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A mathematical experience involving defining 
processes: in-action definitions and 
zero-definitions 
Cécile Ouvrier-Buffet 

Reference: OUVRIER-BUFFET, C. (2011). A mathematical experience involving 

defining processes: in-action definitions and zero-definitions. Educational Studies in 

Mathematics, 76(2), 165-182. 

ABSTRACT. In this paper, a focus is made on defining processes at stake in an unfamiliar situation 

coming from discrete mathematics which brings surprising mathematical results. The epistemological 

framework of Lakatos is questioned and used for the design and the analysis of the situation. 

The cognitive background of Vergnaud’s approach enriches the study of freshmen’s processes at 

university. The mathematical analysis and the results specifically underscore the in-action definitions 

and the zero-definitions and highlight the need of similar mathematical experiences in education, 

particularly focused on defining processes and the exploration of a research problem.  

KEYWORDS: zero-definitions; in-action definitions; proof-generated definitions; 

concept image; displacements; regular grid; discrete mathematics. 
 

Defining processes represent a specific constant of language and of human thought. 

A definition can be a statement given in order to know what one talks about (such as 

declarative Euclidian definitions). Besides, defining is often perceived as a 

meta-process or as formal thinking (Tall, 2008). However, it is also a heuristic 

(in Schoenfeld’s sense, 1985) of the mathematical practice. Indeed, Lakatos (1961, 

1976) has exemplified how a search of a proof can make room for a new concept, and 

thus for defining processes. In this article, I propose to focus on a 

mathematically-centered perspective, questioning more specifically the defining 

processes in a pre-formal axiomatic activity, from an epistemological point of view. 

In order to achieve this goal, I will follow Pimm, Beisiegel, and Meglis (2008) who 

“(...) encourage a new look at and a recognition of Lakatos and his intentions as 

opposed to what they have become.” (p. 478). 
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 In the first section, I will explore and propose the broad outlines of a 

framework inspired by the one of Lakatos which can be useful for the analysis of 

defining processes. Section 2 is devoted to a didactical situation implemented with 

freshmen at university. The designed framework is used for the analysis of this 

situation which deals with discrete mathematics. The experimental results of the 

intervention are presented. The work expounded in section 2 states the potentialities 

and the limits of the Lakatosian tools and situations. It also extends results of a 

previous research (Ouvrier-Buffet, 2006). The concluding section highlights new 

perspectives for the situation and for the defining processes presented in this article. 

1. A framework for the conceptualization of defining 
processes 
1.1. A specific light on defining processes 

Some researchers have been interested in characterizing the heuristics and behaviors 

of mathematicians (e.g. Burton, 2004; Carlson & Bloom, 2005; Schoenfeld, 1985). 

But little can be found about the characterization and the importance of defining 

processes, except when these are connected to proof. As commonly admitted, a proof 

may demonstrate a need for better definitions, one of the functions of a proof being 

the exploration of the meaning of a definition or the consequences of an assumption 

(Hanna, 2000). This is surely one of the ways to work with definitions and 

mathematical understanding in the classroom, as well as enriching the students’ 

concept images (Tall, 1991; Vinner, 1991). I will propose another way. I consider 

that definitions are temporary statements giving us information about the stages of 

concept formation at the dialectic interplay with proofs. Dealing with the 

coemergence of definitions and proofs (such as the Lakatosian continual process of 

conceptual revision) is therefore tempting. My goal is to throw a specific light on the 

students’ concept formation through the investigation of defining processes involving 

unfamiliar concepts. I will now focus on the Lakatosian definitional procedure as a 

framework.  
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1.2. What can we learn from the Lakatosian view? 

1.2.1. (A part of) an epistemological model of the defining processes 

Lakatos attempts to present patterns of mathematical reasoning where each character 

of his dialogue represents a particular epistemological and philosophical tendency. 

Inspired by Pólya and Popper, Lakatos deals with the context of discovery (with the 

construction of conjectures) on the one hand, and the context of justification (with the 

evaluation of conjectures) on the other hand, emphasizing the social dimension. 

When concepts progressively develop so that they can be used to help solve 

problems, they do so in stages. Initially, they take the form of tools, followed by one 

of objects, then of foundations finally becoming formal theories. I refer to Lakatos’ 

thesis (1961) because it highlights the construction of definitions and mapping, then 

the formation of concepts with three kinds of definitions: the naive definitions, the 

zero-definitions and the proof-generated definitions, whose respective functions are 

to denominate, to communicate a result and to prove. A naive definition can be stated 

first, but it cannot evolve, contrary to a “zero”-definition that marks the beginning of 

the research process. A zero-definition can be modified in order to protect the 

primitive conjecture from a “monster” (i.e. a new kind of object), or because the 

concept is altered by the presentation of a proof. This is the place for growth of a 

system of concepts, and then a zero-definition turns into a proof-generated definition: 

it is impossible to get to the proof-generated definition stage without the proof-idea. 

 I insist on the fact that the processes described by Lakatos depend on a 

restrictive starting situation consisting of: a situation of classification (which 

delimitates what the class of polyedra is), an initial conjecture (Euler formula), and a 

proof (that of Cauchy, where a change of thinking is required because it implies a 

topological view), where non-naive protagonists already have representations of 

concepts at stake (polyedra). The lack of counterexamples seems to be the only end 

criteria of the defining process. In fact, Lakatos leaves the first encounter with a 

mathematical object and the construction of a global axiomatic system aside. For 

educational issues, it is therefore necessary to continue the study of what comes 

before and after Lakatos’ definitional procedure. One has to explore the pragmatic 

defining process first. The concept of zero-definition can be useful for didactical 
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issues (I will exemplify this in section 2) because it attests to a commitment in a 

defining process, by avoiding the formal, logical and axiomatic rules that the 

canonical definitions should follow. 

1.2.2. An operational framework? 

Freudenthal (1973) has proposed a distinction of defining activities, which has 

impacted several studies: descriptive (a posteriori) defining (systematization of 

existing knowledge) and constructive (a priori) defining (production of new 

knowledge). In these studies (Borasi, 1992; De Villiers, 1998, 2000; Larsen & 

Zandieh, 2005, 2008; Ouvrier-Buffet, 2006), two main theoretical tools are used, 

depending on the mathematical concepts involved: Van Hiele levels for geometrical 

concepts and Lakatosian tools for others. 

 Larsen & Zandieh (2008) focus their work on proofs and refutations in 

constructive defining situations designed and managed like that of Lakatos where the 

students have to (re)define concepts in a new system of constraints (triangle on the 

sphere for instance). They present proof as a motivation for defining, as a guide for 

defining and as a way to assess defining, in the same way previously quoted by 

Hanna. They underscore that “the formulation of a definition in a classroom 

community can evolve through processes like those described by Lakatos” (p. 206). 

They also show that the Lakatosian stages of proofs and refutations provide a useful 

framework for the analysis of students’ research activity of reinvention, but they do 

not focus on the defining process itself as Lakatos (1961) does.  

 I have previously presented an epistemological framework taking into account 

several conceptions: the Aristotelian one, the Popperian one and the Lakatosian one 

(Ouvrier-Buffet, 2003, 2006). I have shown the ability of students to make a 

zero-definition evolve with the lack of counterexamples and with the reinvestment in 

a proof. I have also outlined some features of the teacher’s guidance in situations of 

classification involving unfamiliar but graspable concepts for students.  

 The following questions have not yet been explored: Is it possible to design 

less restrictive defining situations than the Lakatosian one? To what extent is the 

Lakatosian framework operational and sufficient to analyze defining processes from 

both a mathematical and a didactical point of view?  
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 I will now propose a mathematical problem, still partially open in the ongoing 

professional research, which has a twofold interest:	

• The Lakatosian kinds of definitions can be used as epistemological tools for 

characterizing the construction of new concepts. They impact the design of the 

didactical situation, which is also analyzed with the Theory of the Didactical 

Situations (Brousseau, 1997);	

• It was proposed to freshmen at university: the concepts at stake (those to be 

defined) in this situation are partially unfamiliar for these students and the results 

(those to be conjectured and proved) are unfamiliar and mathematically 

surprising.	

2. Displacements on a regular grid 
2.1. Presentation of the discrete problem  

Discrete mathematics arouse interest because they offer a new field for the learning 

and teaching of proofs (Grenier & Payan, 1999; ZDM, 2004). Besides, Goldin (2004) 

emphasizes “how experiences in discrete mathematics may provide a basis for 

developing powerful heuristic processes and powerful affect” (p. 58). The situation of 

displacements on a grid described below illustrates concepts which belong to several 

branches of mathematics. These concepts are particularly meaningful in the discrete 

case. Moreover, this discrete situation leads to Uhlig’s (2002) essential exploration of 

intuitive questions: “What happens if? Why does it happen? How do different cases 

occur? What is true here?” (p. 338), avoiding the definition-theorem-proof model of 

mathematics (Thurston, 1994). 

 Let G be a discrete regular grid (a regular tessellation). In this article, G is a 

squared one. A point of G is a point at the intersection of two lines. A displacement 

on G is defined with two positive integers and two directions (up, down, left and 

right). For instance, “2 squares right and 3 squares down” is a displacement. It can be 

represented with a vector, even if this representation is already considered a 

modelling of the problem.  

The general “formal” problem (P) is the following: let Ek = íd1, ..., dký be a 

set of k displacements di, k ≥ 1 and 1 ≤ i ≤ k. Starting from a point of G, any 
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one, which points of the grid can one reach using nonnegative integer 

combinations of displacements of Ek? 

Comments: the following mathematical analysis is still valid for 

displacements and their opposite displacements. Note that the order of the 

displacements does not interfere because combinations of displacements are 

commutative (this is not obvious a priori but it can be easily proved). 

 I will now deal with the Lakatosian way of focusing on definitions to develop 

the mathematical analysis of this problem, which allows the mapping of concepts 

formation with zero-definitions. The didactical variables, and then the didactical 

situation, will emerge from this analysis.  

2.2. Study of problem (P) through defining processes 

There are several tracks for studying problem (P). Each of them brings forth 

zero-definitions and underlying questions. The concepts to be defined and the linked 

queries are in bold types.  

2.2.1. Studying small cases 

Let me begin by studying small cases, where k≥2 (it is obvious that any E1 does not 

generate G). 

 With a set E2: no set of two displacements allows access to all the points of G. 

With any E2, either all the points of a sector of the grid (i.e. a set of points bounded 

by two rays) are reached (Fig. 1), or some points of a sector are reached (Fig. 2). 

   

Fig. 1	 All the points of a sector are reached Fig. 2	 Some points of a sector are reached 

 

 With a set E3: if we try to build a generating set with three displacements, 

taking into account what happens for the sets E2, we can use Figure 1 left. These two 
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“unit” displacements allow us to go everywhere within a sector (I call this property 

with full density). And we had to add at least one displacement in order to reach 

other sectors of the grid. A geometrical argument (translation of the sector reached 

with the two unit displacements) brings us a third displacement (Fig. 3). 

 and	  or  
 

Fig. 3	 Construction of a generating set with 

3 displacements 
Fig. 4	 A set of 3 displacements with the 

ALBE property, without the FD property 

 Any 3-uplet of displacements does not allow us to go everywhere on G: 

on Figure 4, we can go a little bit everywhere (ALBEi), but without full density 

(FD). Therefore, two properties break away from these examples. We can 

“zero-define” them as follows:  

•  FD: all the points of a sector of the grid are reached; 

•  ALBE: a set of displacements has the ALBE property if there exists a positive 

number M such that for any point X in the grid there exists a reachable point, 

“close to X”, i.e. whose distance from X does not exceed M (it is possible to 

avoid a metric here altogether). 

 We can reach all the points of the grid when these two properties are satisfied 

simultaneously: they imply a zero-definition of a generating set. 

 

           With a set E4: there exist obvious sets of 

displacements that allow all the points of G to be 

reached (Fig. 5), that is the reason why the study of E4 

can precede that of E3. 

 
Fig. 5	 A minimal generating 

set with 4 displacements 

 Now consider the grid with the two directions horizontal and vertical. In order 

to reach all the points of a horizontal line, we have to reach the points 1 square to the 

left and 1 square to the right (of the starting point, any one). The same idea applied to 

the vertical line leads us to conclude that if we can reach the four cardinal points, it is 

possible to reach all the points of G. Moreover, such a set is minimal 
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(see sub-section 2.2.2). How can one build other generating sets? Do such sets 

exist? Do they have other mathematical properties?  

2.2.2. Reciprocal problem and minimal aspect 

A new question emerges: is it possible to remove a displacement of Ek without 

changing the set of reachable points? We can say that Ek is minimal when removing 

any of its displacements modifies the set of reachable points (note that it is sufficient 

to check if the FD and the ALBE properties are kept to prove the minimal aspect). 

With this definition, how to characterize a minimal generating set of 

displacements? Do the minimal generating sets of displacements always have the 

same number of elements (i.e. the same cardinality)? The answer is obviously no 

(see Fig. 3 and Fig. 5). Let me now go further in the direction of the cardinality. 

2.2.3. Discussion on the minimal generating sets and their cardinalities 

The exploration of E3 and E4 showed us that minimal generating sets could have 

different cardinalities. We can bring problem (P) back to a problem on ℤ (as done 

with E4) to use known results about number theory.  

Building minimal generating sets on ℤ 

We can choose coprime numbers (i.e. their gcd is equal to 1). Thus, the FD property 

is true for integers with the possible exception of a finite number of pointsii 

(cf. Bezout’s lemma). Some of these coprime numbers should be negative in order to 

go ALBEiii. We can therefore build several minimal generating sets of displacements 

with different cardinalities on ℤ. It leads us to this surprising result:  

Proposition 1: for any integer k, there exist, in ℤ, minimal generating sets of 

displacements with k elements. 

 The previous analysis gives the elements to write a constructive proof. 

Therefore, the cardinality of minimal generating sets of displacements of ℤ is not an 

invariant feature. The reader can consult the wider and more complex NP-Hard 
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Frobenius Problem (Ramirez-Alphonsin, 2006), also called the “coin problem”, 

which is close to (P).  

Building minimal generating sets Ek on G 

And now, if we want to build a minimal generating set Ek, we can use the previous 

result and keep in mind the horizontal/vertical representation. We have to choose 

displacements carefully, in order to keep the minimal aspect. 

Therefore, one has the following proposition: 

 Proposition 2: for any integer k, there exists, on G, minimal generating sets of 

 displacements with k elements. 

 But, if k is given (as big as one wants), we do not know how to construct 

all the minimal generating sets of displacements. This is an open question. A track 

to explore it is to study how to convert a minimal generating set into another using 

geometrical transformations on the grid. Other ways to explore problem (P) such as 

algebraic and algorithmic tracks exist. 

 I will now summarize the situation and enlighten it through potential defining 

processes by characterizing didactical variables. 

3. The didactical situation 
3.1. Context - Methodology 

This activity was carried out with two classes of students from scientific and 

non-scientific courses (freshmen year), during the academic term. The methodology 

used for this activity consisted in putting students into groups (six groups of 3 or 4 

students in each class) in order to facilitate exchanges and discussion, which were 

audio-taped. Their written productions were also collected and the students were 

asked to write a research report after the experiment. The students who took part in 

this experiment are used to working in groups, and writing research reports. 

The teacher took the position of a Manager-Observer (MO, in Ouvrier-Buffet’s sense, 

2006). The situation consisted of three problems. The intervention lasted three hours. 

The general instructions were the following: 
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“We will take an interest in the displacements on a regular squared grid. 

For each problem (Table I), we will use a set of displacements and choose 

a starting point (called A), any one. The questionsiv are: 

1- Starting from point A, which points of the grid can we reach? 

2- What are the consequences if we remove one or more displacements?” 

Table I The problems which make up the situation 

Problem Sets of displacements 

Problem 1 d1: 2 squares to the right and 1 square up.  
d2: 3 squares to the left and 3 squares down. 

Problem 2 d1: 2 squares to the right and 3 squares up. 
d2: 5 squares to the left and 2 squares down.  
d3: 5 squares to the right and 3 squares down. 
d4: 1 square to the right.  

Problem 3 d1: 3 squares to the right and 3 squares up. 
d2: 2 squares up.  
d3: 1 square to the left. 
d4: 1 square to the left and 3 squares down.  

3.2. A priori analysis 

I have tried to design a milieuv that allows the devolutionvi of the discrete problem 

(Brousseau, 1997). Let me explain how I have set the didactical variables and dealt 

with the devolution of the situation. 

3.2.1. Didactical variables and zero-definitions 

The design of a didactical situation that focuses on defining processes depends on 

the potentialities offered by the zero-definitions connected to the topic, which are 

codependent on the questions that the solver explores. Three main didactical variables 

emerge through the mathematical analysis: 

• The number of displacements: the exploration of small cases leads to several 

zero-definitions which can evolve into new zero-definitions;  

• The queries: the various paths explored highlight different zero-definitions. 

For the guidance of the situation, design instructions have to be selected 

(to explicitly question the minimal aspect or not, to explicitly ask for a definition 

or not, to engage students in a proof process or not, etc.); 

• The nature of the tessellation: other modellings can appear and then the question 

of the generalization of solutions. 
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 I have chosen to avoid a guidance of the situation such as the Lakatosian one. 

The MO does not ask for definitions or the minimal aspect or proof. I will now show 

that the zero-definitions focusing on the “generating” aspect have a real potential 

evolution through the situation itself. 

Zero-definition of a generating set 

A natural definition can be: a generating set is a set of displacements which allows 

access to all the points of G. It is not operational to build such sets (except in the 

graphic register, with only two displacements) and it is very demanding if we want to 

check whether a set of displacements is a generating one. Thus, such a zero-definition 

should evolve in a problem where the number of displacements is greater than 2. 

It can evolve into an operational definition including two properties, namely ALBE 

and FD. Zero-definitions are validated by the exploration of small cases, and the use 

of them for proving that a set is a generating one testifies to their local validity.  

Zero-definition of a minimal generating set 

A first zero-definition can be: a minimal generating set of displacements is a set of 

three displacements allowing access to all the points of the grid. This definition 

can emerge during a problem E2 or E3 or a problem E4 where two displacements 

are dependent for instance. Solving a problem E4 where the four displacements 

are independent allows the invalidation of this zero-definition. 

 A second zero-definition can be: a minimal generating set of displacements 

is a set of non-dependent displacements (this zero-definition has a geometrical root; 

it can mobilize knowledge on collineation of vectors in the plane and coplanarity 

in space). 

 The status of these zero-definitions should evolve to that of proof-generated 

definitions, through the following proof path: from proving the existence of minimal 

generating sets of displacements, to building such sets, to proving that a set is 

a generating one and to proving that a set is a minimal generating one. 
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3.2.2. Specificities of the three problems 

Problem 1 

Only some points of a sector of G can be reached with the two given displacements. 

The ALBE and FD properties are not verified herevii. This problem allows students to 

engage in the situation, to assimilate the rules of the displacements and the questions. 

Students should conjecture that: in order to generate all the points of the grid, more 

than two displacements are required. Therefore, this first problem has two main 

interests: 

• The situation is different from the continuous case. Problem 1 dismisses possible 

students’ pre-existent concept images coming from vector space of dimension 2 

where two vectors are enough to build a basis. 

• It can allow the emergence of a conjecture and of zero-definitions of the ALBE 

and FD properties. 

Problem 2 

The set of the four given displacements is a generating one: one can prove that the 

four cardinal points can be reached with the displacements. Is it a minimal one? 

We can remove one well-picked displacement without changing anything to the 

generating aspect. The notion of dependency can also emerge here. In fact, if we 

remove d3 or d4, the generating property is preserved because d3 is a positive integer 

combination of d1, d2 and d4, and d4 of d1, d2 and d3. Thus, the sets {d1, d2, d3} and 

{d1, d2, d4} are both generating ones. And they are necessarily minimal because two 

displacements are not enough, as seen in problem 1. This problem leads to the proof 

that: three displacements can be enough to generate all the points of the grid. This 

does not allow a conclusion that all the generating sets are made up of three elements.  

Problem 3 

The main goal of the third problem is to demonstrate that three displacements are not 

always enough. In fact, the set presented here features four displacements and is a 

minimal generating one. So, we can reach the following result: the corollary of the 

exchange theorem (i.e. the existence of dimension, true in a vector space) is false in 

the discrete case.  
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 How to prove that it is not possible to remove one displacement of this set? 

We can prove that it is not possible to write a di using the three others (algebraic 

resolution) or we can prove that the removal of one of the di implies the loss of the 

ALBE or of the FD property. 

 There are four subsets of displacements with a cardinality of 3: {d1, d2, d3} 

{d1, d2, d4} {d1, d3, d4} and {d2, d3, d4}. Figure 6 covers the cases to study. 

               {d1, d2, d3}    {d1, d2, d4}       {d1, d3, d4}    {d2, d3, d4} 

Les paramètres nécessaires sont manquants ou erronés. 

    ALBE is 
    not verified 

ALBE is verified (geometrical argument), 
what about density? 

     ALBE is 
   not verified 

Fig. 6 Subsets composed of three of the four displacements  

 For the subsets in the middle, we have to verify the FD property. These 

subsets have d1 and d4 in common. We can study the points generated by {d1, d4} and 

add d2 or d3 in order to characterize the points which can be reached using these 

subsets. We can do this graphically or by making an arithmetical comment: on the 

vertical, the displacements d1 and d4 can generate only multiples of 3. Thus the points 

with coordinates (x; 1 mod 3) and (x; 2 mod 3) (x is an integer) cannot be reached 

with d1 and d4. 

• If we add d2 to {d1, d4}, d2 brings an even vertical component. Therefore, more 

points are reached. But horizontally, there are some non-reached points. In order 

to prove that this subset {d1, d2, d4} does not allow to go everywhere with FD, 

it is sufficient to find a non-reached point. Using arithmetic means, we can prove 

that the point (0 ; 1) cannot be reached. Therefore, {d1, d2, d4} is not a generating 

set for the whole grid.  
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• If we now add d3 to {d1, d4}, we can use the same kind of arguments as in the 

previous case in order to prove that {d1, d3, d4} is not a generating set.                                     

Les paramètres nécessaires sont manquants ou erronés. 

 In conclusion, it is not possible to remove a displacement from the given set 

{d1, d2, d3, d4}, otherwise we lose the generating property, either by losing the ALBE 

property, or by losing the FD property. The set {d1, d2, d3, d4} is therefore a minimal 

generating set. 

3.3. Results 

I have chosen groups of students (from scientific courses) who have solved the three 

problems and/or whose strategies involve a variety of ways of reasoning. I give an 

account of the main results regarding the concept formation process that appear to be 

the most significant with respect to the defining process developed above. Three 

groups of students are taken into account for the analysis: the blue one (students 

A/B/C), the yellow one (students D/P/J/F) and the pink one (students S/R/T/Z).  

3.3.1. Summary of students’ productions 

All the groups have dealt with the three problems except for the pink group. 

The representations of the problem used by students were very diverse. They focused 

on the paths (Figure 7 left), on the notion of sector and the reached points (Figure 7 

right) or on algebraic modelling.  

	
	

Fig. 7 Some representations of the problem used by students 

 The blue group gave up the Cartesian equations they used in problem 1 

because of the time-consuming and inefficient aspects of this method. Then, they 

used some knowledge from linear algebra and very quickly investigated the four 
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cardinal points and the ALBE property with linear systems whose resolution was not 

an obstacle for them.  

 Conversely, the yellow and the pink groups considered the distance between 

the discrete problem and linear algebra and geometry (especially in problem 1) and 

excluded their attempt at using standard basis and algebraic modelling. Their work 

was mainly a graphical one and evolved towards the search of four unit 

displacements with a trial and error approach. They took into account directions and 

parities as well as the ALBE property. The pink group approached the notion of 

reached points in a sector but no definitions were stated, in any of the groups. 

3.3.2. The discrete problem: a problem in itself 

Problem 1 presents the situation as different from one in a vector space, as announced 

in the a priori analysis. Students are aware that: “this problem is different from linear 

algebra” because the “rules are different” (the nonnegative integer combinations). 

They also said:  

30 P: It is obvious that you have points that you can’t reach because we 

have these displacements. They are not vectors in fact. If you take vectors, it 

works. Otherwise... (Yellow group – problem 1) 

 After problem 1, all students conclude that “two displacements are not enough 

to reach all the points of the grid”. However, the yellow group continues to think that 

“two displacements can be enough” even if these students had concluded in the first 

problem that it was not possible to reach all the points of the grid with the two given 

displacements: 

 138 P: We have four displacements. We only need two vectors as a basis.”  

 These turns show the persistence of concept images from analytical geometry 

and the need to engage students in refining their concept images in the discrete 

situation. The generalization (from studying small cases) is also an obstacle that 

students encounter. 

3.3.3. The ALBE and FD properties 
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Students have talked about “reached sectors” in their written productions without 

talking about density. Even if the generating aspect is understood in a natural sense, 

the ALBE property is predominant for all the students:  

74 P: We can’t reach the points of this sector. (...) 

97      D: If we use d1, we can’t go higher. And if we use d2, we can’t go 

more to the left. So, we can reach all the points of these parallel lines. And if 

we start from one of these points, and we use d2 or d1, we go back to one of 

these points. We can’t go outside this set of points.  

(Yellow group – problem 1 – Figure 7 right) 

 The notion of sector and the problem of the density in a reached sector appear 

in one group. In the following excerpt, there is a potentiality for the emergence of the 

FD aspect, but the students established no definition:  

1430   R: We noticed that if we remove d4, it is not like removing d2 where a 

whole sector disappears. If we remove d4, a lot of points are removed, but we 

still have points in a whole zone. (Pink group – problem 2) 

 Moreover, a natural definition of “generating set” (“to reach all the points of 

the grid”) has been produced by all the students, but it has not been connected to the 

ALBE and FD properties. It has been transformed into an operational property (“to 

generate four points or unit displacements” – see sub-section 3.3.5).  

3.3.4. Lakatos’ categories of definitions are not enough for the analysis 

The previous Lakatosian analysis focuses on mathematical concepts and problematics 

as more basic than theorems. It provides markers (such as the FD and ALBE 

properties and the questions on minimal aspects) to characterize students’ pre-formal 

defining processes through zero-definitions. However, such an analysis does not take 

in charge the real beginning of the creative process. As seen in the previous 

paragraph, students’ actions include some conceived properties but no 

zero-definitions. Now, how to characterize their process? 

 I have borrowed from Vergnaud’s cognitive point of view to develop another 

aspect of definitions. I extend his characterization of concepts-in-action and 

theorems-in-action (Vergnaud, 1996, p. 225) to in-action definitions and in-action 
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propositions in order to lead an analysis on the students’ invariants in the context. An 

in-action definition is a statement used as a tool (not an object) that enables students 

to be operational without explicit definition. It comes before the zero-definitions 

stage and can be weighed against a zero-definition. In the same way that definitions 

depend on propositions, in-action definition(s) can be linked to an in-action 

proposition (see sub-section 3.3.5).  

3.3.5. An operational property: to generate four cardinal points (or unit 
displacements) 

I have identified two in-action definitions in the students’ productions. There is one 

for a “minimal generating set” (“all the displacements are used during the search of 

four unit displacements”) and one for “non-minimal set” (“when one of them is an 

integer combination of the others”). Students do not define these properties but they 

can be operational with these in-action definitions (see the following excerpt). I can 

connect them to a common in-action proposition: to have the four directions 

represented is a necessary condition in order to have a generating set of 

displacements.  

178 B: In order to go everywhere, you try, and if you find (1; 1), it means 

that you can reach this point. After that, you go on with this system to see if 

you have solutions. You process with (1; -1) in order to see if you can reach 

this point and with (-1; 1) and with (-1; -1). 

179 A: Yes! You can see if you can reach the four points around! 

180 B: Therefore, it means that you can go everywhere. If we can prove 

that, we have no more questions. And if we can’t prove it ... it means that 

there are other conditions, it is complicated, or there is a technique… 

181 A: It is not these four points. We have to take those. 

182 B: Ah yes! We have to take (1; 0) (-1; 0) (0; 1) and (0; -1). We have a 

lot of systems to solve! (they solve systems). There are many solutions, but 

proving that there is one is enough. And this solution should work for the 

others too... 
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199 A: With that, we have proven that we can go everywhere.  

(Blue group – problem 2) 

 At this stage, the students’ process did not move to a generalization that would 

have allowed an evolution of in-action definitions (which could be supported by the 

MO). It is well known that this distance between manipulation and formalization is 

too rarely approached in the teaching process. But there is another hypothesis to 

explain this phenomenon. The students tried to reinvest tools and knowledge from 

their other mathematical courses. 

140 A: In vector spaces, you can remove one element without changing 

anything if it is a linear combination of the others. (...) 

153 B: We have to isolate ... And if we use a matrix? 

154 C: But a matrix, it is to compute the determinant! (...) 

156 A: And what will you do with that? 

157 B: I don’t know!   

(Blue group – problem 2) 

208 MO: What do you mean by linear combination? 

209 P: It means that we can build it with the other two. 

210 D: If we can build one with the others, it is useless... to go everywhere. 

(...) 

256 D: Are the vectors like you said? Generating... and independent. 

257 J: Then, there is only one way to go there with three vectors.  

(Yellow group – problem 2) 

 These two excerpts show that, for some students, the in-action definitions of 

“minimal” or “non-minimal” are actually imported from their linear algebra course. 

This exogenous aspect and the fact that the students usually know formal and 

definitive definitions do not encourage the evolution of their in-action definitions.  

 The guidance of this situation could have evolved towards something more 

focused on the defining process in itself, that is to say explicitly asking for definitions 



 19	

and giving the opportunity to the students to reinvest their results in a proof. I have 

shown that the role of such interventions can be crucial if one wants to leave the 

in-action definition stage in some kinds of situations (Ouvrier-Buffet, 2006). The MO 

has tried to engage students in a formalization of their results, even if it had not been 

planned a priori, but without results: 

262 MO: You have explored several things... there are perhaps some 

properties... 

263 D: Something like a conclusion… 

264 B: Well, to generalize things... starting from examples... we might 

make mistakes!  

265 MO: It would be good if you were able to formalize some things...  

266 A: For instance, if we take three displacements, like this, we can reach 

all the points... making the sum of all the horizontal displacements... 

something like that? 

267 B: And with two vectors, we can’t go everywhere, it is obvious. (...) 

291 MO: This is problem 3. It would be good if you felt the need to verify 

some things from what you have said so far. (Blue group – problem 2) 

 This excerpt underscores the need of a long time format and of efficient MO’s 

requests. To go beyond the in-action definitions stage in this situation seems to be 

difficult in the conditions of this intervention. Indeed, the fact that students used the 

in-action proposition about the four cardinal points impeded their investigation of the 

FD property because in this particular case the ALBE property implies the FD 

property. More generally, we have to engage students in defining processes and 

mathematical explorations more often during their courses at university in order to 

develop their abilities to question concepts and the relations between them. 

 To conclude this article, I will deal with these questions: What kinds of 

didactical perspectives are brought by this situation? What about further studies of 

defining processes in education? 

4. Discussion and new perspectives 
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4.1. Future of the situation 

The results of the intervention show that defining is not as natural as the Lakatosian 

model and the analysis of the situation suggest. It also remains difficult to design 

didactical situations involving defining processes as a necessity for the resolution of a 

problem. Not only because students have not yet encountered such processes, but also 

because “all” the features of the defining processes are not yet elucidated. An 

important part of learning mathematics is actually to become aware of the importance 

of defining just like the importance of proving.  

 The definitions of the involved concepts do not come first in the resolution of 

the discrete problem: they depend on the ability of the solver to question the 

equivalence relation between the properties of some sets of displacements as well as 

to be engaged in a proof process. In this intervention, in order to help students go 

beyond the in-action definitions stage, the MO has to get involved. It could be done 

on a denomination stage (by asking definitions) and more deeply on a proof stage (by 

asking students about existence proofs, construction of generating sets with k 

displacements in order to leave the four cardinal points, cardinality etc.). The MO can 

also question the following equivalence relations to bring new conjectures:  

• “Minimal generating set” is equivalent to “independent” (false in the discrete 

case: {2; 3} is a counterexample for ℕ); 

• “Maximal independent” corresponds to “generating set”. 

 The study of the latter is not easy and implies a definition of “maximal”viii. If 

there is an unreached point, we can add a displacement d allowing to reach this point. 

This new displacement is not a combination of the others. But, in this new set of 

displacements (including d), it is possible that one of them is a combination of some 

of the others including d. This underscores the complexity of the discrete situation but 

also the opportunity to lead students to conjectures and other kinds of reasoning.  

 In short, it seems like the current framework would be useful to analyze and 

boost defining processes. 
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4.2. Nature of a framework to study defining processes  

Lakatos has definitely had an influence in teaching and learning mathematics. 

However, his approach has some limits (De Villiers, 2000; Hanna, 2007). Still, in the 

present analysis, the use of the expounded theoretical elements shows that the 

Lakatosian frame of thinking (especially the zero-definitions) allows a 

characterization of concepts formation. Moreover, such a process enlightens on how 

the concepts at stake are connected and brings a design for a situation as well as a 

first analysis of the students’ tracks. I have shown the need of using another category 

of definitions to analyze the pre–zero-definitions stage: the in-action definitions 

characterize the first encounter with a mathematical object, where students deal, in 

action, with an unfamiliar object or property. We can then determine how the 

students are involved in the defining process, through their actions and their 

discourse. Even if the students mobilized in-action definitions, they were not able to 

coordinate several properties (see sub-section 3.3.5).  

 The framework also brings elements for the MO to make the defining process 

evolve (if it is his/her goal) such as: to help students in the recognition of pertinent 

problems, results and questions; to engage students in a deeper formalization, in 

constructive proofs and in the awareness of constructing, justifying and writing 

definitions. But the MO needs to have had a specific experience in such guidance. 

This is a key point to integrate in the teacher training. Then, a more refined 

theorization of the management of such situations could be done. 

 Other theoretical frameworks should be used to characterize the levels of 

conceptualization of in-action definitions. Indeed, a parallel could be drawn between 

the level of in-action definitions and the interiorization of an operational conception 

(Sfard, 1991) on the one hand, and the APOS theory (Dubinsky, 1991) on the other 

hand - especially the level taking into account an “interiorized process with conscious 

control”. This will be the object of a later article with further experiments, exploring 

how an interiorized process becomes a dynamic one, not only in the action, but also 

in a formalizing process. In fact, definitions should capture our intuitive 

representation of concepts but also a valid pre-formal idea of a concept. Of course, all 

these theoretical tools stress the need of a shift to a more structural level. This shift 
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should lead students to efficient zero-definitions. In order to achieve this goal, the 

guidance of the situation should be clearly definitions-oriented and proof-oriented. 

 There still remains another moment of the mathematical activity to investigate 

more deeply: the conceptualization with an axiomatic change of perspective. The 

movement to greater abstraction being very hard to problematize, it should be taken 

into account too. 

4.3. Towards higher mathematical structures – a link between the 
discrete and the continuous cases 

To study the discrete case is more difficult than to study the continuous case but it is 

also more graspable and it provides a natural exploration of some results that are not 

always true, while avoiding excessive formalism. Indeed, a minimal generating 

system or a maximal linearly independent system are not a basis in the general case. 

The discrete situation allows an access to the reasoning behind the construction of 

concepts and then contributes to the development of proof abilities through an active 

mathematical exploration of the problem (construction of relations between 

properties and proofs of implications). I intend to explore in further interventions how 

that mathematical “discrete” experience would be suitable and valuable at university. 

A comparable study like the one by Harel (1998) is obviously required for such a 

research. 

 The expounded discrete situation also brings opportunities to reinvest the 

constructed concepts and the ways of reasoning in other mathematical fields. It 

actually questions the axiomatic system of the fundamental concepts of linear algebra 

for instance while getting around some well-known obstacles (see Dorier, 2000; 

Uhlig, 2002) and trying to instill a new kind of concept images system. The suggested 

discrete situation is therefore a way to situate linear algebra’s questions in a wider 

context, but more easily than by considering vector spaces over a field as a subsidiary 

notion of modules over a ring. If the discrete problems are sometimes (and even 

often) easier to grasp than the continuous ones, the mathematics behind can be quite 

advanced. Such a discussion leads us to further studies. There is room to explore new 

questions about the teaching of continuous structures, with the help of the discrete 

ones. 
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4.3. Opening 

Are some concepts more conducive to defining situations than others? Any 

mathematical concept being given (or any set of concepts), one can anticipate the 

existence of situations involving defining processes. The situation of displacements 

shows us that abstract concepts can be the core of a defining problematic, even if one 

did not expect it, precisely because of the abstract nature of these concepts.  

 Beyond the concepts themselves, we have to question the place and role of 

discrete mathematics. This comparatively young branch of mathematics brings 

graspable concepts which are fruitful to study defining processes and their links with 

proofs. It also provides a mathematical experience. Discrete mathematics is therefore 

a field of experiments which questions concepts involved in other mathematical 

branches as well. Furthermore, discrete mathematics represents a mathematical field 

which takes a growing importance in our society. We should take this into account 

for educational purposes and investigate this realm more deeply.  
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i Allusion to “almost everywhere”. One can also link this property to the discrete mathematical field of 
“covers” and raise the question of the minimal cover. 
ii To reach 1, some ai must be negative. This is supposed not to be allowed by the discrete problem. On 
the other hand, if negative ai’s are allowed, then there is no need to have a negative number in E to 
reach -1. 
iii If we want to generate ℤ with 4 integers, we build 4 natural numbers which are coprime as a whole: 
for instance 2×3×7, 3×5×7, 2×3×5, 2×5×7 i.e. 42, 105, 30 and 70. After 383, all integers are reached 
(see http://www.math.uu.nl/people/beukers/frobenius/index.html for exploring it). Now, if we take one 
of these numbers as a negative one, we get a minimal generating set of ℤ: {-30; 42; 70; 105}. 
iv There is also a question relating to the paths (“Let’s take another point, called B. Can we reach B 
from A? If so, are there different paths to do it? What does “different” mean to you?”), but due to its 
difficulty, I avoid it here. 
v In the sense of the theory of didactical situations, the milieu includes material or symbolic objects 
that are able to provide feedback to the students’ actions on them. 
vi “the act by which the teacher makes the student accept the responsibility for an (adidactical) learning 
situation or for a problem, and accepts the consequences of this transfer of this responsibility” 
(Brousseau, 1997, p. 230). 
vii The ALBE property is obviously verified for the generated sector (the distance between every point 
of the sector and a reached point is inferior or equal to 1). 
viii For instance: a set of displacements is a maximal one if and even if when one adds a displacement, 
one looses the independence (i.e. some of the displacements become dependent). 


