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Space-Time Error Correcting Codes

Massinissa Lalam, Karine Amis, and Dominique Leroux

Abstract— A new space-time block code family for two trans-
mitters, called the space-time error correcting codes (STECCs),
is presented. As it is built from any linear forward error
correcting code (FEC), a STECC is able to correct errors while
achieving high spectral efficiencies. The key principle is the FEC
linearity which is exploited to transmit linear combinations of
FEC codewords to create a space-time redundancy. The proposed
code exhibits interesting performance on an ISI-free block fading
channel. This result is all the more true as the number of FEC
codewords considered in the combination is high.

Index Terms— Multiple-input multiple-output, space-time er-
ror correcting code.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) systems

have been intensively studied since the mid 90’s and

can be sorted into different families depending on the trans-

mission aspect they try to optimize. The first family deals with

the transmission quality by exploiting the space-time diversity.

It is mainly composed of the space-time block codes (STBCs)

and especially orthogonal ones (OSTBCs), as introduced by

Alamouti [1] and generalized by Tarokh et al. [2]. They offer

good performance but a poor spectral efficiency when the

number of transmit antennas becomes larger than two.

The second family increases the transmission throughput

and takes advantage of the multiplexing gain. It is mainly

composed of the layered space-time (LST) architectures [3]–

[5], which are close to a spatial multiplexing of the modulation

symbols. The spectral efficiency is high, especially when the

number of antennas is larger than two, but their detection

is more difficult. The third family is composed of STBCs

trying to achieve an optimum compromise between diversity

(transmission quality) and multiplexing gain (transmission

throughput). It contains among others the golden codes [6]

and the TAST codes [7], which are full-rate and full-diversity.

However, these coding schemes do not possess error cor-

rection capability. Therefore, FEC techniques are added to

keep a given transmission quality level. The most common

one is the space-time bit interleaved coded modulation (ST-

BICM) [8], [9]. Few space-time coding schemes include the

FEC properties in their design. In [10], Reed-Solomon (RS)

codes [11] are used for their symbol protection property. Each

RS codeword is composed of Galois field symbols and the

RS code is chosen so that one Galois field symbol matches
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one symbol sent through one transmit antenna. However, this

approach is more efficient if one Galois field symbol matches

all the symbols sent through the antennas [12]. This kind of

structures tend to incorporate the FEC in the design of space-

time codes, but the space and time diversities are still inde-

pendently exploited. A way to include FEC techniques in the

design of space-time codes is to use space-time trellis codes

[13]–[15] that exhibit good performance but whose decoding

complexity is always an exponential of the modulation order.

In this letter, we introduce a new family of MIMO coding

schemes for two transmit antennas that includes an error

protection at the center of its design: the space-time error

correcting codes (STECCs). These codes are built on any

linear FEC. The first antenna transmits K FEC codewords

and the second one their linear combinations. A space-time

redundancy is thus created. The receiver exploits the particular

space-time structure as well as the FEC linearity to estimate

the information bits.

This letter is organized as follows. Part II presents the

STECCs construction. Part III describes the MIMO transmis-

sion model. Part IV deals with the corresponding receiver

structure. Part V describes the performance on a Rayleigh

block flat fading channel while part VI concludes the letter.

II. DEFINITION

A. Construction

A STECC is a space-time block code able to correct errors

due to the transmission. It is built from any linear FEC. The

key principle is the space-time redundancy generation using

the FEC linearity.

Let C(n, k) be a linear FEC, where n denotes the code

length, k its dimension and C the codeword set. We con-

sider K codewords {ci}1≤i≤K ∈ CK and denote c �=i =
⊕K

j=1;j �=i cj ∈ C the codeword of C(n, k) obtained by linear

combination, where ⊕ stands for the addition in the set C. For

nt = 2 transmit antennas, we form the nt × Kn matrix:

C =

(

c1 c2 . . . cK

c �=1 c �=2 . . . c �=K

)

(1)

After an M -order binary to symbol conversion (BSC), we

obtain the straightforward nt × LK symbol matrix S, where

M = 2mb and LK = Kn/mb. Each row of the symbol matrix

S is sent through a different antenna. The matrix S represents

a STBC codeword.

We denote C
C(n,k)
1−K this STBC built over the FEC C(n, k)

and name it a space-time error correcting code (STECC). The

transmitter scheme is straightforward and given by Fig 1 for

C
C(n,k)
1−K and an M -order BSC. The overall coding rate of the

STECC is the product of the space-time structure coding rate

Rs = 0.5 (K original codewords of C(n, k) for a total of 2K
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Fig. 1. Transmitter scheme for the C
C(n,k)
1−K

STECC (nt = 2 transmit

antennas).

codewords sent) and the C(n, k) FEC coding rate Rc = k/n.

It is given by:

RSTECC =
k

2n
(2)

B. Puncturing

The puncturing technique is often used for convolutional

codes to increase their FEC coding rate Rc by erasing some

bits of the codeword, leaving the decoding algorithm in charge

of recovering them. We propose to extend this concept to

our structure by erasing entire FEC codewords without loss

of useful information to increase the space-time coding rate

RSTECC .

A FEC codeword belonging to C (see (1)) can always

be found thanks to other FEC codewords of C by linear

combination. For the STECC C
C(n,k)
1−3 , the FEC codewords

of the third column are obtained with linear combination of

codewords from the two previous columns. By erasing them,

we obtain a punctured STECC denoted C
C(n,k)
1−3,Punct whose

overall coding rate is RSTECC = 0.75Rc instead of 0.5Rc:

(

c1 c2 c3

c2 ⊕ c3 c3 ⊕ c1 c1 ⊕ c2

)

→

(

c1 c2

c2 ⊕ c3 c3 ⊕ c1

)

(3)

Puncturing must be smartly done so as to recover erased

FEC codewords by linear combination of the remaining ones.

For instance, puncturing the two last columns of C
C(n,k)
1−4 will

not allow us to recover c3 or c4 but only c3 ⊕ c4.

III. TRANSMISSION MODEL

We consider a MIMO transmission with nt transmit anten-

nas and nr receive antennas. We assume the usual Rayleigh

block flat fading channel. The received signal is given by:

R = HS + n (4)

where R is the nr × LK complex received matrix, S is the

nt×LK complex transmitted matrix, H is the nr×nt complex

channel matrix and n is the nr ×LK complex AWGN matrix.

Assuming a unitary average gain on each transmit-receive

antenna link, the signal to noise ratio (SNR) on each receive

antenna is:

SNR = mbntRSTECC

Eb

N0
(5)

where Eb is the energy per useful bit and N0 is the noise

power spectral density.

Fig. 2. Receiver with optimal detection for C
C(n,k)
1−K

(nr receive antennas).

IV. RECEIVER STRUCTURE

The channel state information is supposed to be perfectly

known at the receiver. For the STECC C
C(n,k)
1−K , the optimal

receiver structure must find the K codewords {ĉ1, · · · , ĉK}
of C(n, k) that minimize the distance ‖R−HS‖2. By doing

so, it jointly performs the detection and the decoding with an

unrealistic Card(C)K complexity. To retrieve the information

in a practical case, we split the process into two successive

operations: a detection stage and a decoding stage as shown

in Fig. 2.

A. Detection

Instead of detecting Ŝ at once, we use the space-time

correlation introduced between the 2K modulation sym-

bols associated to the modulated codewords {si}1≤i≤K and

{s�=i}1≤i≤K . Let lc be the number of modulation sym-

bols associated to one FEC codeword (LK = Klc). For

1 ≤ u ≤ lc, {si(u)}1≤i≤K determines {s�=i(u)}1≤i≤K .

We define the optimal detector adapted to the STECC as

the one which finds {ŝ1(u), · · · , ŝK(u)}, and consequently

{ŝ�=1(u), · · · , ŝ�=K(u)}, such as:

{ŝ1(u), · · · , ŝK(u)} = argmin{s1,··· ,sK}∈SK
M

d2
u(s1, · · · , sK)

(6)

with

d2
u(s1, · · · , sK) =

K
∑

i=1

∥

∥

∥

∥

R(i−1)lc+u − H(i−1)lc+u

(

si

s�=i

)∥

∥

∥

∥
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where R(i−1)lc+u is the received vector and H(i−1)lc+u is

the MIMO channel matrix at the time t = (i− 1)lc + u, with

1 ≤ i ≤ K and 1 ≤ u ≤ lc. This detector is called the STECC

detector and its complexity is MK . Note that soft output such

as log-likelihood ratios (LLRs) and their approximations [16]

can be easily derived from the previous calculation.

B. Decoding

1) Principle: As we cannot jointly decode the K original

codewords of C(n, k) (complexity of Card(C)K), we succes-

sively decode the 2K sequences coming from the detector.

We consider a soft-input soft-output (siso) decoder delivering

LLRs which will exploit the time-diversity. To benefit from

the space-diversity as well, we combine its output.

2) Combining: The combining stage will compute new

LLRs by exploiting the space-time redundancy linking every

bit due to the STECC structure. For the sake of clarity, we

detail the LLR computation for one bit of an original FEC

codeword, but the principle remains the same for one bit of a

combined FEC codeword. For 1 ≤ i ≤ K, let:

• ci(u) be the uth bit of ci and Λi(u) be its associated

LLR,
2



• c�=i(u) =
⊕K

j=1,j �=i cj(u) be the uth bit of c�=i and

Λ �=i(u) be its associated LLR.

For simplicity, we omit the index notation (u) in the

following. The updated LLR associated to ci conditionally to

the previous LLRs is given by:

ΛCB
i =ln

Pr(ci = 1 |{Λj}1≤j≤K , {Λ�=j}1≤j≤K)

Pr(ci = 0 |{Λj}1≤j≤K , {Λ�=j}1≤j≤K)
(7)

=ln

∑

cj=δj

ci=1

K
∏

j=1

Pr(cj = δj |Λj)Pr(c�=j =
v �=j

δv|Λ �=j)

∑

cj=δj

ci=0

K
∏

j=1

Pr(cj = δj |Λj)Pr(c�=j =
v �=j

δv|Λ �=j)

=ln

∑

cj=δj

ci=1

e

�K
j=1

(2δj−1)
Λj

2
+(2
�K

v=1
v �=j

δv−1)
Λ �=j

2

∑

cj=δj

ci=0

e

�K
j=1

(2δj−1)
Λj

2
+(2
�K

v=1
v �=j

δv−1)
Λ �=j

2

(8)

C. Complexity

The MK complexity of the STECC detector represents the

bottleneck of the previous receiver. However, this issue has

been addressed in [17] where a turbo-like iterative receiver

is proposed. The detection complexity increases linearly with

the modulation set order while performance in terms of bit

error rate (BER) keeps roughly the same. In this letter, the

receiver is the one described above and we focus only on the

performance in terms of BER achieved by the STECC family

to exhibit its merit.

V. SIMULATION RESULTS

We consider QPSK-modulation over a Rayleigh block flat

fading channel constant over τ modulation symbols and nr =
2 receive antennas. For the FEC, we use either the binary

block code BCH(15, 7) [18] or the 8-state convolutional code

(138, 158) [19].

A. The STECC family

We consider the STECC C
BCH(15,7)
1−K with various values

of K and τ = 2. The BER versus Eb/N0 at the output of the

combiner stage is plotted in Fig 3. For Eb/N0 ≤ 2 dB, the

performance gets better with higher K. At a BER of 2×10−4,

the improvement is 1.5 dB between the K = 2 and the K = 4
curves. This is due to the number of FEC codewords which

are correlated with each other and which defines the depth of

the space-time correlation. A long STECC is thus useful to

reduce the minimum SNR value that guarantees a given BER.

However, the optimal detector complexity grows exponentially

with the parameter K. For K ≥ 4 such receiver structure

cannot be used in practice and a lower-complexity receiver

such as the one described in [17] has to be preferred.
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Fig. 3. C
BCH(15,7)
1−K

K = {2, 3, 4, 6}, QPSK, nt = 2, nr = 2, τ = 2 -

BER vs Eb/N0.
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B. Performance

We use the STECC C
CC(13,15)
1−3 with various values of τ .

Each FEC codeword has a 512-bit length and is pseudo-

randomly interleaved. For comparison, two MIMO coding

schemes with the same spectral efficiency and the same

number of useful bits (≈ K256 = 768) are considered: an

Alamouti encoding [1] associated with the same FEC and for

τ = 2 an ST-BICM [8] using the 8-state convolutional code

CC(118, 138, 158, 178) of coding rate Rc = 0.25. Convolu-

tional codes are decoded using the siso BCJR algorithm [20].

The ST-BICM scheme is decoded with three iterations of a

turbo-like receiver with an interference canceller optimized

according to the minimum mean square error criterion [21].

The BER versus Eb/N0 curves are plotted in Fig 4.

1) Quasi-static and block fading channels: For τ = 768
(channel constant over one entire space-time codeword) and

τ = 256 (channel constant over one FEC codeword of the

STECC), the STECC C
CC(13,15)
1−3 gives better results than the

Alamouti scheme for Eb/N0 greater than 4.4 dB and 1.3 dB
respectively. A longer FEC is more sensible to a quasi-static

channel and in these cases the convolutional code can not
3



Fig. 5. Receiver with simplified detection for C
C(n,k)
1−K

(nr receive antennas).
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τ = 2 - BER vs Eb/N0.

significantly improve the Alamouti detection output when the

channel is severe. On the contrary the STECC benefits from its

design of a better space-time redundancy which is exploited

to improve the performance as shown in the figure.

2) Fast fading channels: For τ = 2 and at a BER of 10−5

the STECC C
CC(13,15)
1−3 outperforms both reference schemes

with a better BER versus Eb/N0 slope curve, and thus a better

asymptotical performance. The gain is almost equal to 1.1 dB
and 0.5 dB in comparison with the Alamouti scheme and the

ST-BICM scheme respectively.

C. Puncturing

One drawback of the STECC family is its one-half coding

rate. However, puncturing described in Section II can be

applied to increase this space-time coding rate. We use a

QPSK with the punctured STECC C
BCH(15,7)
1−3,Punct for a spectral

efficiency of 1.4 bit/channel use (mbntRSTECC). To keep the

same spectral efficiency, we consider an 8-PSK associated

with the non-punctured STECC C
BCH(15,7)
1−3 . In both cases

we replace the STECC detector of complexity MK with a

sub-optimal association of a classical soft ML detector of

complexity Mnt followed by a combiner stage to reduce the

simulation process without loss of generality as shown in Fig

5. The missing LLRs are initialized to zero. The combiner

stages will recover them by using (8).

The BER versus Eb/N0 at the output of each receiver is

plotted in Fig 6. The punctured STECC (solid curve) performs

better than the non-punctured STECC (dashed curve) with a

gain of 1 dB at a BER of 10−3. It is more efficient to use a

punctured STECC instead of a higher modulation to improve

the spectral efficiency.

VI. CONCLUSION

This letter has presented a new family of space-time codes

for two transmit antennas: the space-time error correcting

codes (STECCs). They combine in an easy way K codewords

from a linear forward error correcting code (FEC). The deep

space-time correlation created between the 2K modulation

symbol vectors and the FEC properties are exploited at the

receiver side to improve the transmission quality.

In the example we used for two receive antennas, the

STECC outperforms a traditional scheme using the Alamouti

encoding and the same FEC or a ST-BICM structure with

the same spectral efficiency. It presents better asymptotical

performance and thus a better space-time diversity exploitation

but also a higher complexity. However, it has been shown in

[17] that the use of a turbo-like iterative receiver significantly

reduces the complexity while achieving the same level of

performance in terms of error rates.

Finally, the STECC structure is flexible enough to use

puncturing upon it. For a spectral efficiency increase, this

technique gives better results than the use of an higher modu-

lation order. Moreover, it brings minor changes in the receiver

structures: only the detection part has to be considered, as the

new STECC codeword is shorter. The LLRs associated to the

missing codewords are replaced by zeros, leaving the combiner

stage the task to recover them.
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