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Abstract—The IEEE 754-2008 Standard governs Floating-Point
Arithmetic in all types of Computer Systems. The Standard
provides for two radices, 2 and 10. It specifies conversion
operations between these radices, but does not allow floating-
point formats of different radices to be mixed in computational
operations. In contrast, the Standard does provide for mixing
formats of one radix in one operation.

In order to enhance the Standard and make it closed under all
basic computational operations, we propose an algorithm for a
correctly rounded mixed-radix Fused-Multiply-and-Add (FMA).
Our algorithm takes any combination of IEEE754 binary64 and
decimal64 numbers in argument and provides a result in IEEE754
binary64 and decimal64, rounded according to any for the five
IEEE754 rounding modes.

Our implementation does not require any dynamic memory
allocation; its runtime can be bounded statically. We compare
our implementation to a basic mixed-radix FMA implementation
based on the GMP Multiple Precision library.

I. INTRODUCTION

When developing software using floating-point arithmetic,
the user is presented with a choice between two radices:
binary floating-point arithmetic (radix-2) or decimal floating-
point arithmetic (radix-10). The IEEE 754-2008 Standard for
Floating-Point Arithmetic [1] defines the format and operations
for both radices, and states that a programming environment
may conform to this standard in one radix or in both. Quite
a few studies have been undertaken on decimal floating-
point arithmetic in an effort to provide accurate and efficient
decimal operations using binary formats [2] and conversion
operations [3]. Those algorithms provide faithfully (or compa-
rably accurate) rounded results. We would like to go one step
further and perform correctly rounded “mixed-radix” floating-
point arithmetic, that is, arithmetic operations with operands
and result represented in a binary or a decimal floating-point
format.

To perform mixed-radix operations, the user may be tempted
to combine binary and decimal floating-point arithmetic such
as in the following C code:

1 double a=2000.0, c;
2 _Decimal64 b=0.001D;
3 c = a * b;

When trying to compile this code e.g. with gcc 6.3.0, the
compiler refuses to translate the code, emitting an error mes-
sage which states that floating-point types of different radices
cannot be mixed. The user, who might have no other choice
than using and mixing two scientific libraries, one of which

produces results in binary floating-point and the other produces
decimal ones, might hence be inclined to force the compiler
to translate this piece of code, e.g. by adding explicit casts
(conversions). This attempt may also be misleading, as these
conversions induce errors, which may be insignificant but may
also accumulate, amplify and become important.

Extending our example code as follows showcases this
dangerous [4] behavior:

1 double a=2000.0, c=-2.0, d;
2 _Decimal64 b=0.001D;
3 /* d = a * b + c */
4 d = __builtin_fma(a,(double)b,c);

This code compiles, but does not set the correct result to d,
i.e. 2000×0.001−2 = 0, but 4.16333634 ·10−17. This error is
due to the conversion of the decimal64 number b into a binary
floating-point number.

All these reasons point toward the need for a study and
conception of a specific mixed-radix framework. However, as
of now, the applicability of mixed-radix operations has sparsely
been studied and very few of them are available to the user.
Previous work investigated the feasibility of exact comparison
between floating-point formats of different radices [5], as
a way to enrich the current floating-point environment and
make numerical software safer. We would like to extend this
approach to the basic computational operations defined by
the IEEE754 Standard: +,−,×, /,√ and FMA. The FMA
operation, added in 2008, computes a× b+ c with one, single,
correct rounding. We wish to provide algorithms for a mixed-
radix implementation of the computational operations, i.e.
algorithms that take floating-point numbers of both radices–
two and ten–supported by the IEEE754-2008 Standard and
compute correctly rounded floating-point results, also in one
of these two radices.

A naive approach would be to perform the FMA computa-
tion in one of those two radices and perform a rounding of the
result into the output format. Suppose we have

a = 2−55 · 3242591731706757,

b = 2−52 · 4548635623644201,

c = 2−52 · 5902958103587057.

All these three numbers are IEEE754 binary64 num-
bers. The binary64 result of the FMA operation is then
◦ (a× b+ c) = 2−52 · 5902958103587057 that rounds to the



decimal64 10−17 · 9090999999999999, where in a correctly
rounded mixed-radix arithmetic the decimal64 result would
have been 10−17 · 9091000000000000. It is easy to construct
an example for which the mixed-radix result of an operation
will be hard to round. Yet we have no simple systematic way
to seek inputs for which this will be the case, hence our need
for a study and specific implementation of a correctly rounded
mixed-radix FMA. Our work is based on a previous study [6],
where an attempt to compute such hard-to-round cases was
made, without actually succeeding.

There are several binary and decimal floating-point formats
available, as defined in the IEEE754-2008 such as binary32,
binary64 and decimal64 or decimal128, and in principle even
mixed-radix heterogeneous operations like a binary64 plus
decimal128 gives binary32-addition, might eventually to be
considered. To get started, it is however easier to look at
one binary and one decimal format, with comparable accu-
racy, i.e. precisions that are comparable provided appropriate
conversion. Hence to perform those algorithms, we choose
the IEEE754 binary64 format, which provides k = 53 bits
of binary precision, which is equivalent to a basic relative
error of u = 2−53, and the IEEE754 decimal64 that provides
k = 16 digits of decimal precision, which is equivalent to a
basic relative error of u = 1/2× 10−15 = 2−50.82....

We will suppose that the IEEE754 decimal formats, such
as the decimal64 format we use, are encoded in the IEEE754
binary encoding (BID) [3], i.e. that access to a binary repre-
sentation of the decimal significand is straightforward. Given
this setting, let us admit the following:
• Binary, resp. decimal, operands are denoted 2E ·m, resp.

10F · n, with a bounded signed binary exponent E ∈ Z,
resp. decimal exponent F ∈ Z, and m ∈ Z, a signed
integer significand satisfying 2k−1 ≤ |m| ≤ 2k−1, where
k is the binary precision, resp. n ∈ Z with 1 ≤ |n| ≤
10l − 1 and l the decimal precision.

• The result of the computation of the mixed-radix FMA is
either a binary output 2G · p, with G ∈ Z appropriately
bounded and p ∈ Z a signed integer significand bounded,
or a decimal output 10H · q with H ∈ Z appropriately
bounded and q ∈ Z a signed integer significand bounded.

The IEEE 754 Standard defines the notion of “quantum”
for decimal operations [1]. However, whenever an operation’s
input is binary (floating-point or integer), the quantum is
defined in an ad hoc manner. We shall hence not consider
it.

Throughout this paper, we will first highlight the chal-
lenges due to the computation of correctly rounded mixed-
radix operations (Section II). We will then describe the in-
ternal mechanisms involved in the computation of a correctly
rounded mixed-radix FMA (Section III), and then discuss the
implementation and test strategy developed to measure the
efficiency of our approach (Section IV).

II. CHALLENGES AND SETTINGS

Provided a correctly rounded mixed-radix FMA such as
◦ (a× b+ c), we can easily compute the correctly rounded
mixed-radix multiplication by setting the c operand to zero,
and the addition/subtraction by setting either a or b to one.

Furthermore both correctly rounded mixed-radix division and
square root can be determined with a single mixed-radix FMA
operation, provided it allows for slightly larger precision: given
a binary precision k, resp. a decimal precision l, we call
midpoint, noted f , a number that is exactly halfway between
two consecutive floating-point numbers.

The rounding of the result of the mixed-radix division
◦k

(
x
y

)
of binary precision k, resp. decimal precision l, can

be determined with the help of the closest midpoint of the
real result x

y [7]. This midpoint f can be represented with a
floating-point number of slightly larger precision k′, resp. l′.
Thus the rounding decision boils down to decide whether
• x

y < f ⇔ 0 < y × f − x,
• x

y > f ⇔ 0 > y × f − x,
• or x

y = f ⇔ 0 = y × f − x.
This implies that identifying the rounding of the division x

y
and thus computing the correctly rounded mixed-radix division
operation in the output format of precision k, resp. l, is
equivalent to compute a mixed-radix FMA operation y×f−x
that allows for operands of slightly larger precision k′, resp.
l′, and compare its result to zero.

Similarly, the computation of the correctly rounded mixed-
radix square root of precision k, resp. l, boils down to
determine where the result falls according to a midpoint f .
Thus to determine if

√
x < f we can compute 0 < f × f − x

with a mixed-radix FMA operation that allows for operands
of slightly larger precision k′, resp. l′.

For the binary64 format, we can represent all binary
floating-point numbers, normal and subnormal, and their mid-
points by increasing the binary precision from k = 53 to
k′ = 55. The modification of the precision of the binary64
format has an impact on the bounds of its significand and
exponent, thus it can be defined as follows

2E ·m; with 254 ≤ |m| < 255;

− 1130 ≤ E ≤ 969; m,E ∈ Z.
(1)

Since 10 is divisible by 2, the representation of the mid-
points is also possible in the decimal64 format, by adding
only one binary bit of precision, for the midpoint between two
decimal floating-point numbers can be represented in the same
binade instead of decade. This means that we can represent the
significand n with the same 55-bit precision as the binary64
format earlier and adapt the exponent, by factorizing 10F as
2J · 5K , with K = F . We can then adapt the decimal64 input
representation such as

10F · n = 2J · 5K · r; with 254 ≤ |r| < 255; r ∈ Z
− 452 ≤ J ≤ 385; −421 ≤ K ≤ 385; J,K ∈ Z.

(2)

There is however not one mixed-radix FMA operation, but
several operations, depending on the combination of formats
given as inputs and output. As a matter of fact, the FMA
operation handles as inputs the three numbers a, b and c, and
returns one output, all four numbers being representable in
two different formats: binary64 or decimal64. We can naively
consider that we will need to implement 24 = 16 versions
of the mixed-radix FMA. Yet as we are studying mixed-radix
arithmetic, we can easily discard the all binary and all decimal



FMA operations that will not benefit from our approach.
Furthermore we will consider the decimal64-to-binary64-
multiplication and the binary64-to-decimal64-multiplication to
be equivalent, whether we want a binary or decimal output.
Hence this excludes four more versions of the mixed-radix
FMA operation as redundancies. In the end, we will only con-
sider ten different versions of the mixed-radix FMA operation.

The real challenge of mixed-radix operations lies into the
computation of the addition or subtraction inside the FMA
operation. As floating-point subtraction is just floating-point
addition with a change in sign of the subtrahend, we are going
to continue the discussion only for “addition”, subsuming
subtraction. Typically, for a floating-point addition, two cases
can be distinguished: the case when the two input operands
are sufficiently close in terms of exponent that the subtraction
of their aligned significands will lead to cancellation, and the
other case when they are far enough in terms of magnitude
so that the result’s order of magnitude is essentially the one
of the bigger of the operands. The first of these two cases is
commonly called near path, the latter far path [8].

Uniform-radix correctly rounded floating-point addition is
based, for the near path, on the observation that when can-
cellation occurs, the floating-point operation becomes nat-
urally exact, i.e. does not require any rounding [8]. This
case corresponds to the case when Sterbenz’ lemma can be
applied [9]. For mixed-radix addition, there is no reason
why this cancellation case should become exact: e.g. when
both input operands are in decimal floating-point arithmetic,
both 10 and −9.9 are representable. There sum of course
is 0.1 which clearly is not representable in binary floating-
point arithmetic. A decimal plus decimal to binary mixed-
radix addition can hence not suppose that no rounding occurs
in near path cases. Furthermore, when the two operands to
a mixed-radix addition are not in the radix, some sort of
conversion of the binary operand to the decimal radix or
vice versa will be needed. While cancellation in the near-path
makes the operation become exact for uniform-radix cases, the
same cancellation in the mixed-radix case will amplify this
conversion error:

a+ b · (1 + ε) = (a+ b) ·
(

1 +
b

a+ b
· ε
)
, |a+ b| � |b| .

And even if we find ways to compute lower bounds on this
catastrophic cancellation results of mixed-radix addition on its
near path, i.e. if we find ways to make the conversion suffi-
ciently accurate that some accuracy is left once the cancellation
amplifies the error, the result of this (approximate) mixed-
radix addition may itself be close to a rounding boundary of
the output radix, preventing us to return the correctly rounded
result with certainty.

On the far path, mixed-radix addition is no less difficult, as
absorption can occur and lead to the same rounding issues.
Even though we can construct exemplary cases where correct
rounding of mixed-radix addition is hard to perform, we
have no simple, systematic way to look for inputs to mixed-
radix addition for which rounding is hard in round-to-nearest
or a directed rounding mode. We therefore propose another
approach to implementing a correctly rounded mixed-radix
FMA, without precomputing such lower bounds.

III. MIXED-RADIX FMA ALGORITHM

The input of the mixed-radix FMA algorithm are either
binary64 or decimal64 with the possibility of representing
the midpoints by slightly increasing the precision. Those two
formats are defined by the equations (1) and (2), and can be
unified with a single representation of the mixed-radix unified
format, with pessimist bounds on the exponents such as, given
a an input of the FMA operation, we have:

a = 2Na · 5Pa · ta; with 254 ≤ |ta| < 255; ta ∈ Z
− 1130 ≤ Na ≤ 969; −421 ≤ Pa ≤ 385; Na, Pa ∈ Z.

(3)

The algorithm that performs a fast and correctly rounded
FMA defined in Figure 1 can be split in several parts. The first
step is the decomposition of the binary64 and decimal64 inputs
into the explicit format of sign, exponents and significand.
Throughout this algorithm, we will analyze the bounds of those
variables since we want to ensure that they can be stored on
machine words: for the exponent on a signed 32-bit integer
machine word and for the significand on one or several un-
signed 64-bit integer machine words. With this internal format,
we compute an error-free mixed-radix multiplication. Then we
perform a test to decide which addition/subtraction algorithm
to use, described in more detail later on. According to the result
of this test, we convert the operands into an internal binary
format and perform either a far-path addition/subtraction, or a
near-path subtraction. We will then test if the final rounding
in the output radix is possible with this fast-computed result.
If the result is too close to a midpoint f , we cannot decide
what is the correct floating-point value that should take the
result according to the current rounding mode [7]. In that case
we will have an extra computation step, called the recovery
phase, to get those last bits of precision needed to decide how
to round the result.

In the following Section, we will describe further the
mechanisms of the mixed-radix FMA algorithm. We will
first describe the far-path and near-path addition/subtraction
algorithms of the fast computation, and then explain how work
the rounding test and the recovery phase.

A. Multiplication and Ratio Test

The first operation performed by the FMA is pretty simple:
the multiplication can be computed exactly in the mixed-
radix unified format. According the definition of the mixed-
radix unified format of the input operands a and b given in
equation (3), we can compute the result of the multiplication
such as

ψ = a× b = 2L · 5M · s; with 2109 ≤ |s| < 2110; s ∈ Z
− 2261 ≤ L ≤ 1938; −842 ≤M ≤ 770; L,M ∈ Z.

(4)
We then want to perform the addition/subtraction between ψ

and c, the third input operand of the FMA that is represented in
the format given in equation (3). Previously, in Section II, we
outlined two cases for the floating-point addition, according to
the proximity of the two operands in terms of exponents. Those
two cases are the far-path and near-path addition algorithms.

Deciding whether the operands are close or far enough
to perform either one of those algorithm can determined by



Require: a, b and c, binary64 or decimal64 numbers
Ensure: R = 2G · p in binary or R = 10H · q in decimal

1: ψ = a× b
2: if it is an “addition” or ψ

c /∈ [ 1
2 ; 2] then

3: T1 ← 2γ1 · v1 = ψ · (1 + εT1FP )
4: T2 ← 2γ2 · v2 = c · (1 + εT2FP )
5: φ = (T1 ± T2)(1 + εφFP ) (“far-path”)
6: else
7: T1 ← 2Γ1 · w1 = ψ · (1 + εT1NP )
8: T2 ← 2Γ2 · w2 = c · (1 + εT2NP )
9: φ = (T1 − T2)(1 + εφNP ) (“near-path”)

10: end if
11: ρ← 2C · g = φ or ρ← 10H · 2−10 · q = φ · (1 + ερD )
12: if ρ = (a× b+ c)(1 + ερ) can round correctly then
13: return R← ρ correctly rounded into output format
14: else
15: Compute integer rounding boundary significand f such

as 2C · 210 · 1/2 · f or 10H · 2−10 · 210 · 1/2 · f
16: Let α ← 2L−Zmin · 5M−Fmin · (a × b) + 2Nc−Zmin ·

5Pc−Fmin · c− 2FT−Zmin · 5FF−Fmin · f) with α ∈ Z
17: Correct ρ using f and the sign of α
18: return R← ρ correctly rounded into output format
19: end if

Fig. 1. Correctly Rounded Mixed-Radix FMA Algorithm

a simple test. If the ratio ψ
c is clearly outside of [ 1

2 ; 2],
the operands are far enough to perform the faster far-path
algorithm, otherwise the more accurate near-path algorithm is
executed. This test ensures that when the result states that the
far-path algorithm should be used the ratio is surely outside of
[ 1
2 ; 2].

Given the definitions of ψ and c given in equations (3)
and (4), we want to ensure that either we have 2L−Nc ·5M−Pc ·
s
tc
< 1

2 or 2L−Nc · 5M−Pc · stc > 2. Thus certifying that the
ratio ψ

c is clearly outside of [ 1
2 ; 2] is equivalent to evaluating

the following inequation

(L−Nc) + b(M − Pc) · log2(5)c+ 1 + 56 < −1

or (L−Nc) + b(M − Pc) · log2(5)c+ 54 > 1
(5)

Given the precomputed value log2(5), bA·log2(5)c with A ∈ Z
in a small domain can be computed correctly as bA · blog2(5) ·
248c·2−48c which does not overflow on a 64-bit signed integer
variable [5]. Hence we can easily compute on a 64-bit signed
integer the two values given in equation (6) and perform ratio
test that gives us two cases.

B. When no cancellation occurs (far-path)

1) Far-path algorithm: When the ratio test states that the
result is clearly outside of [ 1

2 ; 2], no cancellation can occur dur-
ing the the addition/subtraction, hence we can use the far-path
addition algorithm. For simplicity reasons, this algorithms will
take binary floating-point inputs and return a binary floating-
point result. As the operands ψ and c are represented in the
mixed-radix unified format with precisions of respectively 110-
bit and 55-bit precisions. Thus we first want to perform a
conversion of those operands into a 64-bit binary format. This
means that we want to represent the significand v stored on

a 64-bit unsigned integer such as 263 ≤ |v| ≤ 264 − 1,
and adapt the binary exponent γ, as described by the lines 3
and 4 of algorithm 1. The next step being the computation
of the correctly rounded in the current rounding mode binary
addition/subtraction and leave the rounding of the result into
the output format for further considerations.

As the operands ψ and c do not have the same significand
precision, we might first think that we need two conversion
algorithms from unified mixed-radix format to a 64-bit binary
format. Yet it can easily be shown that we can first unify those
two operands into a 64-bit mixed-radix format such as

2λ · 5µ · ω; with 263 ≤ |ω| ≤ 264 − 1; ω ∈ Z
− 2215 ≤ λ ≤ 1284; −842 ≤ µ ≤ 770; λ, µ ∈ Z,

(6)

an then apply a unique conversion algorithm from this mixed-
radix format to a binary variable T represented with a 64-bit
unsigned integer significand such as

T = 2γ · v; with 263 ≤ |v| ≤ 264 − 1; v ∈ Z
− 4171 ≤ γ ≤ 3772; γ ∈ Z.

(7)

Applying this conversion algorithm on ψ and c gives us the
two variables T1 = 2γ1 · v1 and T2 = 2γ2 · v2 defined as
in equation (7) as inputs for the far-path addition/subtraction
algorithm, described in Figure 2.

The overall philosophy of this algorithm is that when neither
of the operands are zero, we can order T1 and T2 according
to their exponents such as γ′1 ≥ γ′2. Absorption occurs when
γ′1 ≥ γ′2 + 64, in that case the result of the far-path addition is
2γ
′
1 · v′1. Otherwise, to perform the addition of the two 64-bit

unsigned integer exponents v′1 and v′2, we pose the intermediate
128-bit unsigned integer variables V1 and V2 and align the
exponents by shifting v′1 to the left such asV1 = 2γ

′
1−γ

′
2 ·

v′1. After performing the addition or subtraction on a 128-bit
unsigned integer variable V = V1 ± V2, the significand is
normalized with the function lzc(V ) that counts the number
of leading zeros and truncated to a 64-bit unsigned integer
variable g. The exponent C is set accordingly.

The result of the far path addition algorithm is then returned
in the following binary format

2C · g; with 263 ≤ |g| ≤ 264 − 1; g ∈ Z
− 4174 ≤ C ≤ 3836; C ∈ Z.

(8)

2) Far-path error analysis: We will analyze the global
relative error made during the computation of the far-path
addition/subtraction algorithm, from the conversion of the
inputs ψ and c until the acquisition of the result φ = 2C · g.
We shall denote this global error εφFP .

The first operation producing an error occurs during the
computation of the equation (6). In the case of ψ, as the
precision decreased from 110 bits to 64 bits, an error arises,
2λψ · 5µψ · ωψ = 2L · 5M · s · (1 + εψ), and it can be bounded
by |εψ| ≤ 2−63. Then, given an input in the format described
in equation (6), we compute the exponent γ and significand
v as γ = λ + bµ · log2(5)c; v = b2−64 · ω · τ0(µ)c, with the
precomputed table τ0(µ) = b5µ ·2−bµ·log2(5)c+63c, represented
by a table of 64-bit unsigned integers. The relative error
arising during the computation of the table can be bounded
as |ετ0(µ)| ≤ 2−63.



Require: T1 = 2γ1 · v1 and T2 = 2γ2 · v2

Ensure: φ = (T1 ± T2)(1 + εφFP ) = 2C · g
1: Order T1 and T2 so that γ′1 ≥ γ′2
2: if γ′1 ≥ γ′2 + 64 then
3: g ← v′1
4: C ← γ′1
5: else
6: V1 ← 2γ

′
1−γ

′
2 · v′1

7: V2 ← v′2
8: V ← V1 ± V2

9: σ ← lzc(V )
10: π ← 2σ · V
11: g ← b2−64 · πc
12: C ← γ′2 + 64− σ
13: end if
14: return φ = 2C · g

Fig. 2. Far-Path Addition/Subtraction Algorithm

The global relative error attached to the computation of the
64-bit precision binary variables T1 and T2 is 2γ ·v = 2λ ·5µ ·ω·
(1+εv)·(1+ετ0(µ)). The relative error of v is a combination of
the truncation error and the error attached to the computation
of the table τ0(µ) such as εv is bounded by |εv| ≤ 2−62.
The global relative error for this part of the mixed-radix FMA
algorithm includes the conversion error εψ , the error on the
precomputed table ετ0(µ) and the rounding error εv . With those
three errors combined, we deduce a pessimist bound on the
global relative error |εTFP | ≤ 2−60.5. Given T1 and T2 the
inputs of the far-path addition, we want to bound the relative
error εφFP as φ = (T1 ± T2)(1 + εφFP ).

The algorithm can compute the result in two different ways,
firstly if γ′1 ≥ γ′2 + 64, the result is φ = 2γ

′
1 · v′1 · (1 + εφFP )

with |εφFP | ≤ 2−63. Secondly, if we are in the case when
γ′1 < γ′2+64, hence γ′2 ≤ γ′1 ≤ γ′2+63 because γ′1, γ

′
2 ∈ Z, we

can deduce the bounds on V1 and V2 defined in the algorithm 2
such as 263 ≤ V1 < 2127 and 263 ≤ V2 < 264. We want to
compute bounds on V = V1 ± V2. Either it is an addition
and we have 264 ≤ V1 + V2 < 2127 + 264 < 2128, or it is a
subtraction, and we can show, with a reductio ad absurdum,
that 261 ≤ 1

2 ·(1−2−59.49)·263 ≤ V1+V2 < 2127+264 < 2128,

with the fact that 1− 2−59.49 ≤ 1+εT1FP

1+εT2FP
≤ 1 + 2−59.49.

Following the steps of the algorithm, we then bound σ
according to its definition such as 0 ≤ σ ≤ 66; thus π is
between 2127 ≤ π ≤ 2128 and finally we have g = b2−64·πc =
2−64 · π · εφFP . In the end we have |εφFP | ≤ 2−63.

C. When cancellation does occur (near-path)

When the ratio test states that the result could be inside
[ 1
2 ; 2], cancellation may occur during the computation of the

subtraction. Hence the use of the near-path subtraction.
A solution for this near-path algorithm is to use the same

method as the far-path one and perform the subtraction on
binary operands. To do so, we need to determine the number
of bits of precision necessary for the binary inputs to compute
the near-path subtraction in the worst case of cancellation and
avoid loosing all accuracy.

1) Worst case of cancellation: The worst case occurs when,
without being zero, the subtraction between ψ and c such as
2L ·5M · s−2Nc ·5Pc · tc is relatively small. This is equivalent
to 2L · 5M · s ≈ 2Nc · 5Pc · t, thus s

t ≈ 2Nc−L · 5Pc−M , with
254 ≤ |t| < 255 and 2109 ≤ |s| < 2110. Let us define X and
Y such as X = Nc − L and Y = Pc −M ; X,Y ∈ Z. With
this definition and the bounds of M , L, Pc and Nc given in
equations (3) and (4), we can find the bounds of X and Y .

Lemma 1. For all X,Y ∈ Z with −3068 ≤ X ≤ 3230 and
−1191 ≤ Y ≤ 1227, for s, t ∈ Z with with 254 ≤ |t| < 255

and 2109 ≤ |s| < 2110∣∣∣s
t
− 2X · 5Y

∣∣∣ ≥ η = 2−177.61.

Proof. By application of the algorithm found in [5].

2) Near-path algorithm: Subsequently, we deduce that to
compute the near-path subtraction with at least 60 bits of
precision, we need to represent the binary significands with
at least 178 + 60 = 228 bits of precision. This means that
we can represent the significands of the operands of the near-
path subtraction on a 256-bit unsigned integer, i.e. four 64-bit
unsigned integers machine words.

Hence we first compute the conversion from the mixed-radix
unified format variables φ and c to 256-bit precision variables,
with which we perform the near-path subtraction.

As in the far-path algorithm, we want to perform only one
conversion into the binary internal format, therefore adapt the
significand and exponent of c by increasing to the 110-bit
precision of ψ as in equation (4). Then perform the conversion
from the 110-bit precision mixed-radix format to the 256-bit
precision binary format such as

T = 2Γ · w; with 2255 ≤ |w| ≤ 2256 − 1; w ∈ Z
− 4364 ≤ Γ ≤ 3578; Γ ∈ Z.

(9)

The near-path subtraction algorithm is quite similar to the
far-path except that the alignment of the significands yields to
an error. We first order the two operands T1 = 2Γ1 · w1 and
T2 = 2Γ2 ·w2 such as Γ1 > Γ2. With the result T ′1 and T ′2, we
align the significands so that z2 = b2Γ′2−Γ′1 · w′2c; z1 = w′1.
After ordering z1 and z2 such as z′1 > z′2, we can compute the
subtraction d = z′1 − z′2, perform the count of leading zeros
in d with lzc(d) such as we can normalize the significand
and exponent of the result g = bd · 2l · 2−192c; and C =
Γ′1 − l + 192. The result of the near-path subtraction takes
the same form as the result of the far-path addition defined in
equation (8), except for the bounds of the exponent that are
−2296 ≤ C ≤ 3773.

3) Near-path error analysis: The first error that occurs
during the computation of the near-path algorithm comes from
the conversion from the mixed-radix unified format to the 256-
bit precision binary format. We can denote this error εTNP and
define it such as 2Γ · w = 2L · 5M · s · (1 + εTNP ), computed
as Γ = L − 18 + bM · log2(5)c + σ with 0 ≤ σ ≤ 1; σ ∈ N
and w = b2−129 · τ0−3(M) · s · 218c · 2σ.

The table τ0−3(M) is the 256-bit precision version of the
table τ0(µ) used previously. We can show that τ0(M) =
b2−192 · b2255−bM ·log2(5)c · 5Mcc = b2−192 · τ0−3(M)c. We
can then bound the relative error induced by the computation



of the table such as |ετ0−3
| ≤ 2−255, and the global relative

error of the conversion algorithm such as |εTNP )| ≤ 2−251.
The result φ of the near-path binary subtraction is subject to

an error such as φ = (T1−T2)(1+εφNP ). A first error appears
during the computation of z2 = (2Γ′2−Γ′1 · w′2) · (1 + εz2). By
noticing that −2 ≤ Γ′2 − Γ′1 ≤ 0 we can bound εz2 such as
|εz2 | ≤ 2−253. This implies that g = (d ·2l ·2−192) ·(1+εφNP )
with 2255 ≤ d ·2l ≤ 2256−1. Finally we have |εφNP | ≤ 2−63.

D. Rounding Test and recovery phase

1) Conversion to the output format: Once the multiplication
and addition or subtraction are performed, we are left with a
64-bit binary significand with a binary exponent bounded such
as 2C · g with 263 ≤ |g| ≤ 264 − 1 and −4174 ≤ C ≤ 3836.
If we want a binary output for the FMA operation, we can
directly perform the rounding test that informs us whether the
result can be correctly rounded into a binary64 floating-point
number. If we want a decimal64 output, we must convert this
64-bit binary number into a decimal one such as

10H · 2−10 · q with− 1253 ≤ H ≤ 1159;H, q ∈ Z
1015 · 210 ≤ q ≤ (1016 − 1) · 210 < 264 − 1.

(10)

This algorithm computes the exponent H = b(C + 63) ·
log10(2) − 15 + µ(C, g) where µ(C, g) ∈ N; µ(C, g) = bC ·
log10(2)+log10(g)−b(C+63) · log10(2)cc. We can show that
0 ≤ µ(C, g) ≤ 1, implying that µ(C, g) ∈ {0, 1}, by observing
that µ(C, g) is an increasing function in g. Thus for a given
C, there exists g∗(C) ∈ Z; 263 ≤ g∗(C) < 264,

µ(C, g) =

{
0 if g ≤ g∗(C)
1 if g > g∗(C).

(11)

We can precompute such a g∗(C) with a table of 64-bit
unsigned integer words.

Once the exponent H is set, we can compute the signifi-
cand q with a bounded precomputed table t(H) = b10−H ·
2bH·log2(10)c+127c and multiply it by g. The value is then nor-
malized and truncated properly, conforming to the definition,
in equation 10, of this operation’s output.

We skipped the detailed error analysis of this algorithm for
the sake of conciseness but the full pencil-and-paper proof
will soon be available under the form of a research report.
The relative error of this conversion is bounded such as 10H ·
2−10 · q = (2C · g) · (1 + ερD ) with |ερD | ≤ 2−59.82.

2) Rounding test: The purpose of this test is to determine
whether the 64-bit precision output of the addition/subtraction
algorithm can be rounded into a a binary64, resp. decimal64,
with any sign and rounding mode.

In the binary64 case, we have as input 2C ·g = (ψ± c)(1 +
ε∗B) with ε∗B the global error combining all the previous errors
such as |ε∗B | ≤ 2−58.74 and 263 ≤ |g| ≤ 264−1. The rounding
test boils down to compute the “magic bound” βB = b(264 ·
ε∗B

1+ε∗B
c and test if |g − b2−10 · ge210| ≥ βB . If this condition

is not met, rounding to a 53-bit precision binary64 number
is not possible. Therefore we compute f , the binary rounding
boundary closest to 2C ·g such as 2FT ·5FF ·f = 2C ·210 · 12 ·f
and 254 ≤ f ≤ 255 − 1, and step into the recovery phase.

In the decimal64 case, we have as input 2H ·2−10 ·q = (ψ±
c)(1+ε∗D) with ε∗D the global error combining all the previous

errors such as |ε∗D| ≤ 2−58.18 and 1015 · 210 ≤ |q| ≤ (1016 −
1) · 210. The rounding test boils down to compute the “magic
bound” βD = b((1016− 1) · 210 · ε∗D

1+ε∗D
c and test if |q−b2−9 ·

qe29| ≥ βD. If this condition is not satisfied, rounding to a
16-digit precision decimal64 number is not possible. Therefore
we compute f , the binary rounding boundary closest to 2H · q
such as 2FT · 5FF · f = 10H · 2−10 · 210 · 1

2 · f and 2 · 1015 ≤
f ≤ 2 · (1016 − 1), and proceed to the recovery phase.

3) Recovery phase: If the rounding test fails, we try to
round a result that is too close to the rounding border f
to be able to decide towards which nearest floating-point
number it must be rounded. Similarly to the computation
of this floating-point rounding border’s value in the previous
step, the recovery phase boils down to computing the sign of
α′ = (−1)sa · 2L−Zmin · 5M−Fmin · s + (−1)sb · 2Nc−Zmin ·
5Pc−Fmin · tc − 2FT−Zmin · 5FF−Fmin · f with bounds on the
exponents such as 0 ≤ FT −Zmin ≤ 2162; 0 ≤ FF −Fmin ≤
786; 0 ≤ L − Zmin ≤ 2282; 0 ≤ M − Fmin ≤ 785; 0 ≤
Nc − Zmin ≤ 2342; 0 ≤ Pc − Fmin ≤ 786.

Given those bounds, we know that we need to compute
positive or zero integer powers of 5, i.e. 5k, with 0 ≤ k ≤ 786.
Furthermore, we know that every 5k holds on dlog2(5786)e =
1826 bits, hence 29 words of 64 bits. Finally, we determine
that each term of α holds on respectively on 4218, 4223 and
4043 bits, so whatever their sign is, they hold on a maximum
of 4225 bits. So to compute exactly α and decide its sign, we
need 67 words of 64 bits, leaving 63 ”free” bits.

We have three cases: if α = 0 then the result is exactly the
rounding border f , and will be rounded in the output format
correctly by our final rounding algorithm according to the
current rounding mode. If α < 0, then the result is below the
rounding border f and will round to the lower nearest floating-
point number in the output format. By analogy, if α > 0
then the result shall round to the higher nearest floating-point
number in the output format. Computing this recovery phase
is therefore very costly, but fortunately this part of the FMA
algorithm will only be computed sparsely.

4) Final rounding to the output format: Final rounding to
the supported output formats, binary64 and decimal64, takes
either (−1)s · 2C · g, 263 ≤ g < 264, or (−1)s · 10H · 2−10 · q,
1015 · 210 ≤ g < 1016 · 210, as input and rounds them to
a binary64 or decimal64 floating-point number respectively,
according to the current IEEE754 rounding mode. Binary
rounding is done in the IEEE754 rounding mode for binary
floating-point arithmetic, decimal rounding in the decimal
mode. This final rounding also sets the inexact, underflow
or overflow flags, when the rounding is respectively inexact,
underflowed (tiny and inexact) or overflowed.

The difficulty in implementing this final operation is two-
fold: first, the rounding must address all special cases, such
as subnormal rounding, normal rounding, overflow, decimal
denormalization at the least exponent etc. Second, the rounding
must be performed with the appropriate rounding mode, access
to which is difficult. It also must set the flags. We overcome
both challenges by exactly computing binary64, resp. deci-
mal64, numbers that, provided to a IEEE754 floating-point
operation, round to the same value as the input data.

For binary64 rounding, we decompose (−1)s · 2C · g into



a normal binary64 value 2A, another normal binary64 value
2B · r and a normal or subnormal value 2C

′ · g′ such that a
binary64 FMA computes 2A×2B ·r+2C

′ ·g′ and rounds to the
same binary64 value as (−1)s · 2C · g. Typically C ′ = C+ 11,
g′ =

⌊
g · 2−11

⌋
, A+B = C, r = g − 211 · g′.

For decimal64 rounding, we represent (−1)s · 10H · 2−10 · q
exactly as an IEEE754 decimal128 floating-point value and
perform an IEEE754 decimal128 to decimal64 format conver-
sion, which rounds correctly and sets the flags. This way of
performing final decimal rounding is known to be sub-optimal
in terms of performance but has the advantage of being easy
to implement. We consider changing this part of our algorithm
and perform decimal64 rounding manually, while detecting the
appropriate rounding mode by executing the avatar decimal64
instruction t = (−1)s ·

(
1015 + 1

)
resp. t′ = (−1)s ·

(
1015 + 2

)
added to δ, with δ ∈ {−3/4,−1/2,−1/4, 0, 1/4, 1/2, 3/4},
choosing t, t′ and δ depending on the parity of a truncated
significand and the value of the rest that got truncated off.

IV. IMPLEMENTATION AND TEST RESULT

A. Reference implementations

In order to perform software testing on our mixed-radix
FMA implementation, we designed two other implementations
of a mixed-radix FMA: one, based on the GNU Multiple Preci-
sion Library (GMP) [10], with the same C calling interface as
our optimized FMA implementation, and one other, written
in Sollya [11], with an ad hoc text-based interface. While
designing these two reference implementations, we set the
following design goals: the GMP-based implementation should
be as close as possible to the result of a mixed-radix FMA
designed in a limited timeframe, reusing existing software
library. It should be reasonably fast, but easy to design.

We addressed this design goal by converting all input
operands, be they IEEE754 binary64 or decimal64 numbers,
into GMP rational numbers, i.e. fractions of (long) integers.
We then performed the multiplication and addition steps of
the FMA in GMP rational numbers. GMP can perform these
operations on rational numbers without any error, computing
exact long products, sums and gcds as required, while allocat-
ing memory dynamically. Our reference implementation then
rounds the rational number, call it p

q , by first determining the
output exponent for a binary64, resp. decimal64, number, call it
E, and then “rounding” the rational number rs = 2−E · pq (resp.
r
s = 10−E · pq ) to an integer significand by long division of the
long integer r by s, adapting the division rest’s sign as required
by the rounding mode. As the input/output’s exponents may
grow relatively large, GMP will manipulate integers of size of
about a couple of thousand bits in the worst case.

In the next Section IV-B, we give an overview of the testing
of our optimized FMA implementation we performed, com-
paring its results to the GMP-based reference implementation,
and also compare timing results. While performing software
development and intermediate testing of both our optimized
implementation and the GMP-based one, we found certain
input operands where the two algorithms did not agree. In
order to have a way to decide where to look out for issues,
we designed yet another implementation of a mixed-radix
FMA, in the interpreted numerical language Sollya [11]. In

this tool, numerical expressions can be written exactly, and
evaluated to any precision without being hurt by spurious
roundings. It is rather easy to give definitions of the output
exponent and significand of a mixed-radix FMA in terms of the
input exponents and integer significands. Particularities due to
subnormal rounding, underflow and overflow can be addressed
through minimum/maximum computations.

We used our Sollya reference implementations to generate
“gold” result test vectors, with which we then verified both our
optimized FMA implementation and the GMP-based reference.
After our software testing campaign, all our three implemen-
tations agreed. While we spent quite some time on testing the
implementation of our mixed-radix FMA algorithm against
reference implementations, we would like to insist that we
consider our algorithm to be correct only because we were able
to prove its correctness, the detailed pencil-and-paper proof
made available under the form of a research report.

B. Test and Timing Results

We tested our mixed-radix FMA implementation in all
its 14 different operand-result-format variants on a system
based on an Intel i7-7500U quad-core processor, clocked at
maximally 2.7GHz, running Debian/GNU Linux 4.9.0-5 in
x86-64 mode. We compiled our code using gcc version 6.3.0
with optimization level 3 and setting the -march=native
flag. On our system, this results in AVX instructions being
used, including hardware binary64 FMA. The IEEE754-2008
decimal types and instructions come from our gcc’s libgcc.
The GMP-based reference implementation was based on GMP
version 6.1.2. Sollya was at git commit 12bf2006c.

We tested each of the 14 variants on an appropriate test
vector file containing at least 115000 test points, covering
all possible cases of signs, signed zeros, infinities, NaNs,
subnormal and normal numbers, as well as all possible binary
and decimal rounding modes1. We found all our 14 mixed-
radix FMA implementations to be correct with respect to their
numerical outputs for all the outlined cases.

We also performed testing of the implementations concern-
ing the correct setting of the IEEE754-2008 flags, as they are
inexact, overflow, underflow, divide-by-zero and invalid [1].
We found all flags to be set correctly, i.e. our implemen-
tations correctly raised the appropriate IEEE754-2008 when
the operation actually was inexact (i.e. implied rounding),
overflowed, underflowed or was invalid (as for multiplication
of zero by infinity). The implementation also was checked for
correctly leaving the flag unchanged if it did not encounter
the suited IEEE754-defined condition to raise the flag. One
issue was found about this last check for the mixed-radix FMA
implementations for certain decimal exact results, the inexact
flag was raised spuriously. We traced this undue raising of
the inexact flag back to the implementation of the IEEE754
decimal128 to decimal64 format conversion that is contained
in our version of libgcc. A bug has been filed against libgcc.

Concerning performance testing, we ran our 14 implemen-
tations on each of the entries of our result test vectors, timing
the function call time in terms of machine cycles using the

1and rounding mode combinations, as IEEE754-2008 specifies separate
current rounding modes for the binary and decimal operations’ subsets [1]
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Fig. 3. Histogram of timing measurements for our implementation (left) and
a reference implementation (right)

Intel rdtsc instruction after serialization with cpuid. We
deducted the measured calling-time for an empty function
with the same prototype. We ran the timing measurements
repeatedly and with preheated caches, so to smooth out ef-
fects of modern superscalar processors. We made sure that
the test vectors contained a representative, random subset of
floating-point numbers, i.e. we made sure that special cases,
such as addition and multiplication of zeros, NaNs etc. were
represented but not over-represented.

We present our timing measurements under the form of
histograms which relate a certain cycle count interval to the
number of times this cycle count interval was encountered.
We performed the same performance testing on our optimized
FMA implementation and on our GMP-based mixed-radix
FMA one. For the sake of succinctness, we report only
the performance testing results of one FMA function, called
DBBB. This function takes all its arguments as IEEE754
binary64 numbers and returns a decimal64 number.

On the left of Figure 3 is the cycle count histograms
for our DBBB FMA functions. It is easy to see that our
implementations handle most cases in less than 50 cycles. Our
implementations present a maximum call time of about 375
cycles, corresponding to cases when the rounding recovery
phase gets used. As our algorithm is statically bounded in
terms of memory consumption and makes no dynamic memory
allocation, these maximum timing counts are hard bounds.

On the right of Figure 3 is the cycle count histograms of
the GMP-based implementations for DBBB. For most cases,
the GMP-based implementations is about 10 times slower than
the implementation based on our algorithm presented in this
article. The GMP-based maximum call times reach up to 46000
cycles in very rare cases, which is about 100 times slower than
ours. This is due to the cost incurred by GMP’s dynamical
memory allocation mechanism.

V. CONCLUSION

In this article, we have presented an algorithm to compute
a correctly-rounded IEEE754 binary64 or decimal64 result to
a mixed-radix Fused-Multiply-and-Add operation, taking any
combination of IEEE754 binary64 and decimal64 numbers in
argument. Our algorithm trivially allows for covering correctly
rounded mixed-radix addition, subtraction and multiplication
and is designed in a way that allows mixed-radix division and
square root to be computed with that FMA, too.

Our algorithm is based on a mixture of exact significand
multiplication, finely precision-tuned radix conversion, binary

addition and an exact rounding recovery phase that is launched
if rounding of an approximation would not allow a correctly
rounded result to be computed. The recovery phase is based
on the observation that all IEEE754 binary64 and decimal64
floating-point numbers and their mid-points are integer multi-
ples of a fixed 2Q · 5W , with constant Q,W ∈ Z, Q,W ≤ 0.

Our implementation can handle most input cases in about
50 machine cycles, which is a reasonable performance timing
for a software-implemented floating-point operation. When the
recovery phase gets used, latency stays below 400 cycles. Our
implementation does not require any dynamic memory allo-
cation, hence being suitable for integration into environments
where dynamic memory management is not available.

Our implementation has been thoroughly tested against two
other reference implementations, which we developed. Besides
an issue with an undue IEEE754 inexact flag setting, which
is outside our control, it tests correct. A detailed pencil-and-
paper proof for our algorithm has been written and will be
made available under the form of a research report.

While we are convinced that our implementation is one of
the first step to paving the road to generalized mixed-radix
floating-point arithmetic in IEEE754, quite a few points need
to be addressed by future work: we subsumed all 14 possible
mixed-radix binary and decimal input/output format combina-
tions for the FMA under one single core algorithm. This eased
development and the correctness proof; but it induces certain
overhead due to exponent range over-estimation. Future work
might perform a more detailed one-by-one analysis.

We showcased our mixed-radix FMA for the IEEE754 for-
mats binary64 and decimal64 only. All possible combinations
taking into account also the binary32 and decimal128 formats
need to be covered by future development.

The necessity to fall back to exact arithmetic with pretty
large integer-based accumulators for hard-to-round cases is
not very intellectually satisfactory. Future work should try to
address the issue of precomputing worst-case precision bounds
for mixed-radix FMA again.
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