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Abstract: We study a general k dimensional infinite server queues process with Markov
switching, Poisson arrivals and where the service times are fat tailed with index α ∈ (0, 1).
When the arrival rate is sped up by a factor nγ , the transition probabilities of the
underlying Markov chain are divided by nγ and the service times are divided by n, we
identify two regimes ("fast arrivals", when γ > α, and "equilibrium", when γ = α) in
which we prove that a properly rescaled process converges pointwise in distribution to
some limiting process. In a third "slow arrivals" regime, γ < α, we show the convergence
of the two first joint moments of the rescaled process.
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1. Introduction and notation

1.1. Model and related work

The classical infinite server queue model consists of a system where tasks or customers arrive
according to a general arrival process and are served immediately. Such a model was studied
extensively, with diverse computational results in function of the distribution of the interarrival
and service time distributions, in [16, Chapter 3, Section 3]. Several variants or extensions
were considered, in particular where arrivals and service times are governed by an external
background markovian process [12, 5, 6, 4, 10, 3], or where customers arrive in batches [11].
Some extension to a network of infinite queues where arrival and service rates are Markov
modulated is also available at [8].

We consider yet another generalization of this model with Markov switching described as
follows. Let {Nt, t ≥ 0} be a Poisson process with intensity λ > 0, corresponding jump times
(Ti)i∈N satisfying T0 = 0, such that (Ti−Ti−1)i≥1 is a sequence of independent and identically
distributed (iid) random variables with same exponential distribution with parameter λ > 0,
denoted by E(λ). Let (Lij)i∈N,j=1,...,k be a sequence of independent random variables such
that the sequence of vectors ((Li1, . . . , Lik))i∈N is iid (with entries Li1,. . . ,Lik having different
distributions for each i). Finally, for some K and k in N∗ we consider the discrete set S =
{0, . . . ,K}k and a stationary finite Markov chain (Xi)i∈N with state space S. Then, for all i,
Xi is a vector of the form Xi = (Xi1, . . . ,Xik) with Xij ∈ {0, . . . ,K}, j = 1, . . . , k. We then
define the following k dimensional process {Z(t) = (Z1(t), . . . , Zk(t)), t ≥ 0} with values in
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Nk as

Zj(t) =

Nt
∑

i=1

Xij1[t<Lij+Ti] =

∞
∑

i=1

Xij1[Ti≤t<Lij+Ti], j = 1, ..., k. (1)

The process defined by (1) has many applications, of which we list two most important ones:

• incurred but not reported correlated claims: in an actuarial context, Z(t) = (Z1(t), . . . , Zk(t))
reresents a set of branches where Zj(t) is the number of incurred but non reported
(IBNR) claims in the jth branch of an insurance company. Here Xij is the number of
such claims arriving in that branch at time Ti, and Lij is the related delay time before
the claim is reported. From another point of view, Xij ∈ [0,+∞) may also represent the
amount (say, in euros) of the claim occurring at time Ti in the jth branch, in which case
Zj(t) is the total amount of not declared yet claims which have nonetheless occurred
by time t. Another application is when K = 1, in which case Xij = 0 means that the
claim in branch j occurring at time Ti is reported and dealt with immediately by the
policyholder, whereas Xij = 1 means that some effective lag in the report is observed.
The markovian nature of (Xi)i∈N here is important from a practical point of view, as a
claim amount at time Ti may impact the one at time Ti+1, or because a policyholder
may decide to grant a long report delay for the claim at time Ti+1 with high probability
if the claim at time Ti is reported immediately.

• infinite server queues with Markov switching: Z(t) = (Z1(t), . . . , Zk(t)) represents here
a set of k correlated queues with infinite servers, such that customers arrive at each time
Ti, with Xij customers arriving in queue j ∈ {1, ..., k}, with corresponding (same) service
times Lij. Zj(t) can also be seen as the number of customers of class j in a (single) infinite
server queue, as illustrated in [13, Figure 1]. Other infinite queues applications, such as
one where the customers within a batch arriving at time Ti have different service times,
may be inferred from the model (1) by choosing an appropriate value of k and Markov
chain (Xi)i∈N, see [13, Section 6]. Here, the Markov switching is interesting because it
allows for some dependence between the successive number of incoming customers. One
simple example is when K = 1, so that Xij = 0 means that an incoming customer
at time Ti in queue j is rejected from the system, whereas Xij = 1 means that it is
accepted: a classical situation would then be that if a customer is rejected at time Ti
then the next one could be accepted with high probability, at time Ti+1. In other words,
this Markov switching can help modelling traffic regulation mechanisms.

The present paper follows [14], which studies the transient or limiting distribution of a dis-
counted version of Z(t) of the form

Zj(t) =

Nt
∑

i=1

Xije
−a(Lij+Ti)

1[t<Lij+Ti] =

∞
∑

i=1

Xije
−a(Lij+Ti)

1[Ti≤t<Lij+Ti], j = 1, ..., k, (2)

for t ≥ 0. The main difference with [14] is that the latter has more general assumptions
on the interarrival and service distributions, whereas we focus here on Poisson arrivals. The
discounting factor a ≥ 0 in (2) is important in situations e.g. where, in an actuarial context,
Xije

−a(Lij+Ti) represents the value of the claim amount at the actual realization time Lij+Ti.
Furthermore, the state space S = {0, . . . ,K}k, although seemingly artificially complex, allows
in fact for some flexibility and enables us to retrieve some known models. In particular, consider
a Markov modulated infinite servers queue, i.e. a queueing process {Z(t), t ≥ 0} of which
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interarrivals and service times are modulated by a background continuous time Markov chain
{Y (t), t ≥ 0} with state space say {1, ..., κ}, i.e. such that customers arrive on the switching
times of the Markov chain, with service times depending on the state of the background process
(see [11], [10, Model II]). Then [14, Section 6] explains how this process {Z(t), t ≥ 0} can
be embedded in a process {Z(t), t ≥ 0} defined by (1) with an appropriate choice of k, K
in function of κ, as well as of the Markov chain (Xi)i∈N and the sequence (Lij)i∈N,j=1,...,k of
service times. Thus, studying a general process {Z(t), t ≥ 0} in (1) allows to study a broad
class of infinite server queue models in a similar Markov modulated context.

We now proceed with some notation related to the model and used throughout the paper.
Let P = (p(x, x′))(x,x′)∈S2 and π = (π(x))x∈S (written as a row vector) be respectively the
transition matrix and stationary distribution of the Markov chain. We next define for all r ≥ 0
and s = (s1, . . . , sk) ∈ (−∞, 0]k,

π̃(s, r) := diag



E



exp







k
∑

j=1

sjxj1[Lj>r]









 , x = (x1, . . . , xk) ∈ S



 , (3)

Q̃(s, r) := π̃(s, r)P ′, (4)

∆i := diag [xi, x = (x1, . . . , xk) ∈ S] , i = 1, . . . , k, (5)

where P ′ denotes the transpose of matrix P . I is the identity matrix, 0 is a column vector with
zeroes, and 1 is a column vector with 1’s, of appropriate dimensions. The Laplace Transform
(LT) of the process Z(t) jointly to the state of XNt given the initial state of X0 is denoted by

ψ(s, t) :=
[

E
(

e<s,Z(t)>
1[XNt

=y]

∣

∣

∣
X0 = x

)]

(x,y)∈S2
, t ≥ 0, s = (s1, . . . , sk) ∈ (−∞, 0]k (6)

where < ·, · > denotes the euclidian inner product on Rk. Note that X0 has no direct physical
interpretation here, as the claims sizes/customer batches are given by Xi, i ≥ 1, and is rather
introduced for technical purpose.

We finish this section with the following notation. For two sequences of random variables
(An)n∈N and (Bn)n∈N and two random variables A and B, the notation D (An|Bn) −→n→∞

D (A|B) indicates that, given Bn, the distribution of An converges to the distribution of A
given the random variable B as n→ ∞.

1.2. Rescaling

We arrive at the main topic of the paper, which is to be able to provide some information on
the distribution of Z(t) in (1). In the particular case of Poisson arrivals, and since Z(t) in (1)
is a particular case of the process in (2) with discount factor a = 0, the LT ψ(s, t) defined in
(6) is characterized by [14, Proposition 4], which we rewrite here:

Proposition 1. When {Nt, t ≥ 0} is a Poisson process with intensity λ > 0, then ψ(s, t) is
the unique solution to the first order linear (matrix) differential equation

∂tψ(s, t) = [−λI + λQ̃(s, t)′]ψ(s, t) = [λ(P − I) + λP (π̃(s, t)− I)]ψ(s, t) (7)

with the initial condition ψ(s, 0) = I.
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Unfortunately, the first order ordinary differential equation (7) does not have an explicit
expression in general, so that studying the (transient or stationary) distribution of the couple
(Z(t),XNt) is difficult. In that case, as in [3, 4, 10], it is appealing to study the process when
the intensity of the Poisson process is sped up and the switching rates of the Markov chain
are modified. Similarly to those paper, the goal of this paper is thus to study the bevaviour
of the queue/IBNR process in "extreme conditions" for the arrival rates, transition rates and
delays, while trying to maintain minimal assumptions on the service time distributions. For
this we will suppose that the rescalings of the parameters, denoted by (S1), (S2) and (S3)
hereafter, are performed as follows:

• the arrival rate is multiplied by nγ for some γ > 0, denoted by

(S1) λn = λnγ ,

with associated Poisson process {N
(n)
t , t ≥ 0} and jump times (T n

i )i∈N,
• the transition probabilities p(x, y) are divided by nγ when x 6= y, x, y in S, i.e. the new

transition matrix is given by

(S2) Pn = P/nγ + (1− 1/nγ)I,

with corresponding stationary Markov chain (X
(n)
i )i∈N, having the same distribution π

as (Xi)i∈N.

Since the transition matrix Pn verifies Pn −→n→∞ I, such normalizing assumptions imply
that, as n → ∞, one is close to a model where the arriving customers or claims come in
the k queues in batches with same fixed size: those queues are nonetheless correlated because
the customers arrive according to the same Poisson process. Also, observe that λn(Pn − I) is

the infinitesimal generator of the continuous time Markov chain

{

Y (n)(t) = X
(n)

N
(n)
t

, t ≥ 0

}

of

which embedded Markov chain is the underlying Markov chain i.e. (Y (n)(T n
i ))i∈N = (X

(n)
i )i∈N.

Thus, since the rescaling is such that

λn(Pn − I) = λ(P − I)

for all n (a property which will be extensively used in the paper), we remark that the rescalings
(S1) and (S2) for the arrival rate and the transitions probabilities are such that the transition
rates between the states of S of {Y (n)(t), t ≥ 0} are independent from n, which allows for
enough dynamics in the model that compensates the fact that Pn tends to I, and yielding non
trivial asymptotics in the convergence results in this paper as n→ ∞.

The assumptions for the service times/delays distribution are the following. We first suppose
that the base model features fat tailed distributed service times with same index α ∈ (0, 1),
i.e. such that

P(Lj > t) ∼ 1/tα, t→ ∞,

for all j = 1, ..., k. This kind of distribution (included in the wider class of heavy tailed
distributions) mean that the service times are "large". In particular, those service times have
infinite expectation. Furthermore, the rescaling for the service times is such that they are
divided by n, denoted by

(S3) L
(n)
j = Lj/n.



L.Rabehasaina/Infinite server queues with switching and fat tailed service times 5

Hence, the situation is the following: the arrivals are sped up by factor nγ , but this is compen-
sated by the fact that the delay times are diminished with factor n, so that one expects one of
the three phenomena to occur at time t for the limiting model: the arrivals occur faster than
it takes time for customers to be served and the corresponding queue content Z(n)(t) grows
large as n→ ∞, the arrivals occur slower and services are completed fast so that Z(n)(t) tends
to 0 as n → ∞, or an equilibrium is reached. Those three cases will be studied in the forth-
coming sections. Some limiting behaviour was studied in [4, 10], where the authors identified
three regimes for different scalings in a Markov modulating context and obtained a Central
Limit Theorem for a renormalized process, when the service times have general distribution
with finite expectation or are exponentially distributed. [3] provides some precise asymptotics
on the tail probability of the queue content for exponentially distributed service times. [8]
provides a diffusion approximation for a model with exponentially distributed service times.
A novelty in this paper is that we restrict here the class of distributions to that of fat tailed
distributions in order to exhibit (under different scalings) a different behaviour and different
limiting distribution which is not gaussian. Also note that the class of fat tailed distributions
is interesting in itself as, in actuarial practice, this corresponds to latent claims, i.e. very long
delays which are incidentally in practice often not observed (as the case α ∈ (0, 1) corresponds
to the Lj’s having infinite expectation), see [7, Section 6.6.1]. This motivates the convergence
results in this paper, which feature the exponent α as the only information required on those
delays. Also note that those service times have infinite mean, which may explain why the
limits in distribution in the main Theorem 2 below fall out of the cases studied in [4, Section
4], and are significantly different from the ones in this latter reference. Not only that, but
the scaling is rather done in those references [4, 10] on the transition rates of the underlying
continuous time Markov chain modulating the arrival and service rates, whereas here these
are constant, as we saw that λn(Pn − I) = λ(P − I) is independent of n, and the scaling is
rather done on the service times instead. All in all, what is going to be studied hereafter is,
when t is fixed in say [0, 1] w.l.o.g., the limiting distribution as n → ∞ of the Nk × S valued
random vector

(

Z(n)(t),X
(n)

N
(n)
t

)

under rescaling (S1), (S2) and (S3), or of a renormalized version of it in the "fast" or "slow"
arriving customers case. Note that that the convergence is proved on the interval [0, 1], but
all proofs can be adapted to show the convergence on any interval [0,M ] for M > 0. The
corresponding joint Laplace Transform is given by

ψ(n)(s, t) =






E






e<s,Z(n)(t)>

1

[

X
(n)

N
(n)
t

=y

]

∣

∣

∣

∣

∣

∣

∣

X
(n)
0 = x













(x,y)∈S2

, s = (s1, ..., sj) ∈ (−∞, 0]k,

(8)

where we recall that (X
(n)
i )i∈N is the underlying Markov chain with generating matrix Pn,

stationary distribution π, and
{

N
(n)
t , t ≥ 0

}

is a Poisson process representing the arrivals,

with scaled intensity λn. We also introduce the first and second joint matrix moments defined
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by

M
(n)
j (t) :=






E






Z

(n)
j (t)1[

X
(n)

N
(n)
t

=y

]

∣

∣

∣

∣

∣

∣

∣

X
(n)
0 = x













(x,y)∈S2

, j = 1, ..., k,

M
(n)
jj′ (t) :=






E






Z

(n)
j (t) Z

(n)
j′ (t)1[

X
(n)

N
(n)
t

=y

]

∣

∣

∣

∣

∣

∣

∣

X
(n)
0 = x













(x,y)∈S2

, j, j′ = 1, ..., k.

(9)

2. Statement of results and organization of paper

The core results of the paper concerning the different regimes are given in the following two
Theorems 2 and 3:

Theorem 2. Let {Xα(t) = (Xα
1 (t), ...,X

α
k (t)), t ∈ [0, 1]} be a {0, ...,K}k valued continuous

time inhomogeneous Markov chain with infinitesimal generating matrix 1
1−α(1− t)

α
1−αλ(P −I)

with Xα(0) ∼ π, and {ναj (t), t ∈ [0, 1]}, j = 1, ..., k, be k independent Poisson processes with

same intensity λ
1−α , independent from {Xα(t), t ∈ [0, 1]}. Let t ∈ [0, 1] fixed.

• Fast arrivals: If γ > α then, as n→ ∞,

D

((

Z(n)(t)

nγ−α
,X

(n)

N
(n)
t

)∣

∣

∣

∣

∣

X
(n)
0

)

−→ D

((

λ

1− α

∫ 1

1−t1−α

Xα(v) dv, Xα(1)

)∣

∣

∣

∣

Xα
(

1− t1−α
)

)

, (10)

• Equilibrium: If γ = α then, as n→ ∞,

D

((

Z(n)(t),X
(n)

N
(n)
t

)∣

∣

∣

∣

X
(n)
0

)

−→ D

((

(∫ 1

1−t1−α

Xα
j (v) ν

α
j (dv)

)

j=1,...,k

, Xα(1)

)∣

∣

∣

∣

∣

Xα
(

1− t1−α
)

)

. (11)

We note that the terms in the limits on the righthandside of (10) and (11) feature simple
objects (in regards to the complexity of the original model) where the only characteristic
parameters needed are λ, P and α; in particular, and apart from α, characteristics of the service
times Lj, j = 1, ..., k, such as their moments, do not show up in the limiting distributions (10)
and (11). The convergences in distribution (10) and (11) give some information on convergence

of the (possibly renormalized) joint distribution of the couple

(

Z(n)(t),X
(n)

N
(n)
t

)

, t ∈ [0, 1] given

the initial state X
(n)
0 . Intuitively, for fixed t ∈ [0, 1], in the righthandsides of (10) and (11) we

may interpret the inhomogeneous continuous time Markov chain {Xα(v), v ∈ [1 − t1−α, 1]}

as the limiting counterpart of the modulating process
{

X
(n)

N
(n)
v

, v ∈ [0, t]
}

.

In the case when γ < α, proving the convergence in distribution of an adequate normaliza-
tion of Z(n)(t) seems more difficult. The following result show that the two first moments of
Z(n)(t) converge under respective normalization nα−γ and n(α−γ)/2:
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Theorem 3 (Slow arrivals). If γ < α then the following convergences of the two joint
moments hold as n→ ∞

nα−γM
(n)
j (t) −→ λeλt(P−I)

∫ t

0

1

vα
e−λv(P−I)∆je

λv(P−I)dv, (12)

nα−γM
(n)
jj (t) −→ λeλt(P−I)

∫ t

0

1

vα
e−λv(P−I)∆2

je
λv(P−I)dv, (13)

nα−γM
(n)
jj′ (t) −→ 0 j 6= j′, (14)

for all j, j′ 6= j, in 1, ..., k, t ∈ [0, 1], where we recall that ∆j is defined in (5).

One interesting by-product of Theorem 2 is that it in particular gives some insight on the
(non conditional) limiting distribution of Z(n)(t), with a limit in a somewhat simpler form.
More precisely, the following corollary follows from the proofs of (10) and (11):

Corollary 4. In the Fast arrivals case γ > α, the following convergence holds

Z(n)(t)

nγ−α

D
−→ λ

∫ t

0

Y(v)

vα
dv, n→ ∞, t ∈ [0, 1], (15)

where {Y(t) = (Y1(t), ...,Yk(t)), t ∈ [0, 1]} is a (time homogeneous) stationary continuous
time Markov chain on the state space S, with infinitesimal generator matrix defined by

λ(∆−1
π P ′∆π − I), ∆π := diag(π(x), x ∈ S). (16)

In the Equilibrium case γ = α, one has

Z(n)(t)
D
−→

(
∫ t

0
Yj(v) ν̃

α
j (dv)

)

j=1,...,k

, n→ ∞, t ∈ [0, 1]. (17)

Here {ν̃αj (t), t ∈ [0, 1]}, j = 1, ..., k, are the inhomogeneous Poisson processes defined by

ν̃αj (t) = ναj (t
1−α), t ∈ [0, 1], where {ναj (t), t ∈ [0, 1]}, j = 1, ..., k, are defined in Theorem 2.

The paper is organized in the following way. Section 3 is dedicated to the proofs of the main
results, with Subections 3.2, 3.3 and 3.4 giving the proofs of the convergences in distribution
of Theorem 2 in fast arrivals and equilibrium cases, and of Theorem 3 in the slow arrivals case.
The proof of Corollary 4 is included in Subections 3.2, for the convergence (15), and 3.3, for
the convergence (17). As a concluding remark, we will discuss in Section 4 some computational
aspect for the limiting distributions mentioned in those different regimes in Theorem 2 in the
particular case when α is a rational number lying in (0, 1).

3. Proofs of Theorems 2, 3 and Corollary 4

3.1. Preliminary results

We will repeatedly use the following general lemma in the proofs:

Lemma 5. Let (t ∈ [0, 1] 7→ An(t))n∈N be a sequence of continuous functions with values in
RS×S , and let us assume that there exists some continuous function t ∈ [0, 1] 7→ A(t) ∈ RS×S
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such that
∫ 1
0 ||An(v)−A(v)||dv −→ 0 as n→ ∞ for any matrix norm ||.||. Let y ∈ RS×S and

t ∈ [0, 1] 7→ Yn(t) ∈ RS×S be the solution to the following differential equation
{

d
dtYn(t) = An(t)Yn(t), t ∈ [0, 1],
Yn(0) = y ∈ RS×S ,

n ∈ N. (18)

Then one has Yn(t) −→ Y (t) uniformly in t ∈ [0, 1], as n → ∞, where t ∈ [0, 1] 7→ Y (t) ∈
RS×S is the solution to the following differential equation

{

d
dtY (t) = A(t)Y (t), t ∈ [0, 1],
Y (0) = y.

(19)

Proof. We first observe that, because of continuity of t ∈ [0, 1] 7→ An(t) and t ∈ [0, 1] 7→ A(t),
(18) and (19) read in integral form

Yn(t) = y +

∫ t

0
An(v)Yn(v)dv, Y (t) = y +

∫ t

0
A(v)Y (v)dv (20)

for all t ∈ [0, 1]. Since the norm ||.|| may be arbitrary, we pick a submultiplicative one on the
set of S × S matrices. (20) implies the following inequality

||Yn(t)|| ≤ ||y||+

∫ t

0
||An(v)||.||Yn(v)||dv, ∀t ∈ [0, 1].

Gronwall’s lemma thus implies that ||Yn(t)|| ≤ ||y|| exp
(

∫ t
0 ||An(v)||dv

)

for all t ∈ [0, 1]. Since

by assumption
∫ 1
0 ||An(v) −A(v)||dv −→ 0 as n → ∞, one has that

(

∫ 1
0 ||An(v)||dv

)

n∈N
is a

bounded sequence. We deduce the following finiteness

MY := sup
n∈N

sup
t∈[0,1]

||Yn(t)|| ≤ sup
n∈N

sup
t∈[0,1]

||y|| exp

(∫ t

0
||An(v)||dv

)

= ||y|| exp

(
∫ 1

0
sup
n∈N

||An(v)||dv

)

< +∞.

Let us then introduce MA := supv∈[0,1] ||A(v)||, which is a finite quantity. Then one obtains
that

||Yn(t)− Y (t)|| ≤

∫ t

0
||An(v)−A(v)||.||Yn(v)||dv +

∫ t

0
||A(v)||.||Yn(v)− Y (v)||dv

≤MY

∫ t

0
||An(v) −A(v)||dv +MA

∫ t

0
||Yn(v) − Y (v)||dv, ∀t ∈ [0, 1].

Gronwall’s lemma thus implies that, for all t ∈ [0, 1],

||Yn(t)− Y (t)|| ≤MY

[
∫ t

0
||An(v)−A(v)||dv

]

. eMAt

≤MY

[
∫ 1

0
||An(v)−A(v)||dv

]

. eMA −→ 0 as n→ ∞.

Since the righthandside of the above inequality is independent from t ∈ [0, 1], this proves the
uniform convergence result.
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We finish this subsection by stating the differential equation satisfied by the Laplace Trans-

form ψ(n)(s, t) of

(

Z(n)(t),X
(n)

N
(n)
t

)

defined in (8), which will be the central object studied in

Subsections 3.2 and 3.3. Thanks to equation(7) with the new parameters λn, Pn instead of λ
and P (and remembering that λn(Pn − I) = λ(P − I)), this reads here

{

∂tψ
(n)(s, t) = [λ(P − I) + λnγPn(π̃n(s, t)− I)]ψ(n)(s, t), t ≥ 0,

ψ(n)(s, 0) = I,
(21)

for all s = (s1, ..., sk) ∈ (−∞, 0]k. And, from (3), using the expansion
∏k

j=1(aj + 1) = 1 +
∑

I⊂{1,...,k}

∏

ℓ∈I aℓ for all real numbers a1, ..., ak, we have the following expansion which will
be useful later on:

π̃n(s, t)− I = diag





k
∏

j=1

(

(esjxj − 1)P
[

L
(n)
j > t

]

+ 1
)

− 1, x = (x1, ..., xk) ∈ S





= diag





∑

I⊂{1,...,k}

∏

ℓ∈I

[

(esℓxℓ − 1)P
[

L
(n)
ℓ > t

]]

, x = (x1, ..., xk) ∈ S



 . (22)

3.2. Case γ > α: Fast arriving customers

We now proceed to show convergence (10) in Theorem 2. In the present case, it is sensible
to guess that Z(n)(t) converges towards infinity as n → ∞, hence it is natural to find a
normalization such that a convergence towards a proper distribution occurs. We renormalize

the queue content by dividing it by nγ−α, i.e. we are here interested in

(

Z(n)(t)/nγ−α,X
(n)

N
(n)
t

)

,

of which Laplace transform is given by ψ(n)(s/nγ−α, t), s = (s1, ..., sk) ∈ (−∞, 0]k. In order
not to have cumbersome notation, we introduce from now on the quantity

β :=
1

1− α
∈ (1,+∞).

We observe then that
t ∈ [0, 1] 7→ tβ ∈ [0, 1] (23)

is a one to one mapping. Hence, studying the limiting distribution of

(

Z(n)(t)/nγ−α,X
(n)

N
(n)
t

)

for all t ∈ [0, 1] amounts to study the limiting distribution of

(

Z(n)(tβ)/nγ−α,X
(n)

N
(n)

tβ

)

(24)

for all t ∈ [0, 1], then changing variable t := t1/β . The time transformation (23) may at this
point look artificial, but this is a key step which will later on enable us to use the convergence
result in Lemma 5.The LT of (24) is given by

χ(n)(s, t) := ψ(n)(s/nγ−α, tβ), t ∈ [0, 1].
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From (21), χ(n)(s, t) satisfies

{

∂tχ
(n)(s, t) = βtβ−1[λ(P − I) + λnγPn(π̃n(s/n

γ−α, tβ))− I)]χ(n)(s, t), t ∈ [0, 1],

χ(n)(s, 0) = I.
(25)

The starting point for proving (10) is the following: we will set to prove that

An(s, t) = βtβ−1[λ(P − I) + λnγPn(π̃n(s/n
γ−α, tβ))− I)] (26)

converges to some limit A(s, t) as n → ∞, use Lemma 5, then identify the limit χ(s, t) :=
limn→∞ χ(n)(s, t) as the Laplace Transform of a known distribution.
Step 1: Determining A(s, t). This step is dedicated to finding the limit function t ∈ [0, 1] 7→
A(s, t) of (26). In view of (22), the xth diagonal element of βtβ−1λnγ(π̃n(s/n

γ−α, tβ))− I) is

βtβ−1λnγ
∑

I⊂{1,...,k}

∏

ℓ∈I

[

(esℓxℓ/n
γ−α

− 1)P
[

L
(n)
ℓ > tβ

]]

(27)

of which we proceed to find the limit as n → ∞. In order to study its convergence, we are
going to isolate the terms in the sum (27) for which Card(I) = 1 and Card(I) ≥ 2, and show
that the former admit a non zero limit and the latter tend to 0. We thus write (27) as

βtβ−1λnγ
∑

I⊂{1,...,k}

∏

ℓ∈I

[

(esℓxℓ/n
γ−α

− 1)P
[

L
(n)
ℓ > tβ

]]

= J1
n(s, t) + J2

n(s, t), where

J1
n(s, t) = J1

n(s, t, x) := βtβ−1λnγ
k
∑

ℓ=1

(esℓxℓ/n
γ−α

− 1)P
[

L
(n)
ℓ > tβ

]

, (28)

J2
n(s, t) = J2

n(s, t, x) := βtβ−1λnγ
∑

Card(I)≥2

∏

ℓ∈I

[

(esℓxℓ/n
γ−α

− 1)P
[

L
(n)
ℓ > tβ

]]

. (29)

Both terms J1
n(s, t) and J2

n(s, t) are studied separately. Using that esℓxℓ/n
γ−α

− 1 ∼ sℓxℓ/n
γ−α

as n→ ∞ and

P

[

L
(n)
ℓ > tβ

]

= P

[

Lℓ > ntβ
]

∼
1

nαtβα
(30)

when t > 0, and since βα = α/(1 − α) = β − 1, we arrive at

J1
n(s, t) ∼ βλ

k
∑

ℓ=1

tβ−1nγ
sℓxℓ
nγ−α

1

nαtβα
∼ βλ

k
∑

ℓ=1

sℓxℓ, n→ ∞,

when t > 0, and is 0 when t = 0. Next we show that J2
n(s, t) tends to 0 by showing that each

term on the righthandside of (29) tend to 0. So, if I ⊂ {1, ..., k} is such that I = {ℓ1, ℓ2}, i.e.
Card(I) = 2, then

∣

∣

∣

∣

∣

βtβ−1λnγ
∏

ℓ∈I

[

(esℓxℓ/n
γ−α

− 1)P
[

L
(n)
ℓ > tβ

]]

∣

∣

∣

∣

∣

= βtβ−1λnγ
∣

∣

∣
esℓ1xℓ1

/nγ−α

− 1
∣

∣

∣
P

[

Lℓ1 > ntβ
]

.
∣

∣

∣esℓ2xℓ2
/nγ−α

− 1
∣

∣

∣P

[

Lℓ2 > ntβ
]

≤ βtβ−1λnγ |sℓ1xℓ1 |.|sℓ2xℓ2 |
1

n2(γ−α)
P

[

Lℓ1 > ntβ
]

= βtβ−1λ|sℓ1xℓ1 |.|sℓ2xℓ2 |
1

nγ−α
nαP

[

Lℓ1 > ntβ
]

, (31)
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where we used the inequality |eu − 1| ≤ |u| for u ≤ 0 and P
[

Lℓ2 > ntβ
]

≤ 1. Thanks to
(30), the righthandside of (31) thus tends to zero when t ∈ (0, 1]. The case Card(I) > 2 is
dealt with similarly. Finally, all terms on the righthandside of (29) tend to 0 as n → ∞, i.e.
limn→∞ J2

n(s, t) = 0 for all t ∈ (0, 1]. When t = 0 then J2
n(s, t) = 0, so that the limit holds for

all t ∈ [0, 1].
Hence we have that (27) tends to limn→∞ J1

n(s, t)+limn→∞ J2
n(s, t), i.e. to βλ

∑k
ℓ=1 sℓxℓ when

t ∈ (0, 1], and to 0 when t = 0. The candidate for the continuous function A(s, t) is then

t ∈ [0, 1] 7→ A(s, t) := βtβ−1λ(P − I) + βλ

k
∑

ℓ=1

sℓ∆ℓ (32)

where we recall from (5) that ∆ℓ = diag [xℓ, x = (x1, . . . , xk) ∈ S]. This is where the time
transformation (23) described previously is important, as without it it would not have been
possible to exhibit the limit (32) for An(s, t). Note that the limit when t = 0 for An(s, t) in
(26) differs from A(s, 0) = βλ

∑k
ℓ=1 sℓ∆ℓ, as indeed a closer look from the study of the limits

of J1
n(s, t) and J2

n(s, t) would yield that limn→∞An(s, 0) should rather be the 0 matrix. This
is due to the fact that the limit t ∈ [0, 1] 7→ A(s, t) in Lemma 5 has to be continuous so that
the lemma holds.
Step 2: Determining χ(s, t) = limn→ χn(s, t). We now need to prove that

∫ 1
0 ||An(s, v) −

A(s, v)||dv −→ 0 as n → ∞ in order to apply Lemma 5. Thanks to (26) and (32), and by
the definitions (28) and (29) of J1

n(s, t, x) and J1
n(s, t, x), we observe that An(s, t) can be

decomposed as

An(s, t) = A(s, t) + Pn diag

(

J1
n(s, t, x)− βλ

k
∑

ℓ=1

sℓxℓ, x ∈ S

)

+ Pn diag
(

J2
n(s, t, x), x ∈ S

)

+ (Pn − I)βλ

k
∑

ℓ=1

sℓ∆ℓ, t ∈ [0, 1].

Hence, since limn→∞ Pn = I, proving limn→∞

∫ 1
0 ||An(s, v)−A(s, v)||dv = 0 amounts to prove

that
∫ 1

0

∣

∣

∣

∣

∣

J1
n(s, v, x) − βλ

k
∑

ℓ=1

sℓxℓ

∣

∣

∣

∣

∣

dv −→ 0, and

∫ 1

0
|J2

n(s, v, x)|dv =

∫ 1

0
J2
n(s, v, x)dv −→ 0,

(33)

as n → ∞, for each fixed x ∈ S. Let us first focus on
∫ 1
0

∣

∣

∣
J1
n(s, v, x)− βλ

∑k
ℓ=1 sℓxℓ

∣

∣

∣
dv. We

have

∫ 1

0

∣

∣

∣

∣

∣

J1
n(s, v, x) − βλ

k
∑

ℓ=1

sℓxℓ

∣

∣

∣

∣

∣

dv ≤

k
∑

ℓ=1

(I1n(ℓ) + I2n(ℓ)), where, for all ℓ = 1, ..., k, (34)

I1n(ℓ) :=

∫ 1

0
λβvβ−1

∣

∣

∣nγ(esℓxℓ/n
γ−α

− 1)− nαsℓxℓ

∣

∣

∣P

[

L
(n)
ℓ > vβ

]

dv

I2n(ℓ) := |sℓxℓ|

∫ 1

0
λ
∣

∣

∣
βvβ−1nαP

[

L
(n)
ℓ > vβ

]

− β
∣

∣

∣
dv.
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Expanding the exponential function, one has that |esℓxℓ/n
γ−α

− 1− sℓxℓ/n
γ−α| ≤Mℓ/n

2(γ−α)

where Mℓ > 0 only depends on sℓ and xℓ. Thus, one deduces the following upper bounds for
I1n(ℓ), ℓ = 1, ..., k:

I1n(ℓ) =

∫ 1

0
λβvβ−1

∣

∣

∣nγ(esℓxℓ/n
γ−α

− 1)− nαsℓxℓ

∣

∣

∣P

[

Lℓ > nvβ
]

dv

≤ nγ
Mℓ

n2(γ−α)
λ

∫ 1

0
βvβ−1P

[

Lℓ > nvβ
]

dv =
Mℓ

nγ−α
βλ

∫ 1

0
nαvβ−1P

[

Lℓ > nvβ
]

dv

=
Mℓ

nγ−α
βλ

∫ 1

0
(nvβ)α P

[

Lℓ > nvβ
]

dv, (35)

the last equality holding because β − 1 = βα implies that the integrand verifies nαvβ−1 =
(nvβ)α. A consequence of the fact that Lℓ is fat tailed with index α is that supu≥0 u

αP(Lℓ >
u) < +∞, from which one deduces immediately that

sup
j∈N, v∈[0,1]

(jvβ)α P

[

Lℓ > jvβ
]

< +∞ (36)

(note that those two latter suprema are in fact equal). One then gets from (35) that

I1n(ℓ) ≤
Mℓ

nγ−α
βλ

[

sup
j∈N, v∈[0,1]

(jvβ)α P

[

Lℓ > jvβ
]

]

−→ 0, n→ ∞. (37)

We now turn to I2n(ℓ), ℓ = 1, ..., k. Using again β − 1 = βα, one way write in the integrand of
I2n(ℓ) that vβ−1nα = (nvβ)α, hence

I2n(ℓ) = |sℓxℓ|

∫ 1

0
λ
∣

∣

∣
β(nvβ)αP

[

Lℓ > nvβ
]

− β
∣

∣

∣
dv.

Since Lℓ is fat tailed with index α, estimates similar to the ones leading to the upper bound
(37) for I1n(ℓ) yield that

sup
n∈N, v∈[0,1]

∣

∣

∣
β(nvβ)αP

[

Lℓ > nvβ
]

− β
∣

∣

∣
< +∞.

Furthermore, again because Lℓ is fat tailed, one has P
[

Lℓ > nvβ
]

∼ 1/(nvβ)α as n→ ∞ when
v > 0. Hence

∣

∣β(nvβ)αP
[

Lℓ > nvβ
]

− β
∣

∣ −→ 0 as n → ∞ when v ∈ (0, 1], and is equal to β
when v = 0. The dominated convergence theorem thus implies that

I2n(ℓ) −→ 0, n→ ∞. (38)

Gathering (34), (37) and (38), we thus deduce finally that
∫ 1
0

∣

∣

∣J1
n(s, v, x) − βλ

∑k
ℓ=1 sℓxℓ

∣

∣

∣ dv

tends to 0 as n→ ∞ for each x ∈ S.
We now prove that

∫ 1
0 J

2
n(s, v, x)dv −→ 0 as n→ ∞. In view of the definition (29), it suffices

to prove that
∫ 1

0
βvβ−1λnγ

∏

ℓ∈I

[

|esℓxℓ/n
γ−α

− 1| P
[

L
(n)
ℓ > vβ

]]

dv (39)

tends to 0 as n → ∞ for I ⊂ {1, ..., k} such that Card(I) ≥ 2. Let us prove the convergence
for Card(I) = 2, i.e. for I = {ℓ1, ℓ2} for some ℓ1 6= ℓ2 in 1, ..., k, the case Card(I) > 2
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being dealt with similarly. By the basic inequality |eu − 1| ≤ |u| for u ≤ 0 we deduce that

|esℓixℓi
/nγ−α

− 1| ≤ |sℓixℓi |/n
γ−α, i = 1, 2. Since P

[

L
(n)
ℓ1

> vβ
]

≤ 1 for all v ∈ [0, 1], we then

deduce that (39) is upper bounded by

|sℓ1xℓ1 |

nγ−α
|sℓ2xℓ2 |

∫ 1

0
βvβ−1λnαP

[

L
(n)
ℓ2

> vβ
]

dv.

As vβ−1nα = (nvβ)α, and thanks to (36), the latter quantity is in turn written then bounded
as follows

|sℓ1xℓ1 |

nγ−α
|sℓ2xℓ2 |

∫ 1

0
βλ(nvβ)αP

[

L
(n)
ℓ2

> vβ
]

dv =
|sℓ1xℓ1 |

nγ−α
|sℓ2xℓ2 |

∫ 1

0
βλ(nvβ)αP

[

Lℓ2 > nvβ
]

dv

≤
|sℓ1xℓ1 |

nγ−α
|sℓ2xℓ2 |βλ

[

sup
j∈N, v∈[0,1]

(jvβ)α P

[

Lℓ2 > jvβ
]

]

−→ 0, n→ ∞,

proving that (39) tends to 0 as n→ ∞ when I = {ℓ1, ℓ2}.
Hence we proved we just proved (33), which implies

∫ 1
0 ||An(s, v)−A(s, v)||dv −→ 0. We may

then use Lemma 5 to deduce that χ(n)(s, t) convgerges to χ(s, t) which satisfies

{

∂tχ(s, t) = A(s, t)χ(s, t) =
[

βtβ−1λ(P − I) + βλ
∑k

ℓ=1 sℓ∆ℓ

]

χ(s, t), t ∈ [0, 1],

χ(s, 0) = I.
(40)

Step 3: Identifying the limit in distribution. Let us note that (40) does not admit an
explicit expression. However, since we purposely chose s = (s1, ..., sk) with sj ≤ 0, j = 1, ..., k,

one has that
∑k

j=1 sj∆j =
∑k

j=1 sj diag(xj , x ∈ S) is a diagonal matrix with non positive

entries. Let ∆π := diag(π(x), x ∈ S) and let us introduce the matrix P (r) defined by P (r) =
∆−1

π P ′∆π ⇐⇒ P = ∆−1
π P (r)′∆π. It is standard that P (r) is the transition matrix of the

reversed version of the stationary Markov chain {Xi, i ∈ N} with distribution π, and that
βtβ−1λ(P (r) − I) is the infinitesimal generator matrix of an inhomogeneous Markov process

{U(t) = (Uj(t))j=1,...,k ∈ S, t ∈ [0, 1]} (41)

with values in S, with initial distribution U(0) ∼ π. In fact, it turns out that the conditional
distribution of U(t) given U(0) is given by [P(U(t) = y| U(0) = x)](x,y)∈S = exp(tβλ(P (r)−I)),
which results in U(t) ∼ π for all t ∈ [0, 1], i.e. that {U(t), t ∈ [0, 1]} is stationary. Since
∑k

j=1 sj∆j is diagonal, one checks easily that A(s, t) = ∆−1
π

[

βtβ−1λ(P (r)′ − I) +
∑k

j=1 sj∆j

]

∆π

and that Y (t) = Y (s, t) := ∆−1
π χ(s, t)′∆π satisfies the differential equation

{

∂tY (t) = Y (t)
[

βtβ−1λ(P (r) − I) + βλ
∑k

ℓ=1 sℓ∆ℓ

]

, t ∈ [0, 1],

Y (0) = I.

The Feynman-Kac formula ensures that one has the representation

Y (t) = Y (s, t) =



E



1[U(t)=y] exp





k
∑

j=1

sjβλ

∫ t

0
Uj(v)dv





∣

∣

∣

∣

∣

∣

U(0) = x









(x,y)∈S2

, ∀t ∈ [0, 1],
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see [15, Chapter III, 19, p.272] for the general theorem on this formula, or [2, Section 5,
Expression (5.2) and differential equation (5.3)] for the particular case of a finite Markov chain,
adapted here to an inhomogeneous Markov process. Also, the reversed process {U(1− t), t ∈

[0, 1]} admits ∆π
−1β(1− t)β−1λ(P (r)′−I)∆π = β(1− t)β−1λ(P −I) as infinitesimal generator

matrix, which is the generator of the process {Xα(t) = (Xα
1 (t), ...,X

α
k (t)) ∈ S, t ∈ [0, 1]}

introduced in the statement of Theorem 2, so that {Xα(t), t ∈ [0, 1]}
D
= {U(1− t), t ∈ [0, 1]}

pathwise. Hence, one obtains for all x and y in S that

E



1[U(t)=y] exp





k
∑

j=1

sjβλ

∫ t

0
Uj(v)dv





∣

∣

∣

∣

∣

∣

U(0) = x





= E



1[Xα(1−t)=y] exp





k
∑

j=1

sjβλ

∫ 1

1−t
Xα
j (v)dv





∣

∣

∣

∣

∣

∣

Xα(1) = x





= E



1[Xα(1)=x] exp





k
∑

j=1

sjβλ

∫ 1

1−t
Xα
j (v)dv





∣

∣

∣

∣

∣

∣

Xα(1− t) = y





π(y)

π(x)
, (42)

the last line coming from the fact that U(0), U(t), Xα(1− t) and Xα(1) all have same distri-
bution π. Switching the role of x and y in the above results in the following relationship:



E



1[Xα(1)=y] exp





k
∑

j=1

sjβλ

∫ 1

1−t
Xα
j (v)dv





∣

∣

∣

∣

∣

∣

Xα(1− t) = x









(x,y)∈S2

=



E



1[U(t)=x] exp





k
∑

j=1

sjβλ

∫ t

0
Uj(v)dv





∣

∣

∣

∣

∣

∣

U(0) = y





π(y)

π(x)





(x,y)∈S2

= ∆−1
π Y (t)′∆π = χ(s, t).

Since we just proved that χ(n)(s, t) := ψ(n)(s/nγ−α, tβ) converges as n → ∞ towards χ(s, t),
expressed above, for all s = (s1, ..., sk) ∈ (−∞, 0]k, and identifying Laplace transforms, we
obtained in conclusion that

D

((

Z(n)(tβ)/nγ−α,X
(n)

N
(n)

tβ

)∣

∣

∣

∣

X
(n)
0

)

−→ D

((

βλ

∫ 1

1−t
Xα(v) dv, Xα(1)

)∣

∣

∣

∣

Xα(1− t)

)

(43)
as n→ ∞ for all t ∈ [0, 1]. Changing t into t1/β yields (10).
Proof of the convergence (15) in Corollary 4. With the previous definitions of processes
{U(t), t ∈ [0, 1]} in (41) and {Xα(t), t ∈ [0, 1]}, (42) implies the following matrix equality



E



1[U(t)=y] exp





k
∑

j=1

sjβλ

∫ t

0
Uj(v)dv





∣

∣

∣

∣

∣

∣

U(0) = x









(x,y)∈S2

=



E



1[Xα(1)=x] exp





k
∑

j=1

sjβλ

∫ 1

1−t
Xα
j (v)dv





∣

∣

∣

∣

∣

∣

Xα(1− t) = y





π(y)

π(x)





(x,y)∈S2

(44)
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Left-multiplying and right-multiplying (44) respectively by the row vector (π(x))x∈S and the
column vector 1 results in in the following equality of LT

E



exp





k
∑

j=1

sjβλ

∫ t

0
Uj(v)dv









= E



exp





k
∑

j=1

sjβλ

∫ 1

1−t
Xα
j (v)dv







 , s = (s1, ..., sk) ∈ (−∞, 0]k, (45)

which, combined with (43), yields the convergence
Z(n)(tβ)
nγ−α

D
−→ βλ

∫ t
0 U(v) dv as n → ∞.

Changing t into t1/β and performing the change of variable v := v1/β = v1−α, we obtain

Z(n) (t)

nγ−α

D
−→ λ

∫ t

0

U(v1−α)

vα
dv, n→ ∞, t ∈ [0, 1]. (46)

Since the S valued Markov process {U(t), t ∈ [0, 1]} admits βtβ−1λ(P (r)− I) as the infinites-
imal generator matrix, the time changed Markov process {Y(t) := U(t1−α) = U(t1/β), t ∈
[0, 1]} admits (16) as generator, so that (15) follows from (46).

3.3. Equilibrium case γ = α

We now proceed to show convergence (11) in Theorem 2. Intuitively, we are in the critical case
where customers should arrive just fast enough such that the queue at time t converges as

n → ∞. We are here interested in the behaviour of D

((

Z(n)(t),X
(n)

N
(n)
t

)∣

∣

∣

∣

X
(n)
0

)

as n → ∞

when t ∈ [0, 1] is fixed. As in Section 3.2, we first consider tβ instead of t and let

χ(n)(s, t) := ψ(n)(s, tβ), t ∈ [0, 1],

the corresponding Laplace transform, where s = (s1, ..., sk) ∈ (−∞, 0]k. t ∈ [0, 1] 7→ χ(n)(s, t)
then satisfies, thanks to (21), the following differential equation
{

∂tχ
(n)(s, t) = βtβ−1[λ(P − I) + λnγPn(π̃n(s, t

β))− I)]χ(n)(s, t), t ∈ [0, 1],

χ(n)(s, 0) = I.
(47)

The present case has the same roadmap as Subsection 3.2: We will study the behaviour as
n→ ∞ of λnγ(π̃n(s, t

β))− I) in order to obtain a limit as n→ ∞ of

An(s, t) = βtβ−1[λ(P − I) + λnγPn(π̃n(s, t
β))− I)] (48)

then getting a limiting matrix differential equation for a candidate χ(s, t) = limn→∞ χ(n)(s, t).
Then we will identify χ(s, t) as the Laplace transform of a (conditional) distribution, yielding
(11).
Step 1: Determining A(s, t) = limn→∞An(s, t). We recall that the (x, x)th diagonal ele-
ment of λnγ(π̃n(s, t

β)) − I) is (from (22))
∑

I⊂{1,...,k}

∏

ℓ∈I [(e
sℓxℓ − 1)P [Lℓ > nt]], which we

decompose as in Section 3.2 as K1
n(s, t) +K2

n(s, t) with

K1
n(s, t) = K1

n(s, t, x) := βtβ−1λnγ
k
∑

ℓ=1

(esℓxℓ − 1)P
[

Lℓ > ntβ
]

, (49)
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K2
n(s, t) = K2

n(s, t, x) := βtβ−1λnγ
∑

Card(I)≥2

∏

ℓ∈I

[

(esℓxℓ − 1)P
[

Lℓ > ntβ
]]

. (50)

The important point here is that, throughout this subsection, we have γ = α in the expressions
(48), (49) and (50), which will impact on the convergences and limiting results we are going
to prove. Using that P

[

Lℓ > ntβ
]

∼ 1
nα

1
tαβ , n → ∞, when t > 0, and since αβ = β − 1, and

γ = α, one here finds that

K1
n(s, t) = K1

n(s, t, x) −→

{

βλ
∑k

ℓ=1(e
sℓxℓ − 1), t > 0,

0, t = 0,
n→ ∞.

As to K2
n(s, t), one proves easily that it tends to 0 as n → ∞ for all t ∈ [0, 1], as the sum in

(50) is over Card(I) ≥ 2, and using the fat tailed property of the service times. The candidate
for the continuous function is thus

t ∈ [0, 1] 7→ A(s, t) := βtβ−1λ(P − I) + βλ
k
∑

ℓ=1

diag(esℓxℓ − 1, x = (x1, ..., xk) ∈ S). (51)

Step 2: Determining χ(s, t) = limn→ χn(s, t). We now wish to apply Lemma 5 and prove
that

∫ 1
0 ||An(s, v) − A(s, v)||dv −→ 0 where An(s, t) and A(s, t) are defined in (48) and (51).

The method is very similar as to proving (33) in Step 2 of Section 3.2, as this is equivalent to
proving for all x ∈ S that

∫ 1

0

∣

∣

∣

∣

∣

K1
n(s, v, x) − βλ

k
∑

ℓ=1

(esℓxℓ − 1)

∣

∣

∣

∣

∣

dv −→ 0, (52)

∫ 1

0
K2

n(s, v, x)dv −→ 0 (53)

as n → ∞. In view of the expression (50) of K2
n(s, t), (53) is proved the same way as for

proving that limn→∞

∫ 1
0 J

2
n(s, v, x)dv = 0 in Step 2 of Section 3.2. More precisely, it suffices

from (50) to prove that

lim
n→∞

∫ 1

0
βtβ−1λnα

∏

ℓ∈I

P

[

Lℓ > ntβ
]

dt = 0 (54)

for all I ⊂ {1, ..., k}, Card(I) ≥ 2. We prove it for I = {ℓ1, ℓ2}, ℓ1 6= ℓ2, the proof for
Card(I) > 2 being very similar. The trick is again to use that vβ−1nα = (nvβ)α as well as the
previously established upper bound (36), resulting in

∫ 1

0
βtβ−1λnαP

[

Lℓ1 > ntβ
]

P

[

Lℓ2 > ntβ
]

dt

≤ βλ

[

sup
j∈N, v∈[0,1]

(jvβ)α P

[

Lℓ1 > jvβ
]

]

∫ 1

0
P

[

Lℓ2 > ntβ
]

dt,

which converges to zero as n→ ∞ by the dominated convergence theorem, proving (54) when
Card(I) = 2. As to (52), this is proved, in view of the expression (49) of K1

n(s, t), by showing
that

∫ 1
0 λ
∣

∣βvβ−1nαP
[

Lℓ > nvβ
]

− β
∣

∣ dv tends to 0 as n → ∞ for all ℓ = 1, ..., k, as again we
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have that γ = α; However, this was already proved in Step 2 of Section 3.2 when proving that
limn→∞ I2n(ℓ) = 0, ℓ = 1, ..., k, see the arguments leading to the convergence (38). All in all,
one has the convergence

∫ 1
0 ||An(s, v) − A(s, v)||dv −→ 0, and Lemma 5 is applicable so that

χ(n)(s, t) convgerges to χ(s, t) which satisfies











∂tχ(s, t) = A(s, t)χ(s, t) =
[

βtβ−1λ(P − I)

+ βλ
∑k

ℓ=1 diag(esℓxℓ − 1, x = (x1, ..., xk) ∈ S)
]

χ(s, t), t ∈ [0, 1],

χ(s, 0) = I.

(55)

Step 3: Identifying the limit in distribution. With the same notation as in Step 3 of
Section 3.2 for process {Xα(t) = (X β

1 (t), ...,X
β
k (t)) ∈ S, t ∈ [0, 1]}, one finds this time that

χ(s, t) =



E



1[Xα(1)=y] exp





k
∑

j=1

βλ

∫ 1

1−t

(

esjX
α
j (v) − 1

)

dv





∣

∣

∣

∣

∣

∣

Xα(1− t) = x









(x,y)∈S2

(56)
for all s = (s1, ..., sk) ∈ (−∞, 0]k. We recall the Campbell formula which states that for all
measurable function f : t ∈ [0,+∞) 7→ f(t) ∈ R such that

∫∞
0 (ef(v) − 1)ξ dv is finite for some

ξ > 0 then one has the identity

exp

(
∫ ∞

0

(

ef(v) − 1
)

ξ dv

)

= E

[

exp

(
∫ ∞

0
f(v) ν(dv)

)]

,

where {ν(x), x ≥ 0} is a Poisson process with intensity ξ, see [9, Section 3.2]. The results in
(56) being written as

χ(s, t) =



E



1[Xα(1)=y] exp





k
∑

j=1

sj

∫ 1

1−t
Xα
j (v) ν

α
j (dv)





∣

∣

∣

∣

∣

∣

Xα(1− t) = x









(x,y)∈S2

where {ναj (t), t ≥ 0}, j = 1, ..., k, are independent Poisson processes with intensities βλ =
λ/(1−α), and independent from {Xα(t), t ∈ [0, 1]}. Identifying Laplace Transforms, we obtain
in conclusion that

D

((

Z(n)(tβ),X
(n)

N
(n)

tβ

)∣

∣

∣

∣

X
(n)
0

)

−→ D

((

(∫ 1

1−t
Xα
j (v) dν

α
j (v)

)

j=1,...,k

, Xα(1)

)∣

∣

∣

∣

∣

Xα(1− t)

)

(57)

as n→ ∞ for all t ∈ [0, 1]. Changing t into t1/β completes the proof of (11).
Proof of the convergence (17) in Corollary 4. This follows the same pattern as the proof
of (15), to which we refer here. More precisely, one verifies this time that, from (56), the analog
of (45) in the Fast arrival case is here

E



exp





k
∑

j=1

sj

∫ t

0
Uj(v) ν

α
j (dv)








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= E



exp





k
∑

j=1

sj

∫ 1

1−t
Xα
j (v) dν

α
j (v)







 , s = (s1, ..., sk) ∈ (−∞, 0]k, (58)

which, combined with (57), yields the convergence Z(n)
(

tβ
) D
−→

(

∫ t
0 Uj(v) ν

α
j (dv)

)

j=1,...k
as

n → ∞. Changing t into t1/β and performing the change of variable v := v1/β = v1−α, we
obtain

Z(n) (t)
D
−→

(∫ t

0
Uj(v

1−α) ν̃αj (dv)

)

j=1,...,k

, n→ ∞, t ∈ [0, 1], (59)

where {ν̃αj (t), t ∈ [0, 1]}, j = 1, ..., k, are the inhomogeneous independent Poisson processes

given by ν̃αj (t) = ναj (t
1/β) = ναj (t

1−α), i.e. Poisson processes with non constant intensity λt−α.

Arguing, as in the Fast arrival case, the time changed Markov process {Y(t) := U(t1−α) =
U(t1/β), t ∈ [0, 1]} admits (16) as generator, hence (17) follows from (59).

3.4. Proof of Theorem 3: Slow arriving customers.

We now consider the case γ < α. Section 4.2 of [14] provide the first two joint moments of the

Z
(n)
j (t), j = 1, ..., k, with a particular discount factor a ≥ 0 (recall the notation (2) in Section

1 for the discounted counterpart of the queueing process (1)). Recalling that the rescaling
implies that λn(Pn− I) = λ(P − I), we get from [14, Theorems 14 and 15 with a = 0 discount
factor], that those moments are given by

M
(n)
j (t) = λne

λt(P−I)

∫ t

0
P

(

L
(n)
j > v

)

e−λv(P−I)∆jPne
λv(P−I)dv, (60)

M
(n)
jj (t) = λne

λt(P−I)

∫ t

0
P

(

L
(n)
j > v

)

e−λv(P−I)∆2
jPne

λv(P−I)

+ 2P
(

L
(n)
j > v

)

∆jPnM
(n)
j (v)dv, (61)

M
(n)
jj′ (t) = λne

λt(P−I)

∫ t

0
P

(

L
(n)
j > v

)

P

(

L
(n)
j′ > v

)

e−λv(P−I)∆j∆j′Pne
λv(P−I)

+ P

(

L
(n)
j > v

)

∆jPnM
(n)
j′ (v) + P

(

L
(n)
j′ > v

)

∆j′PnM
(n)
j (v)dv, (62)

for all t ≥ 0 and j 6= j′, j and j′ in {1, .., k}. We first show (12). Since λn = λnγ , multiplying
(60) by nα−γ yields for j = 1, ..., k

nα−γM
(n)
j (t) = λeλt(P−I)

∫ t

0
nαP

(

L
(n)
j > v

)

e−λv(P−I)∆jPne
λv(P−I)dv. (63)

By definition of L
(n)
j and the fat tail property of Lj:

nαP
(

L
(n)
j > v

)

= nαP (Lj > nv) ∼ nα
1

(nv)α
=

1

vα
, v ∈ (0, t), n→ ∞.

Now, since limn→∞ Pn = P and

sup
n∈N

nαP
(

L
(n)
j > v

)

= sup
n∈N

nαP (Lj > nv) =
supn∈N(nv)

αP (Lj > nv)

vα
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≤
supu≥0 u

αP (Lj > u)

vα
, v ∈ (0, 1), (64)

the dominated convergence enables us to let n→ ∞ in (63) to get (12). We now turn to (13).
Multiplying (61) by nα−γ yields

nα−γM
(n)
jj (t) = λeλt(P−I)

∫ t

0
nαP

(

L
(n)
j > v

)

e−λv(P−I)∆2
jPne

λv(P−I)dv

+ 2λeλt(P−I)

∫ t

0
nαP

(

L
(n)
j > v

)

∆jPnM
(n)
j (v)dv. (65)

Since (12) in particular implies that limn→∞M
(n)
j (v) = 0 for all v ∈ (0, 1), and thanks to the

upper bound (64), a dominated convergence argument entails that the second integral on the
righthandside of (65) tends to 0 as n → ∞. We also conclude by a dominated convergence
argument that the first integral on the righthandside of (65) tends to the righthandside of
(13), and we are done. As to (62), we have for j 6= j′

nα−γM
(n)
jj′ (t) = λeλt(P−I)

∫ t

0
nαP

(

L
(n)
j > v

)

P

(

L
(n)
j′ > v

)

e−λv(P−I)∆j∆j′Pne
λv(P−I)dv

+ λeλt(P−I)

∫ t

0

{

nαP
(

L
(n)
j > v

)

∆jPnM
(n)
j′ (v) + nαP

(

L
(n)
j′ > v

)

∆j′PnM
(n)
j (v)

}

dv. (66)

Similarly to the second integral on the righthandside of (65), we show that the second integral
on the righthandside of (66) converges to 0 as n → ∞. As to the first integral, the fact that

P

(

L
(n)
j′ > v

)

= P
(

Lj′ > nv
)

−→ 0 as n → ∞, combined with the upper bound (64), yields

by the dominated convergence theorem that it tends to 0 as n → ∞, achieving the proof of
(62) and of the theorem.

4. A remark on the computation of the limiting joint Laplace transform when
α ∈ Q

We identified in Theorem 2 the different limiting regimes when γ is larger or equal to α
by obtaining the corresponding limiting joint Laplace transform χ(s, t) in each case. Even
though the distributional limits (10) and (11) involve simple processes {Xα(t), t ∈ [0, 1]}
and {ναj (t), t ≥ 0}, j = 1, ..., k, it turns out that the Laplace transforms χ(s, t), which are
solutions to the differential equations (40) and (55), are in general not explicit in the fast or
equilibrium arriving cases. We suggest to show that things are much simpler when α ∈ (0, 1)
is rational, say of the form

α = 1− p/q

for some p and q ∈ N∗, with p < q. The idea here is quite simple and standard, and consists
in expanding a transformation of the solution t ∈ [0, 1] 7→ χ(s, t) ∈ RS×S into a power series
with matrix coefficients, as explained in [1, Section 1.1]. Let us focus on the fast arrival case
in Section 3.2, although the method is of course applicable to the equilibrium case, and let us
put χ̌(s, t) := χ(s, tp), t ∈ [0, 1]. In that case, we deduce from (40) that t ∈ [0, 1] 7→ χ̌(s, t)
verifies the matrix differential equation











∂tχ̌(s, t) =
[

(p+ q)tqλ(P − I) + ptp−1βλ
∑k

ℓ=1 sℓ∆ℓ

]

χ̌(s, t), t ∈ [0, 1],

= [Q1t
q +Q2(s)t

p−1]χ̌(s, t),
χ(s, 0) = I.
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where Q1 := (p + q)λ(P − I) and Q2(s) := pβλ
∑k

ℓ=1 sℓ∆ℓ, s = (s1, ..., sk). It is quite simple
to check that χ̌(s, t) can then be expanded as

χ̌(s, t) =

∞
∑

j=0

Uj(s)t
j , t ∈ [0, 1], (67)

where the sequence of matrices (Uj(s))j∈N is defined from [1, Relation (1.4)] by U0(s) = I and

Uj(s) =







0, 1 ≤ j < p,
Q2(s)Uj−p(s)/j, p ≤ j < q + 1,

[Q2(s)Uj−p(s) +Q1Uj−q−1(s)] /j, j ≥ q + 1,
(68)

and that (67) converges for all t, as proved in [1, Lemma 1 p.2]. The final solution is then
expressed in that case as

χ(s, t) = χ̌(s, t1/p) =

∞
∑

j=0

Uj(s)t
j/p, t ∈ [0, 1].

The Uj(s)’s, j ∈ N, being simply expressed with the simple linear recurrence (68), this expan-
sion for χ(s, t) is then easy to handle as it can be e.g. approximated by truncation.
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