DE LA RECHERCHE À L'INDUSTRIE

693

CEA Laurent DUPUY DEN/DMN/SRMA/LC2M

Arnaud Durocher

DEN/DMN/SRMA/LC2M

Inria Olivier COULAUD

HiePACS

| May 12, 2018

	C C		-	-
- h	+ (on	ton	10
		~~~		~~

# 

#### Context

Introduction Discrete Dislocation Dynamics Simulation Step-by-Step Algorithm

### Contributions

Distributed datastructure for Dislocation Dynamics Designing a datastructure for Dislocation Dynamics Datastructure for distributed memory clusters

Collision algorithm for junction formation Fast collision detection Accurate collision handling

# Results

#### Accuracy

Validation of collision algorithm Full simulation validation

### Performance

Large scale simulations

Dislocation Dynamics for Nuclear Mater	rials	ontext	$\overset{\circ}{\underset{\circ\circ\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\circ$	Resul
<ul> <li>Studied Effects</li> <li>Material ageing under irradiation</li> <li>Hardening, embrittlement, creep,</li> </ul>		Hoop stress (MPa) 8 20 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	Irradiated Zy4 Rr non irradié Zy4 Rx irradié necking Non irradiated neck	king
	(a) Drouet et al. 201	6 (	Hoop strain (%)	28 —————
	<ul> <li>Linear defects in</li> </ul>	cristalli	ne materials:	
	<ul> <li>Modeling plastici</li> </ul>	ity in so	lids	
(a) Vessel (Steel) (b) Fuel Assembly (Zirconium)				



Arnaud Durocher | May 12, 2018 | 3 / 20



Arnaud Durocher | May 12, 2018 | 3 / 20







#### Introduction

#### Large scale Dislocation Dynamics with Numodis

# Context Contributions Results

#### Numodis

- Mono-CPU computations
- Up to 10 000 dislocations segments



#### Parallel Numodis

- Parallel and distributed architectures
- Up to 1 000 000 dislocations segments



 $\Rightarrow$  Simulate a dislocation mesh dense enough to reliably modelise a grain.



Context	Contributions	Results
000		
000	00	000





# ContextContributionsResults••••••••••••••••••••••••••••••••





Context	Contributions	Results
000		
000	00	000





Context	Contributions	Results
000		
000	00	000





Context	Contributions	Results
000		
000	00	000





Context	Contributions	Results
000		
000	00	000

#### Hotspots







#### Fast Multipole Method

Context	Contributions	Results
000		
000	00	000



Peach-Koehler Force between dislocation segments

#### Segment Elastic Interaction

Interact with each other

N² complexity

# SCALFMM

C++ Fast Multipole Method Library for HPC

#### Fast Multipole Method

- Far-field approximation
- Hierarchical Domain Decomposition
- ScalFMM (inria Hiepacs)

#### $\sim$ N complexity





# Contributions



### **Datastructure for Dislocation Dynamics**

#### Designing the datastructure

Context	Contributions	Results
000		
000	•0	000



Node and segment data			
Nodes :	Segments :		
Position	End nodes forces		
<ul> <li>Velocity</li> </ul>	Physical properties		
► Force	<ul><li>Burgers vector</li><li>Glide plane</li></ul>		

#### **Operations on data**

Topological operations :

- Add/remove nodes
- Add/remove segments

 $\rightarrow Dynamic mesh$ 

Iterate over nodes and segments:

- Nodes with connected segments
- Segments with connected nodes
- $\rightarrow$ Irregular access



### **Datastructure for Dislocation Dynamics**

#### Distributed data with MPI

Context	Contributions	Results
000		
000	00	000



#### Distributed data (MPI)

- Too big to fit in 1 computer
- Distributed supercomputers

#### Challenges

- Keep data coherency
- Access remote data

#### ⇒ Distributed Abstract Datatype

- Safe mesh modification
- Safe access to remote data

- Easier to use to write algorithms
- Easier to change implementation



# Collision algorithm

Mechanisms of junction formation

#### **Dislocation Junctions**

- Merging of dislocations at collision;
- Important role in material behavior (strain and radiation hardening)



Dislocation multi-junctions and strain hardening (Bulatov et al. - nature 2006)

Context

Contributions

ŏo ●00 Results



#### Simulate junction formation

- Collision detection (N body)  $\rightarrow N^2$  complexity
- Handle dislocation merging.



# **Collision algorithm**

Fast collision detection

Context	Contributions	Results
000		
000	00	000
	000	

#### Uniform grid space partitioning

- Only test collision on nearby boxes;
- Determined the minimum box size Depends on object size and velocity

#### Complexity $N^2$ to $\sim N$





#### **Bounding spheres**

- Segments simplified by 2 spheres;
- Sphere/Sphere collision faster to detect;
- Smaller objects = Smaller box size.



### **Collision** algorithm

Accurate collision handling









# Results



#### Accuracy

#### Validation of collision algorithm

Context	Contributions	Results
000		
000	00	000
	000	





Context	Contributions	Results
000		
000	00	000
	000	





Context	Contributions	Results
000		
000	00	000
	000	





Context	Contributions	Results
000		
000	00	000
	000	





# Accuracy Full simulation validation

Context	Contributions	Results
000		
000	00	000





Context	Contributions	Results
000		
000	00	000
	000	





Dislocation Dynamics Simulation

(a) Initial situation

(b) Final situation

Comparison to known Molecular Dynamics simulations ^a

 $a^{3}$ Serra & Bacon - 2013 - "Atomic-level computer simulation of the interaction between  $\frac{1}{3}(11\bar{2}0)\{1\bar{1}00\}$  dislocations and  $\frac{1}{3}(11\bar{2}0)$  interstitial loops in  $\alpha$ -zirconium"



#### Large scale simulations

Context	Contributions	Results
000		
000	00	000
	000	•





#### Large scale simulations

Context	Contributions	Results
000		
000	00	000
	000	•





#### Large scale simulations

Context	Contributions	Results
000		
000	00	000
	000	•





#### Large scale simulations

Context	Contributions	Results
000		
000	00	000
	000	•





#### Large scale simulations

Context	Contributions	Results
000		
000	00	000
	000	•





#### **Conclusion and perspectives**

Context	Contributions	Results
000		
000	00	000
	000	

#### Conclusion

Improved Realiability

- New Abstract datastructure
- More Reliable algorithms (collisions)

#### Parallel performance

- Using MPI + OpenMP parallelism
- Using Hierarchical algrithms

 $\Rightarrow$  Simulating 100 000⁺ dislocation segments sceneries overnight

#### **Ongoing work and perspectives**

Physical Validation

- Measure result accuracy
- Bigger simulations using more cluster nodes

Performance improvement and validation

- Experiment with datastructure implementations
- Parallel scalability



# The end.

Thank you