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Abstract

Plant–plant interactions show differential responses to different combinations of available resources that has been under-
explored.

The short-term functional response of Quercus  petraea  seedlings and Deschampsia  cespitosa  tufts grown alone or in mixture
was monitored in contrasting combinations of soil inorganic nitrogen × light availabilities in a greenhouse experiment. Growth,
biomass allocation, functional traits and resource acquisition were quantified. Intensity and importance of interactions were
calculated by organ biomass-based indices.

Competition exerted by D.  cespitosa  on oak was primarily driven by light availability and secondly, for each light level,
by nitrogen supply, leading to a strong hierarchy of resource combinations for each considered plant organ. Under high light,
oak preferentially allocated biomass to the roots, underlining the indirect role of light on the belowground compartment.
Unexpectedly, Deschampsia  cespitosa  grew better in the presence of oak seedlings under high nitrogen supply whatever the
light availability.

Oak short-term nitrogen storage instead of investment in growth might be a long-term strategy to survive D.  cespitosa
competition. Why Deschampsia  had a higher biomass in the presence of oak under nitrogen fertilization is an intriguing
question. The role of root exudates or change in balance between intra- vs  interspecific interactions may hold the answer. There
may be an active mechanism of competition rather than only competitive resource exploitation.

Forest managers sometimes practice adding nitrogen fertilizer to improve oak seedling growth in plantations or natural
regeneration. Here, the higher biomass in mixture to the benefit of the competitor clearly questions this practice: oak may
provide extra nitrogen to competitors during the early period of plant–plant interaction or it may influence the balance between
intra- vs  interspecific interactions. The identification and quantification of active competition may result in new practices for a
broad diversity of plant–plant interactions such as tree regeneration, intercrop management and weed control in agriculture.

© 2018 Published by Elsevier GmbH on behalf of Gesellschaft für Ökologie.

Keywords:  Competition; Functional traits; Light; Plant interactions; Regeneration; Soil inorganic nitrogen; Intra/interspecific interactions

∗Corresponding author.
E-mail address: philippe.malagoli@uca.fr (P. Malagoli).

https://doi.org/10.1016/j.baae.2018.06.002
1439-1791/© 2018 Published by Elsevier GmbH on behalf of Gesellschaft für Ökologie.

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

https://doi.org/10.1016/j.baae.2018.06.002
https://doi.org/10.1016/j.baae.2018.06.002
mailto:philippe.malagoli@uca.fr
https://doi.org/10.1016/j.baae.2018.06.002


Please cite this article in press as: Vernay, A., et al. Improved Deschampsia  cespitosa  growth by nitrogen fertilization jeopardizes Quercus
petraea  regeneration through intensification of competition. Basic  and  Applied  Ecology  (2017), https://doi.org/10.1016/j.baae.2018.06.002

ARTICLE IN PRESSBAAE 51122 1–12

2 A. Vernay et al. / Basic and Applied Ecology xxx (2017) xxx–xxx

Introduction

Plant ability to compete for resources has long been stud-
ied over a wide range of species, but no unifying theory
has yet emerged to explain all plant responses to biotic
interactions in different abiotic contexts. Grime (1974) first
proposed a three-determinant triangle—competition, stress,
disturbance—to classify plant species on a site according
to their behavior to cope with resource availability and
stress/disturbances in a given environment. Based on his
own observations, Grime concluded that competition grew
stronger with higher soil fertility (Grime 1974). In another
approach, Tilman (1987) focused on the processes involved
in competition and suggested that competition was strongest
for soil resources in an unfertile environment and strongest
for light in a fertile environment. However, neither theory
satisfactorily accounts for every observed plant response to
the combined effects of competition and fluctuating resource
availability (Craine 2005). Nevertheless, more recent stud-
ies have managed to reconcile these theories, as both would
predict survival of the species with the lowest R*, i.e.  the
lowest resource level allowing the plant to survive, to the
detriment of species with higher R*. The difference between
the two theories resides in the intensity of the disturbances
studied, i.e.  a relatively low disturbance intensity for Tilman
and higher intensity for Grime (Grime 2007; Jabot & Pottier
2012). Plant growth and functional responses remain unclear
in several cases of resource limitations. Pugnaire and Luque
(2001), using an environmental gradient, showed stronger
competition in the most fertile environment, as predicted
by Grime, but they also found that belowground organs
underwent stronger competition in the most stressful envi-
ronment than in the most fertile one, thus endorsing Tilman’s
theory (Pugnaire & Luque 2001). They demonstrated a
dynamic balance between facilitation and competition along
the environmental gradient. This is relevant to the facili-
tation process (broadly defined as at least positive impact
of plant A on plant B) which is positively correlated to
stress intensity (Bertness & Callaway 1994) until facilitation
collapses under the highest stress or until competition inten-
sity overtakes facilitation intensity (Verwijmeren, Rietkerk,
Wassen, & Smit 2013). However, conclusions strongly
depend on experimental design and/or environmental
contexts.Q2

Interactions can be characterized by two variables: impor-
tance and intensity (Welden & Slauson 1986; Corcket,
Liancourt, Callaway, & Michalet 2003). Intensity is defined
as the absolute effect of plant A on plant B, commonly
measured by comparing a performance index such as plant
biomass with or without a neighbor. Importance is defined
as the relative negative impact of competition on plant fit-
ness traits compared with environmental constraints (Welden
& Slauson 1986; Brooker et al. 2005). This concept of
importance was introduced to assess the contribution of the
interaction effect relative to the environment effect in reduc-
ing the performance of a given plant. How intensity and

importance vary among different multi-resource availabilities
is still largely unknown (Pugnaire & Luque 2001; Liancourt,
Corcket, & Michalet 2005; Pugnaire, Zhang, Li, & Luo 2015).

When several species are competing for the same
resources, plants can also acclimate in response to new envi-
ronmental conditions with fewer resources (Violle et al.
2007). According to a plant’s phenotypic plasticity, plant
traits can be adjusted to optimize the growth of organs
involved in resource capture so as to better cope with com-
petitive neighbors, and with greater efficiency (Casper &
Jackson 1997). This pattern is consistent with foraging the-
ory, which states that when a resource is rare, capture organs
can acclimate to become more efficient and favor higher
growth. In contrast, in the conservative strategy, nutrients and
carbohydrates are preferentially stored in perennial organs
for later re-use in a more favorable environmental context,
reducing risk of survival failure (Valladares, Martinez-Ferri,
Balaguer, Perez-Corona, & Manrique 2000; Yan, Wang, &
Huang 2006).

Most earlier studies on plant–plant interactions have only
considered one resource. Very few studies have accounted for
crossed availabilities in aerial and soil resources, including
soil inorganic nitrogen (Nsoil) (Davis et al. 1999; Siemann
& Rogers 2003), and most of them were designed incom-
pletely for all of the factors combinations or with only
partial control of factors studied. Here, we studied how
light and nitrogen availability and their interactions could
influence plant responses to biotic interactions in terms
of growth and functional traits. These two factors would
enable to separate aboveground competition from below-
ground competition in terms of importance and intensity of
interaction.

Our experiment aimed to measure early plant responses
of sessile oak (Quercus  petraea) seedlings and Deschamp-
sia cespitosa  in a mixture, in terms of growth and resource
acquisition in four nitrogen ×  light combinations. These two
species are widespread and commonly occur in interaction
throughout temperate European forests (Davy 1980). Cur-
rent silvicultural practices that aim to reduce standing tree
density (Puettmann et al. 2015) will increase light in the
understory, thus favoring colonization by the herbaceous D.
cespitosa. We expected to find a mitigated competition by
grasses in a shaded environment associated with lower grass
performance in terms of growth and functioning. We expected
oak seedlings to show higher investment to the root com-
partment in unfertilized places (higher root biomass, specific
root length (SRL), allocation of resources to the root system)
and higher investment for aboveground organs in a shaded
environment (higher growth rate, preferential allocation of
resources to leaves). We expected to find that the under-
ground foraging behavior of oak would counteract the fast
D. cespitosa  growth. The experimental setup was designed
(i) to determine how growth of oak/D.  cespitosa  was affected
by the combination of abiotic environments on a short-term
scale and how functional traits allow both plants to accli-
mate or respond to resource combinations of resources in
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Fig.  1.  Experimental design of all crossed treatment combinations. Dc = D.  cespitosa, Qp = Quercus  petraea, N = nitrogen, n = number of
replicates (see text for details).

terms of resource acquisition strategy, and (ii) to determine
the importance and intensity of interactions (positive or neg-
ative), and (iii) to elucidate the plant response strategies
employed to deal with these interactions in all the treatment
combinations.

Materials and methods

Experimental setup

The experiment was conducted in a greenhouse at
the INRA UMR PIAF research unit in Clermont-Ferrand
(Auvergne, France, 45◦45′N 3◦07′E, altitude 394 m a.s.l)
from mid-December 2014 to June 2015. A total of 120 one-
year-old bare-root oak seedlings [Q.  petraea  (Matt.) Leibl.;
149 ±  20 g fresh weight on average per tree] sourced from a
local tree nursery were planted on December 15, 2014 in 20-
L pots filled with a local sandy-clay soil (clay 20.3%, loam
22.8%, sand 56.9%; pH 6.15, total N content 1.45 g kg−1,
total C content 14.6 g kg−1) before bud break. D.  cespitosa
(L.) tufts (aboveground parts + roots) were carefully collected
under natural forest conditions at Paray-le-Frésil (Auvergne,
France; 46◦39′N 3◦36′E) and then transplanted into the pots
on December 16, 2014. Oak seedlings were grown (i) with-
out D.  cespitosa  [sole species; 40 pots (one seedling per pot)]
or (ii) with three surrounding tufts [mixed species; 80 pots,

0.97 ±  0.02 g per fresh tuft matter of D.  cespitosa], and the
last treatment was (iii) D.  cespitosa  (3 tufts per pot) without
oak seedlings (40 pots). Mixture density was set to be as close
as possible to species abundance in real field conditions, in
terms of relative abundance. Half of the pots were exposed to
59% of the photon flux density (PFD) in the photosynthetic
active radiation range (PAR) reaching the top of the green-
house (i.e. resulting from greenhouse structure interception),
and mimicking an appreciable forest gap under in  situ  condi-
tions, treatment L59. The other half was set under net shelters
(Hormasem

®
, 50% extinction), exposing pots to 27% of the

PFD measured above the greenhouse i.e.  close to %PFD val-
ues frequently recorded under an open natural oak canopy,
treatment L27 (Fig. 1). Our net shelters gave sun protection
with no influence on the red-to-far-red ratio of the PFD, so
light quality was the same outside and under net shelters.
Finally, for the two irradiances, half the pots were supplied
with either added NH4NO3 solution corresponding to a fer-
tilization rate of 89 kg ha−1 year−1 (924 mg of inorganic N Q3

per pot or 0.42 g kg−1, treatment N89) or no NH4NO3 addi-
tion, treatment N0. For N89, fertilization was applied three
times at an average rate of 26 kg N ha−1 year−1 (0.14 g kg−1)
in March, April and May, evenly spread with a bottle on the
pot surface. N0 corresponded to native Nsoil (Fig. 1). Light
treatment was constant over the growth period (December
2014–June 2015) whereas fertilization was applied in three
pulses. Because no statistical effect of single fertilization
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pulses was recorded on the growth curves (data not shown),
the data collected at the end of the experiment were inter-
preted from an integrated response over all the period. Mean
temperature over the experiment was 21 ±  4 ◦C (±SD; min.
14 ◦C, max. 30 ◦C). Mean air humidity over the experiment
was 63 ±  8% (±SD; min. 42%, max. 82%). Any undesir-
able species appearing in pots were manually weeded out.
Forty pallets (considered here as subplots) gathered six pots
for technical convenience, with 15 subplots shaded. All other
treatments (N and biotic interactions) were randomly dis-
tributed among subplots, in equal numbers in each light
treatment.

Growth measurement

Height of oak seedlings, highest D.  cespitosa  leaf, and
diameter at the stem base of oak seedlings were measured
every 10 days throughout the experiment. Relative growth
rate (RGR) was calculated for diameter and height with the
formula:Q4

RGR = ln
(
xt2

) − ln
(
xt1

)

t2 −  t1
(1)

where x is plant height or diameter, t2 is date of harvest, and
t1 is date of planting.

15N labeling

15NO3
15NH4 (20 mg of 15N dissolved in 500 mL of water)

was evenly supplied at the surface of each pot on June 05,
2015 to assess how N uptake during the vegetative season was
distributed between and within each species. Total N content
and 15N isotopic abundance were determined by isotope-ratio
mass spectrometry at the PTEF OC 081 (Nancy) functional
ecology platform. Labeling methods and associated calcula-
tions are detailed in Vernay, Balandier, Guinard, Améglio,
and Malagoli (2016).

Plant harvesting

Plants were harvested on June 22, 2015. Aboveground
parts and roots were collected in both species. For oak, above-
ground parts were separated into woody parts and leaves and
dried at 60 ◦C for at least 48 h before dry weight determina-
tion, and roots were separated into fine (diameter <2 mm) and
coarse (including taproot, diameter >2 mm). For D.  cespitosa,
no diameter distinction was made (diameter always <2 mm).
Soil and stones left around the root were then washed out
with tap water. A sub-sample of roots (one per species) for
each harvested pot was collected, wrapped in moist paper, and
stored at −20 ◦C for morphological analysis. The remaining
part was dried at 60 ◦C for at least 48 h before dry weight
determination.

Root trait measurements

Frozen sub-samples of fine roots were thawed and scanned
(Epson scanner, professional mode, 16 bits, dpi 600, pic-
tures in TIF format). D.  cespitosa  roots were pre-colored
with methylene blue to improve contrasts. Pictures were
then analyzed with WinRHIZO

®
software (V2005a, Regent

Instruments, Canada) to measure root length, surface and
diameter. Specific root length (SRL) was expressed in
cm g−1.

Intensity and importance of competition:
calculation  of indices

Intensity and importance of competition were assessed
for both species using two indices, i.e. Iint and Iimp, where
I for index refers to the neighborhood effect (Díaz-Sierra,
Verwijmeren, Rietkerk, de Dios, & Baudena 2016). We chose
these indices as they are standardized and symmetrical, with
finite limits, and thus allow unbiased comparisons. Calcula-
tions were done as follows:

Iint =  2 × �P

P−N +  |�P | (2)

Iimp =  2 × �P

2MP−N −  P−N +  |�P | (3)

where P−N is plant performance without neighbor, �P  is
the difference between plant performance with and with-
out neighbor, and MP−N is maximum plant performance
among all treatment combinations (MP−N was reached in
L59/N89 for aboveground organs and in L59/N0 for below-
ground organs). Indices were calculated for each organ with
dry biomass as the performance variable. Values of Iint and
Iimp range between −1 and +2 and between −1 and +2/3,
respectively. A negative or positive value means a competitive
or a facilitative interaction, respectively.

Statistics

To analyze the effects of light intensity, nitrogen availabil-
ity and biotic interactions on plant growth, we performed
analyses of variance with linear mixed effects models. All
analyzed data were based on the variables measured at har-
vest at the end of this experiment, i.e.  in June 2015, and thus
quantified integrated plant responses from December 2014 to
June 2015.

All factors and factor–factor interactions were included in
the model simultaneously. Full models were simplified by
removing insignificant higher-order interactions. To account
for the spatial structure of our experimental design, we intro-
duced a subplot random effect in the models. Final models
were fitted using the restricted maximum likelihood method
(REML) to better estimate variance components (Pinheiro
& Bates 2000). The lme function of the nlme package (R

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

https://doi.org/10.1016/j.baae.2018.06.002


Please cite this article in press as: Vernay, A., et al. Improved Deschampsia  cespitosa  growth by nitrogen fertilization jeopardizes Quercus
petraea  regeneration through intensification of competition. Basic  and  Applied  Ecology  (2017), https://doi.org/10.1016/j.baae.2018.06.002

ARTICLE IN PRESSBAAE 51122 1–12

A. Vernay et al. / Basic and Applied Ecology xxx (2017) xxx–xxx 5

Table  1.  Model of nitrogen, light and biotic interaction for aboveground biomass for oak seedlings (leaves and stem) and D.  cepsitosa  (shoots).
Only results from significant terms are shown. Df = degree of freedom (Num = numerator and Den = denominator), N = number of replicates,
N = nitrogen, L = light, BI = biotic interaction, DW = dry weight, SRL = specific root length.

Oak seedlings D.  cespitosa

N NumDf DenDf F-values p-Values N NumDf DenDf F-values p-Value

Light 119 1 36 15.3 <0.001 119 1 38 64.5 <0.001
Nitrogen 119 1 75 9.9 0.002 119 1 74 145.9 <0.001
Biotic interaction 119 1 75 104.2 <0.001
L ×  BI 119 1 75 21.9 <0.001
N ×  BI 119 1 75 11.5 0.001

Fig.  2.  Aboveground dry weight in sole-grown and mixed-grown oak and D.  cespitosa  under a crossed combination of two levels of light
(L59 and L27) and Nsoil availability (N89 and N0; see Materials and methods for further details). Values are reported as means ±  SE (n  = 10 for
sole-grown (SSp), n  = 20 for mixed-grown plants (MSp), degree of freedom = 50). For statistical relevance, data were log10-transformed, but
for readability, untransformed values are given in the figure. Different letters result from multiple pairwise comparisons (Tukey’s HSD test)
between each treatment combination at p  < 0.05.

software) was used to fit the linear mixed effect models
(Pinheiro, Bates, DebRoy, & Sarkar 2016). The conditional
F-test given by the anova function of the nlme package
was used to assess the significance of the different terms
of the models. To determine which treatments differed from
each other, we conducted multiple pairwise comparisons
(Tukey’s HSD test) using the lsmeans package (Lenth 2016).
Because three-way interactions were never significant, we
did not present them in our data. Comparison of 15N allo-
cation (%) between sole-grown species and mixed-grown
species was assessed with a Student’s t-test in each plant
compartment.

RGR was measured via  regular growth measurements
enabling pot to also be included as a random factor for
these variables. Preliminary analysis showed no effect of spa-
tial position of each pot in the greenhouse. Some variables
were transformed by a log10 function to meet normality and
homoscedasticity requirements.

All analyses were conducted with the R software version
3.3.2 (R Core Team 2016).

Results

Plant responses to biotic interactions under
different resource combinations

Only N ×  biotic interactions and L ×  biotic interactions
had significant effects on aboveground oak seedling dry
weight (leaf dry weight and stem dry weight, Table 1). Our
data showed disordinal interactions (Doove, Van Buuren,
& Dusseldorp 2014), making simple factor interpretation
irrelevant between sole and mixed grown oaks. Without-
neighbor data clearly showed a higher aboveground oak
biomass when light and/or nitrogen were highly available
(Fig. 2). L59/N89 produced significantly higher aboveground
biomass than other treatment combinations. These posi-
tive effects were cancelled in mixed cultures, producing
significant interactions between L ×  biotic interaction and
N ×  biotic interaction (Fig. 2, Table 1). This pattern was
observed for most of the oak variables studied (Appendix A
in Supplementary material) except for whole plant biomass
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Fig.  3.  Relationship between importance (Iimp) and intensity (Iint) of interaction between D.  cespitosa  and oak. Indices, based on oak biomass,
were calculated for all crossed light ×  Nsoil availability combinations based on dry weight in fine roots (black-filled), coarse roots (white-filled),
stem (light-grey-filled) and leaves (dark-grey-filled). Values are reported as means (n  = 10 for monoculture, n  = 20 in mixtures). Regression
equations and coefficients for each compartment are listed in the figure.

which was only dependent on biotic interactions and was not
significantly sensitive to factor interactions (Appendix A in
Supplementary material). Shoot/root, fine root area, leaf dry
weight and total aboveground dry weight were all affected by
L ×  biotic interaction and N ×  biotic interaction (Appendix A
in Supplementary material), with lower values in MSp treat-
ments than in SSp and no visible effect of L and N in MSp
(data not shown). However, root length and stem dry weight
were only sensitive to L ×  biotic interaction (Appendix A
in Supplementary material) whereas root diameter was only
neagtively affected by N ×  biotic interaction (Appendix A in
Supplementary material).

Dry weights of fine and coarse roots in oak were not statis-
tically different among all treatment combinations and were
only dependent on the simple effects of light and/or biotic
interaction (Appendix B in Supplementary material).

In contrast, aboveground biomass in mixed-grown D.
cespitosa was unchanged compared with sole-grown D.
cespitosa, except for L59/N89 where aboveground biomass
was greater in the mixture (Fig. 2B). Aboveground biomass
(mainly composed of leaves) was only affected by light and
nitrogen availability, increasing aerial biomass, with no effect
of interacting factors (Table 1). Only total plant dry weight
was sensitive to factor interactions with the significant effect
of N ×  L and N ×  biotic interactions (Appendix A in Sup-
plementary material). A positive effect of light was observed

on root length, root diameter, root area, fine root dry weight,
and biotic interactions influenced the SRL trait in D.  cespi-
tosa (Appendixes A and C in Supplementary material). In
conclusion, D.  cespitosa  performance was mainly dependent
on simple effects of each factor (except for total plant dry
weight, Appendix A in Supplementary material) with little
effect of biotic interaction whereas oak seedlings strongly
suffered from biotic interaction cancelling all positive effects
of higher L and N availability.

Intensity (Iint) and importance (Iimp) of
interaction with neighbor species

Considering the effect of D.  cespitosa  on oak seedlings
(Fig. 3), for every light ×  Nsoil combination, Iint and Iimp
values were negative for all oak organs, indicating that the
interaction was always competitive. Iimp was highest (low
competition) for L27 ×  N0 and lowest (high competition) for
L59 × N89 (Fig. 3). Moreover, for a given N supply, both
indices showed lower negative values in L59 than in L27.
Within each L treatment, index values were more negative in
N89 than in N0 (Fig. 3). This pattern was observed for each
organ, pointing to a common impact of D.  cespitosa  on the
whole oak plant. Considering each oak organ, respectively, in
aboveground and belowground compartments (MP−N value
was not the same according to aerial or belowground organs,
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Fig.  4.  Relationship between importance (Iimp) and intensity (Iint) of interaction between oak and D.  cespitosa. Indices, based on D.  cespi-
tosa  biomass, were calculated for all crossed light ×  Nsoil availability combinations based on dry weight in aboveground (white-filled) and
belowground (black-filled) compartments. Values are reported as means (n  = 10 for monoculture, n  = 19 in mixtures). Regression equations
and coefficients for each compartment are listed in the figure.

hindering comparison), leaves and fine roots had more nega-
tive values for both indices than, in order, stem and coarse root
(except for L27 ×  N89, where indices were lower in stem than
in leaves). These results show that competition was stronger
in capture organs (i.e.  leaves and fine roots) than storage
organs (i.e.  stem and coarse roots).

The positive effect of oak on D.  cespitosa, in L59 ×  N89
treatment, suggest two types of interaction: antagonistic
facilitation under N89 (positive indices for D.  cespitosa  but
negative indices for oak seedlings) and competition under
N0 (negative indices, Fig. 4). The amplitude of the effect was
much greater for belowground organs (very positive in N89
and very negative in N0) than aerial organs (close to zero,
meaning a neutral interaction, Fig. 4).

Nitrate and ammonium amounts in soil at
harvest

At the beginning of the experiment, amounts of nitrate
and ammonium measured in pots were 0.032 g kg−1 and
0.0013 g kg−1, respectively. After 6 months of growth, there
were much larger amounts of soil nitrate left in pots with
sole-grown oak than in pots with either sole-grown D.  cespi-
tosa tufts or the mixture (Fig. 5). Amounts of soil ammonium
showed no statistical difference according to mixture design
or light ×  Nsoil combination (Fig. 5).

Intra- and inter-specific allocation of  soil
inorganic 15N

Of 20 mg of 15N applied per pot 7 mg ±  0.32 mg (n  = 238)
was taken up by the mixture of which 98% was allocated
to D.  cespitosa. In sole-grown oak seedlings, 15N was pref-
erentially allocated to leaves (Fig. 6). In contrast, when
mixed-grown with D.  cespitosa, the 15N allocation pattern
changed: 15N allocation to oak leaves was lowered to the
benefit of coarse and fine roots (Fig. 6), with no change
in the stem, which was not simply due to differences in
biomass growth (Appendix B in Supplementary material).
In sole-grown and mixed-grown D.  cespitosa  tufts, 15N was
mainly allocated to aboveground parts (Fig. 6). This differ-
ence was not due to biomass difference. Allocation to the
aboveground parts was higher in the mixture, at the expense
of belowground parts.

Discussion

Do light × soil inorganic N modulate plant
interactions?

Overall, increased availability in at least one of the
two combined resources (L and/or Nsoil) led to a reduced
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Fig.  5.  Soil nitrate (NO3
−) and ammonium (NH4+) contents (g kg−1) at harvest in sole-grown oak (white bars) and D.  cespitosa  (black

bars) or in mixtures (grey bars) under all crossed light ×  Nsoil combinations. Values are reported as means ±  SE (n  = 3 for monoculture, n  = 6
for mixtures, degrees of freedom = 27). Different letters correspond to statistically significant differences between sole-grown plants and
mixed-grown plants at p  < 0.05, after multiple pairwise comparisons (Tukey’s HSD test).

Fig.  6.  Relative allocation of 15N among leaves, stems, coarse roots (CR) and fine roots (FR) in oak seedlings and D.  cespitosa  among
aboveground (AG) and belowground (BG) plant parts in D.  cespitosa  when sole-grown (SSp) or mixed-grown (MSp). Values are reported as
means ±  SE. ·,*, **, *** correspond to p  < 0.1, 0.05, 0.01 and 0.001, respectively, after Student’s t-test for each organ; degrees of freedom = 27.

aboveground biomass in mixed-grown oak seedlings when
compared to the low levels of the resources studied.

Deciphering combined effects of light and soil N on
mixed-grown oak seedlings is not straightforward. Actually,
neighbor-effect indices demonstrated a prevalence of light
impact. First, the size difference (in favor of the taller oak
seedlings) makes direct competition for light unlikely under
our study set-up. Second, for a given amount of light, adding
the Nsoil resource increased both the intensity and importance
of competition on oak. This would suggest that greater light

availability may lead to higher carbon gain by D.  cespitosa
(Vernay et al. 2016). This extra amount of carbon would indi-
rectly promote root system growth and thus pre-emption of
Nsoil. The strong ability of D.  cespitosa  to capture Nsoil led
to a subsequent bypass of extra available resources to the
detriment of oak growth (Freschet et al. 2017). This abil-
ity would explain the disordinal interaction observed (Doove
et al. 2014). Actually, only sole-grown oaks significantly
responded to additional resource amount. Indeed, some stud-
ies have reported that belowground resources play a key role
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in driving the competition relationship: in fertile soil, compet-
itive exclusion occurs, enhanced by higher biomass allocation
to aboveground organs, switching competition from nutrients
to light (Newman 1973; Hautier, Niklaus, & Hector 2009;
DeMalach & Kadmon 2017). However, these conclusions
mainly result from studies on grassland communities, which
share very similar ecological strategies. Here, perennials and
ligneous species behaved differently and responded to dif-
ferent needs, which could explain why light would have a
stronger influence. However, the two resources did not act
independently (Rajaniemi 2002), as highlighted by neighbor-
effect indices. Taking into account crossed combinations of
Nsoil ×  L thus brings fine-tuning elements that have seldom
been investigated together (but see Pugnaire & Luque 2001).

The only situation when D.  cespitosa  had no effect on oak
growth and associated traits was under low levels of both
resources (i.e.  L27 and N0). This is consistent with common
findings in the literature (Baribault & Kobe 2011; Vernay
et al. 2016) reporting weaker competition under low light
and nutrient availability, as competitive species free up their
space for stress-tolerant species (Grime 1974; Pierret et al.
2016).

How to explain the positive effect of oak seedling
on D. cespitosa biomass?

Antagonistic facilitation (i.e.  when species A has a positive
effect on species B but B a negative effect on A) of D.  cespi-
tosa by oak seedlings, in the N89 treatments whatever the light
level, was an unexpected and surprising finding (Stachowicz
2001; Schöb, Prieto, Armas, & Pugnaire 2014).

Two processes may be proposed to explain this positive
effect on D.  cespitosa. First, oak seedlings could have a
higher rhizodeposition in fertilized pots without any biomass
change (Karst, Gaster, Wiley, & Landhausser 2016). This
supplementary nitrogen supply might offer an extra soil N
source, rapidly absorbed by D.  cespitosa. As a perspective,
identifying and then quantifying such fluxes would be hugely
informative to help gain a refined understanding of the under-
lying mechanisms. Second, interspecific competition could
be amplified in N89/L59, becoming stronger than intraspecific
grass competition (Vernay et al. 2018). This process could
be fostered by exudates which would act as signals in the
rhizosphere, allowing self-recognition in a plant community
(Delory, Delaplace, Fauconnier, & du Jardin 2016). Exudates
coming from other species may trigger positive feedback on
root length and root density of D.  cespitosa  (Semchenko,
Saar, & Lepik 2014).

Nsoil depletion to the benefit of D. cespitosa

More than 90% of 15N applied was massively absorbed
by D.  cespitosa  tufts, in line with previous studies (Coll,
Balandier, & Picon-Cochard 2004; Vernay et al. 2016).

According to Tilman’s theory, this would suggest that the
competitive relationship was due to a low R* of D. cespitosa,
i.e. a high growth potential at very low levels of resources
(Tilman 1982). Such behavior raises questions over the sus-
tainability of the grass’s life cycle. On the one hand, it is
legitimate to question whether the strategy of D.  cespitosa
involves a continuous depletion of resources at the risk of
not being able to maintain the whole organism later on due
to excessive growth (Hardin 1968; Gersani, Brown, O’Brien,
Maina, & Abramsky 2001). On the other hand, “game the-
ory” (trade-off between survival at the community level and
growth at the plant level) would predict a trade-off between
resource depletion for individual D.  cespitosa  growth and
the cost of individual maintenance induced by its growth
(McNickle & Dybzinski 2013).

In planta 15N allocation: a conservative strategy
for oak

Oak seedlings in the mixture allocated much more 15N to
coarse and fine roots to the detriment of leaves than sole-
grown seedlings. This phenomenon was observed in a very
short time (only 6 months of interaction) which has rarely
been quantified in literature. Indeed, this study shows that
plant–plant interactions and their responses in terms of life
strategy occur very rapidly. We suggest that higher oak N allo-
cation to belowground compartments may feed an N storage
pool (Vizoso et al. 2008) instead of using it for prospection
and resource capture, associated with low investment in tis-
sue creation (fine root dry weight was constant despite N
allocation change). Oak strategy is therefore conservative.

Nitrogen resource can be taken up and assimilated quickly
(Uscola, Villar-Salvador, Oliet, & Warren 2014; Gao, Chen,
Yuan, Zhang, & Mi 2015). However, few studies have shown
an early preferential N distribution to the root system, as has
been done for carbon (Kaiser et al. 2015).

Foster oak regeneration in practice

Because the presence of oak had an unexpected positive
effect on D.  cespitosa  growth when N fertilizer was added,
field fertilization cannot be recommended (Coll et al. 2004;
Salifu, Jacobs, & Birge 2009). Use of preliminary N-loaded
oak seedlings coming from a nursery would allow oak to
benefit from its own internal N-reserve, improving its sur-
vival and its resistance to grass-driven N-depletion (Salifu
& Timmer 2001; Villar-Salvador et al. 2012; Vernay et al.
2018). Another solution would be to consider foliar fertil-
ization, allowing to target oak seedlings more specifically
without fertilizing understory species (Gagnon & Deblois
2014). All suggested solutions will not be efficient with-
out grass management reducing grass density. This can be
achieved by decreasing light availability when possible.
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Conclusion

As expected, D.  cespitosa  competed with oak seedlings
and to the detriment of oak. This competition arose whenever
resources became more available (59% PFD for light and
89 kg ha−1 N supply). This study shows original responses
of plant–plant interactions in different resource combination
(antagonistic facilitation of D.  cespitosa  by oak seedlings and
indirect influence of light). This further argues for consider-
ing crossed factors instead of one resource. Neighbor-effect
indices indicated that light was a primary factor driving plant
response, but this effect was indirect as driven by improved
Nsoil uptake. Each species exhibited a contrasting response
strategy to competition and Nsoil ×  light combinations: a con-
servative strategy for oak, and a capture strategy for D.
cespitosa. Finally, D.  cespitosa  growth was enhanced by the
presence of oak under high Nsoil.

Investigation of functional mechanisms of antagonistic
facilitation and intra- vs  interspecific interaction balance
offers interesting perspectives for further studies: N storage
in oak might play a pivotal role in coping with Nsoil depletion
by D.  cespitosa. Other soil resources, such as water or phos-
phorus, also warrant attention. Finally, it would be of great
interest to test whether such observations also occur under
natural conditions.
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