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one symbol sent through one transmit antenna. However, this approach is more efficient if one Galois field symbol matches all the symbols sent through the antennas [START_REF] Lalam | On the use of reed-solomon codes in space-time coding[END_REF]. This kind of structures tend to incorporate the FEC in the design of spacetime codes, but the space and time diversities are still independently exploited. A way to include FEC techniques in the design of space-time codes is to use space-time trellis codes [START_REF] Tarokh | Space-time codes for high data rate wireless communication: performance criterion and code construction[END_REF]- [START_REF] Meixia | Diagonal block space-time code design for diversity and coding advantage over flat fading channels[END_REF] that exhibit good performance but whose decoding complexity is always an exponential of the modulation order.

In this letter, we introduce a new family of MIMO coding schemes for two transmit antennas that includes an error protection at the center of its design: the space-time error correcting codes (STECCs). These codes are built on any linear FEC. The first antenna transmits K FEC codewords and the second one their linear combinations. A space-time redundancy is thus created. The receiver exploits the particular space-time structure as well as the FEC linearity to estimate the information bits.

This letter is organized as follows. Part II presents the STECCs construction. Part III describes the MIMO transmission model. Part IV deals with the corresponding receiver structure. Part V describes the performance on a Rayleigh block flat fading channel while part VI concludes the letter.

II. DEFINITION

A. Construction

A STECC is a space-time block code able to correct errors due to the transmission. It is built from any linear FEC. The key principle is the space-time redundancy generation using the FEC linearity.

Let C(n, k) be a linear FEC, where n denotes the code length, k its dimension and C the codeword set. We consider K codewords {c i } 1≤i≤K ∈C K and denote c =i = K j=1;j =i c j ∈C the codeword of C(n, k) obtained by linear combination, where ⊕ stands for the addition in the set C.F or n t =2transmit antennas, we form the n t × Kn matrix:

C = c 1 c 2 ... c K c =1 c =2 ... c =K (1) 
After an M -order binary to symbol conversion (BSC), we obtain the straightforward n t × L K symbol matrix S, where M =2 m b and L K = Kn/m b . Each row of the symbol matrix S is sent through a different antenna. The matrix S represents a STBC codeword.

We denote

C C(n,k) 1-K
this STBC built over the FEC C(n, k) and name it a space-time error correcting code (STECC). The transmitter scheme is straightforward and given by Fig 1 for

C C(n,k) 1-K
and an M -order BSC. The overall coding rate of the STECC is the product of the space-time structure coding rate R s =0.5 (K original codewords of C(n, k) for a total of 2K codewords sent) and the C(n, k) FEC coding rate R c = k/n. It is given by:

R STECC = k 2n (2) 

B. Puncturing

The puncturing technique is often used for convolutional codes to increase their FEC coding rate R c by erasing some bits of the codeword, leaving the decoding algorithm in charge of recovering them. We propose to extend this concept to our structure by erasing entire FEC codewords without loss of useful information to increase the space-time coding rate R STECC .

A FEC codeword belonging to C (see ( 1)) can always be found thanks to other FEC codewords of C by linear combination. For the STECC C

C(n,k) 1-3
, the FEC codewords of the third column are obtained with linear combination of codewords from the two previous columns. By erasing them, we obtain a punctured STECC denoted C C(n,k) 1-3,P unct whose overall coding rate is R STECC =0.75R c instead of 0.5R c :

c 1 c 2 c 3 c 2 ⊕ c 3 c 3 ⊕ c 1 c 1 ⊕ c 2 → c 1 c 2 c 2 ⊕ c 3 c 3 ⊕ c 1 (3) 
Puncturing must be smartly done so as to recover erased FEC codewords by linear combination of the remaining ones. For instance, puncturing the two last columns of C C(n,k) 1-4 will not allow us to recover c 3 or c 4 but only c 3 ⊕ c 4 .

III. TRANSMISSION MODEL

We consider a MIMO transmission with n t transmit antennas and n r receive antennas. We assume the usual Rayleigh block flat fading channel. The received signal is given by:

R = HS + n ( 4 
)
where R is the n r × L K complex received matrix, S is the n t ×L K complex transmitted matrix, H is the n r ×n t complex channel matrix and n is the n r × L K complex AWGN matrix. Assuming a unitary average gain on each transmit-receive antenna link, the signal to noise ratio (SNR) on each receive antenna is:

SNR = m b n t R STECC E b N 0 (5)
where E b is the energy per useful bit and N 0 is the noise power spectral density. 

IV. RECEIVER STRUCTURE

The channel state information is supposed to be perfectly known at the receiver. For the STECC C C(n,k) 1-K , the optimal receiver structure must find the

K codewords {ĉ 1 , ••• , ĉK } of C(n, k) that minimize the distance R -HS 2 .
By doing so, it jointly performs the detection and the decoding with an unrealistic Card(C) K complexity. To retrieve the information in a practical case, we split the process into two successive operations: a detection stage and a decoding stage as shown in Fig. 2.

A. Detection

Instead of detecting Ŝ at once, we use the space-time correlation introduced between the 2K modulation symbols associated to the modulated codewords {s i } 1≤i≤K and {s =i } 1≤i≤K .L e tl c be the number of modulation symbols associated to one FEC codeword (L K = Kl c ). For

1 ≤ u ≤ l c , {s i (u)} 1≤i≤K determines {s =i (u)} 1≤i≤K .
We define the optimal detector adapted to the STECC as the one which finds {ŝ 1 (u), ••• , ŝK (u)}, and consequently {ŝ =1 (u), ••• , ŝ =K (u)}, such as:

{ŝ 1 (u), ••• , ŝK (u)} = argmin {s1,••• ,sK }∈S K M d 2 u (s 1 , ••• ,s K ) (6) with d 2 u (s 1 , ••• ,s K )= K i=1 R (i-1)lc+u -H (i-1)lc+u s i s =i 2
where R (i-1)lc+u is the received vector and H (i-1)lc+u is the MIMO channel matrix at the time t =(i -1)l c + u, with 1 ≤ i ≤ K and 1 ≤ u ≤ l c . This detector is called the STECC detector and its complexity is M K . Note that soft output such as log-likelihood ratios (LLRs) and their approximations [START_REF] Robertson | A comparison of optimal and sub-optimal map decoding algorithms operating in the log domain[END_REF] can be easily derived from the previous calculation.

B. Decoding 1) Principle:

As we cannot jointly decode the K original codewords of C(n, k) (complexity of Card(C) K ), we successively decode the 2K sequences coming from the detector. We consider a soft-input soft-output (siso) decoder delivering LLRs which will exploit the time-diversity. To benefit from the space-diversity as well, we combine its output.

2) Combining: The combining stage will compute new LLRs by exploiting the space-time redundancy linking every bit due to the STECC structure. For the sake of clarity, we detail the LLR computation for one bit of an original FEC codeword, but the principle remains the same for one bit of a combined FEC codeword. For 1 ≤ i ≤ K,l e t :

• c i (u) be the u th bit of c i and Λ i (u) be its associated LLR, 2

• c =i (u)= K j=1,j =i c j (u) be the u th bit of c =i and Λ =i (u) be its associated LLR.

For simplicity, we omit the index notation (u) in the following. The updated LLR associated to c i conditionally to the previous LLRs is given by:

Λ CB i =ln Pr(c i =1|{Λ j } 1≤j≤K , {Λ =j } 1≤j≤K ) Pr(c i =0|{Λ j } 1≤j≤K , {Λ =j } 1≤j≤K ) (7) 
=ln cj =δj ci=1 K j=1 Pr(c j = δ j |Λ j )Pr(c =j = v =j δ v |Λ =j ) cj =δj ci=0 K j=1 Pr(c j = δ j |Λ j )Pr(c =j = v =j δ v |Λ =j ) =ln cj =δj ci=1 e È K j=1 (2δj -1) Λ j 2 +(2 Ä K v=1 v =j δv-1) Λ =j 2 cj =δj ci=0 e È K j=1 (2δj -1) Λ j 2 +(2 Ä K v=1 v =j δv-1) Λ =j 2 (8) 

C. Complexity

The M K complexity of the STECC detector represents the bottleneck of the previous receiver. However, this issue has been addressed in [START_REF] Lalam | Iterative decoding of space-time error correcting codes[END_REF] where a turbo-like iterative receiver is proposed. The detection complexity increases linearly with the modulation set order while performance in terms of bit error rate (BER) keeps roughly the same. In this letter, the receiver is the one described above and we focus only on the performance in terms of BER achieved by the STECC family to exhibit its merit.

V. S IMULATION RESULTS

We consider QPSK-modulation over a Rayleigh block flat fading channel constant over τ modulation symbols and n r = 2 receive antennas. For the FEC, we use either the binary block code BCH(15, 7) [START_REF] Bose | On a class of error correcting binary group fields[END_REF] or the 8-state convolutional code (13 8 , 15 8 ) [START_REF] Michelson | Error-Control Techniques For Digital Communication[END_REF].

A. The STECC family

We consider the STECC C BCH(15,7) 1-K with various values of K and τ =2. The BER versus E b /N 0 at the output of the combiner stage is plotted in Fig 3 . For E b /N 0 ≤ 2d B ,t h e performance gets better with higher K. At a BER of 2×10 -4 , the improvement is 1.5d Bbetween the K =2and the K =4 curves. This is due to the number of FEC codewords which are correlated with each other and which defines the depth of the space-time correlation. A long STECC is thus useful to reduce the minimum SNR value that guarantees a given BER. However, the optimal detector complexity grows exponentially with the parameter K.F o rK ≥ 4 such receiver structure cannot be used in practice and a lower-complexity receiver such as the one described in [START_REF] Lalam | Iterative decoding of space-time error correcting codes[END_REF] has to be preferred. 

1-K K = {2, 3, 4, 6}, QPSK, nt =2 , nr =2 , τ =2- BER vs E b /N 0 .

B. Performance

We use the STECC C CC(13,15) 1-3 with various values of τ . Each FEC codeword has a 512-bit length and is pseudorandomly interleaved. For comparison, two MIMO coding schemes with the same spectral efficiency and the same number of useful bits (≈ K256 = 768) are considered: an Alamouti encoding [START_REF] Alamouti | A simple transmit diversity technique for wireless communications[END_REF] associated with the same FEC and for τ =2an ST-BICM [START_REF] Tonello | On turbo equalization of interleaved space-time codes[END_REF] using the 8-state convolutional code CC(11 8 , 13 8 , 15 8 , 17 8 ) of coding rate R c =0 .25.C o n v o l utional codes are decoded using the siso BCJR algorithm [START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate[END_REF]. The ST-BICM scheme is decoded with three iterations of a turbo-like receiver with an interference canceller optimized according to the minimum mean square error criterion [START_REF] Laot | Low-complexity mmse turbo equalization : A possible solution for edge[END_REF]. The BER versus E b /N 0 curves are plotted in Fig 4 .  1) Quasi-static and block fading channels: For τ = 768 (channel constant over one entire space-time codeword) and τ = 256 (channel constant over one FEC codeword of the STECC), the STECC C CC(13,15) 1-3

gives better results than the Alamouti scheme for E b /N 0 greater than 4.4d Band 1.3d B respectively. A longer FEC is more sensible to a quasi-static channel and in these cases the convolutional code can not significantly improve the Alamouti detection output when the channel is severe. On the contrary the STECC benefits from its design of a better space-time redundancy which is exploited to improve the performance as shown in the figure .  2) Fast fading channels: For τ =2and at a BER of 10 -5 the STECC C CC(13,15) 1-3 outperforms both reference schemes with a better BER versus E b /N 0 slope curve, and thus a better asymptotical performance. The gain is almost equal to 1.1d B and 0.5d Bin comparison with the Alamouti scheme and the ST-BICM scheme respectively.

C. Puncturing

One drawback of the STECC family is its one-half coding rate. However, puncturing described in Section II can be applied to increase this space-time coding rate. We use a QPSK with the punctured STECC C BCH(15,7)

1-3,P unct for a spectral efficiency of 1.4 bit/channel use (m b n t R STECC ). To keep the same spectral efficiency, we consider an 8-PSK associated with the non-punctured STECC C BCH(15,7) 1-3

. In both cases we replace the STECC detector of complexity M K with a sub-optimal association of a classical soft ML detector of complexity M nt followed by a combiner stage to reduce the simulation process without loss of generality as shown in Fig 5 . The missing LLRs are initialized to zero. The combiner stages will recover them by using [START_REF] Tonello | On turbo equalization of interleaved space-time codes[END_REF].

The BER versus E b /N 0 at the output of each receiver is plotted in Fig 6 . The punctured STECC (solid curve) performs better than the non-punctured STECC (dashed curve) with a gain of 1d Bat a BER of 10 -3 . It is more efficient to use a punctured STECC instead of a higher modulation to improve the spectral efficiency.

VI. CONCLUSION

This letter has presented a new family of space-time codes for two transmit antennas: the space-time error correcting codes (STECCs). They combine in an easy way K codewords from a linear forward error correcting code (FEC). The deep space-time correlation created between the 2K modulation symbol vectors and the FEC properties are exploited at the receiver side to improve the transmission quality.

In the example we used for two receive antennas, the STECC outperforms a traditional scheme using the Alamouti encoding and the same FEC or a ST-BICM structure with the same spectral efficiency. It presents better asymptotical performance and thus a better space-time diversity exploitation but also a higher complexity. However, it has been shown in [START_REF] Lalam | Iterative decoding of space-time error correcting codes[END_REF] that the use of a turbo-like iterative receiver significantly reduces the complexity while achieving the same level of performance in terms of error rates.

Finally, the STECC structure is flexible enough to use puncturing upon it. For a spectral efficiency increase, this technique gives better results than the use of an higher modulation order. Moreover, it brings minor changes in the receiver structures: only the detection part has to be considered, as the new STECC codeword is shorter. The LLRs associated to the missing codewords are replaced by zeros, leaving the combiner stage the task to recover them.
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 1 Fig. 1. Transmitter scheme for the C C(n,k) 1-K STECC (nt =2transmit antennas).
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 2 Fig. 2. Receiver with optimal detection for C C(n,k) 1-K (nr receive antennas).
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 538 Fig. 5. Receiver with simplified detection for C C(n,k) 1-K (nr receive antennas).
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