N
N

N

HAL

open science

Demo: Do not trust your neighbors! A small IoT
platform illustrating a man-in-the-middle attack

Renzo Efrain Navas, Hélene Le Bouder, Nora Cuppens-Boulahia, Frédéric

Cuppens, Georgios Papadopoulos

» To cite this version:

Renzo Efrain Navas, Hélene Le Bouder, Nora Cuppens-Boulahia, Frédéric Cuppens, Georgios Pa-
padopoulos. Demo: Do not trust your neighbors! A small IoT platform illustrating a man-in-the-
middle attack. ADHOC-NOW: International Conference on Ad Hoc Networks and Wireless, Sep 2018,
Saint-Malo, France. pp.1-6, 10.1007/978-3-030-00247-3_11 . hal-01893999

HAL Id: hal-01893999
https://hal.science/hal-01893999
Submitted on 12 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01893999
https://hal.archives-ouvertes.fr

Demo: Do not trust your neighbors! A small IoT
platform illustrating a man-in-the-middle attack

Renzo E. Navas, Hélene Le Bouder, Nora Cuppens, Frédéric Cuppens, and
Georgios Z. Papadopoulos

IMT Atlantique, UBL, France
{renzo.navas,helene.le-bouder,nora.cuppens,frederic.cuppens,
georgios.papadopoulos}@imt-atlantique.fr

Abstract. This demonstration defines a small IoT wireless network that
uses TI CC2538-OpenMote as hardware platform and state-of-the-art
IETF network standards such as 6LoWPAN, RPL, and CoAP imple-
mented by ContikiOS. The IoT nodes are controlled from outside the IoT
network using end-to-end connectivity provided by IPv6-CoAP messages.
We implement a man-in-the-middle attack that disrupts the normal be-
havior of the system. Our attack leverages on the inherent hierarchical
routing topology of RPL-based IoT networks. The demonstration aims
at highlighting the need for end-to-end source-authentication and autho-
rization enforcement of information even inside a trusted IoT network.
We also provide some insights on how these services can be offered in a
TIoT-friendly way.

Keywords: IoT - MITM attack - IPv6 - CoAP - RPL - e2e security

1 Introduction and Motivation

Internet of Things (IoT) lack-of-security awareness has been rising in recent years
[4]. Mass-media publications label as “IoT” a wide and heterogeneous set of de-
vices: smart-watches, thermostats, surveillance cameras, toasters, refrigerators,
light-bulbs, etc. Most of them have more in common with a powerful desktop
computer rather than with a 5-dollar system-on-chip. On this paper IoT repre-
sents constrained devices as defined on RFC7228 [2]. These devices can not run
Linux systems or legacy Internet and security protocols: special solutions suited
for their constraints must be used.

For this demonstration we set up an IoT platform reachable by IPv6 from
external networks. The platform allows controlling a robot arm from an android
tablet using CoAP messages. The defined IoT platform has a compromised node
inside, that after behaving as expected for a certain amount of time, executes a
Man-In-The-Middle (MITM) attack. The demonstration aims at highlighting the
consequences of unrestrictedly trusting nodes of an IoT network, and the need
for end-to-end security. Risk of insider attacks is real from the very moment we
use devices manufactured or programmed by a party we do not fully trust (i.e.
all), a mitigation will be running full open-hardware and software solutions.

2 R. E. Navas et al.

The rest of the paper is organized as follows: Section 2 presents the platform.
Section 3 explains the attack: hypothesis, planning, implementation and execu-
tion. Section 4 comments on the feasibility of the attack on real-world settings
and on possible solutions. Finally, Section 5 offers a brief conclusion.

2 The Platform

The platform tries to illustrate three concepts associated with the IoT: hetero-
geneity, connectivity and interoperability. Heterogeneous devices: android
devices, WiFi access points, powerful PCs, and constrained IoT nodes; and het-
erogeneous networks: WiFi, Ethernet, USB-SLIP, IEEE 802.15.4. Connectivity
end-to-end is assured by IPv6. Application-layer interoperability is guaranteed
by the Constrained Application Protocol (CoAP), the equivalent of HTTP for
IoT. A diagram of the platform can be seen on Fig. 1.

The use case involves an Android device that sends IPv6-CoAP packets to
an IoT node who controls a robot-arm which serves beverages. The IPv6 packet
travels through 4 different layer-2 technologies, but layer-3 (and up) remains
unmodified end-to-end. Inside the IoT network the packet is routed by interme-
diate IoT nodes, leveraging on the RPL routing protocol, until it finally arrives
to the destination node which drives the arm according to the CoAP message.

Wifi-Network | Backbone Network

: i
R N

e == oT
Android P o PC Node loT
Client L~ (tunslip) [RPL-root) Node

x
8
2
2
7]
=
s
e}

. (arm)

Fig. 1. Diagram of the platform. An heterogeneous platform for end-to-end IPv6-CoAP
interoperability with an IoT-node. The green arrow represents the IPv6 message.

The hardware and software components used are the following:

— Android Client: Galaxy Tab A 10.1 (2016). SW: Samsung stock android 7.1.

— WiFi AP + Switch: Router Linksys E900. SW: Custom Firmware tomato-
E900-NVRAM64K-1.28. RT-N5x-MIPSR2-140-Max (Needed to add custom
IPv6 routing table rules)

— PC Lenovo ThinkPad T460 Intel i7-6600U CPU @ 2.60GHz (x86-64). SW:
Ubuntu 17.10 64-bits and binary tunsiip.

— ToT Nodes: OpenMote-CC2538 Rev.Al board (SoC: TI CC2538SF53, 256
KB Flash, 32KB RAM). SW: ContikiOS 2.7.

A small IoT platform illustrating MITM attacks 3

— Robot Arm: RobotGeek Snapper Arduino Robotic Arm!, five 13kg-cm servo-
motors (16 Volts powered). And controller by an Ardhuino-uno-based device.

A real world picture of the platform can be seen on Fig. 2.

Fig. 2. Real world platform: The IoT-driven water-pouring robot arm. We can see the
robot arm, two OpenMotes and the Android tablet.

3 The Attack

3.1 Hypothesis

The following hypothesis are needed to execute our attack:

Internal IoT attacker: We assume an internal attacker, one of the IoT nodes has
been compromised or has always been malicious but on a latent state.

Routing tree-like topology: The attack relies on RPL (IPv6 Routing Protocol
for Low-Power and Lossy Networks) routing tree-like hierarchy. The goal is for
the compromised node to be conveniently placed on the RPL topology, so it
becomes a legitimate router of most of the packets on the network. This can
be achieved by exploiting well-known RPL vulnerabilities [5] (e.g. rank attack,
version number attack). Note: For single-hop networks this attack is not possible
as is: the malicious node will have to illegitimately intercept and forward packets.

! https://www.robotgeek.com /robotgeek-snapper-robotic-arm

4

R. E. Navas et al.

3.2 Plan

The following are the ordered steps needed to execute the attack:

1.

Insider IoT-node compromise. loT-node has been malicious from the
beginning of its life-cycle. A modified version of ContikiOS was flashed on
one of the nodes, the node behaves as a regular node until the malicious-mode
is activated. The content of the custom code is explained on Subsection 3.3.
This kind of insider attack is a realistic threat: normally enterprises and users
buy, configure, and use IoT nodes with pre-loaded closed-source firmware.
Malicious-mode activation. Activation is done by an external agent send-
ing an HTTP request to a specific resource of the compromised node. The
node is reachable by IPv6. Automatic activation is realistic also e.g. the
compromised node activates itself after 72hs of use, or the 24th. Nov. 2020.
RPL-attack. The malicious node modifies the RPL-topology to be placed
close to the root and legitimately route most of the packets. For simplicity of
the implementation, the RPL root node is the compromised node, so no RPL
attack was needed. An extension of the demonstration would be performing
a RPL-attack.

MITM: In-transit CoAP message modification. Once the compro-
mised node is placed on a privileged position on the routing hierarchy, it
targets IP packets for a fixed destination inside the IoT network. In this
demonstration, legitimate CoAP messages that control the robot arm are
targeted, and its content is modified. Once in this position on the IoT net-
work several attacks could be performed e.g. Black-hole attack (disrupting
routing of the packets), information leakage (e.g. sending a copy of the IoT
internal messages to an outsider); Layer-2 security does not prevent any of
these attacks, as the compromised node is an insider.

The attack schema can be seen on Fig. 3. To activate the malicious node a
Samsung Galaxy S8 cellphone with Android 7.1 is used, but any IPv6 capable
device with an HTTP client could have been used.

B) ! i | B)
::)-"--- » - -) - -
-~

Wifi-Network vetwor a

loT Network

e MITM
n | L]

Fig. 3. Attack schema. In A the message to activate the malicious mode of the compro-
mised node (MITM). In B a legitimate message for the IoT-arm, modified by MITM
and routed in B’

A small IoT platform illustrating MITM attacks 5

3.3 Implementation details and Execution

The most relevant part of the code modifications to present is the ContikiOS
modification to target and modify specific IPv6 packets. This modification is
done inserting code on line 1187 of the Contiki 2.7 file contiki/core/net/uip6.c
[3] , this is inside the function uip_process(uint8_t flag) which does the IPv6
packet processing, and the node is about to forward a IPv6 packet with the line
goto send. Before sending the packet, it checks if the malicious state is acti-
vated, if so it targets a specific IPv6 destination address and the UDP-CoAP
port, then it modifies the CoAP message content, and recalculate the UDP
checksum. On Fig. 4 a debug console of the malicious node modifying a message
in transit is shown.

[9{9&7&9&**9&****9&********9&****9&**9(9&7& AO!\ 9&9(9&9&7&9&9{9&7&9&**9&**9&9&9&7&**9&*7&**9&***9&:l

We are now an Evil Node, waiting for Specific
CoAP messsage to moddify it in transit

[9{9&9&9&**9&****9&9&9&*9&9&9&9&*9&*9&9&9&9&9&9&VC** A A 9&9(9&9&9&*9{9&7&9&**9&****9&9&***9&7&**9&9&*9&9&:l

Attack is_on, is this the message we want?: 1

[?‘?&9‘9‘7‘?‘7‘9‘7‘7‘?&7‘9‘7‘ HE. attack!! AOA 7676?‘967‘?67&?‘7‘7‘?‘?&9‘7‘]

UDP before checksum: Oxdc26
We modify the message in transit, need to recalculate checksum
UDP we set to zero checksum: 0x0000
UDP after checksum: Oxdc3a
Buff -
0000 60 81 c7 26 00 13 11 3f aa aa 00 00 00 00 00 GO " _ & 7. . ___ ..
0010 00 00 600 00 00 00 00 01 aa aa 00 0O 6O 60 GO GO . ________ . .
0020 02 12 4b 00 04 30 53 e5 9d 99 16 33 @0 13 3a dc . K. .0S. .. .3 _:-.
0030 40 02 54 61 b3 61 72 6d 62 6f 5a @ Ta.arm.oZ

[9&9&9&9&9&9&9‘9&9&9&9&9‘9&9&9&9&9& END Attack 9&9&9&9&9&9‘9&9&9&9&9‘9&9&9&9&9&9&]

Fig. 4. Inside the compromised node while preforming the attack.

The reader can view a short video of the demonstration platform in action
on [1], or on this alternative url®.

4 Reflections and future work

The presented MITM attack is possible because the information intended for
the IoT node is not protected end to end. To prevent this attack, at minimum
source-authentication (integrity) of the information is needed, this enables to
detect messages modified by a third party. Even if the attack on this demonstra-
tion seems trivial, it exemplifies what can happen in more complex Cloud-IoT

2 Demo video: https://youtu.be/Zhrk5-IGKKE

6 R. E. Navas et al.

architectures where a false sense of security can be given: we can have strong
cryptographic HIT'TPS-TLS protection from the cloud to an IoT gateway, but
inside the IoT we rely on whatever security is offered at Layer 2 (IEEE 802.15.4,
Sigfox, LoRaWAN Network Session Key); on such setting this insider IoT attack
is still possible.

Security services need to be guaranteed end-to-end. This can be achieved at
three different layers of abstraction on the TCP/IP model. IPsec at the Inter-
net layer; Datagram Transport Layer Security (DTLS) or TLS at the Transport
layer; And finally, at the Application layer where most current IoT-oriented stan-
dardization efforts are being made e.g. Object Security for Constrained RESTful
Environments (OSCORE) or CBOR Object Signing and Encryption (COSE)|[6].
Our current research efforts focus on application layer security, also called o0b-
ject security, and particularly COSE. We believe solutions at this layer offer
the best flexibility (per-message security services), level of abstraction (agnostic
to underlying layers), and good message overhead. A comprehensive solution
will involve key-establishment protocols, an authorization-framework, a time-
synchronization protocol, etc. all these services could leverage from COSE.

5 Conclusion

This demonstration platform illustrates some benefits and challenges of the IoT:
connectivity, application-layer interoperability, and weak -or inexistent- security.
We focus on IoT-insider attacks, IoT platforms and protocols should be designed
with the principle of least privilege in mind: do not trust your neighbors! or
rather, trust them only with what they need to be trusted. Fine-grained or
capability-based authorization is possible for IoT, and the layered nature of
protocols also helps. An IoT neighbor node that routes packets for others should
only be able to do that, and in an authenticated way. To avoid the unknown evil
men-in-the-middle to succeed security services should be guaranteed end-
to-end. Object security solutions, by means of its flexibility and lower layers
independence, seems to be the most suitable tool that can provide it for the
future of the heterogeneous IoT.

References

1. Demo video: Iot man-in-the-middle attack (2018), http://www.industry-of-the-
future.org/asset/demo/

2. Bormann, C., Ersue, M., Kernen, A.: Terminology for Constrained-Node Networks.
RFC 7228 (May 2014). https://doi.org/10.17487/RFC7228

3. ContikiOS: The contiki 2.7 github repository (2018), https://github.com/contiki-
os/contiki/blob/release-2-7 /core/net /uip6.c#L1187

4. Granjal, J., et al.: Security for the internet of things: a survey of existing protocols
and open research issues. IEEE Communications Surveys & Tutorials (2015)

5. Kamble, A., Malemath, V.S., Patil, D.: Security attacks and secure routing protocols
in rpl-based internet of things: Survey. In: ICEI 2017 (2017)

6. Schaad, J.: CBOR Object Signing and Encryption (COSE). RFC 8152 (Jul 2017).
https://doi.org/10.17487/RFC8152

