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INTRODUCTION

Polynomial data fitting names a branch of approaches dedicated to the problem of optimal coefficients for a polynomial function f , such that f approximates the measured data points, usually called "observations". A common solution consists of minimising the sum of squared residuals of f with respect to the observations using linear least-square (LSQ) techniques [START_REF] Kariya | Generalized Least Squares[END_REF]. Several methods exist to solve LSQ problems [START_REF] Golub | Numerical Methods for Solving Least Squares Problems[END_REF][START_REF] Lawson | Solving Least Squares Problems[END_REF]. Compared to modern tools, polynomials benefit from fast and simple evaluation.

However, a single polynomial function might not be suitable to describe the observed characteristics. Early approaches included regression of a few polynomial functions piece-wise over the observations; in order to find suitable switching surfaces (joints) for the piece-wise functions, these approaches used maximum-likelihood or Newton-Gauss methods [START_REF] Robison | Estimates for the Points of Intersection of Two Polynomial Regressions[END_REF][START_REF] Gallant | Fitting segmented polynomial regression models whose join points have to be estimated[END_REF], hierarchical clustering [START_REF] Mcgee | Piecewise Regression[END_REF], or regressions trees [START_REF] Chaudhuri | Piecewise-Polynomial Regression Trees[END_REF]. Later, multivariate splines were introduced fitting sequences of polynomial functions over fine grids, which are rectangular [START_REF] Klein | Aircraft System Identification: Theory and Practice[END_REF] or triangular [START_REF] De Visser | A new approach to linear regression with multivariate splines[END_REF] partitions of the observations. Here, the knots of the grids, i.e. the joints of the piece-wise functions, are chosen prior, and are not a subject of, the fit. Both piece-wise regression and multivariate splines ensure the fitted piece-wise functions to be continuous or even smooth at their joints.

While splines today present a powerful yet complex tool for accurate and smooth interpolation, they lack of an underlying physical model justifying the partition. 2 The problem of finding appropriate joints remains open.

In this paper, we introduce the pwpfit1 toolbox for MAT-LAB, which uses standard LSQ techniques while leaving the joint as parameter of optimization. The interface of the toolbox, on the other hand, resembles that of MATLAB's well-known fit function. 3 Following a study of the theoretical and implementation details, we discuss exemplary the fitting of piece-wise aerodynamic coefficients for the model of a typical airliner.

PRELIMINARIES

A monomial of degree n is a single product of powers where the exponents add up to the total degree n, without any scalar coefficient. We introduce the vector notation for a monomial x = (x 1 , . . . , x m ) in degrees n = (n 1 , . . . , n m ),

x n = x n1 1 . . . x nm m , (1) with the total degree n = n

1 = n 1 + • • • + n m .

Monomials & Polynomials

Definition 1. P n (x) is the vector of monomials x ν in variables x = (x 1 , . . . , x m ) with degrees ν ∈ N m and total degrees ν 1 ≤ n; and the number of elements in

P n (x) is denoted by r[n], i.e. P n ∈ R [x] r[n] .
While the order of monomials in P n (x) is arbitrary, we choose to have x µ before x ν if and only if µ 1 < ν 1 or µ is reverse-lexicographically before ν if µ 1 = ν 1 . Defining the auxiliary vector p N of monomials x ν with ν 1 = N , recursively over the number of variables m as

p N (x) = x N 1 if m = 1; x N 1 x N -1 1 p 1 (x) T • • • p N (x) T T else (2) 
with x = (x 2 , . . . , x m ) for m > 1, we can write

P n (x) = 1 p 1 (x) T • • • p n (x) T T . (3) 
By this notation, a polynomial f is expressed as scalar product of its monomials and coefficients, f (x) = P n (x) , q (4) with the vector of coefficients

q T = b 1 • • • b r[n] .

Polynomial fitting

The observations (x i , z i ) are conveniently given as se-

quences over i ∈ [1, k]: Problem 2. Consider the k observations z i = γ(x i ) + i , (5) where (x i , z i , i ) 1≤i≤k ⊂ R m × R × R
and γ(•) and ( i ) i are an unknown function and measurement error, respectively; find coefficients for f = P n (x) , q minimizing the goodness of fit (GoF)

GoF(f ) def = k i=1 |f (x i ) -z i | 2 (6)
for an n > 0.

Re-writing the goodness of fit using matrix calculus, we reduce the cost functional to a cost function and polynomial data fitting to a linear least-square problem. Definition 3. A linear least-square (LSQ) problem is given as the optimization problem lsq(C, d) = arg min q Cqd 2 2

(7)

with q ∈ R r , C ∈ R k×r , and d ∈ R k .

We have the residuals in vector notation as e =   

P n (x 1,1 , . . . , x 1,m ) T . . .

P n (x k,1 , . . . , x k,m ) T    def = K q -    z 1 . . . z k    def = κ (8)
and the goodness of fit

GoF(q) = e 2 2 .
(9) The coefficients of the optimal fit P n (x) , q 0 now are subject to the linear-least square problem

q 0 = arg min q Kq -κ 2 2 .
(10)

PIECE-WISE FITTING

Problem 4. Take the observations of Problem 2; find coefficients q 1 , q 2 such that f : x -→ P n (x) , q 1 if ϕ(x) ≤ x 0 ; P n (x) , q 2 else with ϕ : R m → R and x 0 ∈ R minimizes the goodness of fit of (6). 4We note the sub-polynomials of f by f 1,2 : X 1,2 → R, x → P n (x) , q 1,2 and call X 1 ∪X 2 the entire domain of f . The

joint of f is given as Ω ϕ def = X 1 ∩ X 2 = {x |ϕ(x) = x 0 }.
The cost functional for f can be evaluated piece-wise to

GoF(f ) = xi∈X1 |f 1 (x i ) -z i | 2 + xi∈X2 |f 2 (x i ) -z i | 2 , (11) 
where X 1 = {x 1 , . . . , x i }, X 2 = {x i +1 , . . . , x k } are initial guesses of the subdomains.

We then have the residuals as e 1,2 = K 1,2 q 1,2 -κ 1,2 with

K 1 =    P n (x 1 ) T . . . P n (x i ) T    , κ 1 =    z 1 . . . z i    ; (12) 
K 2 =    P n (x i +1 ) T . . . P n (x k ) T    , κ 2 =    z i +1 . . . z k    ; (13) 
and

GoF(f ) = e 1 2 2 + e 2 2 2 = e T 1 e T 2 2 2 .
(14) Again, we reduce piece-wise fitting to the linear leastsquare problem

q 1 q 2 = arg min q K 1 0 0 K 2 q - κ 1 κ 2 2 2 ( 15 
)
with the objective matrix

K def = diag(K 1 , K 2 ).
Continuity of the piece-wise defined f over its entire

domain holds if ∀x ∈ Ω ϕ . P n (x) , q 1 = P n (x) , q 2 . ( 16 
)
For single-variable functions, we have continuity for the identity function ϕ = id and x 0 is zero of

P n (x) , q 1 -q 2 .
In the multivariate case, computing ϕ is generally hard.

CONSTRAINTS

To impose constraints on the coefficients (and thus the polynomials), we recall the constrained linear least-square problem [START_REF] Haskell | An Algorithm for Linear Least Squares Problems with Equality and Nonnegativity Constraints[END_REF])

lsq(C, d, A, 0) = arg min q∈Ω A Cq -d 2 2 . ( 17 
)
with

Ω A = {q |Aq = 0 }. Lemma 5. Let f 1,2 = P n (x) , q 1,2 be polynomials; we have f 1 (x) = f 2 (x) for all x ∈ R r[n] if and only if q 1 = q 2 .
In case of multiple variables or outputs, one may have x 0 for the single-variable, single-output case and ensure continuity in x 0 for all other variables and outputs. Proposition 6. (Constraint of continuity). Let

ϕ(x) = a T x ≤ x 0 (18) be a linear matrix inequality (LMI) with a T = [a 1 • • • a m ]
and a 1 = 0; a piece-wise polynomial function f with continuity in Ω φ is subject to the constrained LSQ problem with continuity constraint matrix C.

Proof. We can simplify (18) to ϕ(x) = x 1 ≤ x 0 w.l.o.g.: Lemma 7. Let ϕ : x → a T x with a 1 = 0; there is a linear, invertible π such that (ϕ • π) : y -→ y 1 (19) with y = (y 1 , . . . , y m ).

For ϕ(x) = x 1 , we thus fit polynomials g 1,2 to (πx i , z i ) i such that g 1,2 join in (ϕ • π)(y) = x 0 and find f 1,2 as

f 1 = g 1 • π -1 ; f 2 = g 2 • π -1 . (20) We now have continuity if ∀x ∈ Ω x0 . P n (x) , q 1 = P n (x) , q 2 (21) with Ω x0 = {x |x 1 = x 0 }; hence ∀x ∈ R m-1 . P n (x 0 , x) , q 1 = P n (x 0 , x) , q 2 . ( 22 
)
Separation of the assigned variable

x 1 ≡ x 0 as Λ T 0 yields P n (x 0 , x) , q 1,2 = Λ T 0 P n (x) , q 1,2 = P n (x) , Λ 0 q 1,2 (23) 
with

Λ 0 =     1 x 0 x n 0 diag p 1 (1 m-1 ) . . . x n-1 0 diag p 1 (1 m-1 ) . . . diag p n (1 m-1 )     , (24) 
where 1 m-1 ∈ {1} m-1 . By Lemma 5, we have that

P n (x) , Λ 0 q 1 = P n (x) , Λ 0 q 2 (25)
for all x ∈ R m-1 if and only if Λ 0 q 1 = Λ 0 q 2 . Hence, the constraint of continuity is written as

[ Λ 0 -Λ 0 ] q 1 q 2 = 0 (26) and C = [Λ 0 -Λ 0 ].
Due to measurement errors or modelling flaws, a polynomial fitting may have relations that shall not be modeled; 5 in this case, it is desirable to constrain the resulting polynomial to be zero (or constant) for certain parameters x * = (x j+1 , • • • , x m ): Proposition 8. (Zero constraint). Let x * = (x 1 , . . . , x j ) for j > 0; a polynomial f = P n (x) , q with ∀x * ∈ R j . P n (x * , 0 m-j ) , q = 0 (27

)
with 0 m-j ∈ {0} m-j is subject to the zero constraint matrix Z.

Proof. Separating the assigned parameters x * = 0 m-j as V T 0 and applying Lemma 5, we have that P n (x * ) , V 0 q = 0 (28) for all x * ∈ R j if and only if V 0 q = 0.

Using V = diag v 1 , . . . , v r[n] where v i = 1 if the i-th element of P n (1 j , 0 m-j ) is non-zero, v i = 0 otherwise, V 0 
is obtained by removing the all-zero rows of V , thus ensuring full rank.

For piece-wise polynomial fitting with zero constraint, take

Z = V 0 0 0 V 0 . ( 29 
)
If both zero constraint and constraint of continuity are given, we need to ensure full rank of the complete constraint matrix:

C Z q = Λ 0 -Λ 0 V 0 0 0 V 0 q 1 q 2 = 0.
5 E.g., for a symmetric aircraft aligned to the flow, there is no sideforce-regardless its angle of attack.

IMPLEMENTATION

The pwpfit toolbox is implemented in MATLAB using the Optimization toolbox6 for linear least-square solving and Symbolic math toolbox7 for representation of the vector of monomials.

As MATLAB is rather slow on arrays of variable length, we use a statically allocated array to generate the vector of monomials P n in m variables. Applying a recursive sub-routine (Alg. 1) to write the auxiliary p N (x) at the l-th(and following) positions of P, the vector of monomials is then computed as symbolic expression P of parameters X:= x according to (3).

The length of P, i.e. the number of monomials in P n (x), is given as sum of multicombinations

r[n] = n N =1 m + N -1 N -1 = m + n n . ( 30 
)
Algorithm 1. Recursive algorithm for p N (x). for j = 0:n 7: X0 = X0*X(1)ˆ(n-j));

8:

[P,l] = ...

9:

monomial(P,l,X(2:end),m-1,j,X0); 10: end 11: end 12: end Alg. 2 illustrates the computation of the left-hand side of the continuity constraint matrix, Λ 0 , for ϕ(x) = x 1 ≤ x 0 , using the auxiliary vectors p N (x 0 , 1 m-1 ) in degrees N ∈ [0, n] with 1 m-1 ∼ one. Aeq(1:rN,j+(1:rN)) = diag(pNx0);

6: j = j + rN; 7: end Given a vector y0 whose i-th component is zero if and only if the fitted polynomials are zero in the parameter x i , Alg. 3 yields the zero separation matrix V 0 . Here, we make direct use of MATLAB's logical indexing for matrices in order to remove the all-zero rows of the square matrix V . The constrained linear least-square problem is solved by the lsqlin function of the Optimization toolbox. As lsqlin requires a linear inequality constraint, Aq ≤ b,

we assign A = [1 • • • 1] and b = 10 4 .
If no continuity constraints are given, the joint x 0 of a single-variable function with ϕ = id is found using a non-linear function solver. 8 The resulting coefficients and their joint are returned as pwfitobject, which provides interfaces for plotting and exporting the obtained piecewise function and the polynomial sub-functions.

The auxiliary functions prepareHyperSurfaceData and LMI2single are provided to prepare tabular data for fitting 9 and to simplify an LMI constraint of continuity (Lemma 7), respectively.

AERODYNAMIC IDENTIFICATION

The aerodynamic coefficients of an aircraft are subject to, amongst others, its angle of attack, side-slip angle, the deflection of ailerons, elevator, and rudder, as well as the body rates. Measurements for various inputs, e.g. of the NASA Generic Transport Model (GTM, [START_REF] Jordan | AirSTAR: A UAV Platform for Flight Dynamics and Control System Testing[END_REF], are usually performed in the wind-tunnel: Example 9. (GTM 10 ). The observations of the aerodynamic coefficients of the GTM are given by the unknown function Γ(•) to

Ĉ = Γ α, β, ξ, η, ζ + (31)
for the observed inputs α ∈ A, β ∈ B, ξ ∈ Ξ, η ∈ H, and ζ ∈ Z with Ĉ = ĈX , ĈY , ĈZ , Ĉl , Ĉm , Ĉn and an unknown measurement error.

8 https://mathworks.com/help/optim/ug/fsolve.html 9 Extending MATLAB's functions prepareCurveData and prepareSurfaceData.

10 https://software.nasa.gov/software/LAR-17625-1

For polynomial and piece-wise polynomial fitting, observations in (31) have to be transformed to tabular data

(C i ) 1≤i≤k = Γ(A × B × Ξ × H × Z) + ( i ) 1≤i≤k (32) with C i = (C X,i , C Y,i , C Z,i , C l,i , C m,i , C n,i ) and k = |A × B × Ξ × H × Z| . (33) 
Here, simple polynomials models seem unsuitable to represent the full-envelope aerodynamics (Fig. 1; see also [START_REF] Cunis | Piece-wise Identification and Analysis of the Aerodynamic Coefficients, Trim Conditions, and Safe Sets of the Generic Transport Model[END_REF]. At the stall angle of attack, the laminar flow around the wings of the pre-stall region changes to turbulent flow and remains so in post-stall. This significant change of the flow dynamics motivates a piece-wise fitting of the pre-stall and post-stall dynamics: 11

C (α, β, ξ, η, ζ) = C pre (α, β, ξ, η, ζ) if α ≤ α 0 C post (α, β, ξ, η, ζ) else where C ∈ {C X , C Y , C Z , C l , C m , C n } are 6-dimensional polynomials.
Initially, α 0 = 16.11°is found by fitting C Xα with respect to the angle of attack only, resulting in

C pre Xα (α 0 ) = C post Xα (α 0 )
, which is the boundary angle of attack. The boundary condition α ≡ α 0 then resembles a 5-dimensional hyperplane.

We now have continuity of the coefficient functions over their entire domain if

C pre (α 0 , • • • ) ≡ C post (α 0 , • • • ) . At last, we require the lateral coefficients (C Y , C l , C n )
to vanish in the symmetric setting, i.e. zero side-slip, no aileron nor rudder deflection (β

= ξ = ζ = 0).
The obtained, piece-wise polynomial models for the C X and C Y coefficients are exemplary shown in Fig. 2 for angle of attack and side-slip angle with neutral surface deflections (ξ = η = ζ = 0). Besides, the residuals

e X = C X α, β -ĈX e Y = C Y α, β -ĈY are given for α, β ∈ A × B.
A six-degrees-of-freedom trim analysis of the GTM with piece-wise polynomial, aerodynamic coefficients has been presented in [START_REF] Cunis | Fullenvelope, Six-Degrees-of-Freedom Trim Analysis of Unmanned Aerial Systems based on Piece-wise Polynomial Aerodynamic Coefficients[END_REF]. 

NOTE ON COMPUTATION TIME

When fitting polynomials of high dimension to large data sets, the computation of a single polynomial in all variables usually takes a considerably long time. In Tab. 1 we compare the computation time for objective matrix, constraint matrices, and the solution of the resulting LSQ problem for all six coefficients of Example 9.

Here, the objective matrix K takes by far the most time; by ( 15), the size of K resolves to 2k × r[n] (34) and both k (33) and r[n] (30) grow exponentially with the number of variables m. The size of C and Z, too, grow with m but are independent of k.12 Rather than single, high-dimensional polynomials, it may be more appropriate to sequentially fit sums of polynomial terms lower dimensions, for sub-sets of the variables:

C = C α (α) + C β (α, β) + C ξ (α, β, ξ) + C η (α, β, η) + C ζ (α, β, ζ) (35 
) with m ≤ 3. In this case, continuity of each term in α 0 implies continuity of C over its entire domain. Tab. 2 shows the reduced computation time for the sequential fit of C X . 

SENSITIVITY ANALYSIS

In order to study the sensitivity of piece-wise fitting, we take the GTM coefficients data of Example 9 as "true" values ( ≡ 0) and add a white noise ν X :

C † X = Γ X (α) + ν X (36)
and ν X is normally distributed with deviation σ X def = 0.01. We then compute a batch of piece-wise fits C {j} X (α) j for 10 000 noise samples; a family of obtained curves is shown in Fig. 3.

The joints α {j} 0 have a sample mean α 0 = 16.11°and deviation σ α = 0.51°. The error of fit with respect to the "true" values has a sample standard deviation σ C {j} (α) -Γ X (α) < σ X for all observations α. That is, piece-wise polynomial fitting is able to reduce the error with respect to the erroneous signal.

CONCLUSION

With the rise of multivariate splines, prior research to piece-wise polynomial regression has been abandoned. However, by pre-selection of the knots, spline fitting does not take into the underlying model; in fact, it thus overestimates the observations. On the other hand, the estimation of the "true" switching points of a piece-wise physical system usually adds computational difficulty and load.

In this paper, we have presented an approach of piece-wise polynomial fitting using the LSQ optimization technique in order to fit both polynomial models and the joint point. The pwpfit toolbox for MATLAB provides functions for polynomial and piece-wise polynomial data fitting under continuity and zero constraints. We demonstrated our approach by fitting piece-wise polynomial models of the aerodynamic coefficients of an airliner model; here, we argued that simple polynomial models are unsuitable for the full-envelope dynamics while the dynamical changes at the stall point prompt the application of piece-wise regression. By simulation of the sensitivity to random noise samples, we proved that piece-wise polynomial fitting improves the estimation of an erroneous signal.

Algorithm 2 .

 2 Code-snippet for Λ 0 ∼ Aeq in x 0 . 1: one = num2cell(ones(1,m-1)); 2: j = 0; 3: for N=0:n % let pN:= p N (•); rN:= r[N ]

  Fig. 1. Observed coefficients ĈX (α) ( ) and comparison of 3rd-order polynomial ( , ) and piece-wise ( ) identifications. (Cunis et al., 2018) Algorithm 3. Code-snippet for V 0 ∼ Azero. % let p:= P n (•); r:= r[n] 1: Azero = eye(r); 2: Y = num2cell(y0); 3: pY = double(p(Y{:})); 4: Azero(pY==0,:) = [];

  Piece-wise model C X (α, β). Piece-wise model C Y (α, β). Residuals of C Y (α, β).

Fig. 2 .

 2 Fig. 2. Piece-wise model of the C X and C Y coefficients of the Generic Transport Model in angle of attack α and side-slip angle β, and their residuals; for surface deflections ξ = η = ζ = 0. Both models are continuous in the joint α ≡ α 0 and the lateral C Y model vanishes in β ≡ 0.

Fig. 3 .

 3 Fig.3. Piece-wise fits of erroneous coefficients (σ X = 0.01).

Table 1 .

 1 Time consumption for fit of multi-variate polynomials C (α, β, ξ, η, ζ): computation time for objective matrix K, continuity constraint matrix C, zero constraint matrix Z, and solving the LSQ problem. All values in seconds with accuracy ± 10 ms (Intel Core i7, 3 GHz, 16 GB).

		K	C	Z	lsq
	C X (α, β, ξ, η, ζ) 2058.39	0.84	-	2.60
	C Y (α, β, ξ, η, ζ) 2100.64	0.59	-	2.62
	Cm (α, β, ξ, η, ζ) 2100.22	0.59	-	2.62
	C Y (α, β, ξ, η, ζ) 2102.25	0.60	<0.01	1.71
	C l	(α, β, ξ, η, ζ) 2109.07	0.63	<0.01	1.65
	Cn	(α, β, ξ, η, ζ) 2102.38	0.59	0.01	1.54

Table 2 .

 2 Time consumption for sequential fit of polynomial sum C X = C Xα + C Xβ + C Xξ + C Xη + C Xζ : computation time for objective matrix K, continuity constraint matrix C, and solving the LSQ problem. All values in seconds with accuracy ± 10 ms (Intel Core i7, 3 GHz, 16 GB).

			K	C	lsq
	C Xα (α)	0.16	-	0.04
	C Xβ (α, β)	4.89	0.16	0.15
	C Xξ	(α, β, ξ)	39.06	0.25	0.10
	C Xη	(α, β, η)	31.34	0.20	0.11
	C Xζ	(α, β, ζ)	36.49	0.20	0.04
	C X	(α, β, ξ, η, ζ)	111.94	0.81	0.44

Published under LGPL-2.1: https://github.com/pwpfit.

MATLAB's smoothing spline option for the built-in curve fitting function, for example, uses by default the observation points itself.

While solutions for multiple pieces can be derived, we focus on a single joint here.

https://mathworks.com/help/optim

https://mathworks.com/help/symbolic

In addition, the computation of Z by MATLAB's logical indexing is obviously very efficient.

Appendix A. PROOFS Proof. [Lemma 5] By reduction to:

P n (x) , q 1 -q 2 ≡ 0 ⇐⇒ q 1 -q 2 = 0 where P n (x) , q 1 -q 2 is the zero polynomial.

Proof. [Lemma 7] By construction:

π -1 is invertible as π -1 = a 1 and ϕ(x) = y 1 ⇔ x = πy.