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Abstract: We study a general k dimensional in�nite server queues process. When the
service times are fat tailed, we prove that the properly rescaled process converges to
some limiting process: in particular we identify three regimes including slow arrivals,
fast arrivals, and equilibrium, which lead to di�erent limits in distribution.
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1. Introduction and statement of result

We consider the following k dimensional process {Z(t) = (Z1(t), . . . , Zk(t)), t ≥ 0} de�ned by

Zj(t) =

Nt∑
i=1

Xij1[t<Lij+Ti] =
∞∑
i=1

Xij1[Ti≤t<Lij+Ti], j = 1, ..., k, (1)

with {Nt, t ≥ 0} a Poisson process with intensity λ > 0, (Ti)i∈N satisfying T0 = 0, such that
(Ti − Ti−1)i≥1 is independent and identically distributed (iid) with same distribution E(λ).
(Lij)i∈N,j=1,...,k is a sequence of independent random variables (rvs) such that (Li1, . . . , Lik)i∈N
is iid (although Li1,. . . ,Lik may have di�erent distributions). (Xi)i∈N is a �nite Markov chain
with state space S = {0, . . . ,K}k for some K and k in N∗, so that Xi is for all i of the form
Xi = (Xi1, . . . , Xik) with Xij ∈ {0, . . . ,K} for j = 1, . . . , k.

Process de�ned by (1) has many applications. It may represent a set of k correlated queues
with in�nite servers, such that customers arrive at each time Ti, with Xij customers arriving
in queue j ∈ {1, ..., k}, with corresponding service time Lij . Zj(t) could also be seen as the
number of customers of class j in a (global) in�nite server queue, see [12, Figure 1]; other
in�nite queues applications may be found in [12, Section 6]. In an actuarial context, Zj(t)
may represent the number of incurred but non reported (IBNR) claims in the jth branch of
an insurance company, where Xij is the number of such claims arriving in that branch at
time Ti, and Lij is the related delay time before declaring the claim; from another point of
view, Xij ∈ [0,+∞) may also represent the amount (say, in euros) of the claim occurring
at time Ti in the jth branch, in which case Zj(t) is the total amount of not declared yet
claims which have nonetheless occurred by time t. Getting back to the queueing interpretation,
and since arrivals are modelled by a Poisson process and (Xi)i∈N is a Markov chain, the
process {Z(t), t ≥ 0} may thus be seen as (multidimensional) Markov modulated in�nite
queue process, i.e. a queueing process governed by an external continuous time Markov chain
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{Y (t), t ≥ 0} with state space S, associated switching times (Ti)i∈N and embedded Markov
chain (Y (Ti))i∈N = (Xi)i∈N, see [10], [9, Model II]. Such a model was studied in a similar
Markov modulated context analytically in [11, 5, 10] for the steady and/or transient state of
the queue, but this usually concerns partial information such as the moments, and when the
services or interarrivals are matrix exponential distributed. The case of semi-Markov arrivals
and (modulated) arrival and service was studied in [5, 6].

Let P = (p(x, x′))(x,x′)∈S2 and π = (π(x))x∈S (written as a row vector) be respectively the
transition matrix and stationary distribution of the Markov chain. We next de�ne for all r ≥ 0
and s = (s1, . . . , sk) ∈ (−∞, 0]k,

π̃(s, r) := diag

E
exp


k∑
j=1

sjxj1[Lj>r]


 , x = (x1, . . . , xk) ∈ S

 , (2)

Q̃(s, r) := π̃(s, r)P ′, (3)

∆i := diag [xi, x = (x1, . . . , xk) ∈ S] , i = 1, . . . , k, (4)

where P ′ denotes the transpose of matrix P . I is the identity matrix, 0 is a column vector with
zeroes, and 1 is a column vector with 1's, of appropriate dimensions. The moment generating
function/Laplace Transform (mgf/LT) of the process Z̃(t) jointly to the state of XNt given
the initial state of X0 is denoted by

ψ(s, t) :=
[
E
(
e<s,Z(t)>1[XNt=y]

∣∣∣X0 = x
)]

(x,y)∈S2
, t ≥ 0, s = (s1, . . . , sk) ∈ (−∞, 0]k (5)

where < ·, · > denotes the scalar product on Rk. Note that X0 has no direct physical inter-
pretation here, as the claims sizes/customer batches are given by Xi, i ≥ 1, and is rather
introduced for technical purpose. We also remark that (5) is de�ned for sj ≤ 0 because we
will only need non positive arguments, although this mgf may in fact be de�ned for sj ∈ R,
as one can prove easily that the expectation would then be �nite.

The transient distribution of Z(t) for t ≥ 0 is studied under various assumptions on the
interarrival and service distributions in [13]. In the particular case of Poisson arrivals, it is
described by the following proposition, which is [13, Proposition 4] with δ = 0.

Proposition 1. When {Nt, t ≥ 0} is a Poisson process with intensity λ > 0, then ψ(s, t) is

the unique solution to the �rst order linear (matrix) di�erential equation

∂tψ(s, t) = [−λI + λQ̃(s, t)′]ψ(s, t) = [λ(P − I) + λP (π̃(s, t)− I)]ψ(s, t) (6)

with the initial condition ψ(s, 0) = I.

Unfortunately, such a �rst order ordinary di�erential equation does not have an explicit
expression in general. In that case, it is appealing to study the process when the intensity of
the Poisson process is sped up and the switching rates of the Markov chain are modi�ed, as in
[3, 4, 9]. Similarly to those paper, the goal of this paper is thus to study the bevaviour of the
queue/IBNR process in "extreme conditions" for the arrival rates, transition rates and delays,
while trying to maintain minimal assumptions on the distributions. For this we will suppose
that the rescaling is performed as follows:

• the arrival rate is multiplied by nγ for some γ > 0, denoted by

λn = λnγ ,
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• the transition probabilities p(x, y) are slowed down by dividing them by nγ when x 6= y,
x, y in S, i.e. the new transition matrix is given by

Pn = P/nγ + (1− 1/nγ)I.

Such normalizing assumptions imply that, as n → ∞, one is close to a model where the k
queues almost evolve independently (in the sense that arriving customers or claims come in
batches with same �xed size) and are correlated only through the sequence (Ti)i∈N, as indeed
the transition matrix Pn veri�es Pn −→ I. The arrival rate λ is however sped up accordingly
such that λn(Pn−I) = λ(P−I) i.e. the transition rates between the states of S are independent
from n, which allows for enough dynamics in the model that compensates the fact that Pn
tends to I, and yielding no trivial asymptotics in the following as n→∞.

The assumptions for the service times/delays distribution are the following. We �rst suppose
that the base model features fat tailed distributed service times with same index α ∈ (0, 1),
i.e. such that P(Lj > t) ∼ 1/tα as t → ∞ for all j = 1, ..., k. This kind of distribution
(included in the wider class of heavy tailed distributions) mean that the service times are
"large". Furthermore, the scaling is such that the service times are divided by n, denoted by

L
(n)
j = Lj/n.

Hence, the situation is the following: the arrivals are sped up by factor nγ , but this is compen-
sated by the fact that the delay times are diminished with factor n, so that one expects one of
the three phenomena to occur at time t for the limiting model: the arrivals occur faster than
it takes time for customers to be served and the corresponding queue content Z(n)(t) grows
large as n→∞, the arrivals occur slower and services are completed fast so that Z(n)(t) tends
to 0 as n → ∞, or an equilibrium is reached. Those three cases will be studied in the forth-
coming sections. Some limiting behaviour was studied in [3, 4, 9], where the authors identi�ed
three regimes for di�erent scalings in a Markov modulating context, and where the limiting
distribution is normally distributed (obtaining a Central Limit Theorem), and depends on t
as well as on the di�erent parameters, when the service times have general distribution with
�nite expectation or are exponentially distributed in [4, 9], or where some precise information
on the tail probability of the queue content is given for exponential service times in [3]. Quite
a novelty in this paper is that we restrict here the class of distributions to that of fat tailed
distributions in order to exhibit (under slightly di�erent scalings) a di�erent behaviour and
di�erent limiting distribution which is not gaussian. Also note that the class of fat tailed dis-
tributions is interesting in itself as, in actuarial practice, this corresponds to latent claims, i.e.
very long delays which are incidentally in practice often not observed (as the case α ∈ (0, 1)
corresponds to the Lj 's having in�nite expectation), see [7, Section 6.6.1]; This motivates the
following results which feature the exponent α as the only information required on those de-
lays. Also note that those service times have in�nite mean, which may explain why the limits
in distribution in the main Theorem 2 below fall out of the cases studied in [4, Section 4], and
are signi�cantly di�erent from the ones in this latter reference. Not only that, but the scaling
is rather done in those references [4, 9] on the transition rates of the underlying continuous
time Markov chain modulating the arrival and service rates, whereas here these are constant,
as we saw that λn(Pn − I) = λ(P − I) is independent of n, and the scaling is rather done on
the service times instead. All in all, what is going to be studied hereafter is, when t is �xed in
say [0, 1] w.l.o.g., the limiting distribution as n→∞ of the Nk × S valued r.v.(

Z(n)(t), X
(n)

N
(n)
t

)
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or of a renormalized version of it in the "fast arriving customers" case. The corresponding
joint Laplace Transform is given by

ψ(n)(s, t) =

E
e<s,Z(n)(t)>

1[
X

(n)

N
(n)
t

=y

]
∣∣∣∣∣∣∣ X(n)

0 = x



(x,y)∈S2

, s = (s1, ..., sj) ∈ (−∞, 0]k,

where (X
(n)
i )i∈N is the underlying Markov chain with generating matrix Pn, stationary dis-

tribution π, and
{
N

(n)
t , t ≥ 0

}
is a Poisson process representing the arrivals, with scaled

intensity λn. The core result of the paper concerning the di�erent regimes is given in the
following theorem:

Theorem 2. Let β := 1/(1−α) and t ∈ [0, 1] �xed. Let {X (t) = (X1(t), ...,Xk(t)), t ∈ [0, 1]} be
a {0, ...,K}k valued continuous time Markov chain with in�nitesimal generating matrix λ(P −
I) with X (0) ∼ π, {X β(t) = (X β1 (t), ...,X βk (t)), t ∈ [0, 1]} be a {0, ...,K}k valued continuous

time inhomogeneous Markov chain with in�nitesimal generating matrix β(1 − t)β−1λ(P − I)

with X β(0) ∼ π, and {νβj (t), t ∈ [0, 1]}, j = 1, ..., k, be k independent Poisson processes

with same intensity βλ, independent from {X β(t), t ∈ [0, 1]}. Then one has one of the three

limiting behaviours:

• Slow arrivals: If γ < α then

D
((

Z(n)(t), X
(n)

N
(n)
t

)∣∣∣∣ X(n)
0

)
−→ D ((0, X (t))| X (0)) = δ0 ⊗D (X (t)| X (0)) , (7)

n→∞, where 0 = (0, ..., 0) ∈ Rk,
• Fast arrivals: If γ > α then, as n→∞,

D

((
Z(n)(t)

nγ−α
, X

(n)

N
(n)
t

)∣∣∣∣∣ X(n)
0

)
−→ D

((
βλ

∫ 1

1−t1/β
X β(v) dv, X β(1)

)∣∣∣∣ X β(1− t1/β)

)
,

(8)
• Equilibrium: If γ = α then, as n→∞,

D
((

Z(n)(t), X
(n)

N
(n)
t

)∣∣∣∣ X(n)
0

)
−→ D

(((∫ 1

1−t1/β
X βj (v) νβj (dv)

)
j=1,...,k

, X β(1)

)∣∣∣∣∣ X β(1− t1/β)

)
, (9)

Sections 2, 3 and 4 below are dedicated to the proofs of the convergences in distribution
of this theorem in the slow arrivals, fast arrivals and equilibrium cases. As said earlier, we
note that the terms in the limits on the righthandside of (7), (8) and (9) feature simple
objects (in regards to the complexity of the original model) where the only characteristic
parameters needed are λ, P and α. As a concluding remark, we will discuss in Section 5 some
computational aspect for the limiting distributions mentioned in those di�erent regimes in
Theorem 2 in the particular case when α is a rational number lying in (0, 1).

In all three cases we will repeatedly use the following general lemma, of which proof is not
really relevant in this paper and is given in the Appendix.



L.Rabehasaina/In�nite server queues with switching and fat tailed service times 5

Lemma 3. Let (t ∈ [0, 1] 7→ An(t))n∈N be a sequence of continuous functions with values in

RS×S , and let us assume that there exists some continuous function t ∈ [0, 1] 7→ A(t) ∈ RS×S
such that

∫ 1
0 ||An(v)−A(v)||dv −→ 0 as n→∞. Let y ∈ RS×S and t ∈ [0, 1] 7→ Yn(t) ∈ RS×S

be the solution to the following di�erential equation{
d
dtYn(t) = An(t)Yn(t), t ∈ [0, 1],
Yn(0) = y,

n ∈ N. (10)

Then one has Yn(t) −→ Y (t) uniformly in t ∈ [0, 1], as n → ∞, where t ∈ [0, 1] 7→ Y (t) ∈
RS×S is the solution to the following di�erential equation{

d
dtY (t) = A(t)Y (t), t ∈ [0, 1],
Y (0) = y.

(11)

Finally, let us recall that the di�erential equation (6) reads here, with the new parameters
λn, Pn being such that λn(Pn − I) = λ(P − I):{

∂tψ
(n)(s, t) = [λ(P − I) + λnγPn(π̃n(s, t)− I)]ψ(n)(s, t), t ≥ 0,

ψ(n)(s, 0) = I,
(12)

for all s = (s1, ..., sk) ∈ (−∞, 0]k, where, from (2), and using the expansion
∏k
j=1(aj + 1) =

1 +
∑

I⊂{1,...,k}
∏
`∈I a` for all real or complex numbers a1, ..., ak,

π̃n(s, t)− I = diag

 k∏
j=1

(
(esjxj − 1)P

[
L
(n)
j > t

]
+ 1
)
− 1, x = (x1, ..., xk) ∈ S


= diag

 ∑
I⊂{1,...,k}

∏
`∈I

[
(es`x` − 1)P

[
L
(n)
` > t

]]
, x = (x1, ..., xk) ∈ S

 . (13)

2. Case γ < α: Slow arriving customers

This case corresponds to slow arriving customers, compared to short service times. Intuitively,
one guesses that the normalized queue content does tend to 0. The following transformation

will also be useful: Since one wants to study

(
Z(n)(t), X

(n)

N
(n)
t

)
when n is large, and since t

is �xed say in [0, 1], one may as well study

(
Z(n)(tβ), X

(n)

N
(n)

tβ

)
where β := 1/(1 − α) > 1, as

indeed t 7→ tβ is a bijective function mapping [0, 1] to [0, 1]. Using this transformation will
turn out to be useful here as well as in the following sections so as to avoid pathological cases
in the forthcoming involved di�erential equations, and in order to properly apply Lemma 3.
Let s = (s1, ..., sk) ∈ (−∞, 0]k be �xed. The corresponding joint mgf/Laplace transform is
given by χ(n)(s, t) := ψ(n)(s, tβ) and satis�es, from (12):{

∂tχ
(n)(s, t) = βtβ−1[λ(P − I) + λnγPn(π̃n(s, tβ))− I)]χ(n)(s, t), t ∈ [0, 1],

χ(n)(s, 0) = I.
(14)
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Since the Lj 's are fat tailed, one has that P
[
L
(n)
` > tβ

]
= P

[
L` > ntβ

]
∼ 1

nα
1
tαβ

, n → ∞,

when t > 0, ` = 1, ..., k. Since γ < α implies that 1/nα = o(1/nγ) as n→∞, we deduce that

βtβ−1
∏
`∈I

[
(es`x` − 1)P

[
L
(n)
` > t

]]
=

{
0 if t = 0,

o(1/nγ) if t > 0

for all x = (x1, ..., xk) ∈ S and I ⊂ {1, ..., k}. Then, from (13), we deduce that βtβ−1nγ(π̃n(s, t)−
I) −→ 0 as n → ∞ for all t ∈ [0, 1], hence An(t) := βtβ−1[λ(P − I) + λnγPn(π̃n(s, tβ))− I)]
converges to A(t) := βtβ−1λ(P − I) for all t ∈ [0, 1] (Remember that limn→∞ Pn = I). We
now want to use Lemma 3 and prove that those functions satisfy

∫ 1
0 ||An(v)−A(v)||dv −→ 0

as n→∞, i.e. that ∫ 1

0
βvβ−1nγ ||π̃n(s, vβ))− I||dv −→ 0, n→ +∞ (15)

(again because limn→∞ Pn = I). In view of (13), it su�ces to prove that for all x = (x1, ..., xk) ∈
S and all I ⊂ {1, ..., k}, one has

∫ 1
0 βv

β−1nγ
∣∣∣∏`∈I

[
(es`x` − 1)P

[
L
(n)
` > vβ

]]∣∣∣ dv −→ 0. How-

ever, one just needs to prove this convergence when Card(I) = 1, that is I = {`} for all
` = 1, ..., k, as indeed one checks that the convergence for Card(I) ≥ 2 can be proved simi-
larly, and actually converges faster than the case Card(I) = 1 towards 0. So, when I = {`},
` = 1, ..., k, the change of variable u = nvβ yields∫ 1

0
βvβ−1nγ

∣∣∣(es`x` − 1)P
[
L
(n)
` > vβ

]∣∣∣ dv =

∫ 1

0
βvβ−1nγ

∣∣∣(es`x` − 1)P
[
L` > nvβ

]∣∣∣ dv
= |es`x` − 1|nγ−1

∫ 1

0
P [L` > u] du

which tends to 0 as n→∞, as indeed γ < α < 1 =⇒ limn→∞ n
γ−1 = 0.

All in all, one has then that limn→∞
∫ 1
0 ||An(v) − A(v)||dv = 0. Lemma 3 thus implies that

χ(n)(s, t) de�ned in (14) converges as n→∞ towards χ(s, t) that satis�es{
∂tχ(s, t) = βtβ−1λ(P − I)χ(s, t), t ∈ [0, 1],
χ(s, 0) = I.

(16)

This matrix linear di�erential equation admits the explicit solution χ(s, t) = exp(tβλ(P − I)),
t ∈ [0, 1], which is the Laplace Transform of the random variable (0, ...0) ∈ Rk jointly to X (tβ),
where {X (t), t ≥ 0} is the continuous time Markov chain de�ned in Theorem 2. Hence,

the distribution of

(
Z(n)(tβ), X

(n)

N
(n)

tβ

)
given X

(n)
0 converges towards D(((0, ..., 0),Xtβ )| X0).

Changing t into t1/β yields (7).

3. Case γ > α: Fast arriving customers

We now proceed to show convergence (8). Since we saw in the previous section that the queue
content converged towards 0 in the case of slow arriving customers, it is sensible to guess
that here it will converge towards in�nity, hence it is natural to �nd a normalization such
that a convergence towards a proper distribution occurs. As shown in (8), we renormalize the
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queue content by dividing it by nγ−α, i.e. we are here interested in

(
Z(n)(t)/nγ−α, X

(n)

N
(n)
t

)
. Its

corresponding mgf/Laplace transform is given by ψ(n)(s/nγ−α, t), s = (s1, ..., sk) ∈ (−∞, 0]k.
As in the proof in the slow arrival case, thanks to t ∈ [0, 1] 7→ tβ ∈ [0, 1] being a one

to one mapping, we are going to study

(
Z(n)(tβ)/nγ−α, X

(n)

N
(n)

tβ

)
, of which mgf is given by

χ(n)(s, t) := ψ(n)(s/nγ−α, tβ). From (12), χ(n)(s, t) satis�es{
∂tχ

(n)(s, t) = βtβ−1[λ(P − I) + λnγPn(π̃n(s/nγ−α, tβ))− I)]χ(n)(s, t), t ∈ [0, 1],

χ(n)(s, 0) = I.
(17)

The starting point is similar to that of Section 2: we will set to prove that

An(s, t) = βtβ−1[λ(P − I) + λnγPn(π̃n(s/nγ−α, tβ))− I)]

converges to some limit A(s, t) as n → ∞, use Lemma 3, then identify the limit χ(s, t) :=
limn→∞ χ

(n)(s, t) as the Laplace Transform of a known distribution.
Step 1: Finding A(s, t). Let us dedicate to �nding the limit function t ∈ [0, 1] 7→ A(s, t). In
view of (13), the xth diagonal element of βtβ−1λnγ(π̃n(s/nγ−α, tβ))− I) is

βtβ−1λnγ
∑

I⊂{1,...,k}

∏
`∈I

[
(es`x`/n

γ−α − 1)P
[
L
(n)
` > tβ

]]
(18)

of which we proceed to �nd the limit as n → ∞. Contrarily to what happened in Section 2,
we are going to isolate the terms in the sum for which Card(I) = 1 and Card(I) ≥ 2, and
show that the former admit a non zero limit and the latter tend to 0. We thus write (18) as

βtβ−1λnγ
∑

I⊂{1,...,k}

∏
`∈I

[
(es`x`/n

γ−α − 1)P
[
L
(n)
` > tβ

]]
= J1

n(s, t) + J2
n(s, t), where

J1
n(s, t) = J1

n(s, t, x) := βtβ−1λnγ
k∑
`=1

(es`x`/n
γ−α − 1)P

[
L
(n)
` > tβ

]
, (19)

J2
n(s, t) = J2

n(s, t, x) := βtβ−1λnγ
∑

Card(I)≥2

∏
`∈I

[
(es`x`/n

γ−α − 1)P
[
L
(n)
` > tβ

]]
. (20)

Both terms J1
n(s, t) and J2

n(s, t) are studied separately. Using that es`x`/n
γ−α − 1 ∼ s`x`/nγ−α

as n→∞ and P
[
L
(n)
` > tβ

]
= P

[
L` > ntβ

]
∼ 1

nαtβα
when t > 0, and since βα = α/(1−α) =

β − 1, we arrive at

J1
n(s, t) ∼ βλ

k∑
`=1

tβ−1nγ
s`x`
nγ−α

1

nαtβα
∼ βλ

k∑
`=1

s`x`, n→∞,

when t > 0, and is 0 when t = 0. Using similar estimates, and exploiting the fact that the
sum is over Card(I) ≥ 2, one proves easily that J2

n(s, t) = O(1/nγ) for all t ≥ 0, which thus
tends to 0 as n→∞. Hence we have that (18) tends to βλ

∑k
`=1 s`x` when t ∈ (0, 1], and to

0 when t = 0. The candidate for the continuous function A(s, t) is then

t ∈ [0, 1] 7→ A(s, t) := βtβ−1λ(P − I) + βλ
k∑
`=1

s`∆` (21)
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where we recall that ∆` = diag [x`, x = (x1, . . . , xk) ∈ S]. Note that the limit when t = 0
di�ers from what was expected, as indeed a closer look from the study of the limits of J1

n(s, t)
and J2

n(s, t) would yield that the limiting function for t = 0 should rather be the 0 matrix,
and not βλ

∑k
`=1 s`∆` which is A(s, 0) de�ned above. This is due to the fact that one requires

a continuous function t ∈ [0, 1] 7→ A(s, t) in Lemma 3.
Step 2: Finding χ(s, t). So, in order to apply this Lemma we now need to prove that∫ 1
0 ||An(v)−A(v)||dv −→ 0 as n→∞. SinceAn(v) = A(v)+Pn diag(J1

n(s, v, x)−βλ
∑k

`=1 s`x`, x ∈
S) + Pn diag(J2

n(s, v, x), x ∈ S) and since limn→∞ Pn = I, this thus amounts to prove that∫ 1
0

∣∣∣J1
n(s, v, x)− βλ

∑k
`=1 s`x`

∣∣∣ dv and ∫ 1
0 |J

2
n(s, v, x)|dv =

∫ 1
0 J

2
n(s, v, x)dv tend to 0 as n→∞,

for each �xed x ∈ S. Let us �rst focus on
∫ 1
0

∣∣∣J1
n(s, v, x)− βλ

∑k
`=1 s`x`

∣∣∣ dv. We have

∫ 1

0

∣∣∣∣∣J1
n(s, v, x)− βλ

k∑
`=1

s`x`

∣∣∣∣∣ dv ≤
k∑
`=1

(I1n(`) + I2n(`)), where, for all ` = 1, ..., k, (22)

I1n(`) :=

∫ 1

0
λβvβ−1

∣∣∣nγ(es`x`/n
γ−α − 1)− nαs`x`

∣∣∣P [L(n)
` > vβ

]
dv

I2n(`) := |s`x`|
∫ 1

0
λ
∣∣∣βvβ−1nαP [L(n)

` > vβ
]
− β

∣∣∣ dv.
Furthermore, one has, expanding the exponential function, that |es`x`/nγ−α−1−s`x`/nγ−α| ≤
M/n2(γ−α) for some constantM independent from everything. Thus, one deduces the following
upper bounds for I1n(`), ` = 1, ..., k:

I1n(`) =

∫ 1

0
λβvβ−1

∣∣∣nγ(es`x`/n
γ−α − 1)− nαs`x`

∣∣∣P [L` > nvβ
]
dv

≤ nγ
M

n2(γ−α)
λ

∫ 1

0
βvβ−1P

[
L` > nvβ

]
dv =

M

nγ−α
βλ

∫ 1

0
nαvβ−1P

[
L` > nvβ

]
dv

=
M

nγ−α
βλ

∫ 1

0
(nvβ)α P

[
L` > nvβ

]
dv, (23)

the last equality holding because β − 1 = βα. A consequence of the fact that L` is fat tailed
with index α is that supu≥0 u

αP(L` > u) < +∞, from which one deduces immediately that
supj∈N, v∈[0,1](jv

β)α P
[
L` > jvβ

]
< +∞ (those suprema being in fact equal). One then gets

from (23) that

I1n(`) ≤ M

nγ−α
βλ sup

j∈N, v∈[0,1]
(jvβ)α P

[
L` > jvβ

]
−→ 0, n→∞. (24)

We now turn to I2n(`), ` = 1, ..., k. Using again β − 1 = βα, one way write

I2n(`) = |s`x`|
∫ 1

0
λ
∣∣∣β(nvβ)αP

[
L` > nvβ

]
− β

∣∣∣ dv.
Similar estimates yield that

sup
n∈N, v∈[0,1]

∣∣∣β(nvβ)αP
[
L` > nvβ

]
− β

∣∣∣ < +∞.
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Furthermore, since L` is fat tailed with index α, one has P
[
L` > nvβ

]
∼ 1/(nvβ)α as n→∞

when v > 0, hence
∣∣β(nvβ)αP

[
L` > nvβ

]
− β

∣∣ −→ 0 as n → ∞ when v ∈ (0, 1], and is equal
to β when v = 0. The dominated convergence theorem thus implies that

I2n(`) −→ 0, n→∞. (25)

Gathering (22), (24) and (25), we thus deduce �nally that
∫ 1
0

∣∣∣J1
n(s, v, x)− βλ

∑k
`=1 s`x`

∣∣∣ dv
tends to 0 as n→∞ for each x ∈ S. As to

∫ 1
0 J

2
n(s, v, x)dv, the fact that we are summing in (20)

over Card(I) ≥ 2, and using again the upper bound supj∈N, v∈[0,1](jv
β)α P

[
L` > jvβ

]
< +∞,

yields easily by the dominated convergence theorem that limn→∞
∫ 1
0 J

2
n(s, v, x)dv = 0. Hence

we just proved that
∫ 1
0 ||An(v) − A(v)||dv −→ 0, and we may then use Lemma 3 to deduce

that χ(n)(s, t) convgerges to χ(s, t) which satis�es{
∂tχ(s, t) = A(s, t)χ(s, t) =

[
βtβ−1λ(P − I) + βλ

∑k
`=1 s`∆`

]
χ(s, t), t ∈ [0, 1],

χ(s, 0) = I.
(26)

Step 3: Identifying the limit in distribution. Contrarily to the di�erential equation (16)
in the Slow arrival case, (26) does not admit an explicit expression. However, since we purposely
chose s = (s1, ..., sk) with sj ≤ 0, j = 1, ..., k, one has that

∑k
j=1 sj∆j =

∑k
j=1 sj diag(xj , x ∈

S) is a diagonal matrix with non positive entries. Let ∆π := diag(π(x), x ∈ S) and let us
introduce the matrix P (r) de�ned by P (r) = ∆−1π P ′∆π ⇐⇒ P = ∆−1π P (r)′∆π. It is standard
that the P (r) is the transition matrix of the reversed version of the stationary Markov chain
{Xi, i ∈ N} with distribution π, and that βtβ−1λ(P (r)−I) is the in�nitesimal generator matrix
of an inhomogeneous Markov process {U(t) = (Uj(t))j=1,...,k ∈ S, t ∈ [0, 1]} with values in
S, with initial distribution U(0) ∼ π. In fact, it turns out that the conditional distribution
of U(t) given U(0) is given by [P(U(t) = y| U(0) = x)](x,y)∈S = exp(tβλ(P (r) − I)), which

results in U(t) ∼ π for all t ∈ [0, 1]. Since
∑k

j=1 sj∆j is diagonal, one checks easily that

A(s, t) = ∆−1π

[
βtβ−1λ(P (r) − I) +

∑k
j=1 sj∆j

]
∆π and that Y (t) = Y (s, t) := ∆−1π χ(s, t)′∆π

satis�es the di�erential equation{
∂tY (t) = Y (t)

[
βtβ−1λ(P (r) − I) + βλ

∑k
`=1 s`∆`

]
, t ∈ [0, 1],

Y (0) = I.

The Feynman-Kac formula ensures that one has the representation

Y (t) = Y (s, t) =

E
1[U(t)=y] exp

 k∑
j=1

sjβλ

∫ t

0
Uj(v)dv

∣∣∣∣∣∣U(0) = x


(x,y)∈S2

, ∀t ∈ [0, 1],

see [14, Chapter III, 19, p.272] for the general theorem on this formula, or [2, Section 5, Ex-
pression (5.2) and di�erential equation (5.3)] for the particular case of a �nite Markov chain,

adapted here to an inhomogeneous Markov process. Also, the process {X β(t) = (X β1 (t), ...,X βk (t)) ∈
S, t ∈ [0, 1]} introduced in the theorem statement is the reversed version of {U(t), t ∈ [0, 1]},
i.e. is such that {X β(t), t ∈ [0, 1]} D= {U(1 − t), t ∈ [0, 1]} pathwise. Hence, one obtains for
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all x and y in S that

E

1[U(t)=y] exp

 k∑
j=1

sjβλ

∫ t

0
Uj(v)dv

∣∣∣∣∣∣U(0) = x


= E

1[Xβ(1−t)=y] exp

 k∑
j=1

sjβλ

∫ 1

1−t
X βj (v)dv

∣∣∣∣∣∣X β(1) = x


= E

1[Xβ(1)=x] exp

 k∑
j=1

sjβλ

∫ 1

1−t
X βj (v)dv

∣∣∣∣∣∣X β(1− t) = y

 π(y)

π(x)
,

the last line coming from the fact that U(0), U(t), X β(1− t) and X β(1) all have same distri-
bution π. Switching the role of x and y above results in the following relationship:E

1[Xβ(1)=y] exp

 k∑
j=1

sjβλ

∫ 1

1−t
X βj (v)dv

∣∣∣∣∣∣X β(1− t) = x


(x,y)∈S2

=

E
1[U(t)=x] exp

 k∑
j=1

sjβλ

∫ t

0
Uj(v)dv

∣∣∣∣∣∣U(0) = y

 π(y)

π(x)


(x,y)∈S2

= ∆−1π Y (t)′∆π = χ(s, t).

Since we just proved that χ(n)(s, t) := ψ(n)(s/nγ−α, tβ) converges as n → ∞ towards χ(s, t),
expressed above, for all s = (s1, ..., sk) ∈ (−∞, 0]k, and identifying Laplace transforms, we
obtained in conclusion that

D
((

Z(n)(tβ)/nγ−α, X
(n)

N
(n)

tβ

)∣∣∣∣ X(n)
0

)
−→ D

((
βλ

∫ 1

1−t
X β(v) dv, X β(1)

)∣∣∣∣ X β(1− t)
)

as n→∞ for all t ∈ [0, 1]. Changing t into t1/β yields (8).

4. Equilibrium case γ = α

We now proceed to show convergence (9). Intuitively, we are in the critical case where cus-
tomers should arrive just fast enough such the queue at time t converges as n → ∞. We are

here interested in the behaviour of D
((

Z(n)(t), X
(n)

N
(n)
t

)∣∣∣∣ X(n)
0

)
as n→∞ when t ∈ [0, 1] is

�xed. As in Section 2, we �rst consider tβ instead of t and let χ(n)(s, t) := ψ(n)(s, tβ) the corre-
sponding mgf/Laplace transform, where s = (s1, ..., sk) ∈ (−∞, 0]k. The di�erential equation
(14) still holds with γ = α. The present case has the same roadmap as Subbsection 3: We will
study the behaviour as n→∞ of λnγ(π̃n(s, tβ))− I) in order to obtain a limit as n→∞ of

An(s, t) = βtβ−1[λ(P − I) + λnγPn(π̃n(s, tβ))− I)]

then getting a limiting matrix di�erential equation for a candidate χ(s, t) = limn→∞ χ
(n)(s, t).

Then we will identify χ(s, t) as the Laplace transform of a (conditional) distribution, yielding
(9).
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Step 1: Finding A(s, t) = limn→∞An(s, t). We recall that the (x, x)th diagonal element of
λnγ(π̃n(s, tβ))−I) is (from (13))

∑
I⊂{1,...,k}

∏
`∈I [(es`x` − 1)P [L` > nt]], which we decompose

as in Section 3 as K1
n(s, t) +K2

n(s, t) with

K1
n(s, t) = K1

n(s, t, x) := βtβ−1λnγ
k∑
`=1

(es`x` − 1)P
[
L` > ntβ

]
, (27)

K2
n(s, t) = K2

n(s, t, x) := βtβ−1λnγ
∑

Card(I)≥2

∏
`∈I

[
(es`x` − 1)P

[
L` > ntβ

]]
. (28)

Using that P
[
L` > ntβ

]
∼ 1

nα
1
tαβ

, n→∞, when t > 0, and since αβ = β − 1, and γ = α, one
here �nds that

K1
n(s, t) = K1

n(s, t, x) −→
{
βλ
∑k

`=1(e
s`x` − 1), t > 0,

0, t = 0,
n→∞.

As to K2
n(s, t), one proves easily that it tends to 0 as n → ∞ for all t ∈ [0, 1], as the sum in

(28) is over Card(I) ≥ 2. The candidate for the continuous function is thus

t ∈ [0, 1] 7→ A(s, t) := βtβ−1λ(P − I) + βλ

k∑
`=1

diag(es`x` − 1, x = (x1, ..., xk) ∈ S). (29)

Step 2: Finding χ(s, t). We now wish to apply Lemma 3 and prove that
∫ 1
0 ||An(v) −

A(v)||dv −→ 0 where A(s, t) is de�ned in (29). The method is very similar as in Step 2 of
Section 3, as this is equivalent to proving for all x ∈ S that

∫ 1
0 |K

1
n(s, v, x)− βλ

∑k
`=1(e

s`x` −
1)|dv and

∫ 1
0 K

2
n(s, v, x)dv tend to 0 as n→∞. This latter limit is proved the same way as for

proving that limn→∞
∫ 1
0 J

2
n(s, v, x)dv = 0 in Section 3. As to the former limit, this is proved

by showing that
∫ 1
0 λ
∣∣∣βvβ−1nαP [L(n)

` > vβ
]
− β

∣∣∣ dv tends to 0 as n→∞ for all ` = 1, ..., k,

as again we have that γ = α; however this was already proved in Step 2 of Section 3 when
proving that limn→∞ I

1
n(`) = 0, ` = 1, ..., k. All in all, Lemma 3 is applicable and we get that

χ(n)(s, t) convgerges to χ(s, t) which satis�es
∂tχ(s, t) = A(s, t)χ(s, t) =

[
βtβ−1λ(P − I)

+ βλ
∑k

`=1 diag(es`x` − 1, x = (x1, ..., xk) ∈ S)
]
χ(s, t), t ∈ [0, 1],

χ(s, 0) = I.

(30)

Step 3: Identifying the limit in distribution. With the same notation as in Step 3 of
Section 3 for process {X β(t) = (X β1 (t), ...,X βk (t)) ∈ S, t ∈ [0, 1]}, one �nds this time that

χ(s, t) =

E
1[Xβ(1)=y] exp

 k∑
j=1

βλ

∫ 1

1−t

(
esjX

β
j (v) − 1

)
dv

∣∣∣∣∣∣X β(1− t) = x


(x,y)∈S2

(31)
for all s = (s1, ..., sk) ∈ (−∞, 0]k. We recall the Campbell formula which states that for all
measurable function f : t ∈ [0,+∞) 7→ f(t) ∈ R such that

∫∞
0 (ef(v)− 1)ξ dv is �nite for some

ξ > 0 then one has the identity∫ ∞
0

(
ef(v) − 1

)
ξ dv = E

[
exp

(∫ ∞
0

f(v) ν(dv)

)]
,
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where {ν(x), x ≥ 0} is a Poisson process with intensity ξ, see [8, Section 3.2]. The results in
(31) being written as

χ(s, t) =

E
1[Xβ(1)=y] exp

 k∑
j=1

sj

∫ 1

1−t
X βj (v) νβj (dv)

∣∣∣∣∣∣X β(1− t) = x


(x,y)∈S2

where {νβj (t), t ≥ 0}, j = 1, ..., k, are independent Poisson processes with intensities βλ, and

independent from {X β(t), t ∈ [0, 1]}. Changing t into t1/β completes the proof of (9).

5. A remark on the computation of the limiting joint Laplace transform when

α ∈ Q

We identi�ed in Theorem 2 the di�erent limiting regimes when γ is less, larger or equal to
α by obtaining the corresponding limiting joint Laplace transform χ(s, t) in each case. Even
though the dsitributional limits (8) and (9) involve simple processes {X β(t), t ∈ [0, 1]} and
{νβj (t), t ≥ 0}, j = 1, ..., k, it turns out that the Laplace transforms χ(s, t), which are solutions
to the di�erential equations (26) and (30), are in general not explicit in the fast or equilibrium
arriving cases. We suggest to show that things are much simpler when α ∈ (0, 1) is rational,
say of the form

α = 1− p/q
for some p and q ∈ N∗, with p < q. The idea here is quite simple and standard, and consists
in expanding a transformation of the solution t ∈ [0, 1] 7→ χ(s, t) ∈ RS×S into a power series
with matrix coe�cients, as explained in [1, Section 1.1]. Let us focus on the fast arrival case
in Section 3, although the method is of course applicable to the equilibrium case, and let us
put χ̌(s, t) := χ(s, tp), t ∈ [0, 1]. In that case, we deduce from (26) that t ∈ [0, 1] 7→ χ̌(s, t)
veri�es the matrix di�erential equation

∂tχ̌(s, t) =
[
(p+ q)tqλ(P − I) + ptp−1βλ

∑k
`=1 s`∆`

]
χ̌(s, t), t ∈ [0, 1],

= [Q1t
q +Q2(s)t

p−1]χ̌(s, t),
χ(s, 0) = I.

where Q1 := (p+ q)λ(P − I) and Q2(s) := pβλ
∑k

`=1 s`∆`, s = (s1, ..., sk). It is quite simple
to check that χ̌(s, t) can then be expanded as

χ̌(s, t) =

∞∑
j=0

Uj(s)t
j , t ∈ [0, 1], (32)

where the sequence of matrices (Uj(s))j∈N is de�ned from [1, Relation (1.4)] by U0(s) = I and

Uj(s) =


0, 1 ≤ j < p,

Q2(s)Uj−p(s)/j, p ≤ j < q + 1,
[Q2(s)Uj−p(s) +Q1Uj−q−1(s)] /j, j ≥ q + 1,

(33)

and that (32) converges for all t, as is proved in [1, Lemma 1 p.2]. The �nal solution is then
expressed in that case as

χ(s, t) = χ̌(s, t1/p) =
∞∑
j=0

Uj(s)t
j/p, t ∈ [0, 1].
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The Uj(s)'s, j ∈ N, being simply expressed with the simple linear recurrence (33), this expan-
sion for χ(s, t) is then easy to handle as it can be e.g. approximated by truncation.

Appendix: Proof of Lemma 3.

We �rst observe that, because of continuity of t ∈ [0, 1] 7→ An(t) and t ∈ [0, 1] 7→ A(t), (10)
and (11) read in integral form

Yn(t) = y +

∫ t

0
An(v)Yn(v)dv, Y (t) = y +

∫ t

0
A(v)Y (v)dv

for all t ∈ [0, 1]. Let ||.|| be a submultiplicative norm on S × S matrices, and let us put
MY := supv∈[0,1] ||Y (v)||, MA := supv∈[0,1] ||A(v)||, which are �nite quantities. Then one
obtains that

||Yn(t)− Y (t)|| ≤
∫ t

0
||An(v)−A(v)||.||Y (v)||dv +

∫ t

0
||A(v)||.||Yn(v)− Y (v)||dv

≤MY

∫ t

0
||An(v)−A(v)||dv +MA

∫ t

0
||Yn(v)− Y (v)||dv, ∀t ∈ [0, 1].

Gronwall's lemma thus implies that, for all t ∈ [0, 1],

||Yn(t)− Y (t)|| ≤MY

[∫ t

0
||An(v)−A(v)||dv

]
. eMAt

≤MY

[∫ 1

0
||An(v)−A(v)||dv

]
. eMA −→ 0 as n→∞,

proving the result.
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