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Joint Soft Threshold and Statistical Estimation for
Speech Enhancement
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IMT Atlantique, UMR CNRS 6285 Lab-STICC, UBL, F-29238 Brest, France
Email: firstname.lastname @imt-atlantique.fr

Abstract—This paper presents a novel method for speech
enhancement based on the combination of sigmoid shrinkage
and bayesian estimator. The main idea is to apply a joint
detection and estimation to noisy speech before using a standard
minimum-mean-squared-error (MMSE) estimator. Hence, the
proposed method can take advantage of two basic approaches for
improving the quality of noisy speech. Experiments performed
on stationary and non-stationary noisy speech signals show
that the proposed approach is promising when compared to
classical methods, in terms of objective and pseudo-subjective
measurements.

Index Terms—Sigmoid shrinkage, minimum mean squared
error (MMSE), speech enhancement, noise reduction.

I. INTRODUCTION

Single channel speech enhancement algorithms based on
time-frequency transforms are often used to reduce back-
ground noise of noisy speech signals. These techniques aim
at improving not only the quality but also the intelligibility of
speech. By assuming a statistical model and using various cost
functions, many estimators have been proposed in [1]. Among
these traditional algorithms with continuous gain functions,
minimum mean square error (MMSE) of short-time spectral
amplitude (STSA) [2] or log-spectral amplitude (LSA) [3],
together with modifications, produce significantly high per-
formance in terms of speech quality [4]. In usual approaches,
speech presence is assumed in every time-frequency bin, which
may entail some performance loss. Therefore, some studies try
to join detection and estimation for improving speech quality
[5]-[8]. However most algorithms do not improve speech
intelligibility [9]. A different approach based on the so-called
binary masking makes it possible to overcome this drawback
[10], [11]. In the binary masking approach, some speech
spectrum bins are retained while other ones are discarded.
The binary mask can be refined by combining its computation
with a speech signal estimator [9], [12]. Nevertheless, such a
technique based on hard binary masking may generate musical
noise, which degrades speech quality.

In this paper, we propose a new approach that can take
advantage of binary masking and usual estimation. Our strat-
egy joints the smoothed binary mask provided by smoothed
sigmoid based shrinkage (SSBS), initially proposed for im-
age processing [13], and bayesian estimation. According to
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objective criteria, this combination reduces musical noise and
improves speech intelligibility.

The remainder of this paper is organized as follows. Section
Il presents a basic overview of smoothed sigmoid shrink-
age and traditional MMSE estimator. Section III details the
proposed algorithm. The experimental results are presented
in Section IV. Finally, Section V concludes this paper and
discusses prospects.

II. BACKGROUND

One of the most important tasks in signal processing is the
removal of additive noise from an observed signal y = s + z,
where s, x are the clean signal and noise, respectively. In
speech enhancement applications, the noisy speech signal is
segmented into a set of short frames and is transformed via
short-time Fourier transform (STFT). The contaminated signal
in the time-frequency domain becomes

Y([m, k] = S[m, k] + X[m, k], (D

where m and k£ denote the frame and frequency indices,
respectively. To ease notation, the indices m and k will be
omitted unless required for clarification. In the same way, the
estimated signals are denoted by using the wide hat symbol:
e.g & is an estimate of £. The noisy signal can also be written
in polar form as follows:

Re'®Y = Ae'®s + Nei®x 2)

where {R, A, N} and {¢v, ¢s, ¢x } are the short-time spectral
amplitudes (STSA) and the associated phases of the STFT
coefficients of the observed signal, clean signal and noise,
respectively. Due to the importance of STSA, many researches
aim to estimate it. In order to retrieve the clean signal, a gain
function G is often determined. The enhanced STSA signal is
then calculated as

A=GR. 3)

The estimated speech signal is then obtained by keeping the
phase of the observation so that S = Ae?®v

A. Standard bayesian STSA

For the sake of self-completeness, this subsection presents
the standard Bayesian STSA [2] and its modification, that is,
the log-spectral amplitude (LSA) [3]. Assuming uncorrelation



between STFT coefficients, the STSA is obtained by mini-
mizing the expectation of the error defined by a cost function
C(A, A) [14]. The Bayes risk R is then defined by

R(A) = E[C(A7 A)]v “4)
where E denotes mathematical expectation. By defining var-
ious cost functions and minimizing the Bayes risk R with
respect to A, many estimators can be proposed.

The most usual STSA estimator is derived by minimizing
the Bayes risk of the cost function [2]

C(A,A) = (A— A)2. (5)

Assuming that the STFT coefficients have complex Gaussian
distribution with zero-mean, the Bayesian estimator is given
by

A=E[A]Y] = Gsrsa(&,7) R. (©6)
This gain function Ggsrsa(&, ) is given by [2]:
v v v v
G612 ()00 (2 e (3]

(N
where Io(-), I;(-) denote the modified Bessel function of zero

and first order and
&y

V= )
1+¢

with a priori signal to noise ratio (SNR) ¢ = E[A?]/E[N?] =
0% /0% and the a posteriori SNR v = R? /o%, where % and
0% denote the spectral speech and noise power, respectively.
In the same way, the LSA estimator is obtained by using the
cost function [3]

C(A, A) = (log(A) - 1og(2))2 . ®)

Using the moment-generating of the STSA A, it can be
proved that the Bayesian estimator is now A = ¢EllogAY] —
Grsa(§,v)R where the gain function Grsa(&,v) is still a
function of the two variables £ and v and given by [3]:

Groa(6.7) = — 1/Ooe_tdt 9)
=——exp| = — .

LSAS, Y 1+¢ exp 2 ), Tt

Note that, the unknown SNR ¢ in both methods is evaluated

by the decision-directed approach [2].

STSA estimators are also generalized in [15], where the
cost function is defined as the square error of the 8 power

2
amplitude C(A4,A) = (AP — A\ﬁ> . The cost functions are
also proposed by following and incorporating perceptual mea-
sures in [14], [16]. In other approaches as in [1], the STSA
is not assumed to be Rayleigh distributed but to follow the
super-Gaussian or generalized Gamma distributions.

B. Thresholding estimation: Sigmoid shrinkage

Shrinkage functions are frequently used in image processing
for estimating signal coefficients provided by the projection of
the noisy signal on an orthogonal basis. The main difference
with respect to Bayesian estimators is that shrinkage does not
require prior information about the probability distribution of

the signal of interest. The original idea is presented in [17] and
developed in [18]. With the same notation as above, denoised
STSA coefficients can be obtained via hard thresholding as

~ i >
A{}S if R> )\,

otherwise,
where )\ is a suitable threshold to choose. This can be rewritten
in the form of (3) by defining the gain function as
1 if R >\,
0 otherwise.

(10)

GA(R) = (1)
The gain function in (11) can also be interpreted or used as a
binary mask or a channel selection function [4, Section 13.2,
pp- 618].

Shrinkage can be smoothed by using soft thresholding
instead of hard thresholding. The soft thresholding function
[18] is defined by

1— 2

Ga(R) = { R’

0

Smoothed shrinkage can also be performed by Smoothed

Sigmoid-Based Shrinkage (SSBS) functions propounded and

analyzed in [13]. Among the two types of SSBS functions con-

sidered in [13], we hereafter consider the family of functions
defined by

if R> A

otherwise. 2)

1

Crall) = =

13)

It is worth noticing that the hard thresholding function is a
limit case of SSBS function. In other words, SSBS functions
of type (13) make it possible to attenuate amplitudes below A
instead of forcing them to 0 as the hard-thresholding function,
without introducing a bias as the soft-thresholding function.
An SSBS function achieves a trade-off between the hard and
soft thresholding functions. In the above references, parameter
A is taken equal to the universal threshold, the minimax
threshold or the detection threshold [19], whereas 7 controls
the attenuation achieved by the SSBS function [13].

III. PROPOSED JOINT DETECTION AND ESTIMATION
METHOD

As mentioned above, binary mask improves speech intelligi-
bility but degrades speech quality. On the contrary, statistical
estimation is a favorable strategy to enhance speech quality
but does not ameliorate speech intelligibility. Therefore, in
this section, we propose a combination technique that makes
it possible to take advantage of the two approaches. The
proposed method can be regarded as a joint detection and
estimation algorithm.

A. Proposed denoising algorithms

Figure 1 shows an overview of the proposed method with
the several possible combinations it employs. This type of
speech enhancement involves the following steps:

o The noisy signal is segmented into short-frames and is

decomposed by either an FFT, or another transform like
the discrete cosine, filter-bank or wavelet transforms.



o Shrinkage by SSBS performs a binary mask. On the one
hand, the SSBS function tends to keep unaltered STSAs
that are large enough above A\ because such STSAs
probably pertain to noisy speech. On the other hand, the
SSBS function attenuates small STSAs because they are
probably due to noise alone or noisy signals with small
amplitudes.

¢ A noise reduction algorithm, e.g. MMSE-STSA, spectral
subtraction, etc... is applied to STSAs after binary mask-
ing by SSBS.

o The enhanced signal is synthesized from these STSAs by
inverse transform.

In this combination, shrinkage by SSBS functions can also
be considered as a channel selection that yields performance
improvement, at least in terms of speech intelligibility. Indeed,
SSBS automatically selects frequency bins where STSAs
exceeding A probably means speech presence. The main
difference with binary masking is that the SSBS gain function
is smoothed around the threshold value. In addition, SSBS
slightly reduces noise by shrinkage and returns the smooth
STSA estimate N

Ay =G, A\(R)R, (14)

where G, »(R) is given by (13). The choice of X is addressed
in Section III-B. At this stage, it suffices to mention that, in
a given frequency bin, this value is proportional to the noise
power in this bin and that the noise power is estimated by a
noise estimation algorithm [20].

Because SSBS does not involve any smoothing in time or
frequency, SSBS may introduce musical noise resulting from
isolated time-frequency bins insufficiently attenuated. Thence,
the introduction of an MMSE Bayesian estimator based on
the decision-directed approach to smooth in time the estimates
returned by SSBS. The smoothing in frequency is postponed
to some further work.

Note that the gains of the STSA and the LSA estimator are
the function of two variables & and ~y (see (7) and (9)). The a
priori SNR € is thus determined by decision-directed approach
whose input is the noisy STSA R. As shown in Figure 1 the
a posteriori SNR =1 is calculated from the rough enhanced
STSA A; provided by SSBS. Therefore, we obtain the gain
function

A=G(&m)A, (15)

where G(&, 1) is the gain function of the Bayesian estimator
— either Gyga or Ggrsa — with

A2 R?
ox 9x

It follows from the foregoing equalities that SSBS enables to
select and modify the a posteriori SNR ~ input of the Bayesian
gain function.

B. Discussion on the impact of parameters

The two parameters 7 and A\ play an important role in
influencing the performance of the proposed method. Let us
first discuss the impact of each parameter. Basically, \ affects

the selection of the channels where speech is present and the
attenuation degree imposed to the noisy signal.

On the one hand, with high value of A, speech components
can be ignored, which degrades speech quality. On the other
hand, with low value of A\, we cannot eliminate noise-only
components, which limits also the algorithm performance.
However, SSBS provides a smoothed gain function that atten-
uates such adverse effects. In comparison to binary masking
or hard and soft threshold functions, the range where A must
be chosen can be expected to be less crucial. In this sense, the
SSBS functions are robust.

The attenuation degree applied to the noisy signal is regu-
lated by 7. It is known that using a continuous gain function
cannot improve the output SNR in each frequency and thus,
no speech intelligibility improvement should be expected [4,
pp-613] if the SSBS function is not similar to a discontinuous
shrinkage. Fortunately, for fixed A, the SSBS function tends
to the hard-thresholding function (10), which is similar to
a binary mask. Since the hard thresholding function can be
regard as an approximation of the optimal — in the mean
square sense — diagonal linear estimator, an SSBS function
with sufficiently big attenuation can thus be expected to
improve speech intelligibility for the same reasons as above [4,
pp-525]. However, a too high value for 7 can damage speech
quality because some important components of speech could
be suppressed.

The choice of A and 7 thus relates to the traditional trade-
off between residual noise and signal distortion. The greater
A, the smaller the background noise but the larger the signal
distortion and musical noise. In the same way, the greater 7,
the better the speech intelligibility and the lesser the speech
quality.

According to [13], [17], [18], [19] and [21], several values
for A can be thought up. The adaptation to speech enhancement
of the several theoretical aspects and results developed in these
papers requires a dedicated study. For now, we can however
make the following remarks that will guide our choice for this
parameter to get the experimental results of the next section.

The objective of speech enhancement is to remove back-
ground noise without distorting too much speech, so as to
maintain speech quality and improve speech intelligibility.
Therefore, even if the SSBS function may compensate the
effect of a too large threshold, our final recommendation is
to prefer a relatively small value for A and not value too
large for 7. Indeed, missing important speech components can
be more detrimental to speech quality than keeping noise-
only components that can anyway be filtered by the Bayesian
estimator.

IV. EXPERIMENTAL RESULTS

We assessed our proposed method on the NOIZEUS
database [4] to evaluate its performance. This database con-
tains IEEE sentences corrupted by noise coming from the
AURORA database, at four levels, namely 0, 5, 10 and 15
dB. Two combinations between SSBS and MMSE estimators
were tested. The first combination, the bayesian estimator
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Fig. 1. Processing chain of the proposed algorithm using a smoothed rough binary masking
TABLE I
PERFORMANCE EVALUATION WITH THREE CRITERIA: MARS_ovL, STOI, SSNR
SSNR MARS_ovl STOI (%)
Noise Method 0dB [ 5dB [ 10dB [ 15dB 0dB [ 5dB [ 10dB [ 15dB 0dB [ 5dB [ 10dB [ 15dB
STSA | -0.83 | 1.44 | 3.85 642 | 226 | 294 | 4.15 6.92 | 7098 | 93.52 | 98.65 | 99.62
AR SBSA -0.64 | 1.69 | 4.15 6.74 | 2.27 | 3.00 | 4.63 7.69 | 73.15 | 94.17 | 98.78 | 99.65
LSA -0.16 | 2.14 | 455 706 | 242 ] 322 | 549 8.40 | 75.83 | 94.72 | 98.81 | 99.64
SBLA -0.10 | 2.23 4.66 717 2.41 3.20 5.67 8.72 76.65 | 94.96 | 98.87 | 99.65
STSA -0.83 | 1.62 | 3.86 642 | 224 | 275 | 3.52 6.67 | 82.87 | 97.42 | 99.39 | 99.79
Train SBSA -0.63 | 1.87 415 | 6.73 | 225 | 2.78 | 3.79 7.29 | 84.28 | 97.60 | 99.42 | 99.80
a LSA -0.07 | 237 | 4.61 710 | 234 | 2.88 | 4.67 8.19 | 8540 | 97.69 | 99.44 | 99.80
SBLA | -0.02 | 2.45 | 4.71 7.21 233 | 2.88 | 4.77 8.42 | 8594 | 97.77 | 99.45 | 99.81
STSA | -0.85 | 1.27 | 3.79 625 | 243 | 320 | 4.82 7.86 | 87.54 | 97.89 | 99.59 | 99.86
Airport SBSA -0.65 | 1.51 | 4.07 6.56 | 2.46 | 3.28 | 5.23 8.40 | 88.43 | 98.03 | 99.61 | 99.86
1rpor LSA -0.07 | 2.08 | 4.55 7.02 | 256 | 3.40 | 5.95 9.16 | 88.80 | 98.00 | 99.58 | 99.86
SBLA | -0.02 | 2.15 | 4.64 7.10 | 2.56 | 3.43 | 6.14 947 | 89.17 | 98.06 | 99.59 | 99.85
STSA -1.27 | 099 | 3.57 6.06 | 234 | 3.03 | 4.37 7.62 | 7851 | 96.53 | 99.49 | 99.84
Babble SBSA -1.09 | 1.21 | 3.85 6.35 | 2.38 | 3.07 475 | 8.13 | 80.12 | 96.81 | 99.50 | 99.84
LSA -0.56 | 1.66 | 4.30 6.77 | 2.44 | 3.16 | 5.35 875 | 80.97 | 96.94 | 99.50 | 99.83
SBLA -0.51 1.73 4.39 6.86 247 | 3.16 5.50 8.97 81.74 | 97.05 | 99.50 | 99.83

is MMSE-STSA [2]. In the second combination, we use
MMSE-LSA [3]. The first combination is hereafter called
SBSA for Smoothed Binary Spectral Amplitude and the
second SBLA for Smoothed Binary Log-Amplitude. MMSE-
STSA and MMSE-LSA are also considered as the references
methods. In our experiments, speech signals with sampling
rate at 8 kHz were segmented into sets of 256 sample frames,
transformed using STFT with 50% overlapped Hamming
windows. The parameters 7 and A of the SSBS gain function
were chosen after preliminary tests on 20 randomly chosen
sentences corrupted by car noise with SNR equal to 5 dB.
According to these tests, 7 was set to 61 and, for each given
frequency bin, \ was fixed to 1.1,/0% where o% is the noise
power spectral. This power spectral is estimated by the up-to-
date B-E-DATE method [20].

For assessing speech quality and intelligibility yielded
by the denoising algorithms, some objective and pseudo-
subjective quality and intelligibility criteria were used. Speech
quality is firstly measured by the segmental SNR (SSNR)
objective criterion and the overall quality pseudo-subjective

criterion based on multivariate adaptive regression splines
(MARS_ovl). The SSNR values were clipped to [—10, 35 dB]|
to bypass the use of a silence/speech detector [4, pp. 480].
Criterion MARS_ovl enables to predict the rating of overall
speech quality [22]. It is the function of some widely used
measures [takura-Saito distance (IS) and perceptual evaluation
of speech quality (PESQ) [22].

Secondly, speech intelligibility was initially evaluated by the
short-time objective intelligibility measure (STOI), which has
high correlation with intelligibility measured by listening tests.
In general, STOI measures the mean correlation of clean and
enhanced speech coefficients calculated by regrouping DFT-
bin coefficients in the time-frequency domain [23]. A logistic
function is applied to STOI measures to map intelligibility
scores :

100
STOI) = 17
i ) 1+ exp(a x STOI + b)’ a7
where, for fitting with IEEE sentences, a = —17.4906 and

b =9.6921 [23].



The average results for different noise types and SNR values
are shown in table IV. For each SNR, each type of noise, each
given criterion and each pair of results provided by STSA and
SBSA or by LSA and SBLA, the value in boldface points out
the best result. For each SNR, each type of noise and each
given criterion, the value in red emphasizes the best result.

The proposed SBSA and SBLA techniques outperform the
reference methods in almost every case. Especially, the SSNRs
obtained by SBSA and SBLA are always higher than those
yielded by STSA and LSA. The influence of the proposed
methods in terms of STOI is more emphasized at low SNRs.

V. CONCLUSION

In this paper, we have proposed a novel method to enhance
speech contaminated by non-stationary noise. This method
takes advantage of two familiar approaches include sigmoid
shrinkage and MMSE. Initial tests conducted on the NOIZEUS
database confirm that this approach is promising. Although the
performance gain compared to reference methods is not very
large, the approach however tends to provide some gain in
almost every situation with parameters roughly fixed via some
preliminary experiments. This indicates that the combination is
a good strategy. Since the algorithms involved in our approach
are based on a theoretical background, which is not dedicated
to speech signals, it can be wondered whether the parameters
of the SSBS cannot be chosen theoretically or even adaptively.
Hence, future work will focus on the computation of these
parameters with regard to the unavoidable trade-off between
false alarm and miss detection probabilities. In addition, for
more improvement, some estimators other than STSA, could
be considered. The idea would be that combining the SSBS
smooth binary masking with most non-parametric estimators
bring better results and robustness.
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