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The ocean plays an important role in the climate system on time-scales of weeks to

centuries. Despite improvements in ocean models, dynamical processes involving

multiscale interactions remain poorly represented, leading to errors in forecasts. We

present recent advances in understanding, quantifying, and representing physical

and numerical sources of uncertainty in novel regional and global ocean ensembles

at different horizontal resolutions. At coarse resolution, uncertainty in 21st century

projections of the upper overturning cell in the Atlantic is mostly a result of buoy-

ancy fluxes, while the uncertainty in projections of the bottom cell is driven equally

by both wind and buoyancy flux uncertainty. In addition, freshwater and heat fluxes

are the largest contributors to Atlantic Ocean heat content regional projections and

their uncertainties, mostly as a result of uncertain ocean circulation projections. At

both coarse and eddy-permitting resolutions, unresolved stochastic temperature and

salinity fluctuations can lead to significant changes in large-scale density across the

Gulf Stream front, therefore leading to major changes in large-scale transport. These

perturbations can have an impact on the ensemble spread on monthly time-scales

and subsequently interact nonlinearly with the dynamics of the flow, generating

chaotic variability on multiannual time-scales. In the Gulf Stream region, the ratio

of chaotic variability to atmospheric-forced variability in meridional heat transport

is larger than 50% on time-scales shorter than 2 years, while between 40 and 48◦S

the ratio exceeds 50% on on time-scales up to 28 years. Based on these simulations,

we show that air–sea interaction and ocean subgrid eddies remain an important

source of error for simulating and predicting ocean circulation, sea level, and heat

uptake on a range of spatial and temporal scales. We discuss how further refinement

of these ensembles can help us assess the relative importance of oceanic versus

atmospheric uncertainty in weather and climate.
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1 INTRODUCTION

The ocean has a much larger heat capacity than the atmo-

sphere and cryosphere, and plays a leading-order role in

weather and climate. The thermal inertia of the ocean pro-

vides long-term memory to the climate system. More than

90% of the excess heat in the climate system in the last 50

years has been stored in the ocean (Levitus et al., 2012),

with important consequences for sea-level rise. The ocean

not only stores heat and other tracers like carbon and oxygen

but can also redistribute them, affecting sea level region-

ally (Gregory et al., 2016) and maintaining the sea-ice

edge by transporting heat to high latitudes (for example,

Winton, 2003).
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Taking the ocean dynamics into account is important for

weather and seasonal forecasting, in both the Tropics and

extratropics. In the Tropics, for example, the Madden–Julian

Oscillation (MJO), which is regarded primarily as an atmo-

spheric phenomenon, is influenced by the ocean and coupled

atmosphere–ocean processes, which improve the skill of MJO

forecasts (Woolnough et al., 2007; DeMott et al., 2015). The

El Niño–Southern Oscillation (ENSO) is another example of

a coupled phenomenon in which the ocean dynamics sets the

spatial pattern and period of ENSO events (Philander, 1983).

The ocean is also important for forecasting the state of the

atmosphere in the extratropics. One symptom underlying this

importance is the adverse effect of North Atlantic sea-surface

temperature (SST) biases on European climate predictions

(Scaife et al., 2010).

Scale interactions and two-way feedbacks shape the ocean

dynamics. The ocean is driven mainly by atmospheric fluxes

of energy, momentum, and matter at the sea surface (Peixoto

and Oort, 1984). The ocean dynamics is characterized by

a range of phenomena including eddies, zonal jets, inter-

nal waves, and mixing. These phenomena are linked, in the

sense that eddies may merge and create zonal jets through

an anisotropic inverse cascade, eddies may generate internal

waves through geostrophic adjustment, and internal waves

create mixing when they break (Vallis, 2006). Nonlinear scale

interactions and feedbacks between different features in the

climate system could involve two processes in the ocean, or

a process in the ocean interacting with a process in the atmo-

sphere. For example, in the ocean–ocean category, eddies

may influence the large-scale wind- and buoyancy-driven

circulation via the spatial inverse cascade associated with

two-dimensional geostrophic turbulence (Arbic et al., 2007).

This scale interaction is also featured in the temporal domain,

with fast nonlinear chaotic fluctuations influencing slow

modes of variability (Arbic et al., 2012; Serazin et al., 2018).

In the ocean–atmosphere category, turbulent air–sea fluxes

lead to coupling at all latitudes and may involve the intertrop-

ical convergence zone, Hadley cells, and jet stream (Dong

and Sutton, 2002).

A critical limitation when modelling the above phenomena

is that—due to the wide range of interactions at different

scales and between different components—numerical pre-

dictions are inherently uncertain (Palmer et al., 2005). There

are different types of uncertainty. Uncertainty in the initial

conditions (IC) of oceanic and atmospheric models arises

from poor observational coverage or imprecise model ini-

tialization. Another important source of uncertainty is the

lack of numerical resolution, such that many processes are

subgrid-scale and unresolved. The effects of these processes

on the resolved scales have to be parametrized. Important

subgrid-scale processes include air–sea fluxes (bulk for-

mula), mixed-layer processes (for example, restratification),

mesoscale and submesoscale eddies, and diapycnal mixing.

The lack of explicit representation of subgrid-scale processes

and imperfect parametrizations inhibits many of the scale

interactions described above. Therefore, when considering

uncertainty related to subgrid or chaotic processes, there will

be two components to the error: a random error associated

with the impact of unresolved or resolved chaotic processes

on the large-scale flow, and systematic errors due to imperfect

parametrizations and parameters (Allen et al., 2002).

The discretization in space and time of the equations

of motion (Teixeira et al., 2007) yields errors from the

truncation and unresolved scales, and from the different

numerical schemes and vertical coordinates (for example,

Gibson et al., 2017). For example, there have been recent

developments in stabilizing the computational mode of the

commonly used leapfrog time-stepping scheme using the

Robert–Asselin–Williams (RAW) filter (Williams, 2009;

2011; 2013). Specifically, the use of the RAW filter, instead

of the Robert–Asselin filter, reduces biases in the location of

the Gulf Stream (Young et al., 2014). Therefore changes in

the numerics might help correct for the bias, in the same way

that stochastic and chaotic variability can alleviate the bias.

None of the errors described above is truly independent.

How can we reduce uncertainties in simulations and fore-

casts associated with random and systematic errors, or at least

account for them? First, one could increase the numerical

resolution; however, this comes at a computational cost and

the models would still be missing processes at finer scales

down to the Kolmogorov scale of millimetres to centimetres,

below which viscosity ensures that motions are not energized.

Second, one could increase model complexity, for example,

by adding more components and new parametrizations of

missing processes. Complexity again increases computational

cost, and the new parametrizations need to be developed such

that their implementation does not deteriorate the model’s

performance. Third, one could include new ways to represent

uncertainty, such as perturbed parameters informed by obser-

vations or the use of stochastic physics, as is done routinely

in several atmospheric models (Leutbecher et al., 2017).

The best way forward is likely a combination of the three

solutions mentioned above. In the present article, we will

focus on the latter two. We will present newly designed

ocean ensembles at coarse and eddy-permitting resolutions

for weather and climate. We will concentrate on the represen-

tation of uncertainty in the ocean component of the system

and discuss the results in terms of scale interactions and

feedbacks on the resolved scales.

2 DIVERSITY OF OCEAN ENSEMBLES
AND UNCERTAINTY

Ensembles for weather and seasonal forecasts have a long

history, as reported in this special issue. The use of a dynam-

ical ocean model for a range of studies, from weather fore-

casts to climate predictions, is increasingly common. Below,

we briefly review representations of uncertainties and then

highlight several applications using ocean ensembles with

uncertainty representation.
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TABLE 1 Summary of ocean ensemble configurations used in sections 2 and 3

Horizontal Ref.

Model name Configuration resolution (◦) Ensemble set-up Simulations Members section(s)

MITgcm – CMIP5 forcing Global 2.8 Deterministic surface forcing Climatology and climate change 29 2.2.4; 3.1

OPA-ECHAM Global 2 Stochastic air–sea forcing Climatology 1 3.1

NEMO-ORCA2 Global 2 Stochastic density for model error Climatology 1 3.2

NEMO-NATL025 Regional 0.25 Stochastic density for model error Hindcast 13 2.2.2; 3.2

NEMO-OCCIPUT Global 0.25 Stochastic density for I.C. generation Hindcast 50 2.2.3; 3.3

2.1 Representation and quantification of uncertainty
in ensembles

There are standard methods to represent uncertainty in the

ocean component of weather and climate models for ensemble

simulations and forecasts, namely: perturbed initial state, per-

turbed physics (parameters and parametrizations), and multi-

physics (such as multimodels), and more recently stochastic

physics has also gained some traction.

Initial conditions (IC) of oceanic and atmospheric models

are inherently uncertain, due to the lack of observations or

imperfect model initialization. Oceanic and atmospheric IC

uncertainties (together with model uncertainties) are likely

to persist on long time-scales. Therefore, these uncertain-

ties need to be simulated and characterized, to assess the

robustness of oceanic hindcasts (ocean simulations driven

by realistic atmospheric forcings) and the sensitivity of

ocean and climate simulations to ocean model uncertainty

and initialization. The sensitivity of the ocean state to IC

uncertainty may be represented in ensemble simulations by

slightly perturbing the ocean model IC, as is done in atmo-

spheric models for weather and seasonal forecasts. Such IC

perturbations may be introduced in the ensemble members

at different times, to evaluate the fate of IC uncertainties for

various background oceanic states (for example, different

stratifications, Atlantic Meridional Overturning (AMOC)

magnitude). Studies have been carried out to emulate these

IC uncertainties and describe their spatio-temporal evolu-

tion. Many studies, using laminar ensemble simulations,

have identified optimal IC perturbations that maximize the

response of climate-relevant oceanic indices (for example,

heat content, ENSO, AMOC; see Kleeman and Moore, 1997;

Zanna et al., 2011; Sevellec and Fedorov, 2017), their pos-

sible impacts in coupled models (see Tziperman et al., 2008;

Hawkins and Sutton, 2009; Germe et al., 2017a, 2017b),

and their use in targeting new observations for prediction

(Zanna et al., 2011; 2012). Other studies (section 3.3) focus

on the fate of IC uncertainties and chaotic ocean behaviour

in higher-resolution ocean model ensembles, in regimes

where nonlinear turbulent scale interactions are at play (for

example, Spall, 1996; Dewar, 2003; Berloff et al., 2007).

For each parametrization scheme of a given process, a

parameter is introduced. However, such parameters are often

poorly known and poorly constrained. Despite this, the

weather and climate states are very sensitive to these param-

eters. In perturbed parameter ensembles, different parameter

values are sampled from a distribution representing their

uncertainty. The distribution can be ad hoc or created from

observations or high-resolution simulations. Each ensemble

member is then assigned a different set of parameters.

However, while these ensembles target some uncertainty in

the parameters, they are not representing the uncertainty

in the parametrization itself. An alternative technique for

representing uncertainty in parametrization is the use of

stochastic schemes. These use random numbers to repre-

sent the uncertainty in the parametrization scheme itself,

accounting for the unresolved subgrid-scale variability asso-

ciated with a given process. Many such stochastic physics

schemes have been introduced over the years and some will be

described in sections 2.2.2, 3.1 and 3.2. Finally, a multimodel

approach has become common practice to target structural

and parameter uncertainty for climate predictions simulta-

neously (for example, Kharin and Zwiers, 2002). The mean

of the ensemble of Atmosphere–Ocean General Circulation

Models (AOGCMs) from different modelling centres is used

to provide the “best estimate” forecast, assuming the simula-

tion errors in different AOGCMs are independent. The spread

of the ensemble then corresponds to the uncertainty, which

encompasses the different numerical schemes, parametriza-

tion choice, and parameter values. The ensemble mean and

spread are often considered to be an improved basis for prob-

abilistic projections, compared with ensembles based on a

single model (Palmer et al., 2005).

While none of the approaches described above represents

all uncertainties, they are certainly the most common ones.

2.2 A range of ocean-based ensembles

Below we provide examples of ensembles used for weather

and climate predictions. Some of the ensembles introduced

below are then used in section 3 to explore the key sources of

uncertainty for ocean states relevant for weather and climate

and are summarized in Table 1.

2.2.1 Initialized ensemble forecasts
Ensembles are in widespread use for operational weather and

seasonal forecasts. Most medium-range and seasonal forecast

systems involve ensemble prediction to help formulate prob-

abilistic forecasts and to provide users with an indication
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of forecast uncertainty. For example, the European Centre

for Medium-Range Weather Forecasts (ECMWF) produces

weather forecasts for up to 15 days ahead using an ensem-

ble of 52 individual ensemble members twice a day. Optimal

perturbations from singular vectors for initial conditions and

stochastic schemes have been operational at ECMWF since

1998 (Buizza et al., 1999). The initial states and model

physics in the ensemble members are perturbed to explore

the currently understood range of uncertainty in the obser-

vations and the model. The result is a plume of possible

futures, in which the different types of uncertainties are

accounted for.

2.2.2 Links between model and observational uncertainty
and the NATL025 ensemble
An essential aspect of a seasonal forecast system is the

ocean initialization. Ensemble-based data assimilation meth-

ods provide an ensemble of states to initialize the forecasts

with state-dependent background-error covariances combin-

ing observations and models. Several existing ocean ensem-

ble data assimilation products are widely used (Yin et al.,
2011). Different ensembles are designed to explore the

role of uncertainty in the initialization or in the products

derived for initializations. In addition, each data-assimilation

product is influenced by the underlying model used and

the errors associated with it. These model errors will

then propagate and affect the forecasts on a range of

time-scales.

Understanding and representing model uncertainties is nec-

essary to assess how much information from the “true system”

is contained in models; this is a key asset for ocean data

assimilation and to produce reliable probabilistic hindcasts

and forecasts. Ensembles of simulations have been performed

to explore the effects of explicit representation of initial con-

ditions and model uncertainties in a range of simulations

(Williams, 2012; Brankart, 2013; Andrejczuk et al., 2016;

Williams et al., 2016; Juricke et al., 2017). For example,

Andrejczuk et al. (2016) use a coarse (1◦) resolution coupled

GCM to investigate the impact of uncertainty in different sub-

grid schemes using stochastic physics versus initial-condition

perturbations from singular vectors. They showed that the

ensemble spread for certain quantities can be increased in

regions such as the Gulf Stream on seasonal time-scales.

However, the uncertainty from the chaotic atmospheric vari-

ability and that of the ocean initial conditions was often

dominant over that of stochastically represented ocean model

error. This result can be contrasted with other studies using

uncoupled models (Brankart, 2013) or even coarser reso-

lutions (Williams, 2012), which found a large impact from

stochastically represented ocean model error (nonlinear den-

sity equation and air–sea turbulent fluxes, respectively) on the

large-scale climatological ocean state.

Recently, novel eddy-permitting (1∕4◦ resolution)

ensembles of the North Atlantic have been generated using

a configuration of the ocean model Nucleus for European

Modeling of the Ocean (NEMO), NEMO-NATL025 (devel-

oped by the DRAKKAR consortium: see Barnier et al.,
2006), with a focus on the stochastic effect of unresolved

scales in the computation of density (as in Brankart et al.,
2015; see section 3.2 for results). The original purpose of

these ensemble simulations was to investigate to what extent

uncertain model operators can be made statistically consis-

tent with observations (for example, satellite altimetry or

Array for Real-time Geostrophic Oceanography (ARGO)

floats). Inconsistency here would imply that our assumptions

about model or observation accuracy are incorrect, and that

further fundamental studies are needed to identify the miss-

ing sources of random or structural uncertainty associated

with the system. Following this approach, ensemble data

assimilation experiments have been performed to reduce

uncertainties in the NEMO-NATL025 ensemble simulations

using altimeter observations (Candille et al., 2015). Candille

et al. (2015) quantified the reliability and resolution (that is,

statistical consistency and information content) of ensem-

ble analyses and short-term forecasts based on probabilistic

scores (for example, Andrejczuk et al., 2016). Candille et al.
(2015) highlight the usefulness of representing model error

via stochastic physics to produce a reliable ensemble and the

need of initialization for skilful forecasts.

2.2.3 Dynamical uncertainty in hindcasts and the
OCCIPUT ensemble: long-term impacts of ocean chaos on
dynamics
The long-term memory of the climate system comes from the

ocean. Uncertainties in oceanic and atmospheric IC uncer-

tainties, together with model uncertainties, are likely to persist

and influence ocean dynamics on long time-scales. Ideal-

ized simulations (see, for example, the review by Dijkstra

and Ghil, 2005) have demonstrated that, when the resolution

of ocean models is fine enough to represent key nonlinear

processes, the ocean itself spontaneously generates a strong

chaotic, intrinsic variability with temporal scales reaching

from years to decades and spatial scales of thousands of kilo-

metres. Mesoscale turbulence is one of these key processes,

and its explicit representation in ocean models can lead to the

emergence of low-frequency chaotic variability, even without

any low-frequency atmospheric forcing (for example, Pen-

duff et al., 2011; Gregorio et al., 2015). This low-frequency

chaotic variability indeed emerges under a repeated seasonal

forcing, and locally can reach the amplitude of the variabil-

ity obtained in oceanic hindcasts, driven by the full range of

atmospheric time-scales.

In order to disentangle the chaotic part of the ocean variabil-

ity and its atmospherically driven (forced) part, the OceaniC

Chaos – ImPacts, strUcture, predicTability (OCCIPUT)

project has performed a 50 member ensemble of 56 year,

global NEMO ocean–sea-ice hindcasts at 1/4◦ resolution,

based on a probabilistic version of the NEMO ocean model
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(Penduff et al., 2014; Bessieres et al., 2017). The OCCIPUT

experiment is a nonassimilative, global and longer version of

the regional ensemble experiment NATL025 (section 2.2.2).

The 50 members of OCCIPUT were perturbed stochastically

(using the methodology described in section 3.2) for one

year only (after a common spinup), and then driven between

1960 and 2015 by the same realistic forcing derived from

an atmospheric reanalysis. OCCIPUT was designed to study

the long-term fate of small IC uncertainties, or equivalently

of the chaotic variability, in climate-relevant oceanic indices

over a wide range of scales. These results complement those

obtained in lower-resolution (Germe et al., 2017a, 2017b) and

idealized (Wilson et al., 2015) oceanic ensembles regarding

the fate of IC uncertainties.

2.2.4 Climatological simulations and forced projections,
and the CMIP5-forced MITgcm ensemble
Coupled climate models, in coordinated efforts with a com-

mon set of experiments, can produce climatological (control)

simulations and projections under a range of scenarios. This

multimodel approach, often referred to as an “ensemble of

opportunity” (Tebaldi and Knutti, 2007), has helped in sam-

pling initial condition uncertainty, parameter and structural

uncertainty in the climate models participating in the Cou-

pled Model Intercomparison Project Phase (CMIP) ensemble.

However, this ensemble of opportunity does not help in iden-

tifying and understanding sources of uncertainties. Therefore,

several new ensembles and protocols have been designed for

this purpose.

Small ensembles of realistic models with differing hori-

zontal resolution can target the impact of a specific resolved

versus parametrized process on large-scale dynamics. By

keeping the same model and changing the resolution and a

minimal set of parameters, the effect of resolution can be

assessed. For example, increased vertical upward eddy heat

and salt fluxes in the ocean interior with increasing ocean

horizontal resolution have been demonstrated in both the

Geophysical Fluid Dynamics Laboratory (GFDL) and Max

Planck Institute (MPI) coupled climate models (Griffies et al.,
2015; von Storch et al., 2016). Furthermore, the magnitude of

the spatial inverse cascade (that is, kinetic energy flux from

small to large scale) increases as resolution increases (Kjells-

son and Zanna, 2017), influencing jet dynamics in the Gulf

Stream, Kuroshio and Antarctic circumpolar regions. The

influence of resolved eddies also increases the surface fluxes

out of the ocean in the same regions (Roberts et al., 2016).

Recently, Huber and Zanna (2017) have designed a new

low-resolution ocean-only setup to analyse the effects of the

uncertainty arising from air-sea fluxes and model parame-

ters on the ocean circulation and heat uptake. They used the

surface boundary conditions from CMIP5 models (air–sea

fluxes, surface temperature, and salinity) to force the same

Massachusetts Institute of Technology General Circulation

Model (MITgcm) ocean model. They were able to reproduce

most of the CMIP5 ocean interior fields and concluded

that surface forcing is the main source of uncertainty, over

subgrid-scale parameters, for AMOC under pre-industrial

and 1% CO2 forcing scenarios, and for Atlantic ocean heat

content (OHC) change. However parametric uncertainty

remains important and dominant in other basins. We will use

their design to explore individually the role of momentum

and buoyancy forcing on the circulation and heat uptake in

section 3.1.

3 DOMINANT SOURCES OF
UNCERTAINTY

Using some of the diverse and novel ensembles described in

the previous section, we highlight several key uncertainties

in the ocean component of the climate system. We con-

centrate mainly on the Atlantic ocean basin, with a few

exceptions.

3.1 Air–sea interaction uncertainty

Air–sea fluxes are critical in forcing the ocean circulation

and its variability, while feeding information back from the

ocean into the atmosphere on a range of scales. Large-scale

air–sea fluxes govern the large-scale ocean circulation. Based

on the same ensemble design as Huber and Zanna (2017)

(described in section 2.2.4), the impact of individual air–sea

fluxes on large-scale ocean properties can be assessed, fol-

lowing a protocol inspired by the Flux-Anomaly-Forced

Model Intercomparison Project (FAFMIP) experiments (Gre-

gory et al., 2016). By using the surface fluxes and surface

properties (SST and sea-surface salinity (SSS)) of different

CMIP5 models, we can quantify the uncertainty arising from

individual boundary conditions. The ocean-only MITgcm

ensemble is forced with the surface boundary conditions

from 29 CMIP5 models under 1% CO2/yr or RCP8.5 forcing

scenarios (each ensemble member was first spun up with

its associated climatological seasonally dependent surface

forcings from CMIP5).

Under climate change scenarios, we find a large uncertainty

in AMOC weakening projections (between 0 and 5 Sv) and

Antarctic Bottom Water (AABW) change (between −1 Sv

and 5 Sv). The AMOC and AABW strength are defined as

the maximum of the meridional overturning streamfunction

in the Atlantic between 20◦N and 60◦N and below 500 m,

and south of the Equator and below 2000 m, respectively.

The spread in AMOC is mostly a result of buoyancy fluxes

(90%), rather than arising from the wind forcing (10%), as

shown in Figure 1a. The spread in AABW transport is driven

equally by both wind and buoyancy uncertainty (although

buoyancy might result in more spread over longer integra-

tions). However, note the large decadal variability in both

AMOC and AABW. Under RCP8.5, shown in Figure 2,

regional changes in OHC are due to a combination of heat,

freshwater (FW), and wind. The contribution from the heat

flux is fairly uniform, except for the “cold spot” around
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(a) (b)

FIGURE 1 MITgcm ocean simulations forced with prescribed surface boundary conditions taken from 29 CMIP5 1% CO2 experiments for temperature,

salinity, and momentum: (a) AMOC and (b) AABW magnitude (see definitions within the main text). The panels show individual model simulations (grey

curves) and the ensemble mean (black curves) when the model is forced with all surface fields; ensemble mean and spread (green curve and shading,

respectively) when using different wind forcing from the CMIP5 ensemble but the ensemble-mean buoyancy forcing; and ensemble mean and spread (orange

curve and shading, respectively) using different buoyancy forcing from the CMIP5 ensemble and the ensemble-mean wind forcing [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 2 Vertically integrated OHU ensemble mean (maps) and standard deviation (panels with grey curves for the zonal integral) in MITgcm simulations

under the RCP 8.5 scenario with forcing from all fluxes; heat flux alone; freshwater flux alone; and wind-only from 29 CMIP5 models [Colour figure can be

viewed at wileyonlinelibrary.com]

Antarctica and in the North Atlantic. In the Atlantic, FW and

heat fluxes are the largest contributors to OHC changes. The

strong changes in FW have a strong influence on the ocean cir-

culation in the North Atlantic and the associated heat uptake;

however, this signal might be amplified due to the coarse res-

olution of the MITgcm model setup. In the Southern Ocean,

in addition to FW and heat influence, the wind forcing—via

Ekman pumping—is significant. The spread (uncertainty)

in OHC is due mainly to the difference in FW and heat

fluxes—especially in the Southern Ocean.

The patterns resemble those found in Gregory et al. (2016)

using AOGCMs under the FAFMIP protocol, which uses the

same anomalous flux for heat, wind, and FW. Therefore the

ocean-only climate ensemble shows that the uncertainty in

air–sea forcing in climate change scenarios at coarse reso-

lution is large and can explain the uncertainty (as measured

by the spread between models) of the CMIP5 ensemble.

However, the spread measured is not the true uncertainty in

the projections, since all simulations are coarse-resolution

and lack both turbulent (nonlinear) ocean processes and

high-frequency air–sea fluxes.

Different studies have shown the impact of high-frequency

air–sea forcing on the upper ocean and large-scale circulation,

from idealized box models (Zanna and Tziperman, 2008) to

AOGCMs (Williams, 2012). To examine the impacts of unre-

solved air–sea fluxes on ocean climatology and variability,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 3 Maps of the changes in (a,b) the annual-mean SSH [cm] and (c,d) the standard deviation of annual-mean SSH [cm] in the North Atlantic ocean,

calculated from the simulations of Williams (2012). The changes are caused by stochastic perturbations to the air–sea fluxes of (a,c) FW (WAT) and (b,d) heat

(HEA). The change refers to the difference in mean and standard deviation between the stochastic simulations and a control simulation [Colour figure can be

viewed at wileyonlinelibrary.com]

we revisit the experiments of Williams (2012), in which

two crude stochastic parametrizations of air–sea fluxes were

implemented. We will examine the impacts on sea-surface

height (SSH). The numerical experiments were performed

using a coupled AOGCM, consisting of ECHAM4.6 coupled

to OPA8.2 (see Table 1). In the first simulation (WAT), the

deterministically calculated net FW flux across the air–sea

interface is modified stochastically before being passed to

the ocean. The second simulation (HEA) is the same, except

that the deterministically calculated net heat flux is modified

stochastically instead. The two simulations are compared with

a control simulation (CTL). The stochastic modifications are

achieved through multiplication of the deterministically cal-

culated fluxes by spatially uncorrelated white noise drawn

from a uniform distribution between 0.5 and 1.5. Each simu-

lation is 100 years long and initiated from observations.

The impacts of the stochastic noise on the mean SSH and

the SSH inter-annual variability in the North Atlantic are

shown in Figure 3. In the central North Atlantic, the stochas-

tic noise impacts both the annual-mean SSH and the standard

deviation of annual-mean SSH. The changes in each case have

magnitudes of up to around 4 cm. These changes demon-

strate (a) the sensitivity of mean SSH and SSH variability

to stochastic air–sea fluxes, and (b) that the sign and pattern

of the response depend on whether the stochastic forcing is

applied to the FW flux or heat flux.

3.2 Uncertainty from subgrid ocean processes

Stochastic forcing as used above is a promising approach

to simulate uncertainties resulting from unresolved pro-

cesses/scales (Palmer, 2012). One can generate stochastic

processes with the same statistics as the unresolved pro-

cesses, so that the effect of every particular instance of the

stochastic processes can be computed explicitly and applied

as a correction to the nonlinear terms of the model equations.

The difficulties with this approach are the following: (a) to

obtain a reliable statistical model for unresolved processes,

(b) to include adequate dependences for all processes resolved

explicitly by the model, and (c) to tune the remaining free

parameters.

For instance, Brankart (2013) proposed simulating the

effect of unresolved temperature and salinity fluctuations (ΔT
and ΔS) in the equation of state 𝜌(T , S) using a first-order

dependence of the fluctuations with respect to the large-scale

gradient, such that

𝜌 = 1

p

p∑
i=1

𝜌

[
T + ΔTi, S + ΔSi

]
(1)

with
p∑

i=1

ΔTi = 0,

p∑
i=1

ΔSi = 0, (2)

where 𝜌, T , and S are the large-scale density, temperature, and

salinity, respectively, and

ΔTi = 𝝃i(t) ⋅ 𝛻T , ΔSi = 𝝃i(t) ⋅ 𝛻S. (3)

The stochastic vectors 𝝃i(t) are the same for temperature and

salinity, which corresponds roughly to sampling T and S per-

turbations along random walks in the neighbourhood of every

model grid point. The free parameters, which need to be

tuned, are the number p of random walks and the statistics

(variance, time correlation, space correlation) of the random

walks 𝝃i(t).
To evaluate the impact of uncertainties in the horizontal

density gradient resulting from unresolved scales, we com-

pare results obtained at low resolution with NEMO-ORCA2,

a 2◦-resolution global ocean model (as in Brankart, 2013),

and at eddy-permitting resolution from NEMO-NATL025

http://wileyonlinelibrary.com
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TABLE 2 Statistical parameters defining the random walks in Equation 3.
Length-scales are in model grid points, 𝜙 is latitude

ORCA2 NATL025

Number of random walks p = 6 p = 1

Horizontal standard deviation 𝓁x = 𝓁y = 4.2| sin𝜙| 𝓁x = 𝓁y = | sin 2𝜙|
Vertical standard deviation 𝓁z = | sin𝜙| 𝓁z = 0.5| sin 2𝜙|
Correlation time-scale 𝜏 = 12 days 𝜏 = 10 days

FIGURE 4 Impact of uncertainties in the horizontal density gradient on

the mean SSH [m] in the North Atlantic. Difference between model

simulations with stochastic parametrization of the equation of state and a

reference simulation, for (a) ORCA2, at low resolution, and (b) NATL025,

at eddy-permitting resolution. The reference simulation for ORCA2 is a

climatological run, while the reference run for NATL025 uses stochastic

perturbations of lateral diffusion. Note the different colour bars [Colour

figure can be viewed at wileyonlinelibrary.com]

(described above in section 2.2.2). Climatological surface

forcing is used for ORCA2 and ERA40 is used for NATL025.

The statistics of the random walks in Equation 3 are tuned

using a reanalysis at 1∕4◦ resolution for implementation into

ORCA2 simulations, and model output at 1∕20◦ resolution

for NATL025 simulations (see the parameters in Table 2).

For ORCA2, the settings are the same as in Brankart (2013),

while for NATL025 the amplitude of the fluctuations could

not be chosen as large as it should be to fit the diagnosed statis-

tics of the high-resolution model, due to numerical stability

during implementation. The variance of the fluctuations has

thus been set to the largest possible value that keeps the model

stable, with a time step divided by four with respect to the

standard NATL025 configuration. It can thus be expected

that the impact obtained and illustrated below for these sim-

ulations underestimates the real impact of the unresolved

scales.

Simulations with ORCA2 are 25 year experiments, with

one single member, performed with or without explicit sim-

ulation of uncertainties in the computation of density. Simu-

lations with NATL025 are 15 year with 12 member ensemble

simulations. The first member of the ensemble is produced

using only small perturbations of lateral diffusion, to be

used as a reference, and the other members also include

the explicit simulation of uncertainties in the computation

of density. For all experiments with ORCA2 and NATL025,

time averages are performed over the last 10 years of the

simulations.

Figure 4 compares the mean effect of a stochastically per-

turbed density parametrization on the SSH in ORCA2 and

NATL025. This result shows that the magnitude of the mean

SSH difference is smaller in NATL025 than in ORCA2 by a

factor of about 3. The increased resolution of NATL025 com-

pared with ORCA2 has reduced the variance of unresolved

temperature and salinity fluctuations, therefore reducing the

associated uncertainties in the evaluation of density. How-

ever, note that the applied stochastic perturbations are reduced

compared with their true estimates due to numerical stability

(as described above).

Despite the weaker effect of the unresolved stochastic

perturbations in the NATL025 experiments compared with

ORCA2, the perturbations still lead to a substantial change

in the SSH gradient across the Gulf Stream, therefore accel-

erating the current and reducing the model bias significantly.

Figure 4 shows similar patterns in the correction obtained in

ORCA2 and NATL025 (despite the different scales): mainly

positive along the northern flank of the Gulf Stream front

(except for a negative spot north of Cape Hatteras), and neg-

ative along the southern flank of the front. Therefore the

representation of unresolved temperature and salinity fluctua-

tions leads to perturbations (for example, smaller eddies) that

impact the large-scale density across the front, as expected

from an inverse energy cascade argument, and cannot be

neglected.

Figure 5 shows the impact of this stochastic parametriza-

tion on the interannual variability of the system in ORCA2.

The time standard deviation of SSH is displayed with (right

panel) and without (left) explicit simulation of uncertain-

ties in the horizontal density gradient. The large-scale SSH

variability from ORCA2 is only increased in regions with

strong mesoscale activity, such as the Gulf Stream, Kuroshio,

Aghulas current, confluence region, and Antarctic circum-

polar current with amplitude of about 10 cm, similarly to

Andrejczuk et al. (2016) and Juricke et al. (2017). The per-

turbations produced by stochastic subgrid-scale parametriza-

tions may lead to an upscale cascade generating large-scale

and low-frequency variability through nonlinearities and

scale interactions.

Figure 6 illustrates the impact of this parametrization on

the SSH ensemble spread at eddy-permitting resolution in

NATL025. Without explicit simulation of density uncertain-

ties (top panels) of a few centimetres, small perturbations of

lateral diffusion can only generate a very small spread after

3 months (left panel), which is localized around the Gulf

Stream separation point from the American coastline. The

spread is then slowly amplified and propagated by the chaotic

mesoscale flow, as shown for the SSH spread after 1 year and

after 15 years (middle and left panels, respectively), reaching

20 cm in large regions.

With explicit representation of density uncertainties (bot-

tom panels), the initial rate of spread increases much faster

than for the reference ensemble (compare top and bottom left

panels). At the beginning of the experiment when the spread

http://wileyonlinelibrary.com
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FIGURE 5 Standard deviation of SSH [m] in ORCA2, obtained (a) without and (b) with explicit simulation of uncertainties in the horizontal density

gradient [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Temporal evolution of the standard deviation of SSH [m] in NATL025: after (a,d) 3 months, (b,e) 1 year, and (c,f) 15 years. In the top panels, the

model only includes small perturbations of lateral diffusion (our reference state); in the bottom panels, the model also includes both small perturbations of

lateral diffusion and explicit representation of uncertainties in the horizontal density gradient [Colour figure can be viewed at wileyonlinelibrary.com]

is still small, the dynamics of the ensemble spread is domi-

nated by the effect of stochastic perturbations in the equation

of state (about 10 cm in some regions). After a few months,

however, when the spread is larger, the stochastic perturba-

tions lose their dominant role in the dynamics of the spread,

to be replaced by the chaotic dynamics of the mesoscale,

which is mostly responsible for the subsequent increase of the

spread and for its propagation in other regions of the Atlantic.

After 1 year (middle panels), the spread is only slightly more

developed with the stochastic perturbations; after 15 years

(right panels), no significant difference in the spread can be

observed in the figure (even if a difference necessarily exists,

since the mean flow is different, as shown in Figure 4).

This example illustrates that a fair approximation of the

asymptotic behaviour of the spread, characterizing the attrac-

tor of the system, does not guarantee that the same model will

correctly represent transient ocean dynamics effects, which

are a prerequisite to producing reliable short-term or seasonal

ensemble forecasts. Therefore, even at eddy-permitting reso-

lution, the need for representing ocean model uncertainty is

crucial for adequate ensemble seasonal forecasts, but also for

bias reduction of the climatological state.

http://wileyonlinelibrary.com
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FIGURE 7 (a) Time (in months) over which the ensemble spread grows exponentially in the OCCIPUT ensemble simulation, and (b) time average of the

velocity ensemble spread (in m/s) towards the later part of the OCCIPUT ensemble simulation for 2008–2012 (that is, long after the initial growing phase).

The sections are taken along 68.5◦W longitude as a function of depth and latitude. Contours indicate the ensemble and time average of velocity (left) and

temperature (right) [Colour figure can be viewed at wileyonlinelibrary.com]

3.3 Impacts of initial condition uncertainties on
climate-relevant oceanic variables

The impact of initial conditions and transient eddies on

large-scale low-frequency signals is now evaluated using the

OCCIPUT ensemble, described in section 2.2.3 and based on

a global realistic ocean model. To generate different IC among

the different members for the OCCIPUT global ensemble,

stochastic perturbations in the equation of state (as explained

in section 3.2) were activated during the first year (that is,

1960), then switched off until the end of the integration in

2015.

In OCCIPUT, we define two ensemble statistics to provide

a simple way to disentangle the chaotic and forced parts of

the oceanic variability. The ensemble mean of any simulated

quantity at any location captures the part of the oceanic vari-

ability that is atmospherically driven and identical within all

members. The ensemble spread, measured by the ensemble

standard deviation (eSTD), is associated with chaotic fluctu-

ations superimposed on the atmospherically driven ensemble

mean, the phases of which differ among the members.

Intermember differences become noticeable after a few

days or weeks in the OCCIPUT ensemble at 1/4◦ resolu-

tion. At that time, the ensemble spread enters a phase of

exponential growth controlled by barotropic and baroclinic

instabilities, which feed the meandering of unstable currents,

the growth of mesoscale eddies, and, eventually their shed-

ding from the jets; this makes the ensemble members diverge

over the first year (as shown in Figure 6 for the NATL025

ensemble).

Figure 7a shows the duration of this initial phase along a

longitudinal section across the Gulf Stream (also illustrated

in figure 4 of Bessieres et al., 2017). The eSTD exponen-

tial growing phase lasts about 6–9 months in the Gulf Stream

down to 1000 m depth (and in other regions with strong

currents, such as the Kuroshio and Antarctic Circumpolar

Current (ACC)), where strong velocity shears favour the

emergence of mesoscale turbulence through instabilities. The

eSTD increases much more slowly in quiescent regions, that

is, within a few years.

The ensemble spread then enters a second phase, where

it saturates and fluctuates around an equilibrium value.

Figure 7b shows the eSTD of monthly ocean veloci-

ties, along the same section, averaged over several years

during this second saturated phase. This represents the

root-mean-square of simulated velocities, computed across

the ensemble dimension instead of the temporal dimension as

is often done. The surface-intensified eddy activity in the Gulf

Stream1 can fluctuate temporally in the saturated phase. These

fluctuations are statistically insignificant for the annually

averaged AMOC (Leroux et al., 2018), but subannual fluc-

tuations of 5-day-mean SSH eSTD are significant in certain

areas, such as upwelling regions, where they reflect the sea-

sonal emergence and subsequent westward propagation of

mesoscale activity (not shown).

Figure 8 (left panel) shows that, during the first months

or years, the chaotic variability responsible for the ensemble

spread in OHC consists mostly of mesoscale structures, with

relatively small spatial scales. The scales of the chaotic vari-

ability, however, evolve slowly. The right panel in Figure 8

shows that, after a few decades of integration, mesoscale

structures still dominate in the eddy-active ACC, but much

larger-scale, yet chaotic, fluctuations have populated the mid-

latitudes. This propensity of mesoscale structures to interact

spontaneously and create larger-scale structures is known as

the spatial inverse cascade of kinetic energy (for example,

Batchelor, 1953). Arbic et al. (2012; 2014) showed further

that mesoscale variability also feeds lower-frequency chaotic

fluctuations through a temporal inverse cascade of kinetic

energy. Serazin et al. (2018) confirmed that both spatial and

1Note that eSTDs and other ensemble statistics may be computed at any time

from such experiments, providing instantaneous estimates of the turbulent

activity.
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FIGURE 8 Chaotic anomalies (with respect to the ensemble mean) of yearly OHC0−800 m in member 5 of the ensemble, (a) during the first year of the

OCCIPUT simulation (1960), and (b) after 44 years of integration (2004) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Latitude–time Hovmöller diagrams of interannual-to-decadal chaotic anomalies of (a) the Atlantic OHC and (b) Atlantic MOC in member 5 of

the OCCIPUT global ensemble simulation [Colour figure can be viewed at wileyonlinelibrary.com]

temporal cascades are indeed at work, and this may potentially

explain the progressive emergence of slower, larger-scale

chaotic variability. Note that large-scale baroclinic instability

processes, distinct from those occurring at the mesoscale, may

coexist with mesoscale instabilities (Huck et al., 2015), feed

multidecadal ocean chaotic variability (Sevellec and Fedorov,

2013), and potentially contribute to the long-term evolution

of the ensemble spread as well.

Figure 9 shows the Hovmöller (latitude–time) diagrams of

large-scale, low-frequency chaotic anomalies for OHC (left)

and MOC (right) in the Atlantic, built from annual averages.

Their phases differ among the OCCIPUT members and are
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FIGURE 10 Power spectral density of (a) forced (𝜎2
F
) and (b) chaotic (𝜎2

C
) variabilities of the global MHT, as a function of period and latitude diagnosed

from the OCCIPUT global ensemble simulation. Contours in these two panels indicate selected isolines of the 𝜎C∕𝜎F ratio [Colour figure can be viewed at

wileyonlinelibrary.com]

independent of the prescribed atmospheric variability. The

upper OHC chaotic variability in the Atlantic locally exceeds

that of the atmospherically forced variability in the midlati-

tudes (as in the Southern Ocean, Serazin et al., 2017). The

chaotic OHC anomalies (left panel) in the subtropical regions

tend to propagate westward and equatorward at phase speeds

close to those of Rossby waves. In the midlatitudes, between

33◦N and 46◦N, there is no indication of propagation, but

there is a hint of persistence of anomalies over a few years,

despite the noisy fields. AMOC (right panel) exhibits a dif-

ferent structure: large, meridionally coherent, low-frequency

chaotic anomalies modulate the AMOC at the basin scale,

with intensities reaching their atmospherically forced coun-

terpart around 30◦S (Leroux et al., 2018). Leroux et al. (2018)

and Serazin et al. (2017) show that the time-scale of these

chaotic signals reaches several decades.

Do the chaotic variabilities of OHC and meridional circu-

lations impact the redistribution of heat at the global scale?

Figure 10 compares the frequency spectra of the forced (atmo-

spherically driven) and chaotic variabilities of the meridional

heat transport (MHT) integrated globally along latitudes. The

absence of contours between 30◦S and 30◦N indicates that

the atmosphere explains most of the global MHT multiscale

variability at low latitudes. Around the latitudes of the Gulf

Stream and Kuroshio extensions, however, the dashed con-

tours show that the chaotic variability exceeds half of its

forced counterpart on time-scales shorter than about 2 years.

In the Southern Ocean, this chaotic-to-forced variability frac-

tion exceeds 50% on time-scales up to 2–4 years everywhere

between 35 and 72◦S, and up to multidecadal time-scales

between 40 and 48◦S. Around 40◦S and 55◦S, the global MHT

variability is primarily chaotic on time-scales shorter than 1–2

years.

The OCCIPUT ensemble simulation thus shows that, in

the presence of mesoscale turbulence, small IC uncertainties

evolve within a few decades from the scale of eddies to large

spatial and temporal scales. The interannual to multidecadal

variability of large-scale climate-relevant oceanic indices in

the turbulent regime is not only due to the atmospheric vari-

ability or the air–sea coupling: a substantial fraction of it

may emerge spontaneously from oceanic nonlinearities with

chaotic evolution and a complex spatial structure. Studies are

under way to assess the potential impacts of this phenomenon

on the other components of the climate system (atmosphere,

cryosphere) and on the detection and attribution of climate

signals in the real ocean.

4 CONCLUSIONS

As computational resources increase, our models are increas-

ing in their fidelity with respect to the ocean and climate

system. However, models are still only approximate repre-

sentations of the real world and do not resolve many key

processes such as ocean eddies, air–sea fluxes, and upper

ocean mixing. Therefore we still rely heavily on parametriza-

tions of these essential, often nonlinear, processes. The

chaotic behaviour of these processes when partially resolved,

or the error associated with their inaccurate parametriza-

tion, leads to uncertainty in the representation of the ocean

state and its variability on a wide range of spatio-temporal

scales. To provide reliable ocean and climate projections,

we must quantify the uncertainty associated with these pro-

cesses and their representation in models, using ensemble

simulations.
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In this article, we present a range of new ocean ensembles

by targeting time-scales from weeks to decades, using dif-

ferent horizontal resolutions, different surface forcings, and

different quantification of model uncertainty. Based on an

ocean ensemble at coarse resolution, forced by a range of

possible air–sea fields taken from the CMIP5 ensemble, we

find a large uncertainty in AMOC weakening projections

(between 0 and 5 Sv), due mainly to uncertainties in buoy-

ancy fluxes (90% versus 10% from wind forcing). We also find

large uncertainties in AABW projections (between −1 Sv and

5 Sv), driven equally by both wind and buoyancy uncertainty.

The uncertainty in projected air–sea forcing translates into

an uncertainty in the amplitude and phase of decadal ocean

variability and multidecadal projections. The different air–sea

fluxes (heat, freshwater, and momentum) have a distinct

impact on the global ocean heat uptake and its regional pat-

terns. In the Atlantic, FW and heat fluxes are the largest

contributors to regional OHC changes, including via ocean

stratification and circulation changes. The spread (uncer-

tainty) in regional OHC in this ensemble is due mainly to the

difference in FW and heat fluxes—especially in the Southern

Ocean. As shown in Huber and Zanna (2017), the uncertainty

in air–sea forcing is of order one in regional predictions of

OHU and often more important than parametric uncertainty.

The dominance of air–sea flux uncertainty is not surpris-

ing in coarse-resolution models, where the stratification and

transformation of water masses are strongly influenced by the

surface forcing. In higher resolution models, where eddies and

their effect on the large-scale flow are partially resolved, the

sensitivity of ocean properties might be reduced, as the strat-

ification and its adjustment will depend strongly on eddy and

mixing processes (for example, Hallberg and Gnanadesikan,

2006). Therefore, further experiments with differing ocean

resolution and spread of surface forcings should be conducted

to understand the uncertainty due to eddy mixing and air–sea

fluxes on ocean circulation and associated regional heat con-

tent change, and ultimately their impact on the atmospheric

circulation.

Even as the resolution of the ocean model component

increases, subgrid-scale parametrizations are needed. We

have shown that representing subgrid-scale uncertainty using

stochastic physics gives us a quantification of model error

associated with the underlying subgrid processes in ocean

ensembles (for example, Berner et al., 2017). Due to the

nonlinearity of the model physics, the inclusion of stochas-

tic physics, especially when based on high-resolution data

or observations, can lead to significant improvements in the

model state, reducing mean biases (for example, Brankart,

2013). For example, we showed that, at both 2◦ and 1/4◦

horizontal resolution, the representation of unresolved tem-

perature and salinity fluctuations leads to perturbations that

impact the large-scale density field across the Gulf Stream

front. Stochastic physics can also improve the representa-

tion of ocean variability on seasonal to decadal time-scales

and generate spread in ocean ensembles on different scales.

The dynamics of the ensemble spread at eddy-permitting

resolution is dominated by the effect of the stochastic pertur-

bations in the equation of state (an impact of about 10 cm on

sea level in some regions); this spread can persist for months

and can generate interactions with the large-scale flow. The

growing phase of the spread in the region of strong current

is fed by strong velocity shears, which favour the emer-

gence of mesoscale turbulence through instabilities. Despite

this, the impact of stochastic perturbations and their evolu-

tion depends strongly on the model horizontal resolution, the

time-scale considered, and the atmospheric forcing variability

(for example, Williams, 2012; Brankart, 2013; Brankart et al.,
2015; Andrejczuk et al., 2016; Williams et al., 2016; Juricke

et al., 2017). There are differences in the impact of stochas-

tic perturbations on the flow for different model resolutions,

and the impact is altered in the presence of high-frequency

atmospheric forcing. From the state-of-the-art OCCIPUT

ensemble (Penduff et al., 2014), there is a clear chaotic vari-

ability signal, which overwhelms the directly (atmospheric)

forced response. For example, around the latitudes of the

Gulf Stream and Kuroshio extensions, the chaotic variabil-

ity in global MHT exceeds half of its forced counterpart on

time-scales shorter than about 2 years. In the Southern Ocean,

this chaotic-to-forced variability fraction exceeds 50% on

time-scales up to 2–4 years everywhere between 35 and 72◦S,

and up to multidecadal time-scales between 40 and 48◦S. This

chaotic variability, via nonlinear scale interactions, can there-

fore give rise to large-scale and low-frequency variability in

ocean volume transport, heat content, and heat transport (for

example, Leroux et al., 2018; Penduff et al., 2018).

From the range of experiments we have presented, which

identify air–sea fluxes, eddy mixing, and jet dynamics as lead-

ing sources of uncertainty over several spatio-temporal scales,

there is a need to represent these processes and associated

uncertainties adequately in models for seasonal forecasts to

multidecadal projections. Understanding how eddies impact

the large-scale and low-frequency variability is still vastly

unexplored. Even at 1/4◦, eddies are only partially resolved;

therefore the need for parametrization is present. There are

several avenues based on the development of scale-aware

parametrizations to represent some of the scale interac-

tions (ocean–ocean and ocean–atmosphere and short–long

time-scales) described above. Empirical parametrizations

have been developed using idealized ocean models (Berloff,

2005; Cooper and Zanna, 2015), while other parametrizations

are targeting specific processes misrepresented in coarser res-

olution models, such as eddy saturation (Mak et al., 2017),

eddy variance (Grooms, 2016), energy transfer (Grooms and

Majda, 2013; Jansen et al., 2015; Bachman et al., 2017),

and upgradient momentum fluxes (Porta Mana and Zanna,

2014; Zanna et al., 2017). New avenues for parametriza-

tion could include ensemble superparametrization for verti-

cal mixing, as proposed in atmospheric models (Subrama-

nian and Palmer, 2017). Eddy-permitting or eddy-resolving

ensemble ocean simulations are nevertheless mandatory to
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assess how these parametrizations mimic eddy interactions

properly, and their inverse cascade to climate-relevant vari-

abilities (Penduff et al., 2014; Serazin et al., 2017; 2018).

Representation of missing processes and uncertainty using

stochastic physics and parametrizations has proven useful

across a range of ensembles. However, it is important to

design these parametrizations using statistics that are repre-

sentative of the missing processes or missing error. There

is a need to diagnose the subgrid statistics using observa-

tions, higher resolution simulations using coarse-graining,

or ensemble data assimilation that combines model and

observations, to link the physics of the model to the observed

physics (Palmer et al., 2005). With the emergence of machine

learning tools, designing parametrizations or building rela-

tionships between subgrid and large-scale variables will likely

become more efficient.

The different ensembles presented here have highlighted

that the nonlinearity and chaotic behaviour of the ocean can

be large. The relative importance of the atmospheric ver-

sus oceanic chaotic variability remains to be quantified, in

order to understand fundamental oceanographic processes

and their possible imprints on the climate system. The dif-

ferent ensembles have so far been designed to explore only

one aspect: coarse-resolution models with different sources

of uncertainty (atmospheric uncertainty, ocean IC, and model

uncertainty), or models at an eddy-permitting resolution with

only ocean uncertainty. To investigate the relative contri-

bution of atmospheric and oceanic uncertainty, ensemble

experiments at eddy-permitting (or resolving) resolution,

which allow for rich nonlinear scale interactions, should be

employed with different ocean model and initial condition

uncertainty representations, together with a representation of

atmospheric uncertainty (for example, using singular vectors

for initial and boundary condition uncertainty and stochas-

tic physics for model uncertainty). The number of ensemble

members remains to be determined and will likely be an

important factor in interpreting any result. However, we will

be able to move towards a probabilistic view of understanding

time-dependent ocean variability and prediction, by estimat-

ing the relative uncertainty as a function of resolution and

time-scales for a range of processes.
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