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Abstract—In this paper, we provide a comprehensive overview
of the stochastic geometry framework explored extensively in
literature to model and analyze the performance of communi-
cation networks. We provide a brief survey of the history of
the approach, including recent applications to the analysis of
several 5G enabling technologies. In the main technical section
of the paper, we consider a case study in which we assume a
system model where the idle mode capability is activated on base
stations. A general expression of the coverage probability based
on hypergeometric functions is then derived, yielding closed-
form expressions that depend on the parity of the path loss
exponent. Numerical results confirm the accuracy of our practical
approximations.

I. INTRODUCTION

Enhanced capacity, improved service quality, lower power

consumption, and ubiquitous coverage, are some of the most

relevant objectives for the deployment of recent communica-

tion networks. The first step towards achieving these targets

is an efficient approach to the modeling of these networks.

In earlier years, modeling methods were mainly based on

detailed geographical descriptions of the network; the accuracy

of future results depended on the extrapolation of the actual

state of the network for some evolution scenarios. To meet

the expected demand, strategic planning must decide between

a few potential architectures where costs and performance

are assessed through detailed calculations. This approach,

still adopted nowadays, generally requires the development of

specific optimization softwares adapted to each network archi-

tecture, and relies on heavy, time-consuming, simulations [1],

[2].

To address these limitations, tools from applied probability,

particularly stochastic geometry (SG) and point process theory,

have been introduced to model and analyze the communication

networks [2]–[4]. SG provides a natural way to define and

derive macroscopic properties for such networks, by averaging

over all potential geometric models for the active nodes

(mobile users, base stations in a cellular network, access points

in a WiFi network, switching centers [5], ...), which often
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capture the major dependencies between the network perfor-

mance characteristics (connectivity, stability, capacity, ...) as a

function of a relatively small number of parameters. In fact, a

communications network can be viewed as a set of nodes,

where locations can be seen as the realization of a point

process in a given domain R
d [6]. At any given time, the

signal received from the serving transmitter may be affected by

the signals received from the other transmitters. The geometry

of the locations of the nodes then plays a key role since it

determines the signal-to-interference-plus-noise ratio (SINR)

at each receiver and, subsequently, assesses the possibility of

simultaneously establishing any collection of links at a given

bit rate.

The seminal work in [2] provides a comprehensive un-

derstanding about the behavior of downlink cellular net-

works. By assuming that single-antenna base stations (BSs)

are distributed according to a homogeneous Poisson point

process (PPP), a cell association criterion based on the highest

average received power, a single-slope path-loss model, and

Rayleigh fading; the authors have obtained a tractable integral

expression of the coverage probability. An important outcome

is the SINR invariance property, which states that the SINR

increases almost linearly with BS density to the point where

noise becomes negligible; after which SINR remains stable

and independent from the BS density. Another important

outcome is a closed-form expression developed for the integral

expression when the path loss exponent is equal to 4.

The motivation behind this paper is then to develop a

closed-form expression for the coverage probability, which

will encompass the expression in [2], and will be valid for

all integer values of the path loss exponent. To do so, we

explore the potential of hypergeometric functions analysis and

consider a more general system model in which the idle mode

capability (IMC) is activated on BSs.

The remainder of the paper is organized as follows. Sec-

tion II introduces the contextual background of SG as a

powerful tool for modeling communications networks and ana-

lyzing the performance of several 5th generation (5G) enabling

technologies. Section III is the technical part of the paper,



in which we develop a general expression for the coverage

probability that yields closed-form expressions depending on

the parity of the path loss exponent. In Section IV, numerical

results are reported to corroborate our theoretical findings and

assess the accuracy of our approximations, and Section V

concludes the paper.

II. STOCHASTIC GEOMETRY BASED APPROACH

In this section, we discuss basic insights to better understand

the context of the SG approach. We briefly present the history

of SG, address the fundamental concepts of modeling commu-

nication networks using SG, and summarize the state of the

art of SG-based analysis for several 5G enabling technologies.

In fact, SG is an old branch of probability theory that deals

with random geometrical structures such as point processes,

random graphs, and random networks, as well as the challeng-

ing problems raised by their statistical analysis. The subject

has progressed rapidly in response to the challenges from dif-

ferent applied sciences, from image analysis to communication

networks.

In telecommunications, SG models are designed to capture

aspects of wireless networks such as the association policy

between users and nodes, interference characterization and

interaction between nodes and/or users (repulsion, attraction,

or zero interaction). The related research consists in analyzing

these models with the aim of better predicting and controlling

various network performance metrics.

A. Brief Historical Review

SG as a concept of geometric probability is a field with roots

going back at least 300 years. In fact, the connection between

probability theory and geometry can be traced back at least to

the middle of the 18th century when Buffon’s needle problem

(1733), and subsequently questions related to Sylvester’s four

point problem (1864) and Bertrand’s paradox (1889), started

to challenge prominent mathematicians, and helped advance

the probabilistic modeling. A short historical outline of these

early days of geometric probability may be found in [7], [8].

Since the 1950s, the framework of geometric probability

broadened substantially and has been framed as an academic

area. In particular, the focus mainly switched to models involv-

ing a typical number of randomly selected geometric objects.

As a consequence, the notion of point processes started to play

a prominent role in this field, which since then was called

“stochastic geometry”. Simultaneously, relevant models were

developed for wireless network technologies including mobile

ad hoc networks, sensor networks, vehicular networks, and

cognitive radio (CR) networks [9], [10].

Around the beginning of the 21st century, a number of

new network technologies have arisen such as heterogeneous

(HetNet) and millimeter wave cellular networks. SG has

been extensively explored to develop models for these net-

works [2], [3] and then derive closed-form or semi-closed-form

expressions for performance metrics and quality of service

(QoS) indicators, without resorting to simulation methods or

intractable deterministic models. The aforementioned metrics

and indicators are often based on concepts from information

theory such as the SINR; which forms the mathematical basis

for defining network connectivity and coverage.

B. Stochastic Geometry and the Modeling of Communication

Networks

The contemporary network systems have a complicated

multi-layer and multi-level architecture. Consequently, the

network performance investigated for purposes of strategic

planning and economic analysis is dependent on a large

number of parameters, where it is generally difficult to de-

termine in advance which are the main that mostly influence

the desirable properties of the system. On the other hand,

exhaustive simulations are time and resource consuming, and

do not offer the ability to formally determine the structural

parameters impacting the system.

SG resolves the aforementioned challenges by providing

macroscopic network models that capture the essential spatial

characteristics of networks performance and then economy

through a lower number of structural parameters [1]. This way,

the production function of telecommunication services can be

analytically expressed where the main players in the network

(subscribers/users, stations, links, mobiles) are considered as

a realization of a family of stochastic processes belonging

to simple parametric classes. Fig. 1 describes the typical

architecture of a SG based model [1].
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Fig. 1. A typical configuration of a stochastic geometry based model,
where the distribution of users and nodes follows homogenous PPPs. The
connections between nodes and users are shown in a single hierarchical level,
and the cells boundaries form a Voronoi tessellation.

C. Stochastic Geometry and 5G Technologies

The 5G mobile communication networks are expected to

be operational by 2020, many efforts and revolutionary ideas

have been proposed and explored around the world to satisfy

the increasing demand for higher data rates, lower network



latencies, better energy efficiency, and reliable ubiquitous con-

nectivity. The primary technologies and approaches to address

the requirements of 5G systems include:

• the densification of existing cellular networks with mas-

sive addition of small cells;

• peer-to-peer (P2P) communications enabling multi-

network association (e.g., device-to-device (D2D) and

machine-to-machine (M2M) communication enabled

multi-tier HetNets);

• simultaneous transmission and reception (e.g., full-duplex

(FD) communications);

• massive multiple-input multiple-output (massive MIMO);

• millimeter wave communication technologies;

• improved energy efficiency via energy-aware communi-

cation/design and energy harvesting;

• and new radio access techniques (e.g., non-orthogonal

multiple access (NOMA)).

Fig. 2 describes the main components of a typical 5G network

architecture.

Fig. 2. A typical architecture of a 5G network where small cells are modeled
by aggregative point processes and macro cells are modeled by regular point
processes.

Exploiting the power of SG, several notable results are

obtained for cellular networks. For instance, the authors of [11]

investigated the performance behavior of ultra-dense networks

and confirmed that the SINR invariance property is no longer

valid as the dual-slope path loss model is considered and

the near-field path loss exponent is under the dimension of

the network. Moreover, authors of [12], [13] revealed that

antenna heights and omni-directionality are so detrimental to

the network performance during ultra-densification. However,

It is proved in [14] and references therein that the coverage

probability has non-zero convergence in asymptotic regions of

ultra-densification unless UE density grows unbounded.

On the other side, as the density of small cells increase

is limited by a potential constraint on backhaul capacity,

downloading contents from the core network via backhaul

links becomes the bottleneck of the system, impairing the

throughput gain brought by the network densification. To

overcome this, an innovative approach is considered where

new cells, so-called helper nodes, are introduced into the

network. These nodes have typically weak backhaul links

and high capacity caches, so the content is retrieved locally

instead of fetching it from the core network via backhaul links.

Therefore, the backhaul link is used only to refresh the caches

at off-peak times. Authors of [15] investigated the performance

gain of a cache-enabled HetNet over a conventional HetNet

with limited capacity backhaul.

The Massive MIMO technique exploring especially high

number of antennas is characterized in [4], [16]. Since en-

ergy efficiency (EE) not only has great ecological benefits

and represents social responsibility, but also has significant

economic benefits, the authors of [17] apply tools from SG to

analyze the energy efficiency of cellular networks through the

use of the sleeping mode capability of BSs where the active

or sleep mode of a BS is activated based on the cell load.

In [18], the authors considered the energy harvesting where the

system model consists of HetNet classes of self-powered BSs,

which may differ in terms of the transmit power, deployment

density, energy harvesting rate, and energy storage capacity.

The objective was to characterize the regimes in which the

self-powered network may have the same performance as

the one with reliable energy sources. Extensions to the radio

frequency (RF) energy harvesting is considered in the analysis

in [19].

Based on dynamic spectrum access and spectrum sharing,

CR technology is analyzed in [20] where a SG based analysis

is considered for a combination of cognitive, energy harvesting

and D2D based cellular network.

Recently, NOMA have received significant attention for the

design of 5G radio access techniques. Unlike with the tradi-

tional orthogonal multiple access (OMA) techniques, where

different users are served over orthogonal resource blocks,

NOMA allows multiple users to share the same resource block.

Based on SG, the baseline of a power-domain NOMA is

investigated in [21].

From another point of view, securing communications is a

critical issue for future 5G networks where there will be a

great need for new wireless security mechanisms that do not

necessarily rely on the usual bit-level protocols. Thus, based on

the SG tractability, the physical layer security in the context

of cellular networks and mmWave channel characteristics is

discussed in [22].

III. COVERAGE ANALYSIS

In this section, we consider a downlink cellular network in

which BSs and users are scattered according to two indepen-

dent homogeneous PPPs Ψ and Ψu respectively with respec-

tive densities λ and λu. We assume that IMC is activated,

then since users density is finite, ultra-densification will lead

that some BSs will remain switched on with no users being

served, hence these BSs may be put in idle state in order

to mitigate the inter-cell interference and reduce the energy

consumption. Based on the legacy of hypergeometric functions



analysis, we aim to develop a closed-form expression of the

coverage probability in [2, Th. 2] by encompassing the Q-

function based expression valid only for a path-loss exponent

α = 4.

We define the coverage probability pc as the probability

that the long-term SINR, is greater that a threshold T . It is

equivalently the CCDF of SINR over the entire network and

can be considered [2] as (i) the probability that a randomly

selected user can reach a target T, (ii) the average fraction of

users who reach T at any given time, (iii) the average fraction

of the network area covered at any given time. Similarly, the

concept of outage probability po = 1− pc (CDF of SINR), is

conceived as the probability of not being able to send a signal

or symbol over a specific channel, and thus1

pc(T) = 1− po(T) = P {SINR ≥ T } , (1)

where SINR =
h l(r0)

Iagg + σ2
, (2)

h is the fading power of the channel between the typical user

and the serving BS {b0}, r0 is the distance between the typical

user and the serving BS assuming the nearest BS association

policy, l(r) = r−α is the path loss function such as α is the

path loss exponent, σ2 is the noise variance normalized by the

BS transmit power Ptx, and Iagg =
∑

yi∈Ψ\{b0}
gi l(yi) is the

other-cell interference such as gi is the fading power of the

channels between the typical user and the interfering BSs.

We focus on the expression of pc as the calculation of almost

all the other metrics requires the preliminary calculation of pc.

In fact, the average ergodic rate τ may be seen as

τ , E {ln (1 + SINR)} (3)

(a)
=

∫

t>0

P {ln (1 + SINR) > t} dt

=

∫

t>0

P
{

SINR > et − 1
}

dt =

∫

t>0

pc

(

et − 1
)

dt

=

∫

u>0

pc (u)

u+ 1
du

(b)
= −

∫

u>0

ln(1 + u)
∂pc (u)

∂u
du,

where (a) follows from the property E {X} =
∫

t>0 P {X > t} dt for a positive random variable X and (b)

follows by applying integration by parts where lim
u→0

pc (u) = 1

and lim
u→∞

pc (u) = 0.

Moreover, in practical systems where a minimum oper-

ational SINR, namely γ0, is required, the constrained area

spectral efficiency ASEc is expressed as2

ASEc = λE {ln(1 + SINR)}1(SINR ≥ γ0) (4)

= λ

∫ ∞

γ0

ln(1 + γ)fΓ(γ)dγ

= λ

[
∫ ∞

γ0

pc(γ)

1 + γ
dγ + ln(1 + γ0)pc(γ0)

]

,

1
P(X) stands for the probability of the event X and E(X) for the expected

value of the event X .
2The spectral efficiency is measured in nats/s/Hz, and need to be normalized

by ln(2) to translate into bit/s/Hz.

where fΓ(.) is the PDF of SINR observed at the typical user,

and expressed as

fΓ(γ) =
∂(1− pc(γ))

∂γ
.

Based on some standard assumptions, i.e. singular path-loss

model, Rayleigh fading, BSs and users equipped with single

antennas, and a cell association policy based on the highest

average received power, the authors of [2] have obtained the

following tractable expression of pc

pc(T) = πλ

∫ ∞

0

e−auα/2−budu, (5)

where a = Tσ2 captures noise, b =
πλ [1− (1− p) (1− 2F1(1,−δ; 1− δ;−T))] reflects

interference such as δ = 2/α, 2F1(., .; .; z) is the Gauss

hypegeometric function and p is the empty-cell probability,

i.e, the probability that a typical user is associated to no

mobile. p is generally approximated by averaging the void

probability of Ψu over the distribution of a typical Voronoi

cell area. Assuming a network deployed in the 2-D plane R
2,

the authors of [5] approximated p as

p ≃
(

1 +
λu

3.5λ

)−3.5

. (6)

Generally, the coverage probability in (5), cannot be formu-

lated in closed-form expression. An exception is made when

considering a path loss exponent of α = 4 or assuming the

interference-limited regime [2, Formulas (7) and (8)]. The

following theorem develop a closed-form expression for pc

that is valid for every integer path loss exponent ≥ 3.

Theorem 1. For integer path-loss exponents α ≥ 3, the

coverage probability in (5) will be expressed in closed-form

as

pc(T) =
2πλ

α (Tσ2)
2

α

α
2
−1
∑

k=0

(−1)kκk

k!
Γ(

2 + 2k

α
) (7)

× 1Fα−2

2

(

1
4+2k
α , ..., α+2k

α

∣

∣

∣

∣

(−κ)
α
2

(α2 )
α
2

)

,

for α even, and as,

pc(T) =
2πλ

α (Tσ2)
2

α

α−1
∑

k=0

(−1)kκk

k!
Γ(

2 + 2k

α
) (8)

× 2Fα−1

(

1, 12 + k+1
α

2+k
α , ..., α+k

α

∣

∣

∣

∣

4(−κ)α

αα

)

,

for α odd, where

κ =
1

(Tσ2)2/α
πλ [1− (1− p) (1− 2F1(1,−δ; 1− δ;−T))] .

and pFq(.) is the generalized hypergeometric function, defined

for complex parameters and argument by the series

pFq

(

a1, a2, ..., ap
b1, b2, ..., bq

∣

∣

∣

∣

z

)

=

∞
∑

k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

zk

k!
,



where (a)k is the Pochhammer symbol.

Proof. By the variable change of x = auα/2, the expres-

sion (5) of coverage probability can be rewritten as

pc(T ) =
2πλ

αaα/2

∫ ∞

0

x
2

α−1e−xe−κx2/α

dx

=
2πλ

αaα/2

∫ ∞

0

x
2

α−1e−x
0F0(.; .;−κx2/α)dx. (9)

Depending on the parity of α, and using [23, Eq. (43)] which

states for any natural number m that

pFq

(

a1, a2, ..., ap
b1, b2, ..., bq

∣

∣

∣

∣

z

)

=

m−1
∑

k=0

(a2)k(a2)k...(ap)k
(b1)k(b2)k...(bp)k

zk

k!

mp+1Fmq+m

( −−→
A1,k,

−−→
A2,k, ...,

−−→
Ap,k, 1−−→

B1,k,
−−→
B2,k, ...,

−−→
Bq,k,

−−→
I1,k

∣

∣

∣

∣

∣

m(p−q−1)mzm

)

,

where for j = 1, 2, · · · , p and i = 1, 2, · · · , q
−−→
Aj,k = (

aj + k

m
,
aj + k + 1

m
, ...,

aj +m− 1 + k

m
)

−−→
Bi,k = (

bi + k

m
,
bi + k + 1

m
, ...,

bi +m− 1 + k

m
)

and
−−→
I1,k = (

1 + k

m
,
2 + k

m
, ...,

m+ k

m
)

Thus, for the even case, we choose m = α/2, while for the odd

case, we choose m = α. Using the integral transformation of

hypergeometric functions in [24, (1.7.525)], we get the desired

result.

Note that the expression in [2, Th. 2] can be obtained

directly from (7) where the Gaussian Q-function is expressed

as

Q(x) =
e−

x2

2

2

[

0F0

(

−;−;
x2

2

)

− x
√
2√
π

1F1

(

1;
3

2
;
x2

2

)

]

.

The accuracy of the analysis is discussed in the following

section.

IV. NUMERICAL RESULTS

In Fig. 3, the coverage probability grows monotonically with

the path loss exponent where the results of the expression from

Theorem 1 are matching perfectly with the integration in (5).

In Fig. 4, the coverage probability decreases as the users

process density λu increases, this may be explained intuitively

by the observation that the average number of interfering

BSs increases with users density due to the IMC activation.

Moreover, it is interesting to mention that the SINR target T

reduces the impact of users process density λu on the SINR

CCDF. In fact, a lower T is generally common in the noise-

limited regime where few BSs are deployed and therefore

reduced impact of IMC activation (e.g., rural environments).

Fig. 5 shows the scaling of coverage probability with users

density λu considering different values of BSs density λ and

three formulations of the empty-cell probability p. The first
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Fig. 3. The scaling of coverage probability with the path loss exponent α,
the hypergeometric formulation of Theorem 1 is very tight with the integral
expression where λ = 0.7, λu = 0.2, σ2 = 1.

one is that of (6), the second is by considering the case of ultra-

dense networks where λ ≫ λu, in other words, a considerable

increase in λu generates a corresponding increase in λ, and

thus p may be approximated as

p =

(

1 +
λu

3.5λ

)−3.5

≃ 1− λu

λ
. (10)

Moreover, (10) may be seen as the first terms of an exponential

Taylor expansion. Thus, we consider a third approximation

of p in a more tractable way as p ≃ e−
λu
λ . The process of

the transmitting BSs can then be approximated as a thinning

transformation of density λ e−
λu
λ .

Note that the exponential approximation captures perfectly

the trends of coverage probability under (6). In fact, p goes

towards 0 as λu increases, i.e. BSs continually transmit signals,

and the tagged user receives interference from all BSs, and

then the coverage probability becomes independent from λu.

However, under the second approximation (10), the coverage

probability remains dependent on users density and goes

towards 0 as λu increases.

V. CONCLUSION

The field of SG is rapidly evolving in conjunction with

numerous ongoing developments from a variety of applica-

tions, and offers an interesting framework for the analysis of

communication networks.

In this paper, we reviewed the context of SG based ap-

proaches and their application to the analysis of new 5G

technologies. Moreover, the coverage probability under the

IMC mode is investigated, and closed-form approximations

are developed.

Our numerical results confirm that the hypergeometric ex-

pressions are perfectly matching with the numerical integration
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−3.5, the dashed line is for the approximation
of p by exp(−λu/λ), and the dotted line is for the approximation of p by
1− (λu/λ).

when the path loss exponent is of integer value. The expo-

nential approximation of the empty-cell probability is tight

enough; particularly for low users densities.
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