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ABSTRACT. The definition of ‘definition’ cannot be taken for granted. The problem has been treated from 
various angles in different journals. Among other questions raised on the subject we find: the notions of concept 
definition and concept image, conceptions of mathematical definitions, redefinitions, and from a more axiomatic 
point of view, how to construct definitions. This paper will deal with ‘definition construction processes’ and aims 
more specifically at proposing a new approach to the study of the formation of mathematical concepts. I shall 
demonstrate that the study of the defining and concept formation processes demands the setting up of a general 
theoretical framework. I shall propose such a tool characterizing classical points of view of mathematical 
definitions as well as analyzing the dialectic involving definition construction and concept formation. In that 
perspective, a didactical exemplification will also be presented. 
 
KEY WORDS. Concept formation, definition, discrete straight line, processes of definition construction. 

1. INTRODUCTION 

There is a far cry between the situation of the student striving to grasp a new mathematical 

concept and the neat definition produced by a mature professional mathematician. To 

understand how concept formation works implies exploring the wide field of mathematical 

definitions considered as concept holders. How can we reconcile rigour and clarity with the 

universe of trial and error, misdirected moves jostling with sudden insights in which the teacher 

and students labour? It is precisely in those arduous moments though, that our students need our 

help most.  

So as to map the terrain provisionally with definitions serving as temporary markers for 

concept formation, we have, therefore to work out a theoretical framework through empirical 

research. Although definition construction has admittedly a place in mathematical research, 

precious little has been written on the subject in specialised journals. However, several features 

of definition are commonly accepted as crucial (Zaslavsky-Shir, 2005)1. A frequently used 

approach to definitions leads us to consider that a clear definition is a part of a theory (Mariotti-

Fischbein, 1997). 
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Bearing in mind the aforesaid situation, I note: Lakatos (1961) worked simultaneously on 

concept formation and definition construction: “A definitional procedure is a procedure of 

concept formation” (p. 54). Lakatos contributed to the debate on formulating a model of 

mathematical discovery while integrating both the social and the conceptual aspects.  

Freudenthal (1973), Mariotti & Fischbein (1997) and Borasi (1992) have pointed to some 

didactical situations involving defining processes in geometry. The theoretical tools mobilized 

by them did not focus on the definitional procedure itself. Moreover, classification and 

redefining tasks are actually only the tip of the iceberg consisting of Situation(s) of Definition 

Construction (called from now on SDC(s)).  

The proposed theoretical framework will extract tools from existing didactical and cognitive 

theories (Vergnaud and the theory of conceptual fields, 1991; Vinner and the concept image for 

instance, 1991). This will lead me to a characterisation of Schoenfeld’s “problem-solving 

heuristics” (1987, p. 18). I shall adopt a pragmatic position about “problem” and “problem-

solving”, and focus on the characterisation of situations so as to diagnose students’ heuristics. 

This approach will be boosted by an analysis of historical and present uses of mathematics (e.g. 

D’Ambrosio, 1993; Lave, 1988; Nuñes et al., 1983; Sierpinska 1989; Thurston, 1994).  

Tall (2004, p. 287) gains “an overview of the full range of mathematical cognitive 

development” by scanning a whole range of theories. A global vision of mathematical growth 

then emerges, making room for three worlds of thinking: the “embodied world”, the “proceptual 

world” and the “formal world”. In this way, a more coherent view of cognitive development 

may be obtained. Endorsing this point of view, I will question the place of definitions in such a 

theory. “Formal definitions” admittedly belong to Tall’s “formal world”. What happened before 

the “smooth” definitions were arrived at? What were the heuristic processes involved? Although 

the apprehension of new mathematical concepts began in the “embodied world” through 

perception, I still assume that the “proceptual world” is not always adequate to characterize a 

concept which is being constructed. So how are we going to grasp the dialectic between concept 
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formation and definition construction within this theoretical range? I think we can safely assume 

that there is another world, different from the “embodied”, “proceptual” and “formal” worlds, 

which is both transversal and complementary, fostering the characterisation of mathematical 

growth through definition construction processes in particular. 

2 – ELEMENTS OF A THEORETICAL FRAMEWORK FOR THE STUDY OF DEFINITION 

2.1. Concept and definition are didactically far apart 

A definition is commonly identified with its attendant concept. Now Vergnaud (1991, p. 

135) reminds us that a definition on its own will not enable a learner to apprehend and 

comprehend a concept: “it is through situations and problems to be solved that a concept 

acquires meaning”. I shall extend a little Vergnaud’s meaning of the word concept considering 

that “apprehending a concept” implies taking simultaneously all the following elements into 

consideration: examples and non-examples of the concept allowing a first apprehension of the 

concept, the definition(s) of this concept and the proof of their equivalence, several 

representations of this concept, and above all, the situations which allow the emergence of the 

concept and preserve its meaning. Of course, a situation can never be analysed through one 

concept. A well-analysed conceptual field (in Vergnaud’s sense) offers a mine of situations to be 

proposed to students. Let me take an example in geometry. Consider the circle, a figure which 

conveys an impression of perfect transparency and the knowledge of which is often associated 

with its perceptive apprehension, so much so that teachers often confuse the knowledge of the 

geometrical object and the perceptual recognition of that object, a confusion reinforced by the 

existence of a direct construction tool, the pair of compasses. 

Let me now take up the idea of adopting different points of view on that object and of 

studying the situations in which the concept of ‘circle’ will emerge. Traditionally, the 

mathematical definition of a circle is that of a set of points at fixed distance (radius) from a fixed 

point (centre). Artigue and Robinet (1982) have shown that as far as children in the 8 to 9 age 



DEFINITION CONSTRUCTION PROCESSES 

 4 

range are concerned the prevailing conception is that of a regular curvature associated with the 

term ‘round’ in the ordinary meaning of the word. In that case it is obvious that tactile 

associations prevail. From a mathematical point of view, however, defining a curvature and, a 

fortiori, a regular curvature cannot be taken for granted. So as to bypass the notion of curvature 

we could develop an axiom set in which the curvature constitutes a primitive term. That would 

induce consistency in mathematical culture and practise. 

Let me then ask the question differently. Would it be at all possible to define the concept of 

the circle without resorting to the concept of distance? The circle can be conceived as the locus 

of all possible positions of the vertex joining the two other sides of the right triangle with a fixed 

hypotenuse: the concept of distance does not intervene but that of orthogonality becomes 

necessary. From a different perspective, the concept of circle can be grasped through a problem 

of optimization: that has to do with the ancient problem of isoperimetry (Zenodorus 2nd century 

BC; Jacques Bernouilli in the 17th century). The circle is the only curve with a given length 

delimiting a maximal area. 

The example of the circle shows us how important the ability to recognize a concept in 

different situations can be for the learner. 

I have thereby shown that the construction of a definition can be at work in various fields, 

such as optimization, a geometrical characterization in which the perceptive approach plays an 

important part. An axiomatic shift may even turn out to be profitable (going out of the Euclidian 

transformations group to build up a new axiomatic system in which curvature is a primitive 

term). Each of those points of view throws a specific light on the concept of circle. Thus 

different definition construction processes are emerging from this example, the elements of 

which even when still not characterized clearly belong to different orders ranging from 

perception to axiomatic elements. The ambit of my study of concept formation and definition 

building dialectics rests therefore on the designing of situations implying a definition 
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construction process. So I have to set up a theoretical framework enabling me effectively to 

characterise those processes as well as the situations in which they can develop. 

2.2. A dynamic framework for the study of definition construction  

When confronted with a problem, a learner brings into play operational invariants, known as 

schemes. A scheme may or may not have been brought into play previously by the learner. What 

really matters in the determination of those schemes are the operational invariants which 

support the action of students. They can consist in a rule for action, a theorem-in-action 

(Vergnaud, 1991), etc. In any case there is a first emergence of the target concept envisaged 

exclusively as a tool and not as an object. Vergnaud, in a psychological and didactical 

perspective, characterizes the concept through a set of situations which serves as a referent for 

its different properties; the set of the schemes (i.e. ‘known’ or ‘unknown’ strategies) to be 

implemented by subjects engaged in such situations; and the linguistic and non-linguistic forms 

allowing the symbolic representation of the concept, its properties and the procedures of the 

treatment of it. Vergnaud fails to take on board the control processes brought into play by 

students but Balacheff tried to fill that gap (Balacheff & Gaudin, 2002). The aim of the 

epistemological study of the concept of definition I am presenting is twofold. It enables me to 

apprehend a defining process and therefore gives me a chance to capture the finer points and the 

different takes we can have on a concept; and to learn how to behave towards a student who has 

to define. I therefore propose to study definition construction processes through the following 

theoretical methods: 

1) Finding a set of situations or, failing that a ‘fundamental situation’ (in Brousseau’s 1997 

sense) suitable for the concept, that is to say yielding meaning for the concept. The work thus 

assigned to the students implies the construction of the concept and its definitions. I could also 

speak of “problems”, adopting a pragmatic position (as said above). I concentrate on the notion 

of fundamental situation marking out the specificity of my research. 
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2) To characterize mathematically (through an epistemological study of the concept) the 

nature of the definition construction processes in question, highlighting the successive defining 

utterances which emerge as the situation evolves. This of course implies that the definition 

should be considered as provisional. I have to characterize the operators at work along with the 

control processes. These terms will be taken in the natural sense, however I could also define 

them as follows: an operator is a tool for action, it can allow the transformation of the problem. 

This fact is attested by the observation of students’ productions and behaviour. It can be for 

instance a syntactic rule applied to transform an algebraic expression, or a specific treatment of 

a graphical representation. That type of operator obviously depends upon the representation 

system.  

In the wake of Pólya and a long tradition of research on metacognition, Schoenfeld (1985, 

p. 97-143) has shown the crucial role of control in problem solving. The control structure 

allows the observer to describe how the subject judges the adequacy and validity of an action, as 

well as the criteria of the milieu (in Brousseau’s 1997 sense) for selecting a feedback. Thus the 

control structure is constituted by all the means needed in order to make choices, to make 

decisions, as well as to express judgment. From the theoretical point of view, the control 

structure ensures the non-contradictory nature of the conception (in Balacheff’s sense): among 

the control instruments we must find decision tools legitimizing the use of an operator or the 

state of the ongoing problem (the problem should be declared solved or not). But control 

structures are often implicit. The distinction between operators and control structures is not 

absolute. 

3) The systems of representation will be mentioned at the relevant moments during the 

explanation of the operators and controls. I will not be focussing on representation systems 

however. I shall complement the aforesaid elements with Vinner’s notions of concept image and 

concept definition (Vinner, 1991): all the more so since the object I will consider next (discrete 
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straight line) by its very nature calls for the concept of real line, a concept which will elicit a 

particular concept image and concept definition from the students.  

2.3. Token definition construction processes serving as an epistemological reference  

To achieve this, we must have a first rough idea of what such definition construction situation 

and such defining processes could be. That is precisely the aim of my epistemological study of 

the concept of definition. The thought processes of a mathematician creating new concepts can 

never be fully accounted for; as Burton (1999) has shown many features remain implicit. 

Burton’s study exposes a model for ‘knowing mathematics’ but more interestingly in my 

opinion, underlines three main points: ‘you know when…’, ‘you know if it works’ and 

‘knowing is helped by making connections’. We cannot overstress the importance of peer 

exchanges, and active connections have to be underlined in defining processes.  

I consider Lakatos’s works relevant because they seem to bring out the heuristic processes in 

the scientific method. In point of fact Lakatos (1961) proposes different types of definitions 

which could serve to characterize markers in the concept formation progression. Those 

proposals obviously call for special attention and demand an effort at formalisation. Lakatos 

himself did not distinguish those different types of definition. He was content to exhibit them in 

two historic examples. I must begin where Lakatos left off. I shall try and bring out the specific 

insights Lakatos brought to the question of definitions. We know that he was inspired by 

Popper, as well by the essentialists and the nominalists. Let me therefore disentangle his own 

contribution to the definitions from that of his aforesaid predecessors.  

2.3.1. Popper in Lakatos: conjectures and refutations 

Davis and Hersch pointed out that: 

Lakatos argues that dogmatic philosophies of mathematics (logicist or formalist) are unacceptable, and he shows 

that a Popperian philosophy of mathematics is possible. However, he does not actually carry out the program of 

reconstructing the philosophy of mathematics with a fallibilist epistemology (Davis & Hersch, 1981, p. 348).  
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What is actually the Popperian contribution to Lakatos’s epistemology? Popper (1945 & 1974) 

characterises scientific progress through the analysis of competing theories, dismissing the 

Aristotelian notions of essentialism. Definitions thus appear as mere labels introduced for 

brevity’s sake. Popper insists that a theory’s responsiveness to tests is a direct measure of its 

interest. In other words, the main Popperian operator is the generation of refutations through 

counter-examples. As far as meta-scientific knowledge is concerned, resistance to refutations 

proves to be the main control structure. A professional mathematician surely evinces such a 

knowledge which is definitely akin to Vinner’s mathematical maturity and Lakatos’s common 

scientific wisdom (Feyerabend, 1975). Lakatos reconsiders the Popperian refutational stance 

while retaining the importance of definitions in the research process, filling the gap left by the 

nominalist Popperian view. I will then turn back to the Lakatosian point of view later. 

2.3.2. Essentialist and nominalist inspirations in Lakatos’s works 

Lakatos (1961) speaks of ‘problem-situations’ and actually refers explicitly to classification 

activities. He follows the Aristotelian pattern (Aristotle, 1994 & 1997), keeping the method for 

defining by genus and differentia 2. From a mathematical point of view, it consists in searching 

the invariants starting from a given representation of an object. In my view of Aristotelian 

thought, the defined objects pre-exist their definition. 

What are the operators and controls in a defining Aristotelian process? Linguistic and logical 

operators appear in order to elaborate a definitional statement: homonyms, redundancies and 

metaphors are banned as detrimental to the understanding of the mathematical concept. ‘Vicious 

circles’, and then the infinite regression, have to be dodged as well; hence the importance of the 

prime elements in an axiomatic construction. In the end, the aforesaid linguistic and logical 

operators may be also mobilised as controls.  
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2.3.3. Lakatos’s contribution: a heuristic approach to definitions 

Lakatos’s (1961) thought concentrated mainly on the polyhedra and that does not make the 

generalisation of his heuristic processes any easier. However, working on this single example I 

shall attempt to bring out the formalisation of a dialectical process involving concept formation 

and definition construction. I shall present the different Lakatosian kinds of definitions as well 

as the operators and control structures mobilised when we are engaged in working on such 

definitions. Lakatos is actually steeped in the Popperian vision of definitions, and his stress on 

the notion of ‘problem’ is akin to the notion of set of situations included in Vergnaud’s (1991) 

idea of concept. That becomes conspicuous when Lakatos writes: 

There are other ways of communicating meaning than definitions. I, for one, shall initiate my pupils into the 

problem-situation which I am dealing with not by definitions, but by showing them a cube, an octahedron and 

showing that for these V-E+F=2. Then I shall ask for the domain of validity of this formula (Lakatos, 1961, 

p. 69). 

In his attempt to map out concept formation by definitions different in nature, Lakatos 

explains that we can do nothing with a naive concept, because we cannot extend it, unless we 

are able to fit it into a theory; but then the considered concept will not be naive any more! So, he 

focuses his attention on what he called zero-definitions. He is not aiming at developing a linear 

defining process through n-definitions starting from a 0-definition. So, what I will now ask is: 

how are we to recognize zero-definitions? According to what pattern(s) does it develop? I am 

inclined to hypothesize that the naming process plays an important part in that respect 

(according to Pimm’s 1995 remark 3). Zero-definitions, echoing Popper’s opinion about sense of 

words and precision, can assume a denominative function, and are used for practical purposes 

at the beginning of the research process before the proper mathematical terms are defined. When 

a mathematical concept has an obvious heuristic potential, zero-definitions may come naturally, 

according to a guiding principle of “expanding zero-concepts if expansion will be followed by a 

deeper proof-idea” (Lakatos, 1961, rule 4.2.2). This raises the crucial question of the expansion. 

In this context, a zero-definition can either just come to naught or develop into a proof-
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generated definition. The guiding Lakatosian principle is as follows: during a scientific research 

process, there is a progression from zero-definitions to proof-generated definitions (which 

originate in the search for a proof). 

And what about proof-generated definitions? A proof-generated definition originates from a 

proof while stemming from the development of the potential of a zero-definition, and may 

appear as the end product of zero-definition. Now a forceful unexplicated dialectic involving the 

considered proof and the catalysis of proof-generated definition is at work here. The Lakatosian 

notion that a definitional process tends to delimit a concept while preserving a proof or 

extending it in a particularly efficient way is relevant here. 

I shall illustrate the great difficulties I experience while trying to design mathematical 

situations with a proof-generated definition potential by the following quotation from Pimm: 

(This notion) seems particularly problematic in terms of teaching mathematics, because of needing to perceive 

the definition as a tool custom-made to do a particular job that cannot be known by those trying to learn it, 

certainly not with an order of presentation that seems to require definitions to come first (Pimm, 1993, p. 272).  

So, through what kinds of operators can we tease out a zero-definition and how can we 

control a proof-generated definition? The most important Lakatosian operator to be found 

during a research process is certainly the use and the generation of examples and counter-

examples. What Lakatos really shows us is the part played by the peer debate in the generation 

of examples and counter-examples. He is keen to remind us that scientific research starts and 

ends with problems; the expansion of concepts has to stop when the fertilizer becomes a positive 

weedkiller. Seen in this light, the above quotation testifying to the implicit presence of operators 

and controls in a definition construction process actually points to the notions of scientific 

wisdom and mathematical maturity. Anyway, formulating zero-definitions and searching for 

counter-examples for refuting propositions included in potential definitions, leads to re-

formulation, exclusion or inclusion of counter-examples (Lakatos talked of ‘monster-barring 

definitions, capitulation and exception-barring definitions’, when he dealt with the problem of 

‘real’ counter-examples on the one hand and exceptions on the other). Moreover, the assigned 
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function of a definition generates operators. The proof and the proof-generated definitions work 

together, and the denomination process produces zero-definitions. Hence, the attendant 

operators have to do with the test of the validity of a proof. These operators act on zero-

definitions, while the other operators consist in mobilizing linguistic and logical demands. 

Determining the control structures proves to be more difficult. Two levels of determination 

appear. The first concerns the catalysis of the proof: 

The discovery of global counterexamples catalyses proof-analysis (…) Proof-analysis may catalyse the 

discovery of global counterexamples (…) This second catalysis is very important indeed as it shows the role of 

proofs in formation of concepts and growth of theories (Lakatos, 1961, p. 44-45). 

The second is more theoretical and concerns the axiomatic point of view: I shall not develop 

this aspect because it is specific to the above-characterised Popperian elements and because 

Lakatos explicitly and deliberately puts aside axiomatic considerations in order to focus on the 

heuristic process. The synthesised table below situates the different kinds of definition in the 

concept formation perspective. 

Functions of a 
definition 

Reference 
thought 

Strictures on a definition 
(operators and/or controls) 

Level 

To 
communicate,  
to denominate, 

to prove, to 
recognize 

Popperian 
view 

- Non redundancy, minimality 
- Derivative 
- Non-contradictory 
- Non-paradoxical 

(formal definitions) 

Meta-level (inscription 
of a definition within a 
theory, construction of 

a theory) 
 

   Transposition 

To prove, to 
delimit 

 

 
 
 

Aristotelian 
tools 
and 

Lakatosian 
heuristics 

- Logical exigencies (equivalence 
between definitions, existence, 
uniqueness of the defined object) 
Catalysis with the situation and 
proof (proof-generated definition) 
----- 
Temporary denomination (zero-
definition) 
----- 
Reflective process 

Mathematical 
defining process 

 
 
Definition by genus 
and differentia  
 
Heuristic level 

 
Situations:     Generalisation, modelling, relations, classification, problem-situation     

characterisation, construction etc. 
 

Table 1 – Situation of the epistemological formalisations within a defining process 
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2.3.4. Different types of Situations of Definition Construction (SDCs) 

The defining process is threefold: a dialectical process involving definitional procedure and 

concept formation (Lakatos & Problem-situation), a linguistic and logical dimension (Aristotle 

& taxonomy tasks), and finally an axiomatic dimension (Popper & construction of theories). 

This three dimensional approach has prompted me to present a typology of SDCs. The first kind 

of SDCs includes all the problems of ‘Classification’. The next paragraph presents an analysis 

and an implementation of such a SDC. Both Popper’s and Lakatos’s influences will be felt in 

the second and the third types. The set of situations which deal only with ‘theoretisation’ as 

proposed by Popper and his attendant notion of scientific progress cannot be used adequately to 

define a type of SDC: implementing Popperian inspired SDCs in a classroom is simply too 

ambitious in my perspective. I would characterise the set of the Lakatosian problems as intra-

mathematical problems of research of the validity domain of a conjecture. Those problems start 

from a mathematical object accessible by its representation and questionings about a proof. It 

means in particular that the resolution of the Lakatosian problems implies the construction of a 

concept and of its definition. I will then consider from now on that such Lakatosian ‘Problem-

Situations’ constitute a kind of SDC. I shall also introduce a third type of SDC, called 

‘Mathematisation/Modelling’: the characterisation of this type of SDC flows naturally from the 

name it has been given. Let me take an example: “what is the mathematical structure common to 

the quasi-totality of vegetals?”. What is at stake here is to determine a unifying, simplifying 

structure relevant for all vegetals: thus and in so doing we perform a modelling task. The tree 

was the only mathematical structure which occurred to us in this perspective. It is also worth 

noting that the graph theory uses the vocabulary of nature (tree, rooted tree, forest, leaves and 

branches or edges and vertices, etc.). We can reach out to the tree through its representations and 

mentioning the vegetal tree enables us to import specific features while working on inductive 

definitions for instance: “when we cut down a leaf of a tree, what’s left is still a tree” (see 

Ouvrier-Buffet, 2003 a & b).  
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3. A TYPICAL SDC: DISCRETE STRAIGHT LINES 

We can safely hypothesize that some of the students’ prior conceptions of mathematical 

definitions (what definitions consist of or should consist of, the aspect they should assume etc.) 

will play an unpredictable though crucial role during SDCs. According to the particular 

circumstances of a given case they may turn out to be an obstacle, or, on the contrary, a catalyst. 

Let me consider, for instance, a student who would labour under the illusion that there is only 

one good definition for a mathematical concept. The student in question would find it rather 

difficult to engage in the defining process. More importantly, a question should be asked about 

students’ own attitudes towards their own efforts at definition. How aware and creative are they 

in those circumstances? The study reported here is part of a larger project aiming at modelling 

students’ mathematical definition construction processes (freshman year, scientific section). The 

experimental SDCs were conducted according to the epistemological characterisation of the 

types of situations involving a defining process. The students’ own defining processes are 

characterised through markers such as operators and control structures. 

3.1. Why discrete straight lines? 

The mathematical object concerned here is the discrete straight line. Bearing in mind the 

objectives I mentioned, I shall choose a mathematical object putting everybody (all the actors 

involved) on a level playing field. The straight line acts as a referent; discrete straight line is 

accessible through its representation, it is non-institutionalised. (An institutionalised concept is a 

“curriculum” concept i.e. a concept that has a place in the classic taught content.) Delimiting 

what a straight line can be in a discrete context proves to be quite a challenge. Professional 

researchers have several definitions of discrete straight line at their disposal, but the proof of the 

equivalence of these definitions remains worth considering. Research on axiomatic field is still 

in progress: that means that the question of a “good” definition of discrete straight line is 

actually an open and interesting problem. Even when a discrete object seems innocent, a great 
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complexity may lurk behind. From our point of view, the discrete straight line concept makes at 

least two types of SDC possible, considering how easily accessible it can be through its 

perception and the axiomatic prospects it opens up.  

This is why I chose the following methodology: different groups of three or two students 

(freshman year scientific section) took part in the experiment, which lasted from 2 to 3 hours at 

least and was videotaped. An observer was present ready to recall the instructions if necessary. 

So as to describe how defining processes really work and explore in particular the influence of 

an explicit demand of a definition, two situations were conceived with two different starting 

points.  

3.2. Presentation of the experiment 

I focus my analysis on two groups of three and two students, called groupA and groupB 

respectively. 

- For groupA, two SDCs were proposed, without explicit request of definition: a Problem-

situation referring to an axiomatic problématique 4 at first, and a Classification task second. 

The Problem-situation was proposed to students as follows: “We have to colour squares on a 

regular grid map. Draw triangles (colouring squares). Explain your construction.”  

And the Classification situation starts from about ten examples and counter-examples of discrete 

straight lines non-identified as such (see Figure 1 below), and asks explicitly for delimitation 

between straight lines and non-straight lines. 

- For the second group (groupB), I proposed only the Classification situation, with an explicit 

request of definition. The following oral instruction was given to students, with a set of 

representations of discrete objects: “Here are objects which are straight lines, and others that are 

not straight lines. The question is: how to define straight line starting with these elements?”. 

The word “discrete” is not introduced, and, in all these situations, students decide on their own 

accord when their research process of construction of definitions is finished. 
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Figures A Figures B Figures C 

Figure 1 – SDC Classification, discrete straight lines 

I shall analyze the operators and controls mobilised by students as they go about defining 

processes and specify the role and the place of the teacher who now acts as a Manager-Observer 

(coded MO). I shall also measure the impact of the explicit request of definition on the defining 

process. 

3.3. Summary of mathematical problématiques about discrete straight lines 

I shall present first the mathematical potentialities of the discrete straight line concept through 

the notion of zero-definitions and their evolution: zero-definitions, by their essence, underline 

the evolution potential of the defining process.  

To consider a discrete straight line - on a regular grid map, while colouring pixels - can 

generate a reference to a real straight line and thus induce a use of properties of the latter in 

order to define the same object in a discrete context. It can be linked to the redefining situations 

proposed by Borasi (1992) for instance, but in my case, I assume that students are not in a 

position to work on definitions of straight line. What is arguable? From a didactical point of 

view, there is actually no available geometrical definition of straight line, only an analytical one 

in the present French curriculum, in which the perceptive aspect of geometry is predominant at 

the elementary level, and analytical geometry is taking pride of place at the secondary level.  
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A first approach to the discrete straight line concept consists in using the referent real 

straight line as a material support. If we draw a real straight line and choose some pixels crossed 

by it so as to form a discrete straight line, then some criteria of choice have to be elaborated (see 

table 2 below). Thus, different zero-definitions become conceivable: the words in bold type 

mark the orientation of the evolution potential of the zero-definitions (Zdef 1,2,3). 

The second problématique called “regularity” consists in researching a regularity in the 

sequence of stages of pixels (see table 2 below: how can we modify a sequence in order to 

obtain a better regularity?). This problématique brings to us two potentially evolutionary zero-

definitions coded Zdef 4,5. 

Problématiques Figures Zero-definitions 
“Real straight 

line” 
Function of def.: 

to build the 
object 

 
    
               
                    or                      ? 

Zdef1: set of the pixels crossed by a real line. 
Zdef2: set of the pixels “the nearest” to a 
real line. 
Zdef3: set of the pixels “inside” a band 

“Regularity” 
Function of def.: 
to recognize, to 
build the object 

 
 
 

 
 
 

 

Zdef4: sequence of stages of pixels with 
specific properties. 
Zdef5: sequence of pixels’ stages with a 
uniform repartition, non-improved from the 
regularity viewpoint.  

Table 2 - Two problématiques producing zero-definitions of discrete straight line 

A third more complicated approach, axiomatic point of view, consists in questioning the 

mathematical object discrete straight line, bearing in mind our knowledge of Euclidian 

geometry. This approach could lead us to study the intersection of two discrete straight lines, the 

number of discrete straight lines by two given pixels etc. This axiomatic approach is at work in 

the SDC we proposed with discrete triangles. Questions of existence and uniqueness 

problématiques are implied here (see table 3 below). 
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Problématiques Figures 

Existence of the 
intersection 

 
 
 

 
 
 
                  

 

 
The intersection is a square          The intersection is virtual  

Can we speak 
of the 

uniqueness of a 
discrete straight 

line? 

 
 
 

 
 
 

 

Table 3 - Questions of existence and uniqueness 

Engaging in axiomatic problématique carries great difficulty. This approach deals with both 

the perceptive aspect of a straight line (real or discrete) and the axiomatic perspective: how can 

we build a discrete geometrical theory if we would remain close to the Euclidian geometry? We 

are being confronted with two markedly defining styles: a local one and a global-theoretical one, 

the latter mobilizing some implicit skills and knowledge (building a theory and choosing 

definitions among competing definitions for instance). 

To identify the pixels “the nearest” to a real line, while searching for a property relating to the 

sequence of stages (called chaincode string), can lead us to a theorem. Through this theorem we 

can prove the equivalence between definitions derived from both Zdef2 and Zdef5. This 

approach to the discretization of a straight line by checking linearity conditions is directly 

related to number theoretical issues in the approximation of real numbers by rational numbers. 

These linearity conditions can be checked incrementally, leading to a decomposition of arbitrary 

strings into straight substrings (Wu, 1982).  

3.4. A priori overall didactical analysis of the defining situation 

From a mathematical point of view, in terms of definitional processes, the potentialities of these 

two SDCs are attested by the evolution potential of zero-definitions. The experiments I have 
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conducted will bring elements for discussing students’ defining processes: what makes students 

able to take responsibilities and how do they go about it?  

We are now venturing on an uncharted territory. I shall limit my study to the part played by 

the observer and his range of action and I will then present the results of the experiments 

stressing the contribution of a specific theoretical framework to the characterisation of defining 

processes. We are now watching a break from the traditional didactical contract: definitions are 

traditionally given by the teacher. As far as SDCs is concerned, a new didactical contract is 

emerging with the teacher assuming a new role. And we should not forget that working in a 

discrete context is special. In SDCs, and more generally in RSCs (Research-Situations for 

Classroom) (Godot & Grenier, 2004), the MO (Manager Observer) has a specific place. He does 

not necessarily know “the” solution (the definition(s) in our case). That puts the teacher on a 

level playing field with the student. 

My epistemological study brings in elements for characterising the teacher’s guiding style 

during SDCs. Of course I still bear in mind that a defining process is based on four poles: one of 

these poles concerns the construction of a theory (Popper), another deals with heuristics 

(Lakatos), and the two other poles concern the logical as well as the linguistic aspects 

(Aristotle). In this context, the MO may interfere with students’ defining processes through 

logical requests, linguistic or axiomatic demands or supplied counter-examples. The MO may 

also ask students to construct and/or recognize a straight line: that request is obviously related to 

the function of definition. For instance, the two following questions will induce students to 

engage in a new reflection of an axiomatic kind, implying thus a new movement in the defining 

process: “draw a discrete straight line crossing these two given pixels” and “does the definition 

help to recognise or construct the discrete object?”.  

The results below are presented in the light of the different kinds of definitions, mentioned in 

the epistemological study. I shall underline both the operators and controls taking part in a 

defining process. I shall also add a few remarks concerning the guidance of SDCs. 
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3.5. Presentation of the results 

Two main problématiques were tackled by students: they brought several zero-definitions.  

Group Zero-definitions produced Operators, 
controls Final Statement 

Group A 
 

(Problem-
Situation; no 

explicit request 
for definition) 

- Zdef 1,2,3 (abandoned because 
problem of the criteria of choice) 

- Zdef 5 (search of regularity by 
modification of stages) 

Perceptive 
controls 

Arithmetical rule 
involving slope 

 

Group B 
 

(Classification; 
explicit request 
for definition) 

- Zdef 1 (abandoned because of 
the non appropriate use of a ruler 

for a mathematical definition) 
 

- Zdef 4 

Counter-
examples, 

linguistic and 
logical operators; 

Perceptive 
controls 

Repetition of a 
sequence, in the same 

direction. The 
difference between 
two stages does not 

exceed 1. 

Table 4 – A summary of students’ statements and their evolution  

3.5.1. A theoretical framework applied to an experiment: an analysis of groupA (Problem-
situation and Classification task, no explicit definition was requested) 

I identified in the products of groupA zero-definitions involving a real approach, attested by the 

following excerpts: 

(z-def 1) Nicolas: I thought that a triangle was three lines (…) there you are! I’m drawing the three straight lines 

and I’m colouring the parts where the straight line moves up. I’m colouring the squares which are touched by the 

straight line. 

(z-def 2) Rémi: It’s necessary to keep a square crossed (by the line); a square didn’t cross, forget it. And then, 

some squares aren’t really crossed, we have to decide whether we keep them or not … perhaps we shouldn’t.  

(z-def 3) Nicolas: You draw two parallel straight lines … if there is a pixel outside this lane, forget it!  

From the point of view of students at work, the zero-definitions I identified from an 

epistemological point of view boil down to definitions-in-action (Vergnaud, 1991). That means 

that the statements I called zero-definitions are not considered as objects for study by students 

but only as tools: they consist in operational rules, used for the construction of discrete straight 

lines. The students set aside the real approach and the attendant zero-definitions (Zdef 1,2,3), 

and understandably so: the absence of an explicit demand of definition entails the absence of 
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linguistic and logical operators, and students are labouring under the extra difficulty of having 

to choose a couple of points for drawing a real straight line. 

The students focus their research on the following problem: how to draw a discrete straight 

line, two pixels being given. This research leads them to another zero-definition dealing with the 

regularity of the stages of a discrete object. By then they produce a statement which the MO can 

accept as some sort of definition but which is not recognized as such by the learners (they talk 

about an “operational fast rule, without much calculation”). The statement in question involves 

the notion of slope, which considers the number of squares horizontally and vertically. I noted a 

mistake, a square was forgotten in the counting: 

 

Figure 2 - The trace produced by groupA 

(Rule) Rémi: 13 and 10. Here is our rule: I 

divide 13 by 10, I’m getting one. And 13 

minus 10 times 1 is 3. So, I have to colour 

ten times one square and to distribute the 

three remaining squares in order to obtain 

something regular. 

 
The MO proposed then to the students the Classification task, still without any explicit 

request for definition. This second situation followed up the work on discrete triangles: it gave 

students a chance to reapply the “rules” produced before, thereby ensuring a place for the 

validation. In this new situation, the MO could observe what kinds of zero-definitions were 

reinvented and their evolution: such an evolution is expected because the function of the 

definition is now to recognize a discrete straight line and not only to construct it. 

In fact, two zero-definitions (still not considered as definition by students) were mobilized in 

the Classification task. The potentialities of their evolution were suggested by students but were 

not finalized. It concerned Zdef3 (lane) and Zdef5 (search of a regularity by modifications of 

stages). The operational rule used by students was as follows: 
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(z-def 3) Nicolas: If a square is coloured and doesn’t belong to the lane, then the set is not a straight line. And if a 

square is totally included in the lane and is not coloured, then the set is not a straight line.  

As they did not ask themselves whether this lane is unique or not, they missed out the 

questions on the trace of this lane. The search for a regularity by modifications of stages of 

discrete object was included in the following example: 

(z-def 5)   3 – 1 – 3 – 1 … it is not very good … it is borderline …but it could be a straight line. 3-2-1: this is not 

the best sequence … 2-2-2 is the best! 

We were left with an open question: how could we extend a discrete segment? 

Rémi: Straight line … we don’t know if we have defined that. And if we add something to a “piece” of straight 

line, it can become something different from a straight line. 

I call zero-definition 5 a definition which is not verbalised as such by students: they use it as 

an action. The emergence of such questionings (modification of the stages and prolongation of 

discrete segment) does not confer on this zero-definition 5 the status of operational rule.  

I notice some operators like generation of examples in this group, but under no circumstances 

do the few examples and counter-examples built by students act as controls on potential zero-

definitions. There is clearly a discrepancy between the epistemological point of view talking 

about zero-definitions and the students’ real experience concerning definitions-in-action: I 

assume that the lack of an explicit request of definition is not neutral in this circumstance. 

Although the MO had obviously a part to play in students’ research, students remain unaware of 

the potentialities of their zero-definitions. I note that all the operators in relation with linguistic 

and logical aspects were not mobilised and consequently the evolution of zero-definitions was 

blocked. In other words, students did not assume the responsibility of the construction of 

definitions and they did not mention it.  

That leads me to present the main results of the second experiment in which an explicit 

request of definition of “straight line” was being asked.  

 



DEFINITION CONSTRUCTION PROCESSES 

 22 

3.5.2. An analysis of groupB (Classification task, explicit definition was requested) 

I began by introducing some key elements on the students’ concept image about straight line. 

Some aspects of the concept image of straight line are as follows: perceptive regularity, slope 

and infinity of points. This concept image proves insufficient here in view of the difficulty 

surrounding the discrete straight line concept, but it is still integrated into the students’ 

perceptive controls. The main apparent feature of the concept image of “straight line” has to do 

with a physical point of view, connected to the use of the ruler. I should stress here that the 

concept definition of straight line was not mobilised as such by the students, but that did not 

prevent them from recalling well-known situations involving real straight lines, such as 

statistical linear approximation. The role of perception was crucial in that perspective and led to 

a first classification of discrete given objects, with the use of the ruler for drawing a real straight 

line crossing given discrete objects. The ruler was also used for drawing a box enclosing 

discrete objects when possible.  

The accurate study of the passage between the discrete and the continuous points of view, and 

vice versa, led students to give up the use of the ruler: “A definition is something precise, we 

can’t refer to the use of the ruler, we can’t use the trace of a real straight line of a lane in 

particular” (quoting students). Their research was then focused on the characterisation of 

properties of the stages constituting a discrete straight line. The search for regularity by 

modifications of stages of a discrete straight line (corresponding to zero-definition 5) was still 

present. But students’ judgement was only a perceptive one and students were well aware of this 

fact. They changed their point of view of the mathematical object and thus abandoned the 

external referent “real straight line”. The zero-definition finally formulated happens to be very 

close to a present-day mathematical definition. I recognize zero-definition 4 in students’ 

statements, in accordance with our previous mathematical study: “A straight line is the 

repetition of a pattern, and the difference between the lengths of two consecutive stages is less 

than or equal to one”. 
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I noted that the main operators also act as controls. They consist in generating examples and 

counter-examples, and this excerpt points to an entirely conscious process: 

Clara: Now, we didn’t manage to counter-prove (…) I need other counter-examples; (to the MO:) could you 

please give me some more counter-examples? We have to test our definition. 

The explicit request for a definition induced students to undertake a formulation process: it 

generated a form of reflexivity in their efforts at “definition” which triggered off an evolution of 

their definitions. Students are particularly careful about the choice of words, and even suggest 

establishing a glossary so as to define precisely commonly used words such as “stage” and 

“pattern”. Their “classical” conception of mathematical definitions now clearly emerges: 

definitions are to be precise and minimal. The role of the explicit request for definition assumes 

crucial dimension here. Unlike what happened in the previous group, in this case linguistic and 

logical operators lead to conscious work on zero-definitions, while leaving the definitions-in-

action stage. When zero-definitions were effectively formulated, students could work on them, 

and the MO could also interact more with students’ processes. It is noteworthy that when 

operators, controls and zero-definitions are known in advance, acting on the defining process 

becomes possible because we can identify the relevant elements. This is best shown by an 

example. Let me take groupB: the research began with the use of the ruler, the trace of a box 

enclosing discrete objects. Those techniques were abandoned by students because they were felt 

to be inadequate for a mathematical definition: the students found the ruler to be too imprecise. 

Then they specified some characteristic features of a discrete straight line. It should have a 

“pattern”, it should go through a “cycle” (the students actually express the same idea in different 

ways almost as if they had to do with two distinct ideas). And there should be no isolated 

square: students insisted on there being no stage with a length equal to one. 

The MO asked then to trace the straight line going through two given pixels. The students 

resorted to their own perception of the straightness of a line for drawing: 
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MO: You can try to choose two squares. How will it work in this case? How will you join these two squares? 

From what you said previously, can you find tools for drawing the straight line which crosses these squares? 

Clara: If I draw a box … it is difficult to see … I can draw a large straight line, and perhaps, after I shall make it 

thinner? We will have to go back on this idea later … Here I’ve just drawn something which allows me to reach 

this square. But it answers none of the criteria we worked out a moment ago: it has no pattern, no cycle, the 

length of some of the stages is one. Both of us reach the conclusion that is a straight line! 

MO: And if you have to prolong this segment, how would you do it? 

The use of perception is potentially promising but obviously students cannot remain at that 

stage. GroupB became aware of how difficult it was to use the box (uniqueness of the trace of 

the box). Starting from here, students will work at the characterisation of the regularity of 

stages. The importance of the role of the MO becomes apparent: his or her experience of 

epistemological operators and controls equips him with operational levers, which will act 

effectively on students’ defining processes. By asking for the prolongation of a segment, the 

MO introduces the problem of uniqueness of a discrete straight line going through two pixels: a 

means of introducing a viewpoint of the validation of the zero-definition has been found.  

4. CONCLUSION - DEFINING PROCESSES AND CONCEPTS FORMATION 

A theoretical framework, based upon an epistemological and philosophical ground, has been 

proposed in this paper. This formalisation is a multi-purpose one. Firstly, it provides for 

dynamic characterization of recurrent ways of thinking of definitions in mathematics, steering 

clear of a linear presentation of concept formation from the operational level to abstract 

mathematical structures. Secondly, the theoretical framework in question brings an overall 

picture of the mathematical processes of defining, incorporating four main items: formulating, 

logic, heuristics, theorising.  

Designing SDCs in the classroom requires a teacher able to elicit feedbacks from students if 

necessary (particularly if a difficult point has to be tackled). I indicate how the present 

theoretical approach can be used in order to observe and moderate the dialectic between concept 

formation and definition construction. 
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So, the main positive points of SDCs will be the following: SDC(s) give(s) us an opportunity 

to work on scientific processes (construction of definitions and proof in particular). Scientific 

processes are constituted by students’ experiments with different cognitive attitudes: doubting, 

conjecturing, refuting, generating new counter-examples, testing etc. Such research activities 

with SDC(s) enrich and develop students’ conception of the concept of definition in 

mathematics. The question had already been approached by Borasi (1992). And most 

importantly, SDCs are conductive to mathematical concept formation. This fact is attested more 

often by zero-definitions evolution than by proof-generated definitions. The challenge 

concerning concept formation and the nature of the understanding of a mathematical concept in 

a definition construction process is fundamental: I have now to design SDCs taking great care to 

construct a suitable methodology for an accurate evaluation of the impact of SDCs on the 

learning of new concepts in mathematics. Here are my main objectives. This paper tried to open 

up new avenues in that direction. 

Starting from where I leave off, it should now be possible to conceive the integration of 

further theoretical perspectives so as to arrive at a finer characterization of defining processes. A 

close observation of the students’ defining processes raises the teacher’s awareness of those 

aspects of a concept students are more likely to respond to. A gate is now open on students’ 

potential difficulties during the process of learning to refine concepts and formulate definitions. 
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1 “The imperative features relate to the following requirements: a mathematical definition must be non-
contradicting (i.e., all conditions of a definition should co-exist), and unambiguous (i.e., its meaning should be 
uniquely interpreted). In addition, there are some features of a mathematical definition that are imperative only 
when applicable: A mathematical definition must be invariant under change of representation; and it should also be 
hierarchical, that is, it should be based on basic or previously defined concepts, in a non-circular manner” 
(Zaslavsky & Shir, 2005, p. 319). 
 
2 That is to say: to indicate what specific object a word means, to identify a larger class within which that object 
falls, and then to try and see what distinguishes it from the rest of that class. 
 
3 “Most importantly, naming is one of the fundamental activities of mathematics. It is far from passive; on the 
contrary, it allows mathematics to be done [and more]” (Pimm, 1995, p. xiv). 
 
4 I use the French word “problématique” in the following sense: the problematic area of a subject (Oxford Shorter 
Dictionary). 


