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Abstract: We consider a general k dimensional discounted in�nite server queues process
(alternatively, an Incurred But Not Reported (IBNR) claim process) where the multi-
variate inputs (claims) are given by a k dimensional �nite state Markov chain and the
arrivals follow a renewal process. After deriving a multidimensional integral equation for
the moment generating function jointly to the state of the input at time t given the initial
state of the input at time 0, asymptotic results for the �rst and second (matrix) moments
of the process are provided. In particular, when the interarrival or service times are expo-
nentially distributed, transient expressions for the �rst two moments are obtained. Also,
the moment generating function for the process with deterministic interarrival times is
considered to provide more explicit expressions. Finally, we demonstrate the potential
of the present model by showing how it allows us to study a semi-Markov modulated
in�nite queues process where the customers (claims) arrival and service (reporting delay)
times depend on the state of the process immediately before and on the switching times.

AMS 2000 subject classi�cations: Primary 60G50, 60K30, 62P05, 60K25.
Keywords and phrases: Queueing, Semi-Markovian multivariate discounted inputs,
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1. Introduction

It is an important task to study probability modeling of aggregate risk processes in various
areas such as actuarial science, queueing theory, and reliability theory. For instance, model-
ing aggregate losses is a fundamental and essential task in the insurance business since risk
premiums and reserves are calculated based on these quantities. In particular, the research on
aggregation of correlated risks (multivariate risks) is striving to develop techniques to estimate
the combined e�ect of di�erent types of risks on the �rm or system. Furthermore, it is essen-
tial to focus on those risks observed at di�erent times with each arrival adjusted by adding
a random delay which lead to study the multivariate discounted Incurred But Not Reported
(IBNR) claims in insurance and also the total number of customers in an in�nite server queue
with correlated batch arrivals. In the renewal arrival process, [13] provides explicit expressions
for the joint moments of multivariate aggregate discounted IBNR claims which are recursively
obtainable, and then [11] develop asymptotic approximation methods to study these joint
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moments and also provided some queueing theoretic applications, including the workload of
the queue and in�nite server queues in tandem.

The present paper considers the model which is an extension of the one given in [11]. In each
batch arrival the model consists of multivariate queues (claims) which are modeled by some
�nite Markov chain and a renewal process is assumed for the batch arrivals. The Markovian
assumption for a vector of queues (claims) enable us to study the in�nite server queue/IBNR
process in more realistic situations such that arrival times and service times are dependent on
the states of the external semi-Markovian process immediately before and on the switching
times, as will be illustrated later in Section 6. It is natural to model that the arrival process
and service time are modulated by some external process, in particular, when this process
impacts on the intensity of claim arrival processes and in turn, the types of service time. For
example, the number of multiple types of claims in catastrophe insurance varies depending on
the environmental condition and also it could lead to di�erent types of reporting/settlement
time delays.

To the best of our knowledge, there is no study of the current setting of the model (espe-
cially in the presence of a discounting factor) in the literature of queueing theory. Instead,
similar settings of the model such as Markov modulated in�nite server systems are found.
For example, in [4] the particle arrives according to a Poisson process and the Poisson arrival
rate and the distribution of service times are dependent on the state of an external Markov
process (background process). When the interarrival times in our model is exponential, the
one-dimensional case in Section 6 is similar to the one studied in [4]. In a system with multiple
in�nite-server queues, [8] consider that both the arrival rates and the parameter of the expo-
nentially distributed service times are modulated by a common background process. In [3], a
similar model but a single queue with a Poisson arrival is revisited to study the asymptotic
behavior of the number of customers in the system in the large-deviations regime. In some
papers, arrival and service rates in an in�nite server queue are governed by an external semi-
Markov process. See [5] and [7] for instance. [10] study M/M/∞ queue model modulated by
an external continuous-time Markov Chain.

The remainder of the paper is structured as follows: In Section 2, we provide the description
of the mathematical model. After deriving some general results on the (joint) moment gener-
ating function (mgf)/Laplace Transform (LT) and �rst two moments in Section 3, we show in
Section 4 that the limiting second order joint moments are explicitly available when the service
times are (potentially degenerated) exponentially distributed and the transient moments can
be obtained when the interarrivals are exponentially distributed. Some numerical illustrations
for the limiting behaviour of the �rst and second joint moments are provided at the end of
Section 4.1. Section 5 is concerned with the particular case of deterministic interarrivals, where
we show that the mgf has a simple expression as a matrix product (see Theorem 17). Appli-
cation to a model related to the queue/IBNR process is provided in Section 6. It is assumed
that the queue/IBNR process is modulated by an external semi-markovian process, such that
arrivals and service times depend on the state of the modulating process immediately before
and after it switches states.

2. Model description

Let {Nt, t ≥ 0} be a renewal process associated with a non decreasing sequence (Ti)i∈N with
T0 = 0, such that (Ti − Ti−1)i≥1 is independent and identically distributed (iid). Also let
τ = T1 with cumulative distribution function (cdf) F and LT Lτ (u) = E(e−uτ ) for u ≥ 0. We
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introduce a stationary ergodic �nite Markov chain (Xi)i∈N with a state space S = {0, . . . ,K}k
for some K ∈ N and k ∈ N∗ = N\{0}, so that Xi is for all i of the form Xi = (Xi1, . . . , Xik)
with Xij ∈ {0, . . . ,K} for j = 1, . . . , k. Then for δ ≥ 0, the discounted process {Z(t) =
Z(t; δ) ∈ Rk, t ≥ 0} is a vector of k processes Z(t) = (Z1(t), . . . , Zk(t)) with each process
de�ned as

Zj(t) =

Nt∑
i=1

Xije
−δ(Lij+Ti)1[t<Lij+Ti] =

∞∑
i=1

Xije
−δ(Lij+Ti)1[Ti≤t<Lij+Ti], (1)

where (Lij)i∈N,j=1,...,k is a sequence of independent random variables (rvs) such that (Li1, . . . , Lik)i∈N
is iid (although Li1,. . . ,Lik may have di�erent distributions). We set (L1, . . . , Lk) to be a
generic random vector distributed as the (Li1, . . . , Lik)'s, with each Li having a Laplace trans-
form denoted by LLi(u) = E(e−uLi) for u ≥ 0. As in [11], we let Z̃(t) = Z̃(t; δ) := eδtZ(t; δ).
The processes described in (1) are viewed as di�erent quantities of interest in the following
two areas. In actuarial science, when severities of the claims of di�erent types occurring due
to a common accident or catastrophe event and there are some time delays for insurers to hear
(or settle) these claims, Xij represents amounts of j-type of claim arriving at the ith event
and Xi is a vector of multivariate claims arriving in the same event. In this case, Zj(t) in (1)
is regarded as discounted IBNR amounts of j-type of claim by time t and Z(t) is a vector of
multivariate discounted IBNR claim processes of k types of claims. In queueing theory, and
especially when δ = 0, Xij represents the number of customers arriving in queue j ∈ {1, . . . , k}
at time Ti, each of those customers with same service time Lij . Hence, Xij and Lij will in what
follows be invariably referred to the claim/batch sizes and delay/service times respectively. In
particular, when δ = 0, this model is a generalisation of the Model II in [8] which considers
the case where τ is exponentially distributed, i.e. when the set of queues is modulated by a
common continuous-time Markov chain, as will be discussed in Section 4.
Notation. Let P = (p(x, x′))(x,x′)∈S2 and π = (π(x))x∈S (written as a row vector) be

respectively the transition matrix and stationary distribution of the Markov chain. We next
de�ne for all r ≥ 0 and s = (s1, . . . , sk) ∈ Rk,

π̃(s, r) := diag

E
exp


k∑
j=1

sjxje
−δ(Lj−r)1[Lj>r]


 , x = (x1, . . . , xk) ∈ S

 , (2)

Q̃(s, r) := π̃(s, r)P ′, (3)

where P ′ denotes the transpose of matrix P . We also introduce some notation in the following.
I is the identity matrix, 0 is a column vector with zeroes, and 1 is a column vector with 1's,
of appropriate dimensions. When a random variable (rv) X is exponentially distributed with
mean 1/β, it is denoted as X ∼ E(β). Also, we let the S × S diagonal matrices

∆i := diag [xi, x = (x1, . . . , xk) ∈ S] , i = 1, . . . , k, (4)

∆π := diag(π(x), x ∈ S).

The mgf of the process Z̃(t) = Z̃(t; δ) jointly to the state of XNt given the initial state of X0

is denoted by

ψ̃(s, t) = ψ̃(s, t; δ) :=
[
E
(
e<s,Z̃(t)>1[XNt=y]

∣∣∣X0 = x
)]

(x,y)∈S2
, t ≥ 0, (5)
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where < ·, · > denotes the scalar product on Rk. Note that s = (s1, ..., sk) is assumed to be
such that sj ∈ R for all j = 1, ..., k and such that (5) is well de�ned, i.e. the expectation is
�nite. De�nition (5) may in fact very well include the case where the sj 's are complex and
purely imaginary, in which case ψ̃(s, t) is the characteristic function of Z̃(t) jointly to XNt ;
this will particularly be the case in the proof of Theorem 17. Note also that X0 in (5) has
no direct physical interpretation here, as the claims sizes/customer batches are given by Xi,
i ≥ 1, and is rather introduced for technical purpose. We de�ne the �rst and second (matrix)
moments of Z̃(t) jointly to the state of the Markov chain XNt as

Mi(t) :=
[
E
(
Z̃i(t)1[XNt=y]

∣∣∣X0 = x
)]

(x,y)∈S2
, i = 1, . . . , k,

Mii′(t) :=
[
E
(
Z̃i(t)Z̃i′(t)1[XNt=y]

∣∣∣X0 = x
)]

(x,y)∈S2
, i, i′ = 1, . . . , k,

(6)

respectively. We remark that the mgf de�ned in (5) is di�erent from the one studied in [11]
which does not consider Markovian assumption for a vector Xi and joint structure with the
state XNt conditioning on the initial state X0.

We �nish this introductory section by giving some results of independent interest that will
be used in the rest of the paper. The following lemma is important for some computations on
Markov chains, and may be found in [6, Lemma 1]:

Lemma 1. Let (Sn)n∈N be a stationary Markov chain with a state space E, the transition

matrix P and (stationary) distribution π = (π(x))x∈E. For all functions f1,. . . ,fl+1 we have

E(f1(S1) · · · fl(Sl)) = 1′
l−2∏
i=0

Qfl−i
πf1 , (7)

where Qfi := diag(fi(z), z ∈ E)P ′ for i = 1, . . . , l, and πf1 := diag(f1(z), z ∈ E)π′. Here 1
represents a column vector with 1's, of appropriate dimension.

The following is a direct consequence of (7). Let ex (resp. ey) be the column vector of which
zth entry is δx(z) (resp. δy(z)). One has then for all x, y in E that

E(f1(S1) · · · fl(Sl)1[Sl=y]| S1 = x) = e′y

l−2∏
i=0

Qfl−i
diag(f1(z), z ∈ E)ex,

which, because it is a scalar, is equal to its transpose, i.e.

E(f1(S1) · · · fl(Sl)1[Sl=y]| S1 = x) = e′xdiag(f1(z), z ∈ E)

l∏
i=2

Q′fiey,

which immediately implies the following corollary.

Corollary 2. Under the same notation as in Lemma 1, one has the matrix equality

[
E(f1(S1) · · · fl(Sl)1[Sl=y]| S1 = x)

]
(x,y)∈E2 = diag(f1(z), z ∈ E)

l∏
i=2

Q′fi .
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3. General results

3.1. The Laplace transform

The aim of this subsection is to establish some properties veri�ed by the mgf ψ̃(s, t) in (5).

Proposition 3. The mgf of Z̃(t) de�ned by (5) satis�es

ψ̃(s, t) = E

(
Nt∏
i=1

Q̃(s, t− Ti)′
)

= F̄ (t)I + E

(
1[Nt>0]

Nt∏
i=1

Q̃(s, t− Ti)′
)

(8)

for all s ∈ Rk, t ≥ 0, with the usual convention
∏Nt
i=1 Q̃(s, t − Ti)′ = I if Nt = 0. Besides, it

satis�es the following multidimensional integral equation:

ψ̃(s, t) = F̄ (t)I +

∫ t

0
Q̃(s, t− y)′ψ̃(s, t− y)dF (y), ∀s ∈ Rk, t ≥ 0. (9)

Proof. Decomposing according to Nt = 0 and Nt > 0 yields that

ψ̃(s, t) = [P(X0 = y|X0 = x)P(Nt = 0)](x,y)∈S2+
[
E
(
e<s,Z̃(t)>1[XNt=y]

1[Nt>0]

∣∣∣X0 = x
)]

(x,y)∈S2
.

(10)
Note that P(X0 = y|X0 = x)P(Nt = 0) = δx,yF̄ (t) where δx,y is the Kronecker symbol, equal
to 1 i� x = y and 0 else, so that the �rst term on the right-hand side of (10) is given by the
the �rst term on the right-hand side of (8). We turn to the second term on the right-hand
side of (10). Let us de�ne F = σ(Ti, i ≥ 0) as well as the set of rvs

st(x, y) := E
(
e<s,Z̃(t)>1[XNt=y]

1[Nt>0]

∣∣∣X0 = x, F
)
, x, y ∈ S,

where s = (s1, . . . , sk) ∈ Rk is �xed throughout the proof. Using Z̃(t) = eδtZ(t; δ) and (1),
one obtains

st(x, y) = E

1[Nt>0]

Nt∏
i=1

exp


k∑
j=1

sjXije
−δ(Lij−(t−Ti))1[Lij>t−Ti]

1[XNt=y]

∣∣∣∣∣∣X0 = x, F

 .

(11)
In order to compute st(x, y), we use the fact that the Markov chain (Xi)i∈N is independent
from F and (Lij)i∈N,j=1,...,k. Hence identifying l = Nt + 1, Si := Xi−1, f(S1) = f(X0) =

1 and fi(Si) = fi(Xi−1) := exp
{∑k

j=1 sjXi−1,je
−δ(L(i−1),j−(t−Ti−1))1[Li−1,j>t−Ti−1]

}
for i =

2, . . . , Nt + 1, in Corollary 2 yields from (11) that

[st(x, y)](x,y)∈S2 = 1[Nt>0] I.

Nt+1∏
i=2

Q̃(s, t− Ti−1)′ = 1[Nt>0]

Nt∏
i=1

Q̃(s, t− Ti)′,

where we recall that I is the identity matrix and Q̃(., .) is de�ned in (3). Since E
(

[st(x, y)](x,y)∈S2
)

is the second term in the right-hand side of (10), one thus obtains (8).
Finally, (9) is obtained by considering again [Nt = 0] ⇐⇒ [T1 > t] and [Nt > 0] ⇐⇒

[T1 ≤ t] and conditioning with respect to T1.
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It is known that a multidimensional integral equation such as (9) cannot be solved in general.
One particular case is when arrivals occur according to a Poisson process, in which case one
has the following result.

Proposition 4. If τ ∼ E(λ) for λ > 0, then ψ̃(s, t) is the unique solution to the �rst order

linear (matrix) di�erential equation

∂tψ̃(s, t) = [−λI + λQ̃(s, t)′]ψ̃(s, t) = [λ(P − I) + λP (π̃(s, t)− I)]ψ̃(s, t) (12)

with the initial condition ψ̃(s, 0) = I from (8).

Note that, even though (12) admits a unique solution, ψ̃(s, t) is not explicit except in
particular cases e.g. when P = I, i.e. when there is not Markov interference in the model,
as indeed in that case the di�erential equation (12) can be solved componentwise. Also note
that a similar di�erential equation was obtained when δ = 0 in [9, Theorem 3.1] for the joint
generating function, when interarrival is Matrix exponential distributed.

Proof. Setting dF (y) = λe−λydy and F̄ (t) = e−λt in (9) and di�erentiating with respect to t
yields (12).

3.2. The �rst and second moments

We are now interested in the �rst two moments de�ned in (6). It is standard that Mi(t) and
Mii′(t) are linked to ψ̃(s, t) by

Mi(t) = ∂siψ̃(s, t)
∣∣∣
s=0

, Mii′(t) = ∂si∂si′ ψ̃(s, t)
∣∣∣
s=0

, i, i′ = 1, . . . , k.

It requires to di�erentiate π̃(s, r) with respect to si or si and si′ followed by putting s = 0.
One obtains

∂si π̃(s, r)|s=0 = E
(
e−δ(Li−r)1[Li>r]

)
∆i, (13)

∂si′∂si π̃(s, r)
∣∣
s=0

= E
(
e−δ(Li−r)1[Li>r]e

−δ(Li′−r)1[Li′>r]

)
∆i∆i′ . (14)

Moreover, one also needs to compute ψ̃(0, r), namely from (8)

ψ̃(0, r) = E

(
Nr∏
i=1

Q̃(0, r − Ti)′
)

= E
(
PNr

)
, r ≥ 0, (15)

as indeed Q̃(0, r) = P ′, again with the convention P 0 = I. We then need to introduce the
following notation for all i, i′ = 1, . . . , k:

bi(t) :=

∫ t

0

[
∂si π̃(s, t− y)|s=0

]
Pψ̃(0, t− y)dF (y), (16)

bii′(t) :=

∫ t

0

[
∂si′∂si π̃(s, t− y)

∣∣
s=0

]
Pψ̃(0, t− y)dF (y)

+

∫ t

0

[
∂si π̃(s, t− y)|s=0

]
PMi′(t− y)dF (y) +

∫ t

0

[
∂si′ π̃(s, t− y)

∣∣
s=0

]
PMi(t− y)dF (y),

(17)
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where ∂si π̃(s, t− y)|s=0, ∂si′∂si π̃(s, t− y)
∣∣
s=0

, ∂si′∂si π̃(s, t− y)
∣∣
s=0

and ψ̃(0, t− y) are given
by (13), (14) and (15). Note that bi(t) is not here explicit since (15) does not in general have a
closed form expression, and so is bii′(t). We may then obtain general results concerning Mi(t)
andMii′(t). Following the notation in [2, Section 2], we de�ne, for a N×N dimensional matrix
of non decreasing right continuous functions (t 7→ Fij(t))i,j=1,...,N and a N × N dimensional
matrix of bounded measurable functions (t 7→ Hij(t))i,j=1,...,N the convolution t 7→ F ?H(t) =
(F ? H)i,j=1,...,N (t) by

(F ? H)i,j(t) :=
N∑
h=1

∫ t

0
Hhj(t− u)dFih(u) i, j = 1, . . . , N, t ≥ 0.

Then, di�erentiating (9) with respect to si or si and si′ followed by putting s = 0 results in
the following result.

Proposition 5. For i, i′ = 1, . . . , k, Mi(t) and Mii′(t) satisfy the following multidimensional

renewal equations

Mi(t) = bi(t) + (PF ) ? Mi(t), t ≥ 0, (18)

Mii′(t) = bii′(t) + (PF ) ? Mii′(t), t ≥ 0, (19)

where (PF )(t) := (p(x, y)F (t))(x,y)∈S2, and bi(t) and bii′(t) are given by (16) and (17).

Although the solution to (9) does not have a closed form expression, it turns out that
(16) and (17) have solutions which can be expressed in terms of a multidimensional renewal
function. Indeed, since interarrival times satisfy τ > 0 a.s., one has that (PF )(0) is the zero
matrix, of which largest eigenvalue is thus 0. [2, Lemma 2.1] entails that

Mi(t) = U ? bi(t), Mii′(t) = U ? bii′(t), t ≥ 0, (20)

where U(t) is the renewal function de�ned by U(t) :=
∑∞

n=0(PF )?(n)(t), an S × S matrix,
see [2, De�nition (2.3)]. At this point, solutions (20) are still not satisfactory because neither
U(t) nor bi(t) and bii′(t) are explicit. Some general results on the limiting behaviour of Mi(t)
and Mii′(t) can be obtained and are given in the following result.

Lemma 6. Let us suppose that τ is non lattice, then one has the following

Mi(t) −→
1

E(τ)
1π

∫ ∞
0

bi(t)dt, t→∞, i = 1, . . . , k, (21)

Mii′(t) −→
1

E(τ)
1π

∫ ∞
0

bii′(t)dt, t→∞, i, i′ = 1, . . . , k. (22)

Proof. Since (PF )(∞) = P has a spectral radius equal to 1 and has (row vector) π and 1
(column vector) as left and right eigenvectors associated to the eigenvalue 1, renewal equation
(18) satis�ed by Mi(t) and [2, Theorem 2.2 (iii)] yield (21). The same method applied to the
renewal equation (19) satis�ed by Mii′(t) yields (22).

Note that the limit in (21) is not clearly available because integrating bi(t) requires an
explicit expression for E(PNr) (see (16) with ψ̃(0, t − y) given by (15)). Likewise, the limit
in (22) is not explicit either as it requires analytic expressions for Mi(t) and Mi′(t) in (17).
However, the limiting �rst moment is explicitly shown below:
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Proposition 7. Assuming that τ is non lattice, the expectation Mi(t)1 = [E(Z̃i(t)| X1 =
x)]′x∈S asymptotically behaves as

Mi(t)1 −→
E(Xi)

E(τ)

[
1− LLi(δ)

δ

]
1, t→∞, i = 1, . . . , k. (23)

Proof. Let us prove that one obtains (23) by post multiplying (21) by 1. First note that, as
P1 = 1, bi(t)1 reduces thanks to (16), (13) and (15) to

bi(t)1 =

∫ t

0
E
(
e−δ(Li−(t−y))1[Li>t−y]

)
∆i.PE

(
PNt−y

)
1dF (y)

=

∫ t

0
E
(
e−δ(Li−(t−y))1[Li>t−y]

)
dF (y). ∆i1

= E
(
e−δ(Li−(t−τ))1[0≤t−τ<Li]

)
∆i1. (24)

In order to compute
∫∞
0 bi(t)1dt, one then calculates∫ ∞

0
E
(
e−δ(Li−(t−τ))1[Li>t−τ≥0]

)
dt =

∫ ∞
0

E
(
e−δ(Li−(t−τ))1[τ≤t<Li+τ ]

)
dt

= E
(∫ Li+τ

τ
e−δ(Li−(t−τ))dt

)
= E

(
1

δ

[
1− e−δLi

])
=

1− LLi(δ)

δ
,

so that one obtains from (24) and (21) that, as t→∞,

Mi(t)1 −→
1

E(τ)
1π

∫ ∞
0

bi(t)1dt =
1

E(τ)

[
1− LLi(δ)

δ

]
1π ∆i1.

One checks easily that π ∆i 1 = E(Xi) where ∆i is given in (4), yielding (23).

3.3. The workload

We now turn to the workload of the queues jointly to the state of XNt . Following [11, Section
5.2], we recall that the workload for each queue i = 1, . . . , k is de�ned as

Di(t) :=

Nt∑
j=1

(Tj + Lij − t)1[t<Tj+Lij ], t ≥ 0.

and that one has for all t ≥ 0 and i = 1, . . . , k

Di(t) = − ∂

∂δ
Z̃(t; δ)

∣∣∣∣
δ=0

.

Here we de�ne the joint expectation of the workload and the state of XNt given the initial
state of X0 as

Wi(t) :=
[
E
(
Di(t)1[XNt=y]

∣∣∣X0 = x
)]

(x,y)∈S2
(25)

= − ∂

∂δ
Mi(t)

∣∣∣∣
δ=0

=

[
− ∂

∂δ

[
∂siψ̃(s, t; δ)

]
s=0

]
δ=0

.
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The following results the analogs of Proposition 5, Lemma 6 and Proposition 7. First, let us
de�ne and compute

`i(t) :=

∫ t

0

[
− ∂

∂δ
[∂si π̃(s, t− y)]s=0

]
δ=0

Pψ̃(0, t− y)dF (y), (26)

where it follows from (13) that[
− ∂

∂δ
[∂si π̃(s, r)]s=0

]
δ=0

= E
(
(Li − r)1[Li>r]

)
∆i. (27)

Consequently, the following proposition is provided.

Proposition 8. The joint expectation of the workload and the state of Markov chain at Nt

satis�es

Wi(t) = `i(t) + (PF ) ? Wi(t), t ≥ 0, (28)

of which asymptotic expression is given by

Wi(t) −→
1

E(τ)
1π

∫ ∞
0

`i(t)dt, t→∞, i = 1, . . . , k. (29)

Moreover, the asymptotic expected workload Wi(t)1 = [E (Di(t)|X0 = x)]′x∈S is given by

Wi(t)1 −→
[
E(L2

i )

2E(τ)
+

E(τ2)

2E(τ)
+ E(Li)

]
E(Xi)1, t→∞, i = 1, . . . , k. (30)

Proof. Since the proof of (28) and (29) is analogous to the one of (18) and (21), our focus is
on (30). As in the proof of Proposition 7 similar to (24), using P1 = 1 one �nds

`i(t)1 = E
(
(Li + τ − t)1[Li+τ>t]

)
∆i1,

with
∫∞
0 E

(
(Li + τ − t)1[Li+τ>t]

)
dt = E

(∫ Li+τ
0 (Li + τ − t)dt

)
= E

(
(Li + τ)2/2

)
. Using in-

dependence of Li and τ in the last expectation as well as π ∆i 1 = E(Xi) yields (30) by post
multiplying (29) by 1.

4. Special cases

The results given in Proposition 3, Lemma 6 and Proposition 8 hold under general assumptions
on the service times (Lj) and interarrival times (τ). We present here some particular cases
where those results are more explicitly obtainable with a speci�c distributional assumption for
Lj or τ . Namely, as is customary when studying in�nite server queues, one expects reasonably
to obtain more information when one of those two rvs are exponentially distributed, see [12,
Chapter 3].

4.1. Exponentially distributed service times

First, it is assumed that service time Lj for class j customer or claim is exponentially dis-
tributed with parameter µj > 0. To provide explicit expressions for the limits of Mi(t), Mii′(t)
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andWi(t) as t→∞ in (21), (22) and (29), we de�ne the Laplace transforms for ψ̃(s, t),Mi(t),
and bi(t) by

ψ̂(s, h) =

∫ ∞
0

ψ̃(s, t)e−htdt, s ∈ Rk,

M̂i(h) =

∫ ∞
0

Mi(t)e
−htdt,

b̂i(h) =

∫ ∞
0

bi(t)e
−htdt, (31)

respectively for all h > 0. Next, some relations between the above quantities are �rst given.

Proposition 9. The Laplace transforms verify for all h > 0

ψ̂(0, h) =
1− Lτ (h)

h
(I − Lτ (h)P )−1 , (32)

M̂i(h) = (I − Lτ (h)P )−1 b̂i(h), i = 1, . . . , k. (33)

Proof. Recalling that π̃(0, r) = I from (2), (9) with s = 0 becomes the renewal equation

ψ̃(0, t) = F̄ (t)I + (PF ) ? ψ̃(0, .)(t),

which, upon taking Laplace transforms, yields

ψ̂(0, h) =
1− Lτ (h)

h
I + PLτ (h)ψ̂(0, h).

Then (32) is obtained by noting that, since Lτ (h) < 1 and P is a stochastic matrix, the
matrix Lτ (h)P has spectral radius less than 1 hence I − Lτ (h)P is invertible. Similarly, (33)
is obtained by taking Laplace transforms in renewal equation (18).

Theorem 10. The asymptotic result for the �rst moment jointly to the state of XNt in (21)
can be precisely expressed as

Mi(t) −→
µi

(µi + δ)2

[
1− Lτ (µi + δ)

E(τ)

]
1π∆iP (I − Lτ (µi + δ)P )−1 (34)

as t→∞.

Proof. When Li ∼ E(µi), one computes

E
(
e−δ(Li−r)1[Li>r]

)
=

µi
µi + δ

e−(µi+δ)r, r ≥ 0, (35)

so that one has (16) from (13) and (32) that

bi(t) =
µi

µi + δ
∆iP

∫ t

0
e−(µi+δ)(t−y)ψ̃(0, t− y)dF (y)

=
µi

µi + δ
∆iP E

[
e−(µi+δ)(t−τ)ψ̃(0, t− τ)1[t≥τ ]

]
. (36)
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The right-hand side of (21) is thus computed as

1

E(τ)
1π

∫ ∞
0

bi(t)dt

=
1

E(τ)
1π

µi
µi + δ

∆iP

∫ ∞
0

E
[
e−(µi+δ)(t−τ)ψ̃(0, t− τ)1[t≥τ ]

]
dt

=
1

E(τ)
1π

µi
µi + δ

∆iP E
[∫ ∞

τ
e−(µi+δ)(t−τ)ψ̃(0, t− τ)dt

]
=

1

E(τ)
1π

µi
µi + δ

∆iP ψ̂(0, µi + δ),

and in turn, (34) is obtained thanks to (32).

Let us note that the previous proof enables us to similarly obtain the expression of b̂i(h)
de�ned in (31) thanks to (36) as follows

b̂i(h) =
µi

µi + δ
∆iP

∫ ∞
0

e−htE
[
e−(µi+δ)(t−τ)ψ̃(0, t− τ)1[t≥τ ]

]
dt

=
µi

µi + δ
∆iP E

[∫ ∞
τ

e−h(t−τ)e−(µi+δ)(t−τ)ψ̃(0, t− τ)dt .e−hτ
]

=
µi

µi + δ
∆iP ψ̂(0, µi + δ + h).Lτ (h), h > 0. (37)

Theorem 11. The asymptotic result for the second moment jointly to the state of XNt in

(22) can be precisely expressed as

Mii′(t) −→
1

E(τ)

(
µi

µi + δ

)(
µi′

µi′ + δ

)[
1− Lτ (µi + µi′ + 2δ)

µi + µi′ + 2δ

]
.1π
{

∆i∆i′ + Lτ (µi + δ) ∆iP (I − Lτ (µi + δ)P )−1 ∆i′

+ Lτ (µi′ + δ) ∆i′P (I − Lτ (µi′ + δ)P )−1 ∆i

}
P (I − Lτ (µi′ + µi + 2δ)P )−1 (38)

as t→∞, when i, i′ = 1, . . . , k, i 6= i′, and

Mii(t) −→
1

E(τ)

(
µi

µi + 2δ

)[
1− Lτ (µi + 2δ)

µi + 2δ

]
1π∆2

iP (I − Lτ (µi + 2δ)P )−1

+
2Lτ (µi + δ)

E(τ)

1− Lτ (2µi + 2δ)

2µi + 2δ

(
µi

µi + δ

)2

1π∆iP (I − Lτ (µi + δ)P )−1

.∆iP (I − Lτ (2µi + 2δ)P )−1 (39)

as t→∞, when i = 1, . . . , k. We remark that (38) and (39) still hold when µi or µi′ is in�nite,
i.e. when the corresponding delays Li or Li′ are 0.

Proof. One �rst computes that

E
(
e−δ(Li−r)1[Li>r]e

−δ(Li′−r)1[Li′>r]

)
=

{
µi
µi+δ

µi′
µi′+δ

e−(µi+δ)re−(µi′+δ)r if i 6= i′,
µi

µi+2δe
−(µi+2δ)r if i = i′

(40)



L.Rabehasaina and J.-K.Woo/IBNR process with semi-Markovian multivariate input 12

for r ≥ 0. To evaluate the integral in (22) with (17), we thus need to compute the following
integrals: ∫ ∞

0

∫ t

0
∂si′∂si π̃(s, t− y)

∣∣
s=0

Pψ̃(0, t− y)dF (y), (41)∫ ∞
0

∫ t

0
∂si π̃(s, t− y)|s=0 PMi′(t− y)dF (y), (42)

for i, i′ = 1, . . . , k. When i 6= i′, using (14) with (40) followed by applying (32), (41) may be
expressed as(

µi
µi + δ

)(
µi′

µi′ + δ

)
∆i∆i′P

∫ ∞
0

E
[
e−(µi+µi′+2δ)(t−τ)ψ̃(0, t− τ)1[t≥τ ]

]
dt

=

(
µi

µi + δ

)(
µi′

µi′ + δ

)
∆i∆i′P ψ̂(0, µi + µi′ + 2δ)

=

(
µi

µi + δ

)(
µi′

µi′ + δ

)[
1− Lτ (µi + µi′ + 2δ)

µi + µi′ + 2δ

]
∆i∆i′P (I − Lτ (µi + µi′ + 2δ)P )−1 .

(43)

When i = i′, similar computation yields that (41) is expressed as(
µi

µi + 2δ

)[
1− Lτ (µi + 2δ)

µi + 2δ

]
∆2
iP (I − Lτ (µi + 2δ)P )−1 , (44)

where ∆2
i = diag

[
x2i , x = (x1, . . . , xk) ∈ S

]
for i = 1, . . . , k. Turning to (42), replacing (13)

with (35) followed by using (33) and (37) with (32) yields

µi
µi + δ

∆iP

∫ ∞
0

E
[
e−(µi+δ)(t−τ)Mi′(t− τ)1[t≥τ ]

]
dt =

µi
µi + δ

∆iP M̂i′(µi + δ)

=
µi

µi + δ
∆iP (I − Lτ (µi + δ)P )−1 b̂i′(µi + δ)

= Lτ (µi + δ)
µi

µi + δ

µi′

µi′ + δ
∆iP (I − Lτ (µi + δ)P )−1 ∆i′P ψ̂(0, µi′ + µi + 2δ)

= Lτ (µi + δ)
1− Lτ (µi′ + µi + 2δ)

µi′ + µi + 2δ

µi
µi + δ

µi′

µi′ + δ
∆iP

. (I − Lτ (µi + δ)P )−1 ∆i′P (I − Lτ (µi′ + µi + 2δ)P )−1 . (45)

Then, gathering expressions (43) and (45) for (41) and (42) yields (38). Also, (39) is obtained
with the help of (44) and (45).

Theorem 12. The asymptotic result for the expectation of the workload jointly to the state of

XNt in (29) can be precisely expressed as

Wi(t) −→
1

µ2i

[
1− Lτ (µi)

E(τ)

]
1π∆iP (I − Lτ (µi)P )−1 , t→∞. (46)

Proof. When Li ∼ E(µi), one straightforward veri�es that E((Li − r)1[Li>r]) = e−µir/µi.
Hence One has from (26) and (27) that

`i(t) =
1

µi
∆i P E

(
e−µi(t−τ)ψ̃(0, t− τ)1[t≥τ ]

)
,



L.Rabehasaina and J.-K.Woo/IBNR process with semi-Markovian multivariate input 13

from which the computation of 1
E(τ)1π

∫∞
0 `i(t)dt in (29) is led similarly to that of 1

E(τ)1π
∫∞
0 bi(t)dt

in Theorem 10. Hence, the result (46) follows by using (32).

Example 13. This example illustrates numerically convergences of (34) and (39) for the �rst
and second joint moments. This was done by simulating (Z(t), XNt) in (1) for large t = 100 and
estimating the left-hand side of (34) and (39) thanks to the Law of Large Numbers (Monte
Carlo) through n = 500 iterations. The right-hand side of (34) and (39) were computed
explicitly by considering for the interarrival τ a Gamma distribution with shape a and rate b
with the LT Lτ (u) = 1

(1+u/b)a and E(τ) = a
b . We consider two cases of (a, b) choosing (1, 10)

(i.e. τ ∼ E(10)), so that E(τ) = 0.1, and (0.75, 15) with E(τ) = 0.05. Suppose that k = 1,
i.e. a one dimensional process {Z(t), t ≥ 0} and a Markov chain (Xi)i∈N with state space

{0, 1} (i.e. K = 1). Assume that the transition matrix given by P =

(
0.25 0.75
0.5 0.5

)
and

the stationary distribution π = (0.4, 0.6). All simulations and computations were done with
Scilab. We �nally suppose that all delays have same distribution L ∼ E(1).

(a, b) = (1, 10) (a, b) = (0.75, 15)

Exact

(
2.44 3.56
2.44 3.56

) (
4.85 7.15
4.85 7.15

)
Monte Carlo

(
2.50 3.53
2.12 3.85

) (
4.94 7.17
4.24 7.68

)
Table 1

First order joint moments M1(t)

(a, b) = (1, 10) (a, b) = (0.75, 15)

Exact

(
17.16 24.40
17.16 24.40

) (
63.60 92.65
63.60 92.65

)
Monte Carlo

(
18.09 24.65
16.36 25.69

) (
60.22 97.50
60.30 90.90

)
Table 2

Second order joint moments M11(t)

Both tables above illustrate quite nicely how (34) and (39) are calculated. Also note that
this simple example gives us some idea of potential applications of the model. For example, it
would be interesting to utilize the model for an insurance company facing a situation where
claims occurring at time Ti are either immediately reported when Xi = 0 or reported with
delay Li when Xi = 1. From P , some interesting feature appears as if a claim is not reported
(resp. reported) at time Ti then the next one is reported (resp. not reported) at time Ti+1

with probability 0.5 (resp. with probability 0.75). This model could re�ect the policyholder's
certain type of behaviour, e.g. after immediately reporting a claim at time Ti, the policyholder
prefers to delay reporting of the next claim at time Li+1 +Ti+1 with probability 0.75 to avoid
the increase of premium when the policyholder renews the insurance. On the other hand, it
can also explain the opposite situation with a di�erent transition matrix P . For example, a
worker understands that if the reporting delay of workplace injury is longer, then it is harder
to prove the injury is work related under the workers compensation claim. In this case, the
transition probability from Xi = 0 to Xi+1 = 1 is much lower, that is, the policyholder prefers
to report the claim immediately. Furthermore, from a queueing point of view, the numerical
model described here explains some in�nite server queue system where, if an arriving customer
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is not admitted in the queue at time Ti (i.e. Xi = 0) then the next one arriving at time Ti+1

is accepted with high probability 0.75; this is especially interesting in a congestion regulation
context, where one may choose to accept incoming customers more easily when the previous
ones were rejected with high probability.

4.2. Exponentially distributed interarrival times

We now suppose in this subsection that τ ∼ E(λ), i.e. that arrivals occur according to a Poisson
process with intensity λ > 0. From Proposition 4, it has been shown that the transient mgf
ψ̃(s, t) is the unique solution to an ordinary di�erential equation. Under this Poisson arrival
setting, we shall derive closed-form expressions for the the transient behavior of the �rst,
second orders moments as well as the expectation of the workload. To begin, a closed form
expression for bi(t) in (16) is obtained. In this case, one �nds that (15) becomes

ψ̃(0, r) = E
(
PNr

)
= eλr(P−I), r > 0, (47)

whence bi(t) in (16) with (13) may be expressed as

bi(t) = ∆i

∫ t

0
E
(
e−δ(Li−(t−y))1[Li>t−y]

)
Peλ(t−y)(P−I)λe−λydy

= ∆ie
−λt
∫ t

0
E
(
e−δ(Li−y)1[Li>y]

)
PeλyPdy.

Furthermore, one checks easily that for all t ≥ 0

b′i(t) + λbi(t) = λE
(
e−δ(Li−t)1[Li>t]

)
∆iPe

λt(P−I). (48)

Theorem 14. One has the exact expression for the �rst joint moment given by

Mi(t) = λeλt(P−I)
∫ t

0
E
(
e−δ(Li−v)1[Li>v]

)
e−λv(P−I)∆iPe

λv(P−I)dv, t ≥ 0. (49)

Proof. We aim at obtaining a di�erential equation satis�ed by Mi(t). Remember from (18)
that it satis�es the renewal matrix equation, with dF (y) = λe−λydy as well as a change of
variable t− y := y,

Mi(t) = bi(t) + P

∫ t

0
Mi(t− y)λe−λydy = bi(t) + e−λtP

∫ t

0
Mi(y)λeλydy,

which, upon di�erentiation, and thanks to (48), leads to the matrix �rst order di�erential
equation

M ′i(t) = b′i(t) + λbi(t)− λMi(t) + λPMi(t)

= λE
(
e−δ(Li−t)1[Li>t]

)
∆iPe

λt(P−I) + λ(P − I)Mi(t) (50)

with initial condition Mi(0) = 0. The solution to (50) is given by (49).
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Next, using (47), (17) with (13) and (14) in this case is given by

bii′(t) = ∆i∆i′

∫ t

0
E
(
e−δ(Li−(t−y))1[Li>t−y]e

−δ(Li′−(t−y))1[Li′>t−y]

)
Peλ(t−y)(P−I)λe−λydy

+∆i

∫ t

0
E
(
e−δ(Li−(t−y))1[Li>t−y]

)
PMi′(t− y)λe−λydy

+∆i′

∫ t

0
E
(
e−δ(Li′−(t−y))1[Li′>t−y]

)
PMi(t− y)λe−λydy,

and thus one �nds the following relation

b′ii′(t) + λbii′(t) = λE
(
e−δ(Li−t)1[Li>t]e

−δ(Li′−t)1[Li′>t]

)
∆i∆i′Pe

λt(P−I)

+ λE
(
e−δ(Li−t)1[Li>t]

)
∆iPMi′(t) + λE

(
e−δ(Li′−t)1[Li′>t]

)
∆i′PMi(t), (51)

where Mi(t) is given in (49).

Theorem 15. One has the exact expression for the second moment given by

Mii′(t) = λeλt(P−I)
∫ t

0
e−λv(P−I)

{
E
(
e−δ(Li−v)1[Li>v]e

−δ(Li′−v)1[Li′>v]

)
∆i∆i′Pe

λv(P−I)

+E
(
e−δ(Li−v))1[Li>v]

)
∆iPMi′(v) + E

(
e−δ(Li′−v))1[Li′>v]

)
∆i′PMi(v)

}
dv, t ≥ 0, (52)

for i, i′ = 1, . . . , k, where Mi(v) and Mi′(v) are given by (49) in Theorem 14.

Let us note that the structure of the expression of Mii′(t) is di�erent according to whether
i = i′ or i 6= i′, as E

(
e−δ(Li−v)1[Li>v]e

−δ(Li′−v)1[Li′>v]

)
is equal to E

(
e−2δ(Li−v)1[Li>v]

)
if

i = i′, or E
(
e−δ(Li−v)1[Li>v]

)
E
(
e−δ(Li′−v)1[Li′>v]

)
when i 6= i′, by independence.

Proof. Similar to the proof of Theorem 14, we write the renewal equation (19) satis�ed by
Mii′(t) as Mii′(t) = bii′(t) + P

∫ t
0 Mii′(t − y)λe−λydy, t ≥ 0. The same �rst order di�erential

equation analysis with the expression of b′ii′(t) + λbii′(t) given in (51) yields thus the explicit
expression (52).

Finally, the transient workload has the same structure as the �rst moment, and the following
result is given without proof:

Theorem 16. One has the exact expression for the expectation of the workload given by

Wi(t) = λeλt(P−I)
∫ t

0
E
(
(Li − v)1[Li>v]

)
e−λv(P−I)∆iPe

λv(P−I)dv, t ≥ 0, i = 1, . . . , k.

5. Moment generating function for deterministic interarrival times

So far, it has been shown that the (transient or limiting) distribution of process Z̃(t) is hard to
study explicitly in general, except for the Poisson arrivals. Hence we shall consider a speci�c
distribution for the interarrival times being deterministic, and equal to 1 without loss of
generality to obtain some results on the mgf ψ̃(s, t).
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Theorem 17. Suppose that τ = 1 a.s., then Z̃(t) = Z̃(t; δ) has a closed form expressions for

the mgf given by

ψ̃(s, t) = ψ̃(s, t; δ) =

[
t−1∏
m=0

Q̃(s,m)

]′
=

t∏
m=1

Q̃(s, t−m)′, t ∈ N, (53)

where π̃(s, t) and Q̃(s, t) are given in (2) and (3) respectively. Besides, when E(Lj) is �nite for
all j = 1, . . . , k then limt→∞

∏t
m=0 Q̃(s,m) =

∏∞
m=0 Q̃(s,m) exists, and (Z̃(t), XNt) converges

in distribution as t→∞ given X0 = x towards (Z∞,X x∞) ∈ Rk × S with joint mgf given by

ψ̃∞(s) = ψ̃∞(s; δ) =
[
E
(
e<s,Z∞>1[Xx

∞=y]

)]
(x,y)∈S2 =

[ ∞∏
m=0

Q̃(s,m)

]′
, s ∈ Rk. (54)

Proof. Since Tm = m ∈ N and Nt = t ∈ N, (53) is a straightforward application of (8) in
Proposition 3.

Remember that we mentioned shortly after De�nition (5) that s = (s1, ..., sk) may belong to
the set S := {(s1, ..., sk) ∈ Ck| sj ∈ iR, j = 1, ..., k}, in which case ψ̃(s, t) is the characteristic
function of Z̃(t) jointly to XNt . Then, in order to prove the convergence in distribution of
(Z̃(t), XNt) given X0 = x, it su�ces by Lévy's convergence theorem to prove that ψ̃(s, t) in
(53) converges towards ψ̃∞(s) given in (54) for all s ∈ S and that ψ̃∞(s) is continuous at s = 0.
This part constitutes the main bulk of the proof of the theorem. Let ||.|| be a submultiplicative
norm on S × S matrices, i.e. such that ||MN || ≤ ||M ||.||N || for all matrices M and N . We
write from (3) that

Q̃(s,m) = P ′ + (π̃(s,m)− I)P ′.

To apply the result given in [1], we �rst introduce the two following norms de�ned respectively
on complex valued and matrices valued sequences (de�ned similarly as in [1])

|(um)m∈N|E :=

∞∑
m=0

|um|, ||(Mm)m∈N||E =

∞∑
m=0

||Mm||,

where um ∈ R and Mm is an S × S matrix for all m ∈ N. Let us set Am = Am(s) :=
(π̃(s,m)− I)P ′ (so as to comply with the notation of the latter paper). Since (P ′)m converges
towards (1π)′ as m→∞, from [1, Theorem 2.1] it is su�cient to prove that ||(Am)m∈N||E =∑∞

m=0 ||Am|| < +∞ for the existence of
∏∞
m=0 Q̃(s,m). One has

||Am|| ≤ ||π̃(s,m)− I||.||P ′|| (55)

with π̃(s,m)− I a diagonal matrix of which the (x, x)th component, x ∈ S, is given from (2)

by E
(

exp
(∑k

j=1 sjxje
−δ(Lj−m)

1[Lj>m]

))
− 1. Using the inequality |eu − 1| ≤ e|u| − 1 for all

u ∈ C, and remembering that xj ∈ {0, . . . ,K} is non negative for all j = 1, . . . , k, one �nds
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for all m ∈ N that∣∣∣∣∣∣E
exp

 k∑
j=1

sjxje
−δ(Lj−m)

1[Lj>m]

− 1

∣∣∣∣∣∣ ≤ E

∣∣∣∣∣∣exp

 k∑
j=1

sjxje
−δ(Lj−m)

1[Lj>m]

− 1

∣∣∣∣∣∣


≤ E

exp

∣∣∣∣∣∣
k∑
j=1

sjxje
−δ(Lj−m)

1[Lj>m]

∣∣∣∣∣∣
− 1


≤ E

exp

 k∑
j=1

|sj |xj1[Lj>m]

− 1

=
k∏
j=1

[
1 + (e|sj |xj − 1)P(Lj > m)

]
− 1

=
∑

I⊂{1,...,k}

∏
`∈I

[
(e|s`|x` − 1)P(L` > m)

]
, (56)

where the independence of L1, ..., Lk was used. Note now that for all I ⊂ {1, . . . , k},

∞∑
m=1

∏
`∈I

[
(e|s`|x` − 1)P(L` > m)

]
≤
(
emax(|s1|,...,|sk|).K − 1

)k ∞∑
m=1

∏
`∈I

P(L` > m)

=
(
emax(|s1|,...,|sk|).K − 1

)k
E
(

max
`∈I

L`

)
,

which is �nite thanks to the assumption that E(Lj) < +∞ for all j = 1, ..., k. We thus
deduce from (56) that

∑∞
m=0 ||π̃(s,m) − I|| < +∞ and in turn, from (55) ||(Am)m∈N||E =∑∞

m=0 ||Am|| < +∞.
Now it remains to prove that ψ∞(s) in (54) is continuous at s = 0. Let us �rst recall the

inequality |eu−1| ≤ e|u| for all u ∈ C such that |u| ≤ 1. If x = (x1, . . . , xk) is in S, this entails
that, for all j = 1, . . . , k and m ∈ N,∣∣∣exp

(
sjxje

−δ(Lj−m)
1[Lj>m]

)
− 1
∣∣∣ ≤ e|sj |xje−δ(Lj−m)

1[Lj>m] (57)

for all sj such that |sj |xj ≤ 1, which is satis�ed if s = (s1, ..., sk) ∈ [−i/K, i/K]k ⊂ S. Letting
ujm(sj) := E

(
exp

(
sjxje

−δ(Lj−m)
1[Lj>m]

))
, we deduce from (57) that

|ujm(sj)− 1| ≤ E(e|sj |xje−δ(Lj−m)
1[Lj>m]) ≤ e|sj |xjP(Lj > m),

|ujm(sj)| ≤ e|sj |xjP(Lj > m) + 1 ≤ e+ 1 := M,
(58)

for all m ∈ N, sj ∈ [−i/K, i/K] and j = 1, . . . , k. Then it follows from (58) that for all m ∈ N
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and s = (s1, . . . , sk) ∈ [−i/K, i/K]k, again by independence of L1, ..., Lk,∣∣∣∣∣∣E
exp

 k∑
j=1

sjxje
−δ(Lj−m)

1[Lj>m]

− 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k∏
j=1

ujm(sj)− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑
r=1

r−1∏
j=1

ujm(sj)

 [urm(sr)− 1]

∣∣∣∣∣∣ ≤
k∑
r=1

r−1∏
j=1

∣∣ujm(sj)
∣∣ |urm(sr)− 1|

≤
k∑
r=1

M r−1e|sr|xrP(Lr > m),

which, summing from m = 0 to +∞, yields the following bound for the |.|E norm for all
x = (x1, . . . , xk) ∈ S∣∣∣∣∣∣

E

exp

 k∑
j=1

sjxje
−δ(Lj−m)

1[Lj>m]

− 1


m∈N

∣∣∣∣∣∣
E

≤
k∑
r=1

M r−1e|sr|xr (E(Lr) + 1)

and s = (s1, . . . , sk) ∈ [−i/K, i/K]k. The right-hand side of the above inequality tends to 0
as s→ 0, s ∈ [−i/K, i/K]k ⊂ S, and is valid for all x = (x1, . . . , xk) ∈ S. By the de�nition of
matrices π̃(s,m), m ∈ N, this immediately implies that

||(π̃(s,m)− I)m∈N||E −→ 0, s→ 0, s ∈ S.

One then deduces from [1, (2.20) in Corollary 2.1] that the in�nite product s 7→ ψ̃∞(s) =[∏∞
m=0 Q̃(s,m)

]′
= [
∏∞
m=0 (P ′ +Am(s))]′ is continuous at s = 0, s ∈ S. This completes the

proof.

One interesting consequence of Theorem 17 is that the limiting mgf is expressed conveniently
when the Lj 's are bounded by some constant M . In that case, one has from (2) and (3) that
π̃(s, r) = I and Q̃(s, r) = P ′ when r ≥ M , and we thus obtain the following result for this
particular case:

Corollary 18. Suppose that τ = 1 a.s. and rvs Lj, j = 1, . . . , k, are all upper bounded such

that Lj ≤ M a.s. for some deterministic M ∈ N∗. Then the transient mgf in (53) simpli�es

as

ψ̃(s, t) =

[
M−1∏
m=0

Q̃(s,m) (P ′)t+1−M

]′
, t ≥M − 1,

and the limiting mgf is given by

ψ̃∞(s) = 1π

[
M−1∏
m=0

Q̃(s,m)

]′
.

6. Application: Queue/IBNR process modulated by an external Semi-Markovian
process

The model described in Section 2 is �exible enough to study the following process in queueing
theory and actuarial science. We consider here a semi-Markov process {Y (t), t ≥ 0} with �nite



L.Rabehasaina and J.-K.Woo/IBNR process with semi-Markovian multivariate input 19

state space {1, . . . , κ}, jump times (Ti)i∈N such that (Ti−Ti−1)i∈N∗ is iid distributed as τ with
cdf F , and the embedded Markov chain {Y (Tn), n ∈ N} having transition matrix and station-
ary distribution denoted by PY = (pY (`,m))`,m=1,...,κ and πY = (πY (`))`=1,...,κ respectively.
Let us suppose that {Y (t), t ≥ 0} models the arrival of customers or claims, such that the
nth arriving customer has service time/delay Ln,(Y (Tn−1),Y (Tn)), where ((Ln,(`,m))`,m=1,...,κ)n∈N
is an iid sequence, with independent Ln,(`,m)'s, n ∈ N, `,m = 1, . . . , κ. In other words, if Nt

denotes the number of clients arrived by time t, the Ntth customer has service time which
depends on both states of the semi Markov process at the switching time TNt and the state
prior to this switching time (i.e. depending on both state Y (TNt) and Y (TNt−)), as illustrated
in Figure 1. This model has potential applications in queueing theory where an incoming cus-
tomer may inspect the state of the environment Y (TNt−) before deciding to join the queue; in
an actuarial setting, there are di�erent reasons for the reporting delay when the IBNR claims
are considered. In particular, in this case, this model allows random �uctuations in the under-
lying delay distribution in�uenced by external process. For example, policyholder may decide
to delay the submission of claims under special circumstances such as the external environment
process is in a particular state. We also let (L(`,m))`,m=1,...,κ a generic corresponding rv. Also
note that some �exibility for this rv is available, for example one may have P(L(`,m) = 0) > 0,
implying that a customer �nding the environment in state ` before it switches to state m
decides not to join the queue with positive probability. Also, in the case of IBNR claims, some
claims do not have any delays to be reported, that is, once they occur they are immediately
reported to the insurers, see the discussion concerning the numerical application at the end of
Section 4.1.

m arriving customer with service time Lℓ,m

Background modulating process Y (t)

ℓ

Fig 1. Modulating semi-Markov process and service time.

We then de�ne the corresponding IBNR discounted processes {Z(t), t ≥ 0} and {Z̃(t), t ≥
0} by

Z(t) =
∞∑
i=1

e
−δ
(
Ti+Li,(Y (Ti−1),Y (Ti))

)
1[
Ti≤t<Ti+Li,(Y (Ti−1),Y (Ti))

], Z̃(t) = eδtZ(t). (59)

As such, the process de�ned in (59) is di�erent from the one introduced in (1) because the ar-
rival times and the service times are now modulated by some semi-Markov process. However in
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the following, we shall show that (59) is actually embedded into (1), and this embedding pro-
cedure is essentially the central point of this section. Note in particular that this includes the
particular case where {Y (t), t ≥ 0} is a continuous time Markov chain by considering τ ∼ E(λ)
for some λ > 0, of which in�nitesimal generating matrix is given by QY = (qY (`,m))`,m=1,...,κ

with qY (`,m) = λpY (`,m) if ` 6= m and qY (`, `) = −λ∑m 6=` pY (`,m). In that case, inter-
arrivals may not be identically distributed by considering the generic rv (L(`,m))`,m=1,...,κ to
satisfy L(`,`) = 0 for all ` = 1, . . . , κ, so that a new customer actually arrives exactly at each
time when Y (t) switches to a new state, with service time distributed as L(`,m) when switching
from state ` to state m.

So, we need to de�ne the corresponding Markov chain (Xi)i∈N. Let us de�ne for all ` and
m in {1, . . . , κ} the κ × κ matrix e(`,m) of which the (j, j′)th entry is δ(j,j′),(`,m). We then
de�ne the state space of (Xi)i∈N as

S =
{
e(`,m), (`,m) ∈ {1, ..., κ}2

}
⊂ {0, 1}κ×κ

so that one sets k = κ2 and K = 1, sticking with the notation in Section 2. Then for all i ∈ N,
Xi = (Xi,(j,j′))(j,j′)∈{1,...,κ}2 is of the form Xi = e(`,m) for some ` and m in {1, . . . , κ}, in
which case one has

Xi,(j,j′) = δ(j,j′),(`,m), ∀(j, j′) ∈ {1, ..., κ}2.
The only di�erence here is in S which is a strict subset of {0, 1}κ×κ, however this will not raise
any additional technical di�culty in the following analysis. We then de�ne the corresponding
transition matrix as P = (p(x, x′))(x,x′)∈S2 with

p(e(`,m), e(`′,m′)) =

{
pY (`′,m′) if m = `′,

0 otherwise,
`,m, `′,m′ = 1, . . . , κ, (60)

so that a transition from state e(`,m) to state e(`′,m′) of the Markov chain (Xi)i∈N is only
possible if m = `′ ⇐⇒ e(`,m)e(`′,m′) = e(`,m′). One checks that (60) really de�nes a
transition matrix, i.e. the sum over each row is equal to 1, and (Xi)i∈N is stationary and
ergodic i� {Y (Tn), n ∈ N} is, with corresponding stationary distribution (π(x))x∈S given by

π(x) = π(e(`,m)) = pY (`,m)πY (`), ∀x = e(`,m) ∈ S, `,m = 1, . . . , κ. (61)

Finally, we let (Li,(j,j′))i∈N,(j,j′)∈{1,...,κ}2 a sequence of independent rvs with corresponding
distribution given by

Li,(j,j′) ∼ Li,(j,j′), ∀(j, j′) ∈ {1, . . . , κ}2.
We now arrive at the embedding result. We let {Z(t) = Z(t; δ) = (Z(j,j′)(t))(j,j′)∈{1,...,κ}2 ∈
R{1,...,κ}2 , t ≥ 0} and Z̃(t) = eδtZ(t) de�ned by (1), i.e.

Z(j,j′)(t) =

∞∑
i=1

Xi,(j,j′)e
−δ(Li,(j,j′)+Ti)1[Ti≤t<Ti+Li,(j,j′)]

, (j, j′) ∈ {1, . . . , κ}2.

Then, one checks immediately that the following relation between Z̃(t) and Z̃(t) de�ned in
(59) holds{

Z̃(j,j′)(t), t ≥ 0
}
D
=
{
Z̃(t)1[Y (TNt−)=j,Y (TNt )=j

′], t ≥ 0
}
, ∀(j, j′) ∈ {1, . . . , κ}2. (62)
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We remark that the above relation is interesting as it enables us to study (Z̃(t), Y (TNt−), Y (TNt))
through Z̃(t) i.e. through the analysis developed in Section 3. More precisely, one checks that(

M(1)
(j0,j1),(j2,j3)

(t)
)
(j0,j1)∈{1,...,κ}2,(j2,j3)∈{1,...,κ}2

:=
(
E
(
Z̃(t)1[Y (TNt−)=j2,Y (TNt )=j3]

∣∣∣ Y (T−1) = j0, Y (T0) = j1

))
(j0,j1)∈{1,...,κ}2,(j2,j3)∈{1,...,κ}2

=
(
E
(
Z̃(j2,j3)(t)

∣∣∣X0 = e(j0, j1)
))

(j0,j1)∈{1,...,κ}2,(j2,j3)∈{1,...,κ}2

=
(
M(j2,j3)(t)1

)
(j2,j3)∈{1,...,κ}2

(63)

where Mi(t) is de�ned in (6). Similarly, one can consider for all j0, j1, j2 and j3 the sec-

ond moment M(2)
(j0,j1),(j2,j3)

(t) := E
(
Z̃(t)21[Y (TNt−)=j2,Y (TNt )=j3]

∣∣∣ Y (T−1) = j0, Y (T0) = j1

)
,

which veri�es(
M(2)

(j0,j1),(j2,j3)
(t)
)
(j0,j1)∈{1,...,κ}2,(j2,j3)∈{1,...,κ}2

=
(
M(j2,j3),(j2,j3)(t)1

)
(j2,j3)∈{1,...,κ}2

, (64)

where Mii′(t) is also de�ned in (6), as well as the expectation of the workload D(t) given by(
W(j0,j1),(j2,j3)(t)

)
(j0,j1)∈{1,...,κ}2,(j2,j3)∈{1,...,κ}2

:=
(
E
(
D(t)1[Y (TNt−)=j2,Y (TNt )=j3]

∣∣∣ Y (T−1) = j0, Y (T0) = j1

))
(j0,j1)∈{1,...,κ}2,(j2,j3)∈{1,...,κ}2

=
(
W(j2,j3)(t)1

)
(j2,j3)∈{1,...,κ}2

,

where Wi(t) is de�ned in (25).
Furthermore, one could �nd the following relation between the joint mgf of Z̃(t) and dis-

tribution of (Y (TNt−), Y (TNt)) de�ned for all z ∈ R and t ≥ 0 by[
Ψ̃(z, t)

]
(j0,j1),(j2,j3)

= E
(
ezZ̃(t)1[Y (TNt−)=j2,Y (TNt )=j3]

∣∣∣Y (T−1) = j0, Y (T0) = j1

)
,

where j0, j1, j2 and j3 are in {1, ..., κ}. Then one notices that the above mgf is linked to the

joint mgf of ψ̃(s, t) of
{

(Z̃(j,j′)(t))j,j′=1,...,κ, t ≥ 0
}
thanks to (62) by the relation[

Ψ̃(z, t)
]
(j0,j1),(j2,j3)

=
[
ψ̃(z.e(j2, j3), t)

]
(j0,j1),(j2,j3)

, (65)

where we recall that e(j2, j3) is the {1, ..., κ} × {1, ..., κ} matrix of which the (j, j′)th entry is
δ(j,j′),(j2,j3).

The embedding relations (63), (64) and (65) thus enable us to derive results on the present
model with semi-Markovian input, in particular thanks to Sections 3.2 and 4. Let us present
some of them in the following. For example, (63) together with Proposition 7 yields the
asymptotic �rst moment given by(
M(1)

(j0,j1),(j2,j3)
(t)
)
(j0,j1)∈{1,...,κ}2,(j2,j3)∈{1,...,κ}2

−→
(

1

E(τ)

1− LL(j2,j3)(δ)
δ

E(X(j2,j3))1

)
(j2,j3)∈{1,...,κ}2

,
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as t→∞, where E(X(j2,j3)) = π(e(j2, j3)) = pY (j2, j3)πY (j2) by (61). When service times are
exponentially distributed with L(j2,j3) ∼ E(µ(j2,j3)), then (64) and Theorem 11 results in(
M(2)

(j0,j1),(j2,j3)
(t)
)
(j0,j1)∈{1,...,κ}2,(j2,j3)∈{1,...,κ}2

−→

1

E(τ)

µ(j2,j3)

µ(j2,j3) + 2δ

1− Lτ (µ(j2,j3) + 2δ)

µ(j2,j3) + 2δ
1π∆2

(j2,j3)
P
(
I − Lτ (µ(j2,j3) + 2δ)P

)−1
+

2

E(τ)
Lτ (µ(j2,j3)+δ)

1− Lτ (2µ(j2,j3) + 2δ)

2µ(j2,j3) + 2δ

(
µ(j2,j3)

µ(j2,j3) + δ

)2

1π∆(j2,j3)P
(
I − Lτ (µ(j2,j3) + δ)P

)−1
.∆(j2,j3)P

(
I − Lτ (2µ(j2,j3) + 2δ)P

)−1
as t → ∞. When τ ∼ E(λ), i.e. when arrivals occur according to a Poisson process and the
model is Markov modulated, the transient moment is explicit thanks to (49) in Theorem 14
and one computes easily for all j2 and j3, using PP

′∆π1 = 1, eλvP1 = eλv1, that(
M(1)

(j0,j1),(j2,j3)
(t)
)
(j0,j1)∈{1,...κ}2

= M(j2,j3)(t)1

= λeλt(P−I)
∫ t

0
E
(
e−δ(Li−v)1[Li>v]

)
e−λv(P−I)∆iPe

λv(P−I)dv1, t ≥ 0.

Further, when interarrival are deterministic equal to 1, then (65) and Theorem 17 entail that
the limiting joint mgf is given for all (j0, j1), (j2, j3) in {1, . . . , κ}2, by

lim
t→∞

[
Ψ̃(z, t)

]
(j0,j1),(j2,j3)

=

[ ∞∏
i=0

Q̃(z.e(j2, j3), i)

]′
(j0,j1),(j2,j3)

.
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