) allows to study a broad

class of in�nite server queue models in a similar Markov modulated context.

We now proceed with some notation related to the model and used throughout the paper.

Let P = (p(x, x′))(x,x′)∈S2 and π = (π(x))x∈S (written as a row vector) be respectively the

transition matrix and stationary distribution of the Markov chain. We next de�ne for all r ≥ 0

and s = (s1, . . . , sk) ∈ (−∞, 0]k,

π̃(s, r) := diag

E
exp


k∑
j=1

sjxj1[Lj>r]


 , x = (x1, . . . , xk) ∈ S

 , (3)

∆i := diag [xi, x = (x1, . . . , xk) ∈ S] , i = 1, . . . , k, (4)

where P ′ denotes the transpose of matrix P . I is the identity matrix, 0 is a column vector with

zeroes, and 1 is a column vector with 1's, of appropriate dimensions. The Laplace Transform

(LT) of the process Z(t) jointly to the state of XNt given the initial state of X0 is denoted by

ψ(s, t) :=
[
E
(
e<s,Z(t)>1[XNt=y]

∣∣∣X0 = x
)]

(x,y)∈S2
, t ≥ 0, s = (s1, . . . , sk) ∈ (−∞, 0]k (5)

where < ·, · > denotes the Euclidian inner product on Rk. Note that X0 has no direct physical

interpretation here, as the claims sizes/customer batches are given by Xi, i ≥ 1, and is rather

introduced for technical purpose.

We �nish this section with the following notation. For two sequences of random variables

(An)n∈N and (Bn)n∈N and two random variables A and B, the notation D (An|Bn) −→n→∞

D (A|B) indicates that, as n → ∞, the conditional distribution of An given Bn converges

weakly to the conditional distribution of A given B.

1.2. Rescaling

We arrive at the main topic of the paper, which is to be able to provide some information on

the distribution of Z(t) in (1). In the particular case of Poisson arrivals, and since Z(t) in (1)

is a particular case of the process in (2) with discount factor a = 0, the LT ψ(s, t) de�ned in

(5) is characterized by [16, Proposition 4], which we rewrite here:



L.Rabehasaina/In�nite server queues with switching and fat tailed service times 5

Proposition 1. When {Nt, t ≥ 0} is a Poisson process with intensity λ > 0, then ψ(s, t) is

the unique solution to the �rst order linear (matrix) di�erential equation

∂tψ(s, t) = [λ(P − I) + λP (π̃(s, t)− I)]ψ(s, t) (6)

with the initial condition ψ(s, 0) = I.

Unfortunately, the �rst order ordinary di�erential equation (6) does not have an explicit

expression in general, so that studying the (transient or stationary) distribution of the couple

(Z(t), XNt) is di�cult. In that case, as in [3, 4, 11], it is appealing to study the process when

the intensity of the Poisson process is sped up and the switching rates of the Markov chain

are modi�ed. Similarly to those papers, the goal of this paper is thus to study the behaviour

of the queue/IBNR process in "extreme conditions" for the arrival rates, transition rates and

delays, while trying to maintain minimal assumptions on the service time distributions. For

this we will suppose that the rescalings of the parameters, denoted by (S1), (S2) and (S3)

hereafter, are performed as follows:

• the arrival rate is multiplied by nγ for some γ > 0, denoted by

(S1) λn = λnγ ,

with associated Poisson process {N (n)
t , t ≥ 0} and jump times (Tni )i∈N,

• the transition probabilities p(x, y) are divided by nγ when x 6= y, x, y in S, i.e. the new

transition matrix is given by

(S2) Pn = P/nγ + (1− 1/nγ)I,

with corresponding stationary Markov chain (X
(n)
i )i∈N, having the same distribution π

as (Xi)i∈N.

Since the transition matrix Pn veri�es Pn −→n→∞ I, such normalizing assumptions imply

that, as n → ∞, one is close to a model where the arriving customers or claims come in

the k queues in batches with same �xed size: those queues are nonetheless correlated because

the customers arrive according to the same Poisson process. Also, observe that λn(Pn − I) is

the in�nitesimal generator of the continuous time Markov chain

{
Y (n)(t) = X

(n)

N
(n)
t

, t ≥ 0

}
of

which embedded Markov chain is the underlying Markov chain i.e. (Y (n)(Tni ))i∈N = (X
(n)
i )i∈N.
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Thus, since the rescaling is such that

λn(Pn − I) = λ(P − I)

for all n (a property which will be extensively used in the paper), we remark that the rescalings

(S1) and (S2) for the arrival rate and the transition probabilities are such that the transition

rates between the states of S of {Y (n)(t), t ≥ 0} are independent from n, which allows for

enough dynamics in the model that compensates the fact that Pn tends to I, and yielding non

trivial asymptotics in the convergence results in this paper as n→∞.

The assumptions for the service times/delays distribution are the following. We �rst suppose

that the base model features fat tailed distributed service times with same index α ∈ (0, 1),

i.e. such that

P(Lj > t) ∼ 1/tα, t→∞,

for all j = 1, ..., k. This kind of distribution (included in the wider class of heavy tailed

distributions) mean that the service times are "large". In particular, those service times have

in�nite expectation. Furthermore, the rescaling for the service times is such that they are

divided by n, denoted by

(S3) L
(n)
j = Lj/n.

Hence, the situation is the following: the arrivals are sped up by factor nγ , but this is compen-

sated by the fact that the delay times are diminished with factor n, so that one expects one of

the three phenomena to occur at time t for the limiting model: the arrivals occur faster than

it takes time for customers to be served and the corresponding queue content Z(n)(t) grows

large as n→∞, the arrivals occur slower and services are completed fast so that Z(n)(t) tends

to 0 as n → ∞, or an equilibrium is reached. Those three cases will be studied in the forth-

coming sections. Some limiting behaviour was studied in [4, 11], where the authors identi�ed

three regimes for di�erent scalings in a Markov modulating context and obtained a Central

Limit Theorem for a renormalized process, when the service times have general distribution

with �nite expectation or are exponentially distributed. [3] provides some precise asymptotics

on the tail probability of the queue content for exponentially distributed service times. [9]

provides a di�usion approximation for a model with exponentially distributed service times.

A novelty in this paper is that we restrict here the class of distributions to that of fat tailed

distributions in order to exhibit (under di�erent scalings) a di�erent behaviour and di�erent
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limiting distribution which is not gaussian. Also note that the class of fat tailed distributions

is interesting in itself as, in actuarial practice, this corresponds to latent claims, i.e. very long

delays which are incidentally in practice often not observed (as the case α ∈ (0, 1) corresponds

to the Lj 's having in�nite expectation), see [8, Section 6.6.1]. This motivates the convergence

results in this paper, which feature the exponent α as the only information required on those

delays. This in itself is a noticeable di�erence from the Central Limit Theorems obtained in [4,

Section 4], where the normalization and limiting distribution require the explicit cumulative

distribution function of the service times. Not only that, but the scaling is rather done in

those references [4, 11] on the transition rates of the underlying continuous time Markov chain

modulating the arrival and service rates, whereas here these are constant, as we saw that

λn(Pn− I) = λ(P − I) is independent of n, and the scaling is rather done on the service times

instead. When the service times are heavy tailed, this particular model can also be seen as a

generalization of the in�nite source model, see [13, Section 2.2]. Since the class of fat tailed

distributions is a sub-class of the set of heavy tailed distributions, the normalizations (S1) and

(S3) can be directly compared to [13, Section 3.1], which studies limiting distributions of such

normalized processes, and where the authors introduce the notion of so-called Slow and Fast

Growth conditions when the arrival rate of customers is respectively negligible or dominant,

compared to the service times. The reader is also referred to [7] for a a similar model where

the interarrivals are heavy tailed. All in all, what is going to be studied hereafter is, when t

is �xed in say [0, 1] w.l.o.g., the limiting distribution as n→∞ of the Nk ×S valued random

vector (
Z(n)(t), X

(n)

N
(n)
t

)
under rescaling (S1), (S2) and (S3), or of a renormalized version of it in the "fast" or "slow"

arriving customers case. Note that that the convergence is proved on the interval [0, 1], but

all proofs can be adapted to show the convergence on any interval [0,M ] for M > 0. The

corresponding joint Laplace Transform is given by

ψ(n)(s, t) =

E
e<s,Z(n)(t)>

1[
X

(n)

N
(n)
t

=y

]
∣∣∣∣∣∣∣ X(n)

0 = x



(x,y)∈S2

, s = (s1, ..., sj) ∈ (−∞, 0]k,

(7)

where we recall that (X
(n)
i )i∈N is the underlying Markov chain with generating matrix Pn,

stationary distribution π, and
{
N

(n)
t , t ≥ 0

}
is a Poisson process representing the arrivals,
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with scaled intensity λn. We also introduce the �rst and second joint matrix moments de�ned

by

M
(n)
j (t) :=

E
Z(n)

j (t)1[
X

(n)

N
(n)
t

=y

]
∣∣∣∣∣∣∣ X(n)

0 = x



(x,y)∈S2

, j = 1, ..., k,

M
(n)
jj′ (t) :=

E
Z(n)

j (t) Z
(n)
j′ (t)1[

X
(n)

N
(n)
t

=y

]
∣∣∣∣∣∣∣ X(n)

0 = x



(x,y)∈S2

, j, j′ = 1, ..., k.

(8)

2. Statement of results and organization of paper

The core results of the paper concerning the di�erent regimes are given in the following two

Theorems 2 and 3:

Theorem 2. Let {Xα(t) = (Xα1 (t), ...,Xαk (t)), t ∈ [0, 1]} be a {0, ...,K}k valued continuous

time inhomogeneous Markov chain with in�nitesimal generating matrix 1
1−α(1− t)

α
1−αλ(P −I)

with Xα(0) ∼ π, and {ναj (t), t ∈ [0, 1]}, j = 1, ..., k, be k independent Poisson processes with

same intensity λ
1−α , independent from {X

α(t), t ∈ [0, 1]}. Let t ∈ [0, 1] �xed.

• Fast arrivals: If γ > α then, as n→∞,

D

((
Z(n)(t)

nγ−α
, X

(n)

N
(n)
t

)∣∣∣∣∣ X(n)
0

)

−→ D
((

λ

1− α

∫ 1

1−t1−α
Xα(v) dv, Xα(1)

)∣∣∣∣ Xα (1− t1−α)) , (9)

• Equilibrium: If γ = α then, as n→∞,

D
((

Z(n)(t), X
(n)

N
(n)
t

)∣∣∣∣ X(n)
0

)
−→ D

(((∫ 1

1−t1−α
Xαj (v) ναj (dv)

)
j=1,...,k

, Xα(1)

)∣∣∣∣∣ Xα (1− t1−α)
)
. (10)

We note that the terms in the limits on the right hand side of (9) and (10) feature simple

objects (in regards to the complexity of the original model) where the only characteristic

parameters needed are λ, P and α; in particular, and apart from α, characteristics of the

service times Lj , j = 1, ..., k, such as their cumulative distribution functions, do not show

up in the limiting distributions (9) and (10). The convergences in distribution (9) and (10)

give some information on convergence of the (possibly renormalized) joint distribution of
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the couple

(
Z(n)(t), X

(n)

N
(n)
t

)
, t ∈ [0, 1] given the initial state X

(n)
0 . Intuitively, for �xed t ∈

[0, 1], in the right hand sides of (9) and (10) we may interpret the inhomogeneous continuous

time Markov chain {Xα(v), v ∈ [1 − t1−α, 1]} as the limiting counterpart of the modulating

process
{
X

(n)

N
(n)
v

, v ∈ [0, t]
}
. On an even cruder level, we observe in the Fast arrivals case

from (9) that each entry of Z(n)(t) = (Z
(n)
1 (t), ..., Z

(n)
k (t)) behaves roughly like nγ−αt1−α. The

intuition behind this behaviour may be explained as follows. Within queue j = 1, ...k, there

are approximately λnγt arrivals in the interval [0, t], each arriving customer with service time

distributed as L
(n)
j , so that we may very grossly consider that a customer is still present at

time t with probability P(L
(n)
j > t) = P(Lj/n > t). Hence the number of customers in queue

j is approximately

Z
(n)
j (t) ≈ λnγt× P(L(j)/n > t) = λnγt× P(L(j) > nt) ≈ λnγt× 1

(nt)α
= λnγ−αt1−α

which is the expected order of growth nγ−αt1−α. Of course, such approximations are very

crude, however this enables us to justify the presence of the normalizing factor nγ−α as well

as the time dilated factor t1−α in (9).

In the case when γ < α, proving the convergence in distribution of an adequate normaliza-

tion of Z(n)(t) seems more di�cult. The following result show that the two �rst moments of

Z(n)(t) converge under respective normalization nα−γ and n(α−γ)/2:

Theorem 3 (Slow arrivals). If γ < α then the following convergences of the two joint

moments hold as n→∞

nα−γM
(n)
j (t) −→ λeλt(P−I)

∫ t

0

1

vα
e−λv(P−I)∆je

λv(P−I)dv, (11)

nα−γM
(n)
jj (t) −→ λeλt(P−I)

∫ t

0

1

vα
e−λv(P−I)∆2

je
λv(P−I)dv, (12)

nα−γM
(n)
jj′ (t) −→ 0 j 6= j′, (13)

for all j, j′ 6= j, in 1, ..., k, t ∈ [0, 1], where we recall that ∆j is de�ned in (4).

One interesting by-product of Theorem 2 is that it in particular gives some insight on the

(non conditional) limiting distribution of Z(n)(t), with a limit in a somewhat simpler form.

More precisely, the following corollary follows from the proofs of (9) and (10):

Corollary 4. In the Fast arrivals case γ > α, the following convergence holds

Z(n)(t)

nγ−α
D−→ λ

∫ t

0

Y(v)

vα
dv, n→∞, t ∈ [0, 1], (14)
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where {Y(t) = (Y1(t), ...,Yk(t)), t ∈ [0, 1]} is a (time homogeneous) stationary continuous

time Markov chain on the state space S, with in�nitesimal generator matrix de�ned by

λ(∆−1π P ′∆π − I), ∆π := diag(π(x), x ∈ S). (15)

In the Equilibrium case γ = α, one has

Z(n)(t)
D−→
(∫ t

0
Yj(v) ν̃αj (dv)

)
j=1,...,k

, n→∞, t ∈ [0, 1]. (16)

Here {ν̃αj (t), t ∈ [0, 1]}, j = 1, ..., k, are the inhomogeneous Poisson processes de�ned by

ν̃αj (t) = ναj (t1−α), t ∈ [0, 1], where {ναj (t), t ∈ [0, 1]}, j = 1, ..., k, are de�ned in Theorem 2.

As mentioned in Section 1.2, [13, 7] introduced a notion of Fast and Slow growth similar to

the Fast and Slow arrivals presented in Theorems 2 and 3, for a process of interest which is

either a superposition of renewal processes with heavy tailed interarrivals or the cumulative

input of an in�nite source Poisson model with heavy tailed services. In those references, the

process is shown to converge weakly or in �nite dimensional distributions towards speci�c

limit processes under appropriate scaling, see [13, Theorem 1] and [7, Theorem 1]. Here, the

outline of the proof of Theorem 2 is the following:

• We will �rst expand the LT of the left hand side of (9) and (10) as n → ∞ and prove

that the limit satis�es a particular ODE thanks to Proposition 1, which will be referred

as Steps 1 and 2 in the proofs in the forthcoming Sections 3.2 and 3.3.

• Then, we will identify this limit as the LT of the right hand side of (9) and (10) thanks

to a proper use of the Feynman-Kac or Campbell formula. This step will be referred as

Step 3 in the proofs.

This is to be compared with the approach in [4, 11], where the authors derive ODEs for

the limiting moment generating function and identify a gaussian limiting distribution for the

normalized process.

The paper is organized in the following way. Section 3 is dedicated to the proofs of the main

results, with Subsections 3.2, 3.3 and 3.4 giving the proofs of the convergences in distribution

of Theorem 2 in fast arrivals and equilibrium cases, and of Theorem 3 in the slow arrivals case.

The proof of Corollary 4 is included in Subsections 3.2, for the convergence (14), and 3.3, for

the convergence (16). As a concluding remark, we will discuss in Section 4 some computational
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aspect for the limiting distributions mentioned in those di�erent regimes in Theorem 2 in the

particular case when α is a rational number lying in (0, 1).

3. Proofs of Theorems 2, 3 and Corollary 4

3.1. Preliminary results

We will repeatedly use the following general lemma in the proofs:

Lemma 5. Let (t ∈ [0, 1] 7→ An(t))n∈N be a sequence of continuous functions with values in

RS×S , and let us assume that there exists some continuous function t ∈ [0, 1] 7→ A(t) ∈ RS×S

such that
∫ 1
0 ||An(v)−A(v)||dv −→ 0 as n→∞ for any matrix norm ||.||. Let y ∈ RS×S and

t ∈ [0, 1] 7→ Yn(t) ∈ RS×S be the solution to the following di�erential equation d
dtYn(t) = An(t)Yn(t), t ∈ [0, 1],

Yn(0) = y ∈ RS×S ,
n ∈ N. (17)

Then one has Yn(t) −→ Y (t) uniformly in t ∈ [0, 1], as n → ∞, where t ∈ [0, 1] 7→ Y (t) ∈

RS×S is the solution to the following di�erential equation d
dtY (t) = A(t)Y (t), t ∈ [0, 1],

Y (0) = y.
(18)

Proof. We �rst observe that, because of continuity of t ∈ [0, 1] 7→ An(t) and t ∈ [0, 1] 7→ A(t),

(17) and (18) read in integral form

Yn(t) = y +

∫ t

0
An(v)Yn(v)dv, Y (t) = y +

∫ t

0
A(v)Y (v)dv (19)

for all t ∈ [0, 1]. Since the norm ||.|| may be arbitrary, we pick a submultiplicative one on the

set of S × S matrices. (19) implies the following inequality

||Yn(t)|| ≤ ||y||+
∫ t

0
||An(v)||.||Yn(v)||dv, ∀t ∈ [0, 1].

Gronwall's lemma thus implies that ||Yn(t)|| ≤ ||y|| exp
(∫ t

0 ||An(v)||dv
)
for all t ∈ [0, 1]. Since

by assumption
∫ 1
0 ||An(v)− A(v)||dv −→ 0 as n→∞, one has that

(∫ 1
0 ||An(v)||dv

)
n∈N

is a

bounded sequence. We deduce the following �niteness

MY := sup
n∈N

sup
t∈[0,1]

||Yn(t)|| ≤ sup
n∈N

sup
t∈[0,1]

||y|| exp

(∫ t

0
||An(v)||dv

)
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≤ ||y|| exp

(∫ 1

0
sup
n∈N
||An(v)||dv

)
< +∞.

Let us then introduce MA := supv∈[0,1] ||A(v)||, which is a �nite quantity. Then one obtains

that

||Yn(t)− Y (t)|| ≤
∫ t

0
||An(v)−A(v)||.||Yn(v)||dv +

∫ t

0
||A(v)||.||Yn(v)− Y (v)||dv

≤MY

∫ t

0
||An(v)−A(v)||dv +MA

∫ t

0
||Yn(v)− Y (v)||dv, ∀t ∈ [0, 1].

Gronwall's lemma thus implies that, for all t ∈ [0, 1],

||Yn(t)− Y (t)|| ≤MY

[∫ t

0
||An(v)−A(v)||dv

]
. eMAt

≤MY

[∫ 1

0
||An(v)−A(v)||dv

]
. eMA −→ 0 as n→∞.

Since the right hand side of the above inequality is independent from t ∈ [0, 1], this proves the

uniform convergence result.

We �nish this subsection by stating the di�erential equation satis�ed by the Laplace Trans-

form ψ(n)(s, t) of

(
Z(n)(t), X

(n)

N
(n)
t

)
de�ned in (7), which will be the central object studied in

Subsections 3.2 and 3.3. Thanks to equation(6) with the new parameters λn, Pn instead of λ

and P (and remembering that λn(Pn − I) = λ(P − I)), this reads here ∂tψ
(n)(s, t) = [λ(P − I) + λnγPn(π̃n(s, t)− I)]ψ(n)(s, t), t ≥ 0,

ψ(n)(s, 0) = I,
(20)

for all s = (s1, ..., sk) ∈ (−∞, 0]k. And, from (3), using the expansion
∏k
j=1(aj + 1) = 1 +∑

I⊂{1,...,k}
∏
`∈I a` for all real numbers a1, ..., ak, we have the following expansion which will

be useful later on:

π̃n(s, t)− I = diag

 k∏
j=1

(
(esjxj − 1)P

[
L
(n)
j > t

]
+ 1
)
− 1, x = (x1, ..., xk) ∈ S


= diag

 ∑
I⊂{1,...,k}

∏
`∈I

[
(es`x` − 1)P

[
L
(n)
` > t

]]
, x = (x1, ..., xk) ∈ S

 . (21)

3.2. Case γ > α: Fast arriving customers

We now proceed to show convergence (9) in Theorem 2. In the present case, it is sensible

to guess that Z(n)(t) converges towards in�nity as n → ∞, hence it is natural to �nd a
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normalization such that a convergence towards a proper distribution occurs. We renormalize

the queue content by dividing it by nγ−α, i.e. we are here interested in

(
Z(n)(t)/nγ−α, X

(n)

N
(n)
t

)
,

of which Laplace transform is given by ψ(n)(s/nγ−α, t), s = (s1, ..., sk) ∈ (−∞, 0]k. In order

to avoid cumbersome notation, we introduce the quantity

β :=
1

1− α
∈ (1,+∞).

We observe then that

t ∈ [0, 1] 7→ tβ ∈ [0, 1] (22)

is a one to one mapping. Hence, studying the limiting distribution of

(
Z(n)(t)/nγ−α, X

(n)

N
(n)
t

)
for all t ∈ [0, 1] amounts to study the limiting distribution of(

Z(n)(tβ)/nγ−α, X
(n)

N
(n)

tβ

)
(23)

for all t ∈ [0, 1], then changing variable t := t1/β . The time transformation (22) may at this

point look arti�cial, but this is a key step which will later on enable us to use the convergence

result in Lemma 5.The LT of (23) is given by

χ(n)(s, t) := ψ(n)(s/nγ−α, tβ), t ∈ [0, 1].

From (20), χ(n)(s, t) satis�es ∂tχ
(n)(s, t) = βtβ−1[λ(P − I) + λnγPn(π̃n(s/nγ−α, tβ)− I)]χ(n)(s, t), t ∈ [0, 1],

χ(n)(s, 0) = I.

(24)

The starting point for proving (9) is the following: we will set to prove that

An(s, t) = βtβ−1[λ(P − I) + λnγPn(π̃n(s/nγ−α, tβ)− I)] (25)

converges to some limit A(s, t) as n → ∞, use Lemma 5, then identify the limit χ(s, t) :=

limn→∞ χ
(n)(s, t) as the Laplace Transform of a known distribution.

Step 1: Determining A(s, t). This step is dedicated to �nding the limit function t ∈ [0, 1] 7→

A(s, t) of (25). Recalling that limn→∞ Pn = I, studying the limit of (25) amounts to studying

that of βtβ−1λnγ(π̃n(s/nγ−α, tβ)− I) as n→∞. In view of (21), the xth diagonal element of

this latter term is

βtβ−1λnγ
∑

I⊂{1,...,k}

∏
`∈I

[
(es`x`/n

γ−α − 1)P
[
L
(n)
` > tβ

]]
(26)
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of which we proceed to �nd the limit as n → ∞. In order to study its convergence, we are

going to isolate the terms in the sum (26) for which Card(I) = 1 and Card(I) ≥ 2, and show

that the former admit a non zero limit and the latter tend to 0. We thus write (26) as

βtβ−1λnγ
∑

I⊂{1,...,k}

∏
`∈I

[
(es`x`/n

γ−α − 1)P
[
L
(n)
` > tβ

]]
= J1

n(s, t) + J2
n(s, t), where

J1
n(s, t) = J1

n(s, t, x) := βtβ−1λnγ
k∑
`=1

(es`x`/n
γ−α − 1)P

[
L
(n)
` > tβ

]
, (27)

J2
n(s, t) = J2

n(s, t, x) := βtβ−1λnγ
∑

Card(I)≥2

∏
`∈I

[
(es`x`/n

γ−α − 1)P
[
L
(n)
` > tβ

]]
. (28)

Both terms J1
n(s, t) and J2

n(s, t) are studied separately. Using that es`x`/n
γ−α − 1 ∼ s`x`/nγ−α

as n→∞ and

P
[
L
(n)
` > tβ

]
= P

[
L` > ntβ

]
∼ 1

nαtβα
(29)

when t > 0, and since βα = α/(1− α) = β − 1, we arrive at

J1
n(s, t) ∼ βλ

k∑
`=1

tβ−1nγ
s`x`
nγ−α

1

nαtβα
∼ βλ

k∑
`=1

s`x`, n→∞,

when t > 0, and is 0 when t = 0. Next we show that J2
n(s, t) tends to 0 by showing that each

term on the right hand side of (28) tend to 0. So, if I ⊂ {1, ..., k} is such that I = {`1, `2},

i.e. Card(I) = 2, then∣∣∣∣∣βtβ−1λnγ∏
`∈I

[
(es`x`/n

γ−α − 1)P
[
L
(n)
` > tβ

]]∣∣∣∣∣ = βtβ−1λnγ
∣∣∣es`1x`1/nγ−α − 1

∣∣∣P [L`1 > ntβ
]

.
∣∣∣es`2x`2/nγ−α − 1

∣∣∣P [L`2 > ntβ
]
≤ βtβ−1λnγ |s`1x`1 |.|s`2x`2 |

1

n2(γ−α)
P
[
L`1 > ntβ

]
= βtβ−1λ|s`1x`1 |.|s`2x`2 |

1

nγ−α
nαP

[
L`1 > ntβ

]
, (30)

where we used the inequality |eu − 1| ≤ |u| for u ≤ 0 and P
[
L`2 > ntβ

]
≤ 1. Thanks to

(29), the right hand side of (30) thus tends to zero when t ∈ (0, 1]. The case Card(I) > 2 is

dealt with similarly. Finally, all terms on the right hand side of (28) tend to 0 as n→∞, i.e.

limn→∞ J
2
n(s, t) = 0 for all t ∈ (0, 1]. When t = 0 then J2

n(s, t) = 0, so that the limit holds for

all t ∈ [0, 1].

Hence we have that (26) tends to limn→∞ J
1
n(s, t)+limn→∞ J

2
n(s, t), i.e. to βλ

∑k
`=1 s`x` when

t ∈ (0, 1], and to 0 when t = 0. The candidate for the continuous function A(s, t) is then

t ∈ [0, 1] 7→ A(s, t) := βtβ−1λ(P − I) + βλ
k∑
`=1

s`∆` (31)



L.Rabehasaina/In�nite server queues with switching and fat tailed service times 15

where we recall from (4) that ∆` = diag [x`, x = (x1, . . . , xk) ∈ S]. This is where the time

transformation (22) described previously is important, as without it it would not have been

possible to exhibit the limit (31) for An(s, t). Note that the limit when t = 0 for An(s, t) in

(25) di�ers from A(s, 0) = βλ
∑k

`=1 s`∆`, as indeed a closer look from the study of the limits

of J1
n(s, t) and J2

n(s, t) would yield that limn→∞An(s, 0) should rather be the 0 matrix. This

is due to the fact that the limit t ∈ [0, 1] 7→ A(s, t) in Lemma 5 has to be continuous so that

the lemma holds.

Step 2: Determining χ(s, t) = limn→ χn(s, t). We now need to prove that
∫ 1
0 ||An(s, v) −

A(s, v)||dv −→ 0 as n → ∞ in order to apply Lemma 5. Thanks to (25) and (31), and by

the de�nitions (27) and (28) of J1
n(s, t, x) and J1

n(s, t, x), we observe that An(s, t) can be

decomposed as

An(s, t) = A(s, t) + Pn diag

(
J1
n(s, t, x)− βλ

k∑
`=1

s`x`, x ∈ S

)

+ Pn diag
(
J2
n(s, t, x), x ∈ S

)
+ (Pn − I)βλ

k∑
`=1

s`∆`, t ∈ [0, 1].

Hence, since limn→∞ Pn = I, proving limn→∞
∫ 1
0 ||An(s, v) − A(s, v)||dv = 0 amounts to

proving that ∫ 1

0

∣∣∣∣∣J1
n(s, v, x)− βλ

k∑
`=1

s`x`

∣∣∣∣∣ dv −→ 0, and∫ 1

0
|J2
n(s, v, x)|dv =

∫ 1

0
J2
n(s, v, x)dv −→ 0,

(32)

as n → ∞, for each �xed x ∈ S. Let us �rst focus on
∫ 1
0

∣∣∣J1
n(s, v, x)− βλ

∑k
`=1 s`x`

∣∣∣ dv. We

have∫ 1

0

∣∣∣∣∣J1
n(s, v, x)− βλ

k∑
`=1

s`x`

∣∣∣∣∣ dv ≤
k∑
`=1

(I1n(`) + I2n(`)), where, for all ` = 1, ..., k, (33)

I1n(`) :=

∫ 1

0
λβvβ−1

∣∣∣nγ(es`x`/n
γ−α − 1)− nαs`x`

∣∣∣P [L(n)
` > vβ

]
dv

I2n(`) := |s`x`|
∫ 1

0
λ
∣∣∣βvβ−1nαP [L(n)

` > vβ
]
− β

∣∣∣ dv.
Expanding the exponential function, one has that |es`x`/nγ−α − 1− s`x`/nγ−α| ≤M`/n

2(γ−α)

where M` > 0 only depends on s` and x`. Thus, one deduces the following upper bounds for

I1n(`), ` = 1, ..., k:

I1n(`) =

∫ 1

0
λβvβ−1

∣∣∣nγ(es`x`/n
γ−α − 1)− nαs`x`

∣∣∣P [L` > nvβ
]
dv
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≤ nγ
M`

n2(γ−α)
λ

∫ 1

0
βvβ−1P

[
L` > nvβ

]
dv =

M`

nγ−α
βλ

∫ 1

0
nαvβ−1P

[
L` > nvβ

]
dv

=
M`

nγ−α
βλ

∫ 1

0
(nvβ)α P

[
L` > nvβ

]
dv, (34)

the last equality holding because β − 1 = βα implies that the integrand veri�es nαvβ−1 =

(nvβ)α. A consequence of the fact that L` is fat tailed with index α is that supu≥0 u
αP(L` >

u) < +∞, from which one deduces immediately that

sup
j∈N, v∈[0,1]

(jvβ)α P
[
L` > jvβ

]
< +∞ (35)

(note that those two latter suprema are in fact equal). One then gets from (34) that

I1n(`) ≤ M`

nγ−α
βλ

[
sup

j∈N, v∈[0,1]
(jvβ)α P

[
L` > jvβ

]]
−→ 0, n→∞. (36)

We now turn to I2n(`), ` = 1, ..., k. Using again β − 1 = βα, one may write in the integrand of

I2n(`) that vβ−1nα = (nvβ)α: hence

I2n(`) = |s`x`|
∫ 1

0
λ
∣∣∣β(nvβ)αP

[
L` > nvβ

]
− β

∣∣∣ dv.
Since L` is fat tailed with index α, estimates similar to the ones leading to the upper bound

(36) for I1n(`) yield that

sup
n∈N, v∈[0,1]

∣∣∣β(nvβ)αP
[
L` > nvβ

]
− β

∣∣∣ < +∞.

Furthermore, again because L` is fat tailed, one has P
[
L` > nvβ

]
∼ 1/(nvβ)α as n→∞ when

v > 0. Hence
∣∣β(nvβ)αP

[
L` > nvβ

]
− β

∣∣ −→ 0 as n → ∞ when v ∈ (0, 1], and is equal to β

when v = 0. The dominated convergence theorem thus implies that

I2n(`) −→ 0, n→∞. (37)

Gathering (33), (36) and (37), we thus deduce �nally that
∫ 1
0

∣∣∣J1
n(s, v, x)− βλ

∑k
`=1 s`x`

∣∣∣ dv
tends to 0 as n→∞ for each x ∈ S.

We now prove that
∫ 1
0 J

2
n(s, v, x)dv −→ 0 as n→∞. In view of the de�nition (28), it su�ces

to prove that ∫ 1

0
βvβ−1λnγ

∏
`∈I

[
|es`x`/nγ−α − 1| P

[
L
(n)
` > vβ

]]
dv (38)

tends to 0 as n→∞ for I ⊂ {1, ..., k} such that Card(I) ≥ 2. Let us prove the convergence

for Card(I) = 2, i.e. for I = {`1, `2} for some `1 6= `2 in 1, ..., k, the case Card(I) > 2
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being dealt with similarly. By the basic inequality |eu − 1| ≤ |u| for u ≤ 0 we deduce that

|es`ix`i/nγ−α − 1| ≤ |s`ix`i |/nγ−α, i = 1, 2. Since P
[
L
(n)
`1

> vβ
]
≤ 1 for all v ∈ [0, 1], we then

deduce that (38) is upper bounded by

|s`1x`1 |
nγ−α

|s`2x`2 |
∫ 1

0
βvβ−1λnαP

[
L
(n)
`2

> vβ
]
dv.

As vβ−1nα = (nvβ)α, and thanks to (35), the latter quantity is in turn written then bounded

as follows

|s`1x`1 |
nγ−α

|s`2x`2 |
∫ 1

0
βλ(nvβ)αP

[
L
(n)
`2

> vβ
]
dv =

|s`1x`1 |
nγ−α

|s`2x`2 |
∫ 1

0
βλ(nvβ)αP

[
L`2 > nvβ

]
dv

≤ |s`1x`1 |
nγ−α

|s`2x`2 |βλ

[
sup

j∈N, v∈[0,1]
(jvβ)α P

[
L`2 > jvβ

]]
−→ 0, n→∞,

proving that (38) tends to 0 as n→∞ when I = {`1, `2}.

Hence we just proved (32), which implies
∫ 1
0 ||An(s, v) − A(s, v)||dv −→ 0. We may then use

Lemma 5 to deduce that χ(n)(s, t) convgerges to χ(s, t) which satis�es ∂tχ(s, t) = A(s, t)χ(s, t) =
[
βtβ−1λ(P − I) + βλ

∑k
`=1 s`∆`

]
χ(s, t), t ∈ [0, 1],

χ(s, 0) = I.

(39)

Step 3: Identifying the limit in distribution. Let us note that (39) does not admit an

explicit expression. However, since we purposely chose s = (s1, ..., sk) with sj ≤ 0, j = 1, ..., k,

one has that
∑k

j=1 sj∆j =
∑k

j=1 sj diag(xj , x ∈ S) is a diagonal matrix with non positive

entries. Let ∆π := diag(π(x), x ∈ S) and let us introduce the matrix P (r) de�ned by P (r) =

∆−1π P ′∆π ⇐⇒ P = ∆−1π P (r)′∆π. It is standard that P (r) is the transition matrix of the

reversed version of the stationary Markov chain {Xi, i ∈ N} with distribution π, and that

βtβ−1λ(P (r) − I) is the in�nitesimal generator matrix of an inhomogeneous Markov process

{U(t) = (Uj(t))j=1,...,k ∈ S, t ∈ [0, 1]} (40)

with values in S, and initial distribution U(0) ∼ π. In fact, it turns out that the conditional dis-

tribution of U(t) given U(0) is given by [P(U(t) = y| U(0) = x)](x,y)∈S = exp(tβλ(P (r) − I)),

which results in U(t) ∼ π for all t ∈ [0, 1], i.e. that {U(t), t ∈ [0, 1]} is stationary. Since∑k
j=1 sj∆j is diagonal, one checks easily thatA(s, t) = ∆−1π

[
βtβ−1λ(P (r)′ − I) +

∑k
j=1 sj∆j

]
∆π

and that Y (t) = Y (s, t) := ∆−1π χ(s, t)′∆π satis�es the di�erential equation ∂tY (t) = Y (t)
[
βtβ−1λ(P (r) − I) + βλ

∑k
`=1 s`∆`

]
, t ∈ [0, 1],

Y (0) = I.
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The Feynman-Kac formula ensures that one has the representation

Y (t) = Y (s, t) =

E
1[U(t)=y] exp

 k∑
j=1

sjβλ

∫ t

0
Uj(v)dv

∣∣∣∣∣∣U(0) = x


(x,y)∈S2

, ∀t ∈ [0, 1],

see [17, Chapter III, 19, p.272] for the general theorem on this formula, or [2, Section 5,

Expression (5.2) and di�erential equation (5.3)] for the particular case of a �nite Markov chain,

adapted here to an inhomogeneous Markov process. Also, the reversed process {U(1− t), t ∈

[0, 1]} admits ∆π
−1β(1− t)β−1λ(P (r)′−I)∆π = β(1− t)β−1λ(P −I) as in�nitesimal generator

matrix, which is the generator of the process {Xα(t) = (Xα1 (t), ...,Xαk (t)) ∈ S, t ∈ [0, 1]}

introduced in the statement of Theorem 2, so that {Xα(t), t ∈ [0, 1]} D= {U(1− t), t ∈ [0, 1]}

pathwise. Hence, one obtains for all x and y in S that

E

1[U(t)=y] exp

 k∑
j=1

sjβλ

∫ t

0
Uj(v)dv

∣∣∣∣∣∣U(0) = x


= E

1[Xα(1−t)=y] exp

 k∑
j=1

sjβλ

∫ 1

1−t
Xαj (v)dv

∣∣∣∣∣∣Xα(1) = x


= E

1[Xα(1)=x] exp

 k∑
j=1

sjβλ

∫ 1

1−t
Xαj (v)dv

∣∣∣∣∣∣Xα(1− t) = y

 π(y)

π(x)
, (41)

the last line coming from the fact that U(0), U(t), Xα(1− t) and Xα(1) all have same distri-

bution π. Switching the role of x and y in the above results in the following relationship:E
1[Xα(1)=y] exp

 k∑
j=1

sjβλ

∫ 1

1−t
Xαj (v)dv

∣∣∣∣∣∣Xα(1− t) = x


(x,y)∈S2

=

E
1[U(t)=x] exp

 k∑
j=1

sjβλ

∫ t

0
Uj(v)dv

∣∣∣∣∣∣U(0) = y

 π(y)

π(x)


(x,y)∈S2

= ∆−1π Y (t)′∆π = χ(s, t).

Since we just proved that χ(n)(s, t) := ψ(n)(s/nγ−α, tβ) converges as n → ∞ towards χ(s, t),

expressed above, for all s = (s1, ..., sk) ∈ (−∞, 0]k, and identifying Laplace transforms, we

obtained in conclusion that

D
((

Z(n)(tβ)/nγ−α, X
(n)

N
(n)

tβ

)∣∣∣∣ X(n)
0

)
−→ D

((
βλ

∫ 1

1−t
Xα(v) dv, Xα(1)

)∣∣∣∣ Xα(1− t)
)
(42)
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as n→∞ for all t ∈ [0, 1]. Changing t into t1/β yields (9).

Proof of the convergence (14) in Corollary 4. With the previous de�nitions of processes

{U(t), t ∈ [0, 1]} in (40) and {Xα(t), t ∈ [0, 1]}, (41) implies the following matrix equalityE
1[U(t)=y] exp

 k∑
j=1

sjβλ

∫ t

0
Uj(v)dv

∣∣∣∣∣∣U(0) = x


(x,y)∈S2

=

E
1[Xα(1)=x] exp

 k∑
j=1

sjβλ

∫ 1

1−t
Xαj (v)dv

∣∣∣∣∣∣Xα(1− t) = y

 π(y)

π(x)


(x,y)∈S2

(43)

Left-multiplying and right-multiplying (43) respectively by the row vector (π(x))x∈S and the

column vector 1 results in in the following equality of LT

E

exp

 k∑
j=1

sjβλ

∫ t

0
Uj(v)dv


= E

exp

 k∑
j=1

sjβλ

∫ 1

1−t
Xαj (v)dv

 , s = (s1, ..., sk) ∈ (−∞, 0]k, (44)

which, combined with (42), yields the convergence
Z(n)(tβ)
nγ−α

D−→ βλ
∫ t
0 U(v) dv as n → ∞.

Changing t into t1/β and performing the change of variable v := v1/β = v1−α, we obtain

Z(n) (t)

nγ−α
D−→ λ

∫ t

0

U(v1−α)

vα
dv, n→∞, t ∈ [0, 1]. (45)

Since the S valued Markov process {U(t), t ∈ [0, 1]} admits βtβ−1λ(P (r)− I) as the in�nites-

imal generator matrix, the time changed Markov process {Y(t) := U(t1−α) = U(t1/β), t ∈

[0, 1]} admits (15) as generator, so that (14) follows from (45).

3.3. Equilibrium case γ = α

We now proceed to show convergence (10) in Theorem 2. Intuitively, we are in the critical case

where customers should arrive just fast enough such that the queue at time t converges as

n → ∞. We are here interested in the behaviour of D
((

Z(n)(t), X
(n)

N
(n)
t

)∣∣∣∣ X(n)
0

)
as n → ∞

when t ∈ [0, 1] is �xed. As in Section 3.2, we �rst consider tβ instead of t and let

χ(n)(s, t) := ψ(n)(s, tβ), t ∈ [0, 1],
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the corresponding Laplace transform, where s = (s1, ..., sk) ∈ (−∞, 0]k. t ∈ [0, 1] 7→ χ(n)(s, t)

then satis�es, thanks to (20), the following di�erential equation ∂tχ
(n)(s, t) = βtβ−1[λ(P − I) + λnγPn(π̃n(s, tβ)− I)]χ(n)(s, t), t ∈ [0, 1],

χ(n)(s, 0) = I.
(46)

The present case has the same roadmap as Subsection 3.2: we will study the behaviour as

n→∞ of λnγ(π̃n(s, tβ))− I) in order to obtain a limit as n→∞ of

An(s, t) = βtβ−1[λ(P − I) + λnγPn(π̃n(s, tβ))− I)] (47)

then getting a limiting matrix di�erential equation with solution χ(s, t) = limn→∞ χ
(n)(s, t).

Then we will identify χ(s, t) as the Laplace transform of a (conditional) distribution, yielding

(10).

Step 1: Determining A(s, t) = limn→∞An(s, t). We recall that the (x, x)th diagonal ele-

ment of λnγ(π̃n(s, tβ)) − I) is (from (21))
∑

I⊂{1,...,k}
∏
`∈I [(es`x` − 1)P [L` > nt]], which we

decompose as in Section 3.2 as K1
n(s, t) +K2

n(s, t) with

K1
n(s, t) = K1

n(s, t, x) := βtβ−1λnγ
k∑
`=1

(es`x` − 1)P
[
L` > ntβ

]
, (48)

K2
n(s, t) = K2

n(s, t, x) := βtβ−1λnγ
∑

Card(I)≥2

∏
`∈I

[
(es`x` − 1)P

[
L` > ntβ

]]
. (49)

The important point here is that, throughout this subsection, we have γ = α in the expressions

(47), (48) and (49), which will impact on the convergences and limiting results we are going

to prove. Using that P
[
L` > ntβ

]
∼ 1

nα
1
tαβ

, n → ∞, when t > 0, and since αβ = β − 1, and

γ = α, one here �nds that

K1
n(s, t) = K1

n(s, t, x) −→

 βλ
∑k

`=1(e
s`x` − 1), t > 0,

0, t = 0,
n→∞.

As to K2
n(s, t), one proves easily that it tends to 0 as n → ∞ for all t ∈ [0, 1], as the sum in

(49) is over Card(I) ≥ 2, and using the fat tailed property of the service times. The candidate

for the continuous function is thus

t ∈ [0, 1] 7→ A(s, t) := βtβ−1λ(P − I) + βλ

k∑
`=1

diag(es`x` − 1, x = (x1, ..., xk) ∈ S). (50)

Step 2: Determining χ(s, t) = limn→ χn(s, t). We now wish to apply Lemma 5 and prove

that
∫ 1
0 ||An(s, v) − A(s, v)||dv −→ 0 where An(s, t) and A(s, t) are de�ned in (47) and (50).
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The method is very similar as to proving (32) in Step 2 of Section 3.2, as this is equivalent to

proving for all x ∈ S that∫ 1

0

∣∣∣∣∣K1
n(s, v, x)− βλ

k∑
`=1

(es`x` − 1)

∣∣∣∣∣ dv −→ 0, (51)

∫ 1

0
K2
n(s, v, x)dv −→ 0 (52)

as n → ∞. In view of the expression (49) of K2
n(s, t), (52) is proved the same way as for

proving that limn→∞
∫ 1
0 J

2
n(s, v, x)dv = 0 in Step 2 of Section 3.2. More precisely, it su�ces

from (49) to prove that

lim
n→∞

∫ 1

0
βtβ−1λnα

∏
`∈I

P
[
L` > ntβ

]
dt = 0 (53)

for all I ⊂ {1, ..., k}, Card(I) ≥ 2. We prove it for I = {`1, `2}, `1 6= `2, the proof for

Card(I) > 2 being very similar. The trick is again to use that vβ−1nα = (nvβ)α as well as the

previously established upper bound (35), resulting in∫ 1

0
βtβ−1λnαP

[
L`1 > ntβ

]
P
[
L`2 > ntβ

]
dt

≤ βλ

[
sup

j∈N, v∈[0,1]
(jvβ)α P

[
L`1 > jvβ

]] ∫ 1

0
P
[
L`2 > ntβ

]
dt,

which converges to zero as n→∞ by the dominated convergence theorem, proving (53) when

Card(I) = 2. As to (51), this is proved, in view of the expression (48) of K1
n(s, t), by showing

that
∫ 1
0 λ
∣∣βvβ−1nαP [L` > nvβ

]
− β

∣∣ dv tends to 0 as n → ∞ for all ` = 1, ..., k, as again we

have that γ = α; However, this was already proved in Step 2 of Section 3.2 when proving that

limn→∞ I
2
n(`) = 0, ` = 1, ..., k, see the arguments leading to the convergence (37). All in all,

one has the convergence
∫ 1
0 ||An(s, v)− A(s, v)||dv −→ 0, and Lemma 5 is applicable so that

χ(n)(s, t) convgerges to χ(s, t) which satis�es
∂tχ(s, t) = A(s, t)χ(s, t) =

[
βtβ−1λ(P − I)

+ βλ
∑k

`=1 diag(es`x` − 1, x = (x1, ..., xk) ∈ S)
]
χ(s, t), t ∈ [0, 1],

χ(s, 0) = I.

(54)

Step 3: Identifying the limit in distribution. With the same notation as in Step 3 of

Section 3.2 for process {Xα(t) = (X β1 (t), ...,X βk (t)) ∈ S, t ∈ [0, 1]}, one �nds this time that

χ(s, t) =

E
1[Xα(1)=y] exp

 k∑
j=1

βλ

∫ 1

1−t

(
esjX

α
j (v) − 1

)
dv

∣∣∣∣∣∣Xα(1− t) = x


(x,y)∈S2

(55)
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for all s = (s1, ..., sk) ∈ (−∞, 0]k. We recall the Campbell formula which states that for all

measurable function f : t ∈ [0,+∞) 7→ f(t) ∈ R such that
∫∞
0 (ef(v)− 1)ξ dv is �nite for some

ξ > 0 then one has the identity

exp

(∫ ∞
0

(
ef(v) − 1

)
ξ dv

)
= E

[
exp

(∫ ∞
0

f(v) ν(dv)

)]
,

where {ν(x), x ≥ 0} is a Poisson process with intensity ξ, see [10, Section 3.2]. Conditioning

on {Xα(v), v ∈ [0, 1]}, this results in (55) being written as

χ(s, t) =

E
1[Xα(1)=y] exp

 k∑
j=1

sj

∫ 1

1−t
Xαj (v) ναj (dv)

∣∣∣∣∣∣Xα(1− t) = x


(x,y)∈S2

where {ναj (t), t ≥ 0}, j = 1, ..., k, are independent Poisson processes with intensities βλ =

λ/(1−α), and independent from {Xα(t), t ∈ [0, 1]}. Identifying Laplace Transforms, we obtain

in conclusion that

D
((

Z(n)(tβ), X
(n)

N
(n)

tβ

)∣∣∣∣ X(n)
0

)
−→ D

(((∫ 1

1−t
Xαj (v) dναj (v)

)
j=1,...,k

, Xα(1)

)∣∣∣∣∣ Xα(1− t)

)
(56)

as n→∞ for all t ∈ [0, 1]. Changing t into t1/β completes the proof of (10).

Proof of the convergence (16) in Corollary 4. This follows the same pattern as the proof

of (14), to which we refer here. More precisely, one veri�es this time that, from (55), the analog

of (44) in the Fast arrival case is here

E

exp

 k∑
j=1

sj

∫ t

0
Uj(v) ναj (dv)


= E

exp

 k∑
j=1

sj

∫ 1

1−t
Xαj (v) dναj (v)

 , s = (s1, ..., sk) ∈ (−∞, 0]k, (57)

which, combined with (56), yields the convergence Z(n)
(
tβ
) D−→

(∫ t
0 Uj(v) ναj (dv)

)
j=1,...k

as

n → ∞. Changing t into t1/β and performing the change of variable v := v1/β = v1−α, we

obtain

Z(n) (t)
D−→
(∫ t

0
Uj(v

1−α) ν̃αj (dv)

)
j=1,...,k

, n→∞, t ∈ [0, 1], (58)

where {ν̃αj (t), t ∈ [0, 1]}, j = 1, ..., k, are the inhomogeneous independent Poisson processes

given by ν̃αj (t) = ναj (t1/β) = ναj (t1−α), i.e. Poisson processes with non constant intensity λt−α.
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Arguing, as in the Fast arrival case, the time changed Markov process {Y(t) := U(t1−α) =

U(t1/β), t ∈ [0, 1]} admits (15) as generator, hence (16) follows from (58).

3.4. Proof of Theorem 3: Slow arriving customers.

We now consider the case γ < α. Section 4.2 of [16] provide the �rst two joint moments of the

Z
(n)
j (t), j = 1, ..., k, with a particular discount factor a ≥ 0 (recall the notation (2) in Section

1 for the discounted counterpart of the queueing process (1)). Recalling that the rescaling

implies that λn(Pn− I) = λ(P − I), we get from [16, Theorems 14 and 15 with a = 0 discount

factor], that those moments are given by

M
(n)
j (t) = λne

λt(P−I)
∫ t

0
P
(
L
(n)
j > v

)
e−λv(P−I)∆jPne

λv(P−I)dv, (59)

M
(n)
jj (t) = λne

λt(P−I)
∫ t

0
P
(
L
(n)
j > v

)
e−λv(P−I)∆2

jPne
λv(P−I)

+ 2P
(
L
(n)
j > v

)
∆jPnM

(n)
j (v)dv, (60)

M
(n)
jj′ (t) = λne

λt(P−I)
∫ t

0
P
(
L
(n)
j > v

)
P
(
L
(n)
j′ > v

)
e−λv(P−I)∆j∆j′Pne

λv(P−I)

+ P
(
L
(n)
j > v

)
∆jPnM

(n)
j′ (v) + P

(
L
(n)
j′ > v

)
∆j′PnM

(n)
j (v)dv, (61)

for all t ≥ 0 and j 6= j′, j and j′ in {1, .., k}. We �rst show (11). Since λn = λnγ , multiplying

(59) by nα−γ yields for j = 1, ..., k

nα−γM
(n)
j (t) = λeλt(P−I)

∫ t

0
nαP

(
L
(n)
j > v

)
e−λv(P−I)∆jPne

λv(P−I)dv. (62)

By de�nition of L
(n)
j and the fat tail property of Lj :

nαP
(
L
(n)
j > v

)
= nαP (Lj > nv) ∼ nα 1

(nv)α
=

1

vα
, v ∈ (0, t), n→∞.

Now, since limn→∞ Pn = P and

sup
n∈N

nαP
(
L
(n)
j > v

)
= sup

n∈N
nαP (Lj > nv) =

supn∈N(nv)αP (Lj > nv)

vα

≤
supu≥0 u

αP (Lj > u)

vα
, v ∈ (0, 1), (63)

the dominated convergence enables us to let n→∞ in (62) to get (11). We now turn to (12).

Multiplying (60) by nα−γ yields
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nα−γM
(n)
jj (t) = λeλt(P−I)

∫ t

0
nαP

(
L
(n)
j > v

)
e−λv(P−I)∆2

jPne
λv(P−I)dv

+ 2λeλt(P−I)
∫ t

0
nαP

(
L
(n)
j > v

)
∆jPnM

(n)
j (v)dv. (64)

Since (11) in particular implies that limn→∞M
(n)
j (v) = 0 for all v ∈ (0, 1), and thanks to the

upper bound (63), a dominated convergence argument entails that the second integral on the

right hand side of (64) tends to 0 as n → ∞. We also conclude by a dominated convergence

argument that the �rst integral on the right hand side of (64) tends to the right hand side of

(12), and we are done. As to (61), we have for j 6= j′

nα−γM
(n)
jj′ (t) = λeλt(P−I)

∫ t

0
nαP

(
L
(n)
j > v

)
P
(
L
(n)
j′ > v

)
e−λv(P−I)∆j∆j′Pne

λv(P−I)dv

+ λeλt(P−I)
∫ t

0

{
nαP

(
L
(n)
j > v

)
∆jPnM

(n)
j′ (v) + nαP

(
L
(n)
j′ > v

)
∆j′PnM

(n)
j (v)

}
dv. (65)

Similarly to the second integral on the right hand side of (64), we show that the second integral

on the right hand side of (65) converges to 0 as n→∞. As to the �rst integral, the fact that

P
(
L
(n)
j′ > v

)
= P

(
Lj′ > nv

)
−→ 0 as n → ∞, combined with the upper bound (63), yields

by the dominated convergence theorem that it tends to 0 as n → ∞, achieving the proof of

(61) and of the theorem.

4. A remark on the computation of the limiting joint Laplace transform when

α ∈ Q

We identi�ed in Theorem 2 the di�erent limiting regimes when γ is larger or equal to α

by obtaining the corresponding limiting joint Laplace transform χ(s, t) in each case. Even

though the distributional limits (9) and (10) involve simple processes {Xα(t), t ∈ [0, 1]} and

{ναj (t), t ≥ 0}, j = 1, ..., k, it turns out that the Laplace transforms χ(s, t), which are solutions

to the di�erential equations (39) and (54), are in general not explicit in the fast or equilibrium

arriving cases. We suggest to show that things are much simpler when α ∈ (0, 1) is rational,

say of the form

α = 1− p/q

for some p and q ∈ N∗, with p < q. The idea here is quite simple and standard, and consists

in expanding a transformation of the solution t ∈ [0, 1] 7→ χ(s, t) ∈ RS×S into a power series

with matrix coe�cients, as explained in [1, Section 1.1]. Let us focus on the fast arrival case
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in Section 3.2, although the method is of course applicable to the equilibrium case, and let us

put χ̌(s, t) := χ(s, tp), t ∈ [0, 1]. In that case, we deduce from (39) that t ∈ [0, 1] 7→ χ̌(s, t)

veri�es the matrix di�erential equation
∂tχ̌(s, t) =

[
(p+ q)tqλ(P − I) + ptp−1βλ

∑k
`=1 s`∆`

]
χ̌(s, t), t ∈ [0, 1],

= [Q1t
q +Q2(s)t

p−1]χ̌(s, t),

χ(s, 0) = I.

where Q1 := (p+ q)λ(P − I) and Q2(s) := pβλ
∑k

`=1 s`∆`, s = (s1, ..., sk). It is quite simple

to check that χ̌(s, t) can then be expanded as

χ̌(s, t) =
∞∑
j=0

Uj(s)t
j , t ∈ [0, 1], (66)

where the sequence of matrices (Uj(s))j∈N is de�ned from [1, Relation (1.4)] by U0(s) = I and

Uj(s) =


0, 1 ≤ j < p,

Q2(s)Uj−p(s)/j, p ≤ j < q + 1,

[Q2(s)Uj−p(s) +Q1Uj−q−1(s)] /j, j ≥ q + 1,

(67)

and that (66) converges for all t, as proved in [1, Lemma 1 p.2]. The �nal solution is then

expressed in that case as

χ(s, t) = χ̌(s, t1/p) =
∞∑
j=0

Uj(s)t
j/p, t ∈ [0, 1].

The Uj(s)'s, j ∈ N, being simply expressed with the simple linear recurrence (67), this expan-

sion for χ(s, t) is then easy to handle as it can be e.g. approximated by truncation.
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