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Abstract

In the polytope membership problem, a convex polytope K in Rd is given, and the objective is
to preprocess K into a data structure so that, given a query point q ∈ Rd, it is possible to determine
efficiently whether q ∈ K. We consider this problem in an approximate setting and assume that
d is a constant. Given an approximation parameter ε > 0, the query can be answered either way
if the distance from q to K’s boundary is at most ε times K’s diameter. Previous solutions to the
problem were on the form of a space-time trade-off, where logarithmic query time demands O(1/εd−1)
storage, whereas storage O(1/ε(d−1)/2) admits roughly O(1/ε(d−1)/8) query time. In this paper, we
present a data structure that achieves logarithmic query time with storage of only O(1/ε(d−1)/2),
which matches the worst-case lower bound on the complexity of any ε-approximating polytope. Our
data structure is based on a new technique, a hierarchy of ellipsoids defined as approximations to
Macbeath regions.

As an application, we obtain major improvements to approximate Euclidean nearest neighbor
searching. Notably, the storage needed to answer ε-approximate nearest neighbor queries for a set
of n points in O(log n

ε
) time is reduced to O(n/εd/2). This halves the exponent in the ε-dependency

of the existing space bound of roughly O(n/εd), which has stood for 15 years (Har-Peled, 2001).

1 Introduction

Convex polytopes are key structures in many areas of mathematics and computation. In this paper,
we consider a fundamental search problem related to these objects. Let K denote a convex polytope
in Rd, that is, the bounded intersection of n halfspaces. The polytope membership problem is that of
preprocessing K so that it is possible to determine efficiently whether a given query point q ∈ Rd lies
within K. Throughout, we assume that the dimension d is a fixed constant and that K is full dimensional.

It follows from standard results in projective duality that polytope membership is equivalent to
answering halfspace emptiness queries for a set of n points in Rd. In dimension d ≤ 3, it is possible
to build a data structure of linear size that can answer such queries in logarithmic time [29, 30]. In
higher dimensions, however, the fastest exact data structures with near-linear space have a query time
of roughly O

(
n1−1/bd/2c

)
[41], which is unacceptably high for many applications.

Polytope membership is a special case of polytope intersection queries [16, 27, 30]. Recently, Barba
and Langerman [16] showed that for any fixed d, it is possible to preprocess polytopes in Rd so that given
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two such polytopes that have been translated and rotated, it can be determined whether they intersect
each other in time that is logarithmic in their total combinatorial complexity. The preprocessing time
and space are quite high, growing as the combinatorial complexity of the polytope (which can be as high
as Θ(nbd/2c)) raised to the power bd/2c.

The lack of efficient exact solutions has motivated consideration of approximate solutions. Let ε
be a positive real parameter, and let diam(K) denote K’s diameter. Given a query point q ∈ Rd, an
ε-approximate polytope membership query returns a positive result if q ∈ K, a negative result if the
distance from q to its closest point in K is greater than ε · diam(K), and it may return either result
otherwise. Polytope membership queries, both exact and approximate, arise in many application areas,
such as linear-programming and ray-shooting queries [22, 26, 40, 42, 43], nearest neighbor searching and
the computation of extreme points [23,28], collision detection [35], and machine learning [21].

Dudley [31] showed that, for any convex body K in Rd, it is possible to construct an ε-approximating
polytope P with O(1/ε(d−1)/2) facets. This bound is asymptotically tight in the worst case, even when
K is a Euclidean ball. This construction implies a (trivial) data structure for approximate polytope
membership problem with space and query time O(1/ε(d−1)/2). Another simple solution arises from the
approximation proposed by Bentley et al. [17]. A d-dimensional grid with cells of size Θ(ε · diam(K)) is
created and for every column along the xd-axis, the two extreme xd values where the column intersects
K are stored. Given a query point q, it is easy to determine if q ∈ P in constant time (assuming a model
of computation that supports the floor function). The storage required by the approach is O(1/εd−1).

In [4], the authors presented a simple and practical data structure for the approximate polytope
membership problem, called SplitReduce. Given a parameter t, space is subdivided hierarchically using
a quadtree until each cell either (1) lies entirely inside K, (2) entirely outside K, or (3) intersects K’s
boundary and is locally approximable by at most t halfspaces. In the latter case, the leaf node associated
with such a cell stores such a set of hyperplanes. To answer a query, the quadtree is descended until
arriving at the leaf node whose cell contains the query point. If this node is not labeled as inside or
outside, the query is answered by testing whether the query point lies within all the halfspaces stored
in the leaf node. In [4] it is shown that the quadtree height is O(log 1

ε ), and therefore the overall query
time is O(log 1

ε + t).

A more refined analysis is presented in [6], showing that the minimum storage of O(1/ε(d−1)/2) is
attained for query time t = Θ

(
(log 1

ε )/ε(d−1)/8
)
. Furthermore, a space-time trade-off is presented that

involves a piecewise linear function. Obtaining a tight analysis remains an open problem. A lower-
bound proof shows that the storage requirement increases when the query time t drops down to roughly
O(1/ε(d−1)/18) [4]. Furthermore, the data structure provides no improvement over the storage in [17]
when the query time is polylogarithmic.

While the SplitReduce data structure is both simple and practical, the question of whether it is
possible to achieve query time O(log 1

ε ) with minimum storage O(1/ε(d−1)/2) has remained open. In
this paper, we give an affirmative answer to this question. We abandon the quadtree-based approach
of [4] and [6] in favor of a data structure involving a hierarchy of ellipsoids. These ellipsoids are selected
through a sampling process that is inspired by a classical structure from the theory of convexity, called
Macbeath regions [39]. Here is our main result.

Theorem 1.1 Given a convex polytope K in Rd and an approximation parameter 0 < ε ≤ 1, there is a
data structure that can answer ε-approximate polytope membership queries with

Query time: O

(
log

1

ε

)
and Space: O

(
1

ε(d−1)/2

)
.

Our focus is on the existence of this data structure. Preprocessing will be discussed in future work,
but assuming that K is represented as the intersection of h halfspaces, the construction described in
Section 3.1 can be implemented in time O(n + poly(1/ε)), with polynomial exponents depending on d.
The principal contribution of this paper is to show that through the use of a more “shape-sensitive”
approach, it is possible to achieve dramatic improvements over the space requirements of the data
structure.

As evidence of the importance of this result, we show that it can be applied to produce significant
improvements in the efficiency of approximate nearest-neighbor searching in Euclidean space. Approxi-
mate nearest neighbor searching in spaces of fixed dimension has been widely studied. Data structures
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with O(n) storage and query times no better than O(log n + 1/εd−1) have been proposed by several
authors [13, 18, 25, 32]. In subsequent papers, it was shown that query times could be reduced at the
expense of greater storage [24,28,37,44]. Har-Peled introduced the AVD (approximate Voronoi diagram)

data structure and showed that O(log n
ε ) query time could be achieved using Õ(n/εd) space [37]. (The

notation Õ(·) conceals logarithmic factors.)
Space-time trade-offs were established for the AVD in a series of papers [3,8,9,11]. At one end of the

spectrum, it was shown that with O(n) storage, queries could be answered in time O(log n+ 1/ε(d−1)/2).

At the other end, queries could be answered in time O(log n
ε ) with space Õ(n/εd). In [4], the authors

presented a reduction from Euclidean approximate nearest neighbor searching to polytope membership.
They established significant improvements to the best trade-offs throughout the middle of the spectrum,
but the extremes were essentially unchanged [4,6]. While the AVD is simple and practical, in [11] lower
bounds were presented that imply that significant improvements at the extreme ends of the spectrum
are not possible in this model. Through the use of our new data structure for polytope membership, we
achieve the following improved trade-off.

Theorem 1.2 Given a set X of n points in Rd, an approximation parameter 0 < ε ≤ 1, and m such that
log 1

ε ≤ m ≤ 1/(εd/2 log 1
ε ), there is a data structure that can answer Euclidean ε-approximate nearest

neighbor queries with

Query time: O

(
log n+

1

m · εd/2
)

and

Space: O(nm) .

By setting m to its upper limit it is possible to achieve logarithmic query time while roughly halving
the exponent in the ε-dependency of the previous best bound, as expressed in the following corollary.

Corollary 1.1 Given a set X of n points in Rd and an approximation parameter 0 < ε ≤ 1, there is a
data structure that can answer Euclidean ε-approximate nearest neighbor queries with

Query time: O
(

log
n

ε

)
and Space: O

( n

εd/2

)
.

The rest of the paper is organized as follows. In the next section we present definitions and preliminary
results. In Section 3 we present the data structure and analyze its performance. Section 4 discusses the
application to approximate nearest-neighbor searching.

2 Geometric Preliminaries

Throughout, we assume that K is presented as the intersection of halfspaces. Note however that our
results are largely insensitive to the exact representation or the combinatorial complexity of K. (The
exceptions are our remarks on the construction of the data structure and choice of hyperplane witnesses
to non-membership). For this reason, we will often refer to K simply as a convex body.

It will be convenient to define the approximation error in absolute terms. Given a query point q ∈ Rd,
an absolute ε-approximate polytope membership query returns a positive result if q ∈ K, a negative result
if the distance from q to its closest point in K is greater than ε, and it may return either result otherwise.
We may assume throughout that d ≥ 4, since polytope membership queries (which may be applied to
the Dudley approximation) can be answered exactly in logarithmic time for d ≤ 3 [30].

2.1 Canonical Position and Ray Shooting.

Let ∂K denote the boundary of K. Let O denote the origin of Rd, and for x ∈ Rd and r ≥ 0, let
Br(x) denote the Euclidean ball of radius r centered at x. Given a parameter 0 < γ ≤ 1, we say that a
convex body K is γ-fat if there exist concentric Euclidean balls B and B′, such that B ⊆ K ⊆ B′, and
radius(B)/radius(B′) ≥ γ. We say that K is fat if it is γ-fat for a constant γ (possibly depending on d,
but not on ε).

Let B0 denote a ball of radius r0 = 1/2 centered at the origin. For 0 < γ ≤ 1, let γB0 denote
the concentric ball of radius γr0 = γ/2. We say that a convex body K is in γ-canonical form if its
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Figure 1: (a) γ-canonical form, (b) ε-approximate ray-shooting query, (c) witness.

boundary is nested between γB0 and B0 (see Figure 1(a)). A body in γ-canonical form is γ-fat, and
diam(K) ∈ [γ, 1]. We will refer to point O as the center of K.

The next lemma shows that, up to constant factors, the problem of answering relative ε-approximate
polytope membership queries can be reduced to the problem of answering absolute (ε/d)-approximate
queries with respect to a convex body in (1/d)-canonical form. The proof follows from a combination of
John’s Theorem [38] and Lemma 3.1 of Agarwal et al. [1]. (Also, see Lemma 2.1 of the arXiv version
of [7].)

Lemma 2.1 Let K ⊂ Rd be a convex body. There exists a non-singular affine transformation T such
that T (K) is in (1/d)-canonical form. Further, if q is a point at distance greater than ε · diam(K) from
K, then T (q) is at distance greater than ε/d from T (K).

In light of this result, we may assume henceforth that K is presented in γ-canonical form, for any
constant γ (depending on dimension), and that ε has been appropriately scaled. (This scaling will affect
the constant factors hidden in our asymptotic bounds.) Henceforth, we focus on the problem of answering
absolute ε-approximate polytope membership queries with respect to K.

Our query algorithm solves a slightly more general problem, which will be exploited later in Section 4.
Given a convex body in γ-canonical form and any point q ∈ Rd \ {O}, consider the (infinite) ray with
origin at O and passing through q, which we denote as Oq. An ε-approximate ray shooting query returns
a point p that lies on this ray and is not internal to K but lies within distance ε of K1 (see Figure 1(b)).
Given the answer to such a ray-shooting query, we can answer approximate membership queries for a
query point q by applying the query to the ray Oq and testing whether q lies on the portion of the ray
between O and p. If so, then (by convexity and the fact that O is interior to K) q lies within distance ε
of K. If not, q does not lie within K. In Section 3 we will show the following.

Lemma 2.2 Given an arbitrary constant γ, a convex polytope K in Rd that is in γ-canonical form,
and an approximation parameter 0 < ε ≤ 1, there is a data structure that can answer ε-approximate
ray-shooting queries in O(log 1

ε ) time and O(1/ε(d−1)/2) space.

Theorem 1.1 follows directly from Lemmas 2.1 and 2.2. Our ray-shooting algorithm satisfies the
additional property that, when K is given as the intersection of halfspaces, the reported point p lies on
the bounding hyperplane h of one of these halfspaces (see Figure 1(c)). The query returns not only p but
h as well. As such, if q is reported to lie outside of K, then h serves as a witness to q’s non-membership.
This fact will be exploited in Section 4.

1In light of Lemma 2.1, approximate ray-shooting queries also can be defined for an arbitrary convex body. The ray’s
origin is chosen to be the center of the John ellipsoid and the distance to the point p is relative to K’s diameter. In general
the ray’s central point may be located at any point in K’s interior with the property that K’s boundary is sandwiched
between two uniformly scaled copies of an ellipsoid, both centered at this point. As in Lemma 2.1, the value of ε needs to
be adjusted based on the scale factor.
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2.2 Caps and Macbeath Regions.

Much of the material in this section has been presented in [7]. We include it here for the sake of
completeness.

Given a convex body K, a cap C is defined to be the nonempty intersection of the convex body K
with a halfspace (see Figure 2(a)). Let h denote the hyperplane bounding this halfspace. We define the
base of C to be h ∩ K. The apex of C is any point in the cap such that the supporting hyperplane
of K at this point is parallel to h. The width of C, denoted width(C), is the distance between h and
this supporting hyperplane. Given any cap C of width w and a real ρ ≥ 0, we define its ρ-expansion,
denoted Cρ, to be the cap of K cut by a hyperplane parallel to and at distance ρw from this supporting
hyperplane. (Note that Cρ = K, if ρw exceeds the width of K along the defining direction.) An easy
consequence of convexity is that, for ρ ≥ 1, Cρ is a subset of the region obtained by scaling C by a factor
of ρ about its apex. This implies the following lemma.

Lemma 2.3 Let K ⊂ Rd be a convex body and ρ ≥ 1. For any cap C of K, vol(Cρ) ≤ ρd · vol(C).

C
w

h C2

bas
e

wid
th

w

(b)(a)

apex
K

x

M(x)

M ′(x)

2x−K

Figure 2: (a) Cap concepts and (b) Macbeath regions.

Given a point x ∈ K and real parameter λ ≥ 0, the Macbeath region Mλ(x) (also called an M-region)
is defined as:

Mλ(x) = x+ λ((K − x) ∩ (x−K)).

It is easy to see that M1(x) is the intersection of K and the reflection of K around x (see Figure 2(b)),
and so M1(x) is centrally symmetric about x. Mλ(x) is a scaled copy of M1(x) by the factor λ about
x. We refer to x as the center of Mλ(x) and to λ as its scaling factor. As a convenience, we define
M(x) = M1(x) and M ′(x) = M1/5(x). We refer to the latter as the shrunken Macbeath region.

Macbeath regions have found numerous uses in the theory of convex sets and the geometry of numbers
(see Bárány [15] for an excellent survey). They have also been applied to a growing number of results in
the field of computational geometry, particularly to construct lower bounds for range searching [10,14,19]
and to bound the complexity of an ε-approximating polytope [5, 7].

Given any point x ∈ K, we define a minimal cap C(x) to be the cap with minimum volume that
contains x. Clearly, the base of the minimal cap must pass through x. In fact, a standard variational
argument implies x is the centroid of the base (otherwise, we could decrease the cap volume by an
infinitesimal rotation of the base about x [36]). If the minimal cap is not unique, the notation C(x) will
refer to any one of these caps fixed arbitrarily. Define v(x) = vol(C(x)) and width(x) = width(C(x)). It
will be convenient to use Cρ(x) to refer to the ρ-expansion of C(x), that is, Cρ(x) = (C(x))ρ.

We now present two lemmas that encapsulate key properties of Macbeath regions, which will be
useful in the development of our data structure. The first lemma shows that if two shrunken Macbeath
regions have a nonempty intersection, then a constant factor expansion of one contains the other [19,36].
Since the statement we need is slightly different from that proved in earlier papers, we give a proof in
the appendix.

Lemma 2.4 Let K be a convex body, and let λ ≤ 1/5 be any real. If x, y ∈ K such that Mλ(x)∩Mλ(y) 6=
∅, then Mλ(y) ⊆M4λ(x).
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The next lemma shows that the minimal cap associated with a point is contained within a suitable
constant factor expansion of the associated Macbeath region. It is a straightforward adaptation of a
lemma proved by Ewald, Larman and Rogers [36] (see proof of Lemma 4 in [36]).

Lemma 2.5 Let K ⊂ Rd be a convex body in γ-canonical form, and let ∆0 = 1
2 (γ2/(4d))d be a constant.

If x is a point in K that lies within distance ∆0 of ∂K, then C(x) ⊆M3d(x).

The following lemma is an immediate consequence of the definition of Macbeath region.

Lemma 2.6 Let K be a convex body and λ > 0. If x is a point in a cap C of K, then Mλ(x)∩K ⊆ C1+λ.
Furthermore, if λ ≤ 1, then Mλ(x) ⊆ C1+λ.

The next lemma is useful in situations when we know that a shrunken Macbeath region partially
overlaps a cap of K. It allows us to conclude that a constant factor expansion of the cap will fully
contain the Macbeath region. The proof appears in [7].

Lemma 2.7 Let K be a convex body. Let C be a cap of K and x be a point in K such that C∩M ′(x) 6= ∅.
Then M ′(x) ⊆ C2.

2.3 Relating Distances and Widths.

In this section we present a number of geometric results demonstrating the relationship between three
notions of the distance from a point lying within a convex body to body’s boundary. Throughout, let
K be a convex body in γ-canonical form where γ is a constant and let x ∈ K. Recall that width(x) is
the width of x’s minimum cap. Define δ(x) to be the minimum distance from x to any point on ∂K.
For the sake of ray-shooting queries, we define a ray-based notion of distance as well. Given x ∈ K,
consider the intersection point p of ∂K and the ray emanating from O and passing through x. Define
x’s ray-distance, denoted ray(x), to be ‖xp‖ (see Figure 3).

K

x
C(x)

δ(x)

ray(x)

O

M(x)

width(x)

p

Figure 3: Relating δ(x), width(x), and ray(x).

First we relate ray(x) and δ(x). The lower bound on ray(x) is trivial and the upper bound follows
by a straightforward adaptation of Lemma 4.2 of [7].

Lemma 2.8 Let K be a convex body in γ-canonical form. For any point x ∈ K, δ(x) ≤ ray(x) ≤ δ(x)/γ.

Next, let us relate width(x) and δ(x). Clearly, width(x) ≥ δ(x). In Lemma 2.10, we show that
close to the boundary, width(x) cannot exceed δ(x) by more than a constant factor. Its proof is based
standard properties of Macbeath regions and the following lemma.

Lemma 2.9 Let K be a convex body in γ-canonical form. Let C1 and C2 be two caps of K such that
C1 ⊆ C2. Then width(C1) ≤ 2 · width(C2)/γ.

Proof . We consider two cases depending on whether the origin O is inside C1 or not. First, if O ∈ C1,
then O ∈ C2. Since K contains the ball Bγ/2(O), it follows that width(C2) ≥ γ/2. Since K is contained
within the ball B1/2(O), we have width(C1) ≤ 1. Thus, width(C1) ≤ 2 · width(C2)/γ.

Otherwise, we have O /∈ C1. Consider the segment joining O to t, where t is the apex of C1. Let x
denote the point of intersection of this segment with the base of C1. Clearly, width(C1) ≤ ray(x). By
Lemma 2.8, ray(x) ≤ δ(x)/γ. Thus, width(C1) ≤ δ(x)/γ. Also, since x ∈ C2, we have δ(x) ≤ width(C2).
Thus, width(C1) ≤ width(C2)/γ, completing the proof. ut
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Lemma 2.10 Let K ⊂ Rd be a convex body in γ-canonical form, and let ∆0 be the constant of
Lemma 2.5. If x is a point in K such that δ(x) ≤ ∆0, then width(x) ≤ (2/γ)(3d+ 1)δ(x).

Proof . Let t denote the point on ∂K that is closest to x. Consider the supporting hyperplane of K at
t that is orthogonal to segment xt. Consider the halfspace bounded by this hyperplane which does not
contain K in its interior. Translate this halfspace such that the bounding hyperplane passes through x.
Let C denote the cap formed by intersecting this halfspace with K. Note that the width of cap C is δ(x).
By Lemma 2.6, M3d(x)∩K ⊆ C3d+1. Since δ(x) ≤ ∆0, it follows from Lemma 2.5 that C(x) ⊆M3d(x).
By definition, C(x) ⊆ K, so we have

C(x) ⊆ M3d(x) ∩K ⊆ C3d+1.

By Lemma 2.9, it follows that

width(x) = width(C(x))

≤ 2

γ
width(C3d+1) =

2

γ
(3d+ 1)δ(x),

as desired. ut

The following lemma, illustrated in Figure 4, will be useful to analyze the ray shooting performed by
our data structure.

width(C) ≤ ∆0

ty′

y r′

O

C
h

ht

Figure 4: Statement of Lemma 2.11.

Lemma 2.11 Let K be a convex body in γ-canonical form, and let ∆0 be the constant of Lemma 2.5.
Let C be a cap of width at most ∆0 defined by a hyperplane h, and let y be any point in C. Let t be C’s
apex, and let ht be the hyperplane parallel to h that passes through t. Letting y′ denote the intersection
of line Oy and ht, we have ‖yy′‖ ≤ 2 · width(C)/γ.

Proof . Given that y ∈ C, ‖yy′‖ is maximized when y lies on C ∩ h, and so let us assume this. Since K
is in γ-canonical form, it is nested between two balls of radii r = γ/2 and R = 1/2 centered at O. Let
r′ denote the perpendicular distance from O to ht. Clearly, ht is a supporting hyperplane of K, and so
r′ ≥ r. By definition of ∆0 and since γ ≤ 1, we have ∆0 ≤ γ/4 = r/2. Let R′ = ‖Oy‖. Since y ∈ K,
R′ ≤ R. Letting w = width(C), by similar triangles we have R′/(r′ − w) = ‖yy′‖/w. Therefore,

‖yy′‖ =
R′

r′ − ww ≤
R′

r′ −∆0
w ≤ R′

r − (r/2)
w

≤ R

r/2
w =

2 · width(C)

γ
,

as desired. ut

Finally, we establish a monotonicity relationship between δ(x) and ray(x) that holds close to the
boundary. For any δ > 0, define the δ-erosion of K, denoted K(δ), to be the closed convex body formed
by removing from K all points lying within distance δ of ∂K. We can define K(δ) equivalently as follows.
Let H denote the set of supporting halfspaces of K, so that K =

⋂
H∈HH. Letting H(δ) denote the set

of halfspaces obtained by translating each halfspace of H towards O by δ, we have K(δ) =
⋂
H∈H(δ)H.

Recalling that Bγ/2(O) ⊆ K, the next lemma follows from elementary geometry.
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Lemma 2.12 Let K be a convex body in γ-canonical form. The following hold:

(a) if δ < γ/2, then O ∈ K(δ).

(b) Consider any ray emanating from O. Let x and y denote the points of intersection of this ray with
the boundaries of K(γ/2) and K, respectively. As point p moves along this ray from x to y, δ(p)
decreases strictly monotonically.

2.4 Further Properties of Macbeath Regions.

Finally, we identify some useful novel properties of Macbeath regions. The first lemma is a useful utility.
Lemma 2.14 shows that all the points in a shrunken Macbeath region have similar distances from the
boundary of K, and Lemma 2.15 shows that the minimal caps associated with these points have similar
volumes.

Lemma 2.13 Let K be a convex body. If x ∈ K and x′ ∈M ′(x), then x ∈M1/4(x′).

Proof . Recalling that M ′(x) = M1/5(x), it follows that there exist points p1, p2 ∈ K such that x′ =
x+ 1

5 (p1−x) and x′ = x+ 1
5 (x−p2). After simple algebraic manipulations, the first equation is equivalent

to

x = x′ +
1

4
(x′ − p1). (1)

Letting p3 = 2
3p2 + 1

3x
′, the second equation is equivalent to

x = x′ +
1

4

(
2

3
p2 +

1

3
x′ − x′

)
= x′ +

1

4
(p3 − x′) . (2)

As p3 is a convex combination of p2 and x′, we have p3 ∈ K. Eq. (1) shows that x ∈ x′ + (1/4)(x′ −K),
and Eq. (2) shows that x ∈ x′ + (1/4)(K − x′). Thus x ∈M1/4(x′). ut

Lemma 2.14 Let K be a convex body. If x ∈ K and x′ ∈M ′(x), then 4δ(x)/5 ≤ δ(x′) ≤ 4δ(x)/3.

Proof . To prove the lower bound on δ(x′), let z denote the point of ∂K that is closest to x′, and let h
be a supporting hyperplane passing through z (see Figure 5). Let ` denote the (perpendicular) distance
from x to h, and let h′ be the translate of h by distance 4`/5 towards x. Because M(x) lies entirely
within the halfspace bounded by h that contains the origin, it follows that M ′(x) lies entirely within the
corresponding halfspace bounded by h′. This implies that δ(x′) ≥ 4`/5. Clearly, δ(x) ≤ `, and hence
δ(x′) ≥ 4`/5 ≥ 4δ(x)/5.

xM ′(x)

z

`

4`/5

x′
h

h′

Figure 5: Proof of Lemma 2.14.

To prove the upper bound on δ(x′) observe that, by Lemma 2.13, x ∈ M1/4(x′). A symmetrical
argument to the above shows that δ(x) ≥ 3δ(x′)/4, as desired. ut

Recall that C(x) is the cap of minimum volume that contains x and v(x) = vol(C(x)).

Lemma 2.15 Let K ⊂ Rd be a convex body. If x ∈ K and x′ ∈M ′(x), then 2dv(x) ≥ v(x′) ≥ v(x)/2d.
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Proof . By Lemma 2.6, M ′(x) ⊆ C6/5(x). Therefore, x′ ∈ C6/5(x), implying that the minimum volume
cap containing x′ has volume at most vol(C6/5(x)). By Lemma 2.3, vol(C6/5(x)) ≤ (6/5)dvol(C(x)).
Thus

v(x′) ≤ vol(C6/5(x)) ≤
(

6

5

)d
v(x) ≤ 2dv(x),

which proves the first inequality. To prove the second inequality observe that, by Lemma 2.13, x ∈
M1/4(x′). Arguing as in the proof of the first inequality, we obtain v(x) ≤ 2dv(x′), as desired. ut

3 The Data Structure

Recall that we are given a convex polytope K ⊂ Rd in γ-canonical form, where γ is a constant, and
our objective is to construct a data structure that can answer ε-approximate ray-shooting queries. Our
approach is to compute a series of nested rings within K, each of which surrounds the origin. Each
ring is the union of a collection of appropriately scaled Macbeath regions such that any ray shot from
the origin hits at least one Macbeath region from each ring (see Figure 6). The rings extend outwards
towards the boundary of K. To simplify query processing, we will replace each Macbeath region with
a containing ellipsoid whose volume is larger by at most a constant factor. With each successive level
these “Macbeath ellipsoids” define successively better approximations to ∂K, with the last ring forming
an ε-approximation to ∂K.

Figure 6: Illustration of two levels of the data structure.

These rings naturally define a layered DAG structure whose nodes correspond to Macbeath ellipsoids.
A Macbeath ellipsoid at level i is the child of a Macbeath ellipsoid at level i − 1 if there is a ray from
the origin that intersects both of them. (It will in fact hit the ellipsoid at level i − 1 before the one at
level i.) We will show that each ellipsoid has a constant number of children, and that the overall depth
of this DAG is O(log 1

ε ).
To define the structure more formally, let ∆0 be the constant of Lemma 2.5, and for i ≥ 0 define ∆i =

∆0/2
i. The levels are indexed from 0 to `, where ` is the smallest integer such that ∆` ≤ γ2ε/(8(3d+1)).

Since γ is a constant, ` = O(log 1
ε ). Recall that K(δ) denotes the body that results by eroding K by

distance δ, and let λ0 = 1/(20
√
d) be a constant. By Lemma 2.12(a), K(∆0) contains the origin O

and K(∆i) ⊂ K(∆i+1). The nodes at level i of our data structure correspond to a maximal set of
disjoint Macbeath regions Mλ0(x) whose centers x lie on the boundary of the eroded body K(∆i). For
any node u, let xu denote the center of the associated Macbeath region Mλ0(xu). Define the associated
Macbeath ellipsoid, denoted E(xu), to be the circumscribing John ellipsoid of M4λ0(xu). (Since Mλ0(xu)
is centrally symmetric about xu, E(xu) will be centered about this point.) We will show that the union
of the Macbeath ellipsoids at level i cover ∂K(∆i), implying that any ray emanating from the origin
must intersect at least one ellipsoid of each level.

As mentioned above, given nodes u and v from levels i and i+1, respectively, v is a child of u if there
exists a ray emanating from the origin that intersects both E(xu) and E(xv). We can root the DAG
by creating a special node whose children are all the nodes of level zero. In order to produce a witness
for approximate ray-shooting queries, we associate each leaf node with a constant number of supporting
hyperplanes of K that locally approximate the boundary of K near the leaf’s Macbeath ellipsoid. (This
will be discussed in detail in Section 3.1).
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Given a ray Oq, the query algorithm descends the DAG by starting at the root and visiting any node
at level zero that intersects the ray. Letting u denote the current node, we next visit any child of u
whose associated ellipsoid intersects the ray. (Such a child must exist.) Upon reaching the leaf level we
intersect Oq with all of its associated supporting hyperplanes and return the intersection point p that is
closest to O as the answer to the query (along with the identity of the hyperplane containing p).

In the subsections below, we present a formal analysis of the structure and its properties. In Sec-
tion 3.1 we sketch its construction. In Section 3.2 we show that each node has O(1) children. In
Section 3.3, we show that the total storage required is O(1/ε(d−1)/2). Finally, in Section 3.4 we show
that the query algorithm is correct and has query time O(log 1

ε ).

3.1 Construction.

Since our focus is on the existential properties of the data structure, we will discuss its construction
only at a high level. We are given the convex body K and approximation parameter ε. Due to the
approximate nature of the queries, most of the steps can be implemented approximately subject to a
suitable adjustment of the constant factors.

The construction begins by converting K into canonical form as described in Lemma 2.1. Next, for
0 ≤ i ≤ `, the eroded bodies K(∆i) are computed. Recalling the constant λ0 earlier, for each body
K(∆i) we greedily compute a maximal set of points Xi on its boundary such that the Macbeath regions
Mλ0(x) for x ∈ Xi are pairwise disjoint. For each point x ∈ Xi, we construct the associated Macbeath
region M4λ0(x) and the associated Macbeath ellipsoid E(x). We also create a node for this point at level
i of the DAG. Finally, for each pair of nodes at consecutive levels of the DAG, we determine whether
there exists a ray emanating from the origin that intersects both of their associated Macbeath ellipsoids.
If so, we create a parent-child link between them. We create a special root node, which we connect to
all the nodes of level zero. This defines the layered DAG structure.

Next, let us consider the assignment of supporting hyperplanes to the leaves of the data structure.
Let u be a leaf node, and let E(xu) denote the associated Macbeath ellipsoid with center point xu
(see Figure 7). Let C(xu) denote the corresponding minimum volume cap. Let t be the apex of this
cap, and let ht denote the hyperplane (which is a supporting hyperplane of K) passing through t and
parallel to the base of the cap. In Lemma 3.7, we will show that ht can serve as the desired witness,
but in some applications it is desirable that the witness be chosen from K’s bounding hyperplanes. By
Carathéodory’s theorem [34], there is a set of at most d of K’s bounding halfspaces whose intersection
defines an unbounded simplex that contains K, and this simplex is contained within the halfspace
bounded by ht containing K (shaded in blue in Figure 7). The leaf node u stores this set of hyperplanes,
which we denote by Hu.

C(xu)

ht
t

xu

∈ Hu

K

E(xu)

Figure 7: A leaf node in the data structure.

3.2 Bounding the Out-degree.

In this section we show that each node has O(1) children. Intuitively, this involves showing that the set
of rays emanating from the origin that pass through a Macbeath ellipsoid for a point on the boundary
of K(∆i) can intersect at most a constant number of Macbeath ellipsoids for points on the boundary
K(∆i+1). This is because the points x defining the nodes of each level have disjoint Macbeath regions
Mλ0(x), which permits us to employ a packing argument.

For any point x ∈ K, recall that v(x) denotes the volume of the minimal cap C(x). Our first lemma
considers how v(x) changes as the point x moves towards the boundary of K along a ray emanating from
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O. The lemma shows that if the distance to the boundary, δ(x), decreases by at most a constant factor,
then v(x) decreases by no more than some constant factor.

Lemma 3.1 Let K ⊂ Rd be a convex body in γ-canonical form. Let y be a point on the ray Ox, such
that ray(y) ≤ ray(x). If δ(y) ≥ δ(x)/α for any α ≥ 1, then v(y) ≥ (γ/α)d v(x).

Proof . If C(y) contains O then, by convexity, it would follow that x ∈ C(y). This would imply that
v(y) = vol(C(y)) ≥ v(x), which would prove the lemma. We may assume therefore that C(y) does not
contain O.

O

x

y
C(y)

C ′(x)wx

wy

hy

hx

ht

tp

p′

Figure 8: Proof of Lemma 3.1.

Let hy denote the hyperplane passing through the base of C(y), and let t denote the apex of C(y).
Let ht and hx denote the hyperplanes parallel to hy passing through t and x, respectively. Note that ht
is a supporting hyperplane of K. Let C ′(x) denote the (not necessarily minimal) cap with apex t, whose
base lies on hx. Let wy and wx denote the widths of the caps C(y) and C ′(x), respectively. Clearly,
C ′(x) is a (wx/wy)-expansion of the cap C(y), and so by Lemma 2.3, vol(C ′(x)) ≤ (wx/wy)d · vol(C(y)).
Thus

v(x) ≤ vol(C ′(x)) ≤
(
wx
wy

)d
v(y). (3)

Next we show that wy is not much smaller than wx. Let p and p′ denote the points of intersection of
the ray Ox with ∂K and ht, respectively. Using elementary geometry and the facts that ray(y) ≥ δ(y)
and ray(x) ≤ δ(x)/γ (Lemma 2.8), we obtain

wx
wy

=
‖xp′‖
‖yp′‖ =

ray(x) + ‖pp′‖
ray(y) + ‖pp′‖

≤ ray(x)

ray(y)
≤ δ(x)/γ

δ(y)
≤ α

γ
.

Substituting this bound in Equation 3, we obtain v(x) ≤ (α/γ)d v(y), which completes the proof. ut

The following lemma relates the Macbeath regions associated with a node and any of its children.

Lemma 3.2 Let K ⊂ Rd be a convex body in γ-canonical form for some constant γ, and let ∆0 be the
constant of Lemma 2.5. Let x be a point within distance at most ∆0 of the boundary of K. Consider the
generalized cone formed by rays emanating from the center O of K and intersecting M ′(x). Consider
any Macbeath region M ′(y) that overlaps this cone where δ(y) = δ(x)/2. Then

(a) M ′(y) ⊆ C4(x), and

(b) There exists a constant c (depending on d and γ) such that vol(M(y)) ≥ v(x)/c.

Proof . We claim that M ′(y) overlaps C2(x). By Lemma 2.7, this will imply that M ′(y) ⊆ C4(x) and so
will establish (a). To see the claim, consider any ray that emanates from O and intersects both M ′(x) and
M ′(y). Let x′ and y′ be any two points on this ray that are contained in M ′(x) and M ′(y), respectively
(see Figure 9). Applying Lemma 2.14 to points x and x′, we obtain δ(x′) ≥ 4δ(x)/5. Applying the same
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O

x

y

C4(x)

y′

x′
M ′(y)

M ′(x)

Figure 9: Proof of Lemma 3.2.

lemma to points y and y′, we obtain δ(y′) ≤ 4δ(y)/3. Recalling that δ(y) = δ(x)/2 and putting this all
together, we obtain

δ(y′) ≤ 4

3
· δ(y) =

4

3
· δ(x)

2
≤ 4

3
· 1

2
· 5

4
· δ(x′) < δ(x′).

Applying Lemma 2.14 to points x and x′, we have δ(x′) ≤ 4δ(x)/3 ≤ 4∆0/3. Substituting the value
of ∆0, it is easy to verify that δ(x′) < γ/2. Since δ(y′) < δ(x′), we can now apply Lemma 2.12(b) to
conclude that ray(y′) < ray(x′). In other words, y′ occurs after x′ along the ray emanating from O.
Also, by Lemma 2.6, we have M ′(x) ⊆ C6/5(x) ⊆ C2(x). Therefore, x′ ∈ C2(x), and so y′ ∈ C2(x).
Thus, we have shown that M ′(y) intersects C2(x), which proves (a).

Next we prove (b). Applying Lemma 2.14 to points y and y′, we obtain δ(y′) ≥ 4δ(y)/5. Recalling
that δ(x′) ≤ 4δ(x)/3, we have

δ(y′) ≥ 4

5
· δ(y) =

4

5
· δ(x)

2

≥ 4

5
· 1

2
· 3

4
· δ(x′) ≥ 1

4
· δ(x′).

Applying Lemma 3.1 to x′ and y′, we obtain v(y′) ≥ (γ/4)dv(x′).
Applying Lemma 2.15 to x and x′, we have v(x′) ≥ v(x)/2d. Analogously, we have v(y) ≥ v(y′)/2d.

Also, since δ(y) = δ(x)/2 ≤ ∆0/2 ≤ ∆0, the precondition of Lemma 2.5 is satisfied for point y. Applying
Lemma 2.5, it follows that C(y) ⊆M3d(y). Thus

vol(M(y)) ≥ vol(C(y))

(3d)d
=

v(y)

(3d)d
.

Putting it all together, we obtain

vol(M(y)) ≥ v(y)

(3d)d
≥ 1

(3d)d
· 1

2d
· v(y′)

≥ 1

(3d)d
· 1

2d
·
(γ

4

)d
v(x′)

≥ 1

(3d)d
· 1

2d
·
(γ

4

)d
· 1

2d
· v(x)

≥
( γ

48d

)d
· v(x).

This yields vol(M(y)) ≥ v(x)/c for any constant c ≥ (48d/γ)d, which proves (b). ut

The previous lemma implies the following.

Lemma 3.3 Let K ⊂ Rd be a convex body, and let ∆0 be the constant of Lemma 2.5. Also, let λ ≤ 1/5 be
any constant. Let x ∈ K such that δ(x) ≤ ∆0. Consider the generalized cone formed by rays emanating
from the center O of K and intersecting M ′(x). Let Y denote any set of points y such that δ(y) = δ(x)/2
and the set of Macbeath regions Mλ(y) are disjoint. Let Y ′ ⊆ Y denote the set of points y such that
M ′(y) overlaps the aforementioned cone. Then |Y ′| = O(1).
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Proof . Let y denote any point of Y ′. Applying Lemma 3.2, it follows that (a) M ′(y) ⊆ C4(x), and
(b) vol(M(y)) ≥ v(x)/c, for a suitable constant c. Since λ ≤ 1/5, it follows that Mλ(y) is contained in
C4(x). By Lemma 2.3, the volume of C4(x) is at most 4dv(x) = O(v(x)) and the volume of Mλ(y) is
λd · vol(M(y)) ≥ λd · v(x)/c = Ω(v(x)). Since the Macbeath regions Mλ(y) for y ∈ Y ′ are disjoint, by a
straightforward packing argument, it follows that |Y ′| = O(1). ut

We are now ready to show that the number of children of any non-root node u in our data structure
is O(1). (We will analyze the number of children of the root node later. See the remarks following
Lemma 3.5.) Consider any node u at level i ≥ 0. Recall that E(xu) denotes the associated Macbeath
ellipsoid, which encloses M4λ0(xu). The children of u are those nodes v at level i+1 whose ellipsoid E(xv)
intersects the generalized cone formed by rays emanating from the origin that intersect E(xu). The child
condition is expressed in terms of Macbeath ellipsoids (for the sake of efficient query processing), but
the above lemma is stated in terms of Macbeath regions.

Since xu ∈ ∂K(∆i), we have δ(xu) = ∆i ≤ ∆0. Macbeath regions are centrally symmetric, and the
constant in John’s Theorem [38] is

√
d for centrally symmetric bodies. Recalling that λ0 = 1/(20

√
d) we

have
M4λ0(xu) ⊆ E(xu) ⊆ M4λ0

√
d(xu) = M ′(xu). (4)

Thus, the generalized cone of rays that intersect M ′(xu) includes all the rays used to define the children
of xu. The points xv that form level i + 1 of the structure lie on ∂K(∆i+1) and thus satisfy δ(xv) =
δ(xu)/2. Since by our construction they have disjoint Macbeath regions Mλ0(xv), they constitute a set
Y as described in the preconditions of Lemma 3.3. Each child v of u corresponds to a point xv such
that the ellipsoid E(xv) intersects the generalized cone. Reasoning as we did above for xu, we have
E(xv) ⊆ M ′(xv). Therefore, the points xv associated with the children of u constitute a subset of the
set Y ′ given in the lemma. Therefore, the number of children of xu is O(1), as desired.

3.3 Storage Space.

In this section, we show that the total number of nodes in the data structure is O(1/ε(d−1)/2). Since
each node has O(1) children, it will follow that the total storage is also O(1/ε(d−1)/2).

Recall the constants ∆0 and λ0 = 1/(20
√
d) defined earlier. The number of nodes at level i is bounded

above by the cardinality of a maximal set of disjoint Macbeath regions Mλ0(x), such that the centers x
lie on the boundary of K(∆i), where ∆i = ∆0/2

i. Our analysis will make use of the following lemma,
which is a straightforward adaptation of Lemma 3.2, which is proved in the arXiv version of [7].

Lemma 3.4 Let K ⊂ Rd be a convex body in γ-canonical form. Let 0 < λ ≤ 1/5 be any fixed constant
and let ∆ ≤ γ/12 be a real parameter. Let C be a set of caps, whose widths lie between ∆ and 2∆, such
that the Macbeath regions Mλ(x) centered at the centroids x of the bases of these caps are disjoint. Then
|C| = O(1/∆(d−1)/2).

We apply this to bound the number of Macbeath regions that define the nodes of each layer.

Lemma 3.5 Let K ⊂ Rd be a convex body in γ-canonical form for some constant γ. Let ∆0 be the
constant of Lemma 2.5 and 0 < λ ≤ 1/5 be any fixed constant. Let ∆ ≤ ∆0 be a real parameter. Let
M be a set of disjoint Macbeath regions, each of which has scaling factor λ and whose centers lie on the
boundary of K(∆). Then |M| = O(1/∆(d−1)/2).

Proof . Let X denote the set of center points ofM. By Lemma 2.10, for any x ∈ X, width(x) is between
∆ and (2/γ)(3d+ 1)∆. We can partition X (and by extensionM) into O(1) groups such that the points
in any group have same width to within a factor of two. Let X ′ denote one of these groups, and let
its associated widths be between w and 2w. Since ∆ ≤ ∆0, we have w ≤ (2/γ)(3d + 1)∆0. Under our
assumption that d ≥ 3, it is easy to verify that the latter quantity does not exceed γ/12. Thus, the set
of caps C(x) for the points of this group satisfy the precondition of Lemma 3.4. Applying this lemma
yields |X ′| = O(1/w(d−1)/2). Summing over all the groups, it follows that the total size of X (and hence
the number of regions in M) is O(1/∆(d−1)/2). ut

By Lemma 3.5, the number of nodes at level i is O(1/∆
(d−1)/2
i ) = O((2i/∆0)(d−1)/2). Recall that ∆0

depends only on d and γ, and both d and γ are constants. It follows that the number of nodes at level
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zero is O(1). (This bounds the out-degree of the root node, as alluded to in Section 3.2.) Also, observe
that the number of nodes grows geometrically with each level. Therefore, the total number of nodes is
dominated by the number of leaves. The leaves are located at level `, where ∆` is Ω(ε). Therefore, the
number of leaves, and hence the total number of nodes, is O(1/ε(d−1)/2).

3.4 Query Processing.

Finally, let us present the query algorithm for answering ε-approximate ray-shooting queries. Let Oq
denote the query ray. As mentioned earlier, the query algorithm descends the layered DAG structure,
visiting a node u at each level such that the associated Macbeath ellipsoid E(xu) intersects the query ray,
until arriving at the leaf level. In order to show that this is well defined, it is necessary to demonstrate
that such a node exists at each level of the data structure. Since all the eroded bodies K(∆i) contain
the origin, it suffices to show that the union of the Macbeath ellipsoids associated with the nodes of level
i cover the boundary of K(∆i). This is established by the following lemma.

Lemma 3.6 For any ∆ ≤ ∆0, let X denote a maximal set of points lying on the boundary of the eroded
body K(∆) such that the associated Macbeath regions Mλ0(x) are pairwise disjoint. Then the collection
of Macbeath ellipsoids {E(x) | x ∈ X} covers ∂K(∆).

Proof . Consider any point x′ ∈ ∂K(∆). Because X is maximal, there must exist x ∈ X such that
Mλ0(x) has a nonempty intersection with Mλ0(x′). By Lemma 2.4, Mλ0(x′) ⊆M4λ0(x). Recalling that
M4λ0(x) ⊆ E(x), it follows that x′ ∈ E(x). ut

Since ∆i ≤ ∆0 for each level i of the data structure, it follows from the above lemma that the query
procedure will succeed in finding a suitable child for each node visited until it reaches the leaf level. Since
each node has a constant number of children, it takes O(`) = O(log 1

ε ) time to perform this descent.
Recall from Section 3.1 that each leaf node u stores a set Hu of at most d supporting hyperplanes

of K whose intersection defines an unbounded simplex that contains K (see Figure 10(a)). The query
algorithm computes the intersection of the query ray with each of these hyperplanes and returns the
closest intersection point p to the origin. The following lemma establishes the correctness of the query
processing.

t

∈ Hu

p

K

ht
≤ εγ/4

xuy

C2(xu)

(a) (b)

ty′

p

K

xu

Figure 10: Query processing for a leaf node.

Lemma 3.7 Given a query ray Oq, the point p returned by the query procedure is a valid answer to the
ε-approximate ray-shooting query, and it lies on a supporting hyperplane of K.

Proof . Observe that p lies at the intersection of the query ray and a supporting hyperplane of K. Clearly,
p is not internal to K, so all that remains is to show that p lies within distance ε of K. Recall that a
leaf node u satisfies δ(xu) ≤ γ2ε/(8(3d + 1)), and therefore by Lemma 2.10, width(xu) ≤ γε/4. Since
the search procedure arrived at node u, the ray Oq intersects E(xu). By Eq. (4) and Lemma 2.6,

E(xu) ⊆ M ′(xu) ⊆ C6/5(xu) ⊆ C2(xu).

Let t denote the apex of C2(xu), and let ht denote the hyperplane passing through t that is parallel to
the base of this cap (see Figure 10(b)). By construction, the intersection of the halfspaces Hu associated
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with u lies within the halfspace bounded by ht that contains K. Let y be any point in E(xu) ∩Oq, and
let y′ denote the intersection of the ray Oq and ht. By Lemma 2.11, ‖y′y‖ ≤ 2 · width(C2(xu))/γ =
4 · width(xu)/γ ≤ ε. Therefore y′ lies within distance ε of K, implying that p does as well. ut

Summarizing the results of this section, we have shown that, given a convex polytope K in γ-canonical
form, where γ is a constant, and given ε > 0, there exists a data structure that uses O(1/ε(d−1)/2) space
and answers ε-approximate ray-shooting queries in time O(log 1

ε ). This establishes Lemma 2.2, and
Theorem 1.1 follows immediately. The following lemma justifies our assertion that these bounds are
asymptotically optimal.

Lemma 3.8 For all sufficiently small ε > 0, any data structure for answering ε-approximate polytope
membership queries in Rd requires Ω(1/ε(d−1)/2) bits of storage, and if the data structure operates in the
decision tree model, the query time is Ω(log 1

ε ) in the worst case.

Proof . Consider a Euclidean ball of unit diameter in Rd, and let p be any point on the boundary of this
ball. For any 0 < ε < 1

2 , it follows from a simple application of the Pythagorean Theorem that a cap
of width ε whose apex is at p has diameter at most c

√
ε, for some constant c depending only on d. By

a simple packing argument there exists a set P of points of size Ω((1/
√
ε)d−1) = Ω(1/ε(d−1)/2) on the

boundary of the ball such that the ε-width caps centered at these points are pairwise disjoint. For any
two distinct subsets P ′ and P ′′ of P , consider a point p that lies in one subset, say P ′, but not in the
other. It is easy to see that for the query point p, the answer to the ε-approximate membership query
at q is “yes” for P ′ and “no” for P ′′. Therefore, the two data structures for these subsets must differ.
It follows that there are 2|P | distinct data structures needed to represent the various subsets of P . By
an information-theoretic argument, such a data structure requires Ω(1/ε(d−1)/2) bits in the worst case.
Assuming that queries are answered in the decision-tree model, such a structure requires depth Ω(log 1

ε ).
ut

4 Approximate Nearest-Neighbor Searching

In this section we present a reduction from approximate Euclidean nearest-neighbor searching to approx-
imate polytope membership, or more accurately, to approximate ray-shooting. The reduction is based
on the approximate Voronoi diagram (AVD) construction from [11]. The AVD for an n-element point
set X employs a height-balanced variant of a quadtree, a balanced box decomposition (BBD) tree [12]
to be precise. Each leaf cell Q of the tree stores a set R ⊆ X of representative points, which have the
property that for any query point q ∈ Q, at least one of these representatives is an ε-nearest neighbor
of q. We will employ a version of this data structure where the total number of representatives over all
the nodes is O(n log 1

ε ).
In the data structure of [11] a query is answered by locating the leaf cell that contains the query point

in O(log n) time, and then selecting the nearest representative from this cell to the query (by simple
brute force). Later in [4] it was shown that queries can be answered more efficiently by replacing the
brute-force search with an approach based on using approximate polytope membership queries. (This
will be discussed below.) These membership queries were applied within the context of a binary search
in order to simulate approximate ray shooting. In light of Lemma 2.2, we can forgo the binary search,
which saves a factor of O(log 1

ε ) in the query time.
The approximate ray shooting queries used in [4] were of a different nature than those presented

here. First, the rays are vertical (parallel to one of the coordinate axes). Second, the hyperplanes near
the portion of the polytope’s boundary where the ray might hit are not too sharply sloped with respect
to the query ray. (More formally, for any ε-approximating convex polytope P of K, the angle between
the vertical ray and the normal vector of the hyperplane of P hit by this ray is bounded away from π/2
by a constant.) We refer to this as vertical slope-restricted approximate ray shooting. The first part of
the following result is proved in [4], and the slope-restricted variant follows directly by eliminating the
binary search.
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Lemma 4.1 Let 0 < ε ≤ 1/2 be a real parameter and X be a set of n points in Rd. Given a data
structure for approximate polytope membership in d-dimensional space with query time at most td(ε) and
storage sd(ε), it is possible to preprocess X into an ε-approximate nearest neighbor data structure with

Query time: O
(
log n+ td+1(ε) · log 1

ε

)
and

Space: O

(
n log

1

ε
+ n

sd+1(ε)

td+1(ε)

)
.

If vertical slope-restricted approximate ray shooting queries are supported, then the query time is O(log n+
td+1(ε)).

Observe that the space bound varies inversely with the query-time bound. While the query time
presented here is O(log 1/ε), we can artificially generate higher query times by employing brute-force
search. Indeed, this lemma exploits the fact that when brute-force search is used on subsets of size at
most td+1(ε), the data structure need only be constructed for subsets of size at least td+1(ε), of which
there are at most O(n/td+1(ε)).

4.1 Lifting Transformation.

In order to adapt Lemma 4.1 to our context, we will need to understand a bit more about how it works.
It is based on a well-known transformation that maps a point in Rd to Rd+1 by projecting it vertically
onto a paraboloid. More formally, we can embed a point p = (x1, . . . , xd) in Rd into Rd+1 by adding
an additional (d+ 1)st coordinate whose value is zero. Let us visualize the (d+ 1)st coordinate axis as

being directed vertically upwards. Let Ψ denote the paraboloid xd+1 =
∑d
i=1 x

2
i . Given a point p ∈ Rd,

the lifting transformation projects p ∈ Rd vertically to a point p↑ lying on Ψ. Define h(p) to be the
hyperplane tangent to Ψ at p↑, that is,

h(p) =

{
(x1, . . . , xd+1)

∣∣∣∣ xd+1 =

d∑
i=1

2pixi − ‖p‖2
}
.

For any q ∈ Rd, let qp denote the point of intersection between h(p) and a vertical ray shot upwards
from q. Letting ‖pq‖ denote the Euclidean distance between points p and q, it is easily verified that
‖qpq↑‖ = ‖pq‖2. (See [4] for details.)

h(p)

(a) (b)

E(R)Ψ

p q

p↑

q↑

qp

E(R) ∩ F

f+

Ψ

F

+1

−1
f−

Figure 11: (a) The lifting transformation and (b) the restriction E(R) ∩ F .

Given a finite point set R in Rd, let E(R) denote the upper envelope of the hyperplanes h(p) for
each p ∈ R (shaded in Figure 11(a)). A vertical line through any point q ∈ Rd intersects a facet of
E(R). (If the line intersects the boundary between multiple facets, we select one facet arbitrarily.) It
follows directly that the nearest neighbor in R of any query point q is the point p ∈ R whose associated
hyperplane h(p) is hit by the vertical line segment passing through q. That is, nearest neighbor queries
in Rd can be reduced to vertical ray-shooting queries against E(R) in Rd+1 [2, 33].
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While this applies to exact nearest neighbors, it is shown in [4] that the ε-approximate closest repre-
sentative in R can be determined by simulating vertical ray shooting against a suitable approximation to
E(R). In particular, after a normalizing transformation, it can be assumed that the cell Q is centered at
the origin, and both Q and the points of R all lie within some constant distance of the origin. The choice
of this constant is arbitrary (depending possibly on d but not on ε), and it only affects the constant
factors in the query time. We will assume henceforth that this constant is chosen to be 1/2.

E(R) is unbounded, and it will be necessary to define a bounded polytope that contains the relevant
portion of E(R). Because the distance between any point q ∈ Rd and its closest representative in R is
at most one, it follows that for the sake of answering nearest neighbor queries, the relevant portion of
E(R) lies within the region bounded by two horizontal hyperplanes −1 ≤ xd+1 ≤ +1. For reasons that
will be apparent later, it will be convenient to define this bounded region to be a frustum. Let f− be
the d-dimensional hypercube on the hyperplane xd+1 = −1 satisfying −1/2 ≤ xi ≤ 1/2, for 1 ≤ i ≤ d,
and let f+ be the d-dimensional hypercube on the hyperplane xd+1 = +1 satisfying −5/6 ≤ xi ≤ 5/6,
for 1 ≤ i ≤ d (see Figure 11(b)). Let F denote the frustum defined by the convex hull of f− and f+.
Clearly, the relevant portion of E(R) lies within F , and so we may restrict attention to the polytope
E(R) ∩ F .

In [4] it is shown that after normalization, answering vertical ray-shooting queries approximately
with respect to E(R) is sufficient to answer approximate nearest neighbor queries with respect to R.
The following lemma restates this result in a manner that is suitable for our context. The proof follows
directly from the analysis of [4], but with the constant factors adjusted accordingly.

Lemma 4.2 Given an AVD cell Q and representative set R that have been normalized as specified above,
there exists a positive constant c (depending possibly on d but not on ε) such that following holds. Let
R′ be any subset of R such that the Hausdorff distance between E(R′)∩F and E(R)∩F is at most ε/c.
Then for any q ∈ Q, if p′ ∈ R′ is the defining point of the facet of E(R′) that is hit by a vertical line
through q, then p′ is an ε-approximate nearest neighbor of q within R.

4.2 From Vertical to Central Ray Shooting.

The principal impediment to applying this result to the polytope membership data structure described
in Section 3 is that the ray-shooting used in Lemma 4.2 is vertical, and here it is targeted towards a
point at the center of the polytope. In the remainder of this section we will show how to adapt vertical
ray shooting to central ray shooting. Our approach involves defining a projective transformation that
maps vertical lines to lines passing through a given point.

Before giving the transformation, let us recall some basic facts from projective geometry and homoge-
neous coordinates. A point p = (x1, . . . , xd+1) ∈ Rd+1 can be represented using homogeneous coordinates
as a (d+2)-vector [x0, x1, . . . , xd+1], where x0 = 1. (We use square brackets for homogeneous coordinates
and parentheses for Cartesian coordinates.) Two nonzero homogeneous vectors represent the same point
in space if they are equal up to a nonzero scale factor. The point at infinity in the direction given by
the nonzero vector (x1, . . . , xd+1) is represented by the homogeneous coordinates [0, x1, . . . , xd+1]. Any
projective transformation can be defined by applying a linear transformation to the homogeneous coor-
dinates followed by a normalization step in which all the coordinates are divided by the x0 coordinate
(assuming that it is nonzero).

Given a point p = [x0, x1, . . . , xd+1], consider the projective transformation

T (p) = [4x0 + xd+1, 4x1, . . . , 4xd, 2xd+1]

≡
(

4x1
4 + xd+1

, . . . ,
4xd

4 + xd+1
,

2xd+1

4 + xd+1

)
.

Let S denote a hypersphere of unit radius that is centered one unit above the origin. Let p0 =
(0, . . . , 0, 2) denote the topmost point of S. The following lemma states the important properties of T
for our purposes.

Lemma 4.3 The projective transformation T satisfies the following:

(1) T maps horizontal hyperplanes to horizontal hyperplanes and it fixes the hyperplane xd+1 = 0, that
is, for any p ∈ Rd, T (p) = p.
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(2) T maps the point at vertical infinity (having homogeneous coordinates [0, . . . , 0, 1]) to p0 (having
the homogeneous coordinates [1, 0, . . . , 0, 2]). Therefore, the vertical line through any point p ∈ Rd
is mapped to the line pp0 (see Figure 12(a)).

(3) If xd+1 > −4, then T preserves the signs of the coordinates of the transformed point.

(4) T maps F to an axis-aligned hyperrectangle whose vertical projection is a hypercube of side length
4/3 centered at the origin and whose vertical extent is −2/3 ≤ xd+1 ≤ 2/5 (see Figure 12(b)).

(5) T maps the paraboloid Ψ to the punctured sphere S \ {p0}. Therefore, for any p ∈ Rd, T (p↑) is
the intersection of the line pp0 and S \ {p0}. Because projective transformations preserve flatness,
T (h(p)) is the hyperplane tangent to S at this point.

(6) The inverse of T is

T−1(p) =
1

8
[2x0 − xd+1, 2x1, . . . , 2xd, 4xd+1]

≡
(

2x1
2− xd+1

, . . . ,
2xd

2− xd+1
,

4xd+1

2− xd+1

)
.

(a) (b)

p = T (p)

T (p↑)

S

p0

T (h(p))

−2
3

p

S

2
3

2
5

−2
3

T (E(R) ∩ F )

4
3

Figure 12: The projective transformation and Lemma 4.3.

Proof . Assertions (1)–(3) and (6) are straightforward to verify. Assertion (4) can be verified by trans-
forming the corner points of F , (±1/2, . . . ,±1/2,−1) and (±5/6, . . . ,±5/6, 1). To see assertion (5),
observe that the points of S can be described as the zero set of the function

ϕ(x1, . . . , xd+1) =

d∑
i=1

x2i + (xd+1 − 1)2 − 1.

Let p = [1, x1, . . . , xd+1] ≡ (x1, . . . , xd+1) denote the coordinates of any point on Ψ. Letting σ =
∑d
i=1 x

2
i ,

we have xd+1 = σ. Applying T yields

T (p) = [4 + σ, 4x1, . . . , 4xd, 2σ]

≡
(

4x1
4 + σ

, . . . ,
4xd

4 + σ
,

2σ

4 + σ

)
.

It is straightforward to verify that ϕ(T (p)) = 0 and limσ→∞ T (p) = p0. ut

Assertion (4) is the reason for defining F in the manner that we did. Projective transformations
preserve flatness, and hence T (E(R) ∩ F ) is a polytope. It follows that for any q ∈ Q, we can compute
its exact nearest neighbor in R by determining the lower facet of T (E(R)∩F ) that is hit by the line←→qp0.
(There is an obvious connection with the relationship observed by Brown [20] between the stereographic
projection and the Voronoi diagram.)
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4.3 Preserving Distances.

In order to show that this transformation can be used for approximate nearest neighbor searching, we
show that T does not significantly distort the distances between points of interest. In particular, we
show that if two points of T (F ) are close then their preimages are also close.

Lemma 4.4 There exists a constant c′ such that for any two points p, q ∈ T (F ) such that ‖pq‖ ≤ 1/4,
‖T−1(p)T−1(q)‖ ≤ c′‖pq‖.

Proof . Let ‖v‖∞ denote the L∞ length of a vector v. Consider any two points p, q ∈ T (F ) such that

‖pq‖ ≤ 1/4. We can express q as p+ ~δ, where ‖~δ‖∞ ≤ 1/4. Let δ∞ = ‖~δ‖∞. We will show that the L∞
distance between T−1(p) and T−1(p+ ~δ) is at most c′′ δ∞ for some constant c′′. It will follow that T−1

increases Euclidean distances for the points of interest by a factor of at most c′ = c′′(d+ 1).

In order to establish the above assertion, let p = (x1, . . . , xd+1) and let ~δ = (δ1, . . . , δd+1). We begin

with the following easy inequalities. Given 1 ≤ i ≤ d+ 1, by our bounds on p and ~δ we have

(i) |xi + δi| < 1

(ii) 2− xd+1 > 1

(iii) 2− xd+1 − δd+1 > 1.

(5)

(The worst case for the first inequality arises when xi = 2/3 and δi = 1/4, and the worst case for the
second and third inequalities occur when xd+1 = 2/3 and δd+1 = 1/4.) We will also make use of the
identity a/(b− c) = a/b+ ac/b(b− c), assuming b and b− c are both nonzero.

Consider the transformed point T−1(q) = T−1(p + ~δ). By applying Lemma 4.3(6) and the above
identity, for 1 ≤ i ≤ d, we find that the ith coordinate is mapped to

2(xi + δi)

2− (xd+1 + δd+1)
=

2(xi + δi)

(2− xd+1)− δd+1

=
2(xi + δi)

2− xd+1
+

2(xi + δi)δd+1

(2− xd+1)(2− xd+1 − δd+1)

=
2xi

2− xd+1
+

2δi
2− xd+1

+
2(xi + δi)δd+1

(2− xd+1)(2− xd+1 − δd+1)
.

After some expansion, this is equal to

2xi
2− xd+1

+
2δi

2− xd+1
+

2(xi + δi)δd+1

(2− xd+1)(2− xd+1 − δd+1)
.

The first term is the ith coordinate of T−1(p). By Eq. (5), the second term has absolute value at most

2δ∞. The third term has absolute value at most 2δ∞. Therefore the ith coordinate of T−1(p+~δ) is within
distance 4δ∞ of the corresponding coordinate of T−1(p). By applying a similar analysis to the (d+ 1)st

coordinate of T−1(p + ~δ), it follows that this coordinate is within distance 8δ∞ of the corresponding
coordinate of T−1(p). Therefore, by setting c′′ = 8, it follows that the L∞ distance between T−1(p) and

T−1(p+ ~δ) is at most c′′δ∞. ut

By combining Lemmas 4.2 and 4.4, it follows that in order to answer ε-approximate nearest neighbor
queries in Rd for an AVD leaf cell Q and a set R of representatives, it suffices to first apply the normalizing
transformation to Q, construct an approximate ray-shooting data structure for T (E(R)∩F ) that answers
queries to within an absolute error of ε′ = ε/cc′, where c and c′ are the constant factors of these
respective lemmas. It follows from Lemma 4.4 that the result is an absolute (ε/c)-approximation to the
corresponding vertical ray shooting query in T−1(T (E(R) ∩ F )) = E(R) ∩ F . From Lemma 4.2 such an
approximation suffices to answer ε-approximate nearest neighbor queries.

In order to apply the results of Section 3, we require that the polytope in question be in γ-canonical
form for a suitable constant γ and that rays be directed towards the origin. To do this, we modify
T (E(R) ∩ F ). Recall that it is contained within an axis-aligned hyperrectangle whose topmost facet is
at xd+1 = 2/5. We move this topmost facet up to xd+1 = 8/3 (see Figure 13). The point p0 lies within
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the interior of the modified polytope. Further a ball of radius 2/3 centered at p0 is contained entirely
within this polytope, and the polytope is completely contained within a ball of radius less than 3 + d.
By translating this modified polytope so that p0 coincides with the origin, the result is in γ-canonical
form for γ > 2/3(3 + d).

p

−2
3

p0

2
5

2

1

4
3

p

8
3

−2
3

p0

2
5

2

1

2
3

4
3

T (E(R) ∩ F )

< 3 + d

Figure 13: The modified polytope.

Now, the data structure described in Section 3 can be applied to the modified polytope. The witness
hyperplane (as described in Section 3.1) that is hit by the ray provides the identity of the desired
nearest-neighbor representative, that is, the approximate nearest neighbor of the query point.

Given a parameter m such that

log
1

ε
≤ m ≤ 1

εd/2 log 1
ε

,

we set td+1(ε) = 1/(m ·εd/2) and sd+1(ε) = 1/εd/2. Note that for m in this range we have td+1(ε) ≥ log 1
ε

and so our data structure can achieve this query time for ε-approximate ray-shooting queries. By the
results of this section, these bounds apply to vertical slope-restricted approximate ray shooting queries
as well. By applying Lemma 4.1 we obtain a data structure for approximate Euclidean nearest-neighbor
searching with query time O(log n+ 1/(m · εd/2)) and space O(n log 1

ε +nm) = O(nm). This establishes
Theorem 1.2.
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[41] J. Matoušek. Reporting points in halfspaces. Comput. Geom. Theory Appl., 2:169–186, 1992.
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A Appendix

For the sake of completeness, we give a proof of Lemma 2.4.

Lemma 2.4 Let K be a convex body, and let λ ≤ 1/5 be any real. If x, y ∈ K such that Mλ(x)∩Mλ(y) 6=
∅, then Mλ(y) ⊆M4λ(x).

Proof . Let z be a point in the intersection of Mλ(x) and Mλ(y). Then we can write z as:

z = x+ λ(x− p1) = y + λ(p2 − y),

where p1, p2 ∈ K. Equating the two expressions for z above, we obtain

y =
(1 + λ)x− λp1 − λp2

1− λ .
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Consider any point w ∈Mλ(y). We have

w = y + λ(y − p3) = (1 + λ)y − λp3,

where p3 ∈ K. Substituting the expression obtained above for y, we have

w =
(1 + λ)((1 + λ)x− λp1 − λp2)

1− λ − λp3,

which simplifies to

w = x+
λ(3 + λ)

1− λ (x− p),

where

p =
1 + λ

3 + λ
p1 +

1 + λ

3 + λ
p2 +

1− λ
3 + λ

p3.

As p is a convex combination of p1, p2 and p3, p ∈ K. Thus, we have shown that

Mλ(y) ⊆ x+
λ(3 + λ)

1− λ (x−K). (6)

In an analogous manner, we next show that

Mλ(y) ⊆ x+
λ(3 + λ)

1− λ (K − x). (7)

Again, let z be any point in the intersection of Mλ(x) and Mλ(y). We can write z as:

z = x+ λ(k′1 − x) = y + λ(y − k′2),

where k′1, k
′
2 ∈ K. Equating the two expressions for z above, we obtain

y =
(1− λ)x+ λk′1 + λk′2

1 + λ
.

Consider any point w ∈Mλ(y). We have

w = y + λ(k′3 − y) = (1− λ)y + λk′3,

where k′3 ∈ K. Substituting the expression obtained above for y, we have

w =
(1− λ)((1− λ)x+ λk′1 + λk′2)

1 + λ
+ λk′3,

which simplifies to

w = x+
λ(3− λ)

1 + λ
(p′ − x),

where

p′ =
1− λ
3− λk

′
1 +

1− λ
3− λk

′
2 +

1 + λ

3− λk
′
3.

As p′ is a convex combination of k′1, k
′
2 and k′3, p′ ∈ K. Letting p′′ denote the point on segment xp′ such

that
λ(3− λ)

1 + λ
(p′ − x) =

λ(3 + λ)

1− λ (p′′ − x),

we can write

w = x+
λ(3 + λ)

1− λ (p′′ − x),

where p′′ ∈ K. Thus,

Mλ(y) ⊆ x+
λ(3 + λ)

1− λ (K − x),

which establishes Eq. (7). By combining this with Eq. (6), we obtain Mλ(y) ⊆M(x, λ(3 + λ)/(1− λ)).
Since λ ≤ 1/5, it is easy to see that (3 +λ)/(1−λ) ≤ 4. Thus Mλ(y) ⊆M(x, 4λ), completing the proof.
ut
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