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Abstract7

The paper presents a new approach to assess the effecctiveness of rockfall protection barriers,8

accounting for the wide variety of impact conditions observed on natural sites. This approach9

makes use of meta-models, considering a widely used rockfall barrier type and was developed10

from on FE simulation results. Six input parameters relevant to the block impact conditions have11

been considered. Two meta-models were developed concerning the barrier capability either of12

stopping the block or in reducing its kinetic energy. The outcome of the parameters range on13

the meta-model accuracy have been also investigated. The results of the study reveal that the14

meta-models effective in reproducing with accuracy the response of the barrier to any impact15

conditions, providing a formidable tool to support the design of these structures. Furthermore,16

allowing to accomodate the effects of the impact conditions on the prediction of the block-barrier17

interaction, the approach can be successfully used in combination with rockfall trajectory simu-18

lation tools to improve rockfall quantitative hazard assessment and optimise rockfall mitigation19

strategies.20

Keywords: Rockfall mitigation, Barrier, Meta-model, Deterministic model21

1. Introduction22

The mitigation of rockfall hazard often relies on passive protective structures such as embank-23

ments, galleries or protection barriers (Lambert and Bourrier, 2013; Calvetti and Di Prisco, 2012;24

Gentilini et al., 2013). Rockfall barriers are the most widely used structural countermeasures for25
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intercepting rock blocks on their route down to the elements at risk. Barriers are typically made1

of different metallic components including posts, net, cables and other connecting components2

which makes their mechanical response very complex to predict.3

As for other passive rockfall protection structures, the design of barriers, as well as the defini-4

tion of the optimum protection strategy for a given site, relies on trajectory simulation results. In5

particular, stochastic trajectory simulation models provide statistics associated to the rock blocks6

paths along the slope as well as their reach probability. The design aims at reducing the lat-7

ter down to a targeted value while considering the former. More precisely, relevant statistical8

descriptors associated to the blocks passing heights and kinetic energies are considered for deter-9

mining the required protective structure characteristics in terms of interception height and kinetic10

energy absorption capacity respectively (Lambert et al., 2013). In practice, the barrier design for11

a given site is mainly based on the comparison of the statistical descriptor of the block kinetic en-12

ergy barrier nominal capacity. This capacity is often obtained following the European guideline13

ETAG 027 (EOTA, 2013), which provides detailed indications on how to test and assess the per-14

formance of a barrier and to obtain the CE marking. Nevertheless, the impact conditions in such15

test, which essentially consist in an impact in the center of a 3-spans barrier by a block without16

any rotation, can be considered not representative of the wide variety of impact loading cases as17

resulting from the interception of blocks on-site. This issue has been long debated over the last18

ten years and several research works have suggested that a test in such conditions may not be19

the most critical, as it neglects the effects of parameters such as the impact point location or the20

incident angle of the block trajectory (Cazzani et al., 2002; Cantarelli et al., 2008; Lambert et al.,21

2009; Chanut et al., 2015). This suggests that current design approaches might be inadequate in22

accounting for the global ability of barriers in arresting the blocks, considering all the possible23

trajectories.24

Improving the design of barriers as well as assessing their efficiency in reducing the hazard25

at the elements at risk requires better accounting for their actual mechanical response to blocks26

impacts. This may be undertaken making use of suitable numerical tool, among the various ones27

that have been developed over the last 20 years, with increasing complexity with either finite28

or discrete element models (FEM or DEM resp.) (Nicot et al., 2001; Volkwein, A., 2005; Got-29

tardi and Govoni, 2010; de Miranda et al., 2010; Bertrand et al., 2012; Gentilini et al., 2012,30

2013; Escallòn et al., 2014; de Miranda et al., 2015; Bourrier et al., 2015; Mentani et al., 2015;31
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Coulibaly et al., 2017). Validation by real scale experiments proved these models to be rather ac-1

curate. Nevertheless, a relatively high computational cost limits their use in view of investigating2

the response of barriers varying many parameters, either concerning the structure or the impact3

conditions.4

A promising alternative of accounting for the mechanical response of barriers, for both de-5

sign and hazard reduction assessment purposes, consists in using meta-models. Such approache6

proposes surrogate models, so called meta-models, of more complex mechanical models, em-7

bedding their complexity but are more efficient in terms of computational time (Sudret, 2008;8

Blatman and Sudret, 2010; Mollon et al., 2011). In the context of rockfall protection structures,9

the surrogate models are computationally cost-effective tools dedicated to statistical analysis10

of the structure response to varying impact conditions. Meta-models are widely used in civil11

engineering (Jin et al., 2001; Farhang-mehr and Azarm, 2005; Gonzalez-Perez and Henderson-12

Sellers, 2008; Toe et al., 2017). Application in the field of rockfall protection structures was13

first considered by Bourrier et al. (2015) with the aim of investigating the failure occurrence of a14

barrier via a performance function and then by Mentani et al. (2016).15

This article proposes the use of meta-modelling approaches for improving the design of pas-16

sive rockfall protection structures with a specific focus on a barrier intended for low kinetic17

energies frequently encountered in the Alpine arc. This barrier type features an interception18

structure made of an hexagonal wire mesh supported by longitudinal cables passing through19

steel posts. A finite element (FE), three-dimensional, non-linear model of the barrier has been20

developed and subjected to impact simulations by varying simultaneously 6 impact parameters21

over a wide and a comparatively narrower range. The results of the analyses provides a thorough22

insight of the protection barrier behaviour in terms of failure mechanisms and enables to explore23

comprehensively its effect on the energy possessed by the impacting block. Meta-models of the24

barrier response in terms of block arrest and block kinetic energy reduction have been developed,25

considering two sets of impact condition parameters. The first set has been defined based on the26

widest possible range for each parameter. The second set has been adapted to the barrier capacity27

evaluated in standard conditions.28

The article is organised as follows. In the first section, details of the FE models and FE29

analyses are given and results are discussed in terms of block-structure interaction, revealing30

the complexity of the barrier response to impact. In the second section, the development of31
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meta-models of the barrier response is detailed. Then, the meta-model results are presented and1

discussed in terms of accuracy. The discussion addresses the influence of the parameter ranges2

on the meta-models accuracy, the benefits in using these meta-models compared to current design3

approaches, and their application to real cases.4

2. Finite element modelling of a cable-net barrier5

This section provides the details of the finite element (FE) modelling of a cable-net barrier,6

developed using the commercial code Abaqus (Abaqus, 2013). For this barrier type, the intercep-7

tion structure is made of longitudinal cables, connected to steel posts fully restrained at the base.8

In general, this structure type is also provided with a secondary hexagonal meshwork fastened9

to the longitudinal cables. Although widely used, information on the response to impact of this10

barrier type are scarce. The results of the FE analyses then offer a new insight on the barrier11

mechanical behaviour, while providing the necessary base to the development of a meta-model12

of the block-barrier interaction.13

Fig. 1. Geometry and impact conditions for the cable-net protection barrier: a) back view, b) stress-strain behaviour of

cables, posts and net and c) side view.
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2.1. FE model1

As described in Fig. 1a, the study considers a three spans, 5 m spaced, cable-net barrier2

of 3.2 m nominal height. Longitudinal cables, 12 mm in diameter, pass through the internal3

posts (IPE 200) and are knotted to the external posts (IPE 300), connected to the ground by4

side cables of 18 mm diameter. A secondary meshwork, made of a double twisted hexagonal5

mesh is connected to the top and bottom longitudinal cables with steel wires. The FE model6

of the barrier is three-dimensional and made of one-dimensional elements, whose behaviour7

is governed by elasto-plastic constitutive laws. The mechanical response of the barrier elements8

was described based on available results of laboratory tests in de Miranda et al. (2015). Particular9

attention was devoted to model the behaviour of the wires within the hexagonal mesh, following10

data of experiments carried out on mesh portions (Mentani et al., 2015; Thoeni et al., 2013). A11

representative scheme of the stress-strain curve for each structural element is given in Fig. 1b,12

where the relevant model parameters are also inserted. As depicted, the posts behave following13

an elastic-perfectly-plastic law up to a failure limit, cables harden in the plastic phase and may14

undergo indefinite deformations once a second yielding threshold is attained and mesh wires15

soften prior to fail.16

2.2. FE simulations and results17

The barrier model was subjected to non-linear dynamic simulations. According to the ref-18

erence system and notation introduced in Fig. 1, simulation were carried out, by impacting the19

barrier model with a prismatic test block of known volume V; at a position of coordinates X and20

Y; with an incident angle α; a translational velocity v; and a rotational velocity ω.21

22

The first simulations were performed in accordance to the procedure described in the Annex23

A of ETAG 027 (EOTA, 2013), to provide the cable-net barrier model with a reference capacity24

evaluated in standard conditions. In these simulations a translational velocity of 25 m/s and25

no rotational velocity were considered. The maximum block mass for which all the Guideline26

requirement were fullfilled, was found equal to 640 kg, yielding a reference capacity of 200 kJ27

for the cable net barrier. Further analyses were then run to provide the data necessary to the28

development of meta-models of the barrier response. To this purpose, parameters related to the29

block were varied. Tab. 1 collects these parameters along with their variation ranges, according30

5



Table 1: Input parameters for loading conditions.

Input parameter unit Wide Range Narrow Range

(WR) min-max(NR) min-max

Translational velocity, v m/s 5 - 40 5 - 22.5

Rotational velocity, ω rad/s 0 - 35 0 - 35

Volume of the block, V m3 0.03 - 4 0.03 - 2.5

Incident angle, α deg -60 - 60 -60 - 60

Impact position, X m 0 - 7.5 0 - 7.5

Impact position, Y m 1 - 2.5 1 - 2.5

to the notation introduced in Fig. 1. As indicated in this table, two sets of parameters with1

different ranges were considered in this study for generating virtual test programmes: a wide2

range set (WR) and a narrow range set (NR) .3

The wide range (WR) set was considered in agreement with possible output of rockfall tra-4

jectory simulations and results of field tests (Bourrier et al., 2009a; Toe et al., 2017). As it is5

observed in Tab. 1, a freeboard on the barrier top was inserted, to avoid direct impacts of blocks6

on the top cable. A total of 280 simulations were carried out using combinations of the input7

parameters. The programme of tests resulted from a Latin-Hypercube sampling, assuming a uni-8

form distribution of values within the parameter ranges (Sacks et al., 1989; Fang et al., 2005).9

10

The results of this set of simulations provided new evidence of the barrier response consid-11

ering a wide variety of realistic loading conditions. In particular, four types of block-barrier12

interactions were observed, which can be described as follows: i) the block is arrested by the13

barrier; ii) the block passes the barrier by rolling over it; iii) the block passes the barrier as a14

result of the perforation of the secondary hexagonal meshwork; iv) the block passed the barrier15

as a result of the failure of the whole structure.16

17
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Block rolling over the barrier: v = 11.7 m/s; v = 7.15 rad/s; V = 2.26 m3; X = 1.08 m; Y = 1.57 m; a = -46.5°

Block puncturing the secondary mesh: v = 5.97 m/s; v = 16.6 rad/s; V = 0.59 m3; X = 3.56 m; Y = 1.49 m; a = 24.8°

Block producing global failure of the barrier: v = 27.99 m/s; v = 20.3 rad/s; V = 3.21 m3; X = 5.67 m; Y = 1.84 m; a = -1.86°

(a)

(b)

(c)

Fig. 2. Block-barrier interaction mechanisms: a) block rolling over; b) mesh perforation and c) global failure.

Fig. 2 illustrates the front and side views of the deformed barrier through the last instants of1

three selected impact simulations, where the elements which have entered the plastic domain are2

coloured in red. In all these FE tests, the barrier resulted unable to stop the impacting block. In3

particular, Fig. 2a provides an example of the rolling over mechanism, with the block overcom-4

ing the barrier, Fig. 2b depicts the barrier failing due to the perforation of the hexagonal net at a5

side span. Finally, global failure of the barrier is shown in Fig. 2c, with clearly visible formation6

of plastic hinges at one external post, detachment of longitudinal cables and ruptures within the7

secondary meshwork.8

9

In Fig. 3a, the results of the simulations are grouped on the block translational velocity -10

block volume plane, using symbols according to the observed block-barrier interaction mecha-11

nism. Over the 280 simulations, the barrier succeeded in stopping the block in 26 cases. In 25412

cases the barrier failed to stop the block: in 65 cases due to the block rolling over mechanism, in13

57 cases due to mesh perforation and in 132 cases due to global failure. This low barrier success14

ratio is associated to the large ranges considered, without any restriction related to the capacities15

of the barrier. In fact, the points relevant to arrested blocks are characterized by velocities lower16

than 22.5 m/s and by block volumes smaller than 2.5 m3.17
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(a)

(b)

Fig. 3. Results of the analyses on the translational velocity - volume plane: a) wide range and b) wide range and narrow

range.
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A further set of 280 simulations was then performed to obtain more information on the barrier1

response within these threshold values, and thus supplying more data for the development of a2

meta-model of the barrier ability to arrest a block. In these new FE tests, the translational velocity3

and volume were varied within this comparatively narrower range, according to the limit value4

indicated in Table 1. As for the wide range, the virtual test programme was designed based on5

the Latin-Hypercube sampling procedure.6

Over the 280 simulations, the barrier succeeded to stop the block in 61 cases. In 219 cases the7

barrier failed to stop the block : in 78 cases due to the block rolling over mechanism, in 66 cases8

due to mesh perforation and in 75 cases due to global failure.9

Fig. 3b gather the 560 simulation results from the analyses conducted considering the narrow10

and wide range sets. The locus of kinetic energy equal to the determined reference capacity (iso-11

energy line at 200 kJ), is also inserted in Fig. 3b. The vast majority of the points corresponding to12

the arrested blocks falls below this line. However, cases of barrier failures in arresting the block13

are also found below this line. On total, the ratio of observed failure cases to the total number14

of cases below this line is as high as 52%. This comment holds for moderate block volumes and15

velocities. Indeed, restricting the analysis to cases where the block size is less than 1/3 the barrier16

height (thus to block volumes less than 0.7 m3 and as suggested by ETAG 027 (EOTA, 2013)),17

this ratio equals 33.7%. This suggests that the use of a unique reference capacity value might be18

unconservative for this barrier.19

20

2.3. Effects of the impact parameters on the barrier response21

Fig. 4 illustrates the influence of the other impact parameters on the barrier response : the22

incident angle (Fig. 4a), the rotational velocity (Fig. 4b), the impact position (Fig. 4c - 4d). For23

negative values of incident angle (upward trajectory), the rolling over mechanism is the prevail-24

ing block-barrier interaction mode (Fig. 4a). On the velocity plane, although symbols related to25

arrested blocks tend to concentrate in the area close to the origin, several points also prove the26

ability of the barrier to stop impacting blocks with high rotational velocities, up to 35 rad/sec27

(Fig. 4b). As shown in Fig. 4c, the points relevant to the general failure mechanism tend to28

concentrate close to the posts, whose location is highlighted with two hatched areas along the29

y-axis (position X in Fig. 1). This is particularly clear for translational velocities less than 2030

m/s and general failures are observed at velocities down to 5 m/s.31
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(c) (d)

area of low
velocites

post

post

(a) (b)

Fig. 4. Results of the analyses as a function of: a) incident impact angle, b) rotational velocity, c) and d) impact position.
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(a) (b)

Fig. 5. Results of the analyses as a function of: a) incident impact angle, b) rotational velocity, c) and d) impact position.

The influence of the impact position of the block along the y-axis is depicted in Fig. 4d. As it1

is observed, high values of block velocity and position tend to result in a rolling over mecha-2

nism, whereas no significant effects of the position parameter is observed on the barrier ablity3

of arresting the block, which remains prevalently driven by the block speed. This is also due to4

the considered freeboard introducing a threshold in the impact height with respect to the barrier5

height.6

In Fig. 5, the results of the simulations are plotted on the volume-kinetic energy plane up7

to 600 kJ and compared with the iso-energy line. In Fig. 5a the kinetic energy is computed8

by considering the sole contribution of the translational component, while in Fig. 5b the total9

kinetic energy is used, accounting for both the translational and the rotational kinetic energies.10

Comparison shows that, although the upward shifting of the data points from Fig. 5a to Fig.11

5b produces a migration of some arrested block points above the nominal energy line, there are12

still several cases below the line, in which the barrier failed in arresting the block, due to mesh13

perforation, global failure and block rolling over mechanisms.14

15

Overall, the results show a strong dependency of the barrier response to the impact condi-16

tions. Analysis of the data also showed that, although some trends could be observed, a clear17
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correlation between input parameters and relevant block-barrier interaction mechanisms could1

not be established with certainty. These results bring to light the shortcomings of determinis-2

tic approaches based on a single impact assessment test, towards the evaluation of a structure3

effectiveness, as not adequately accounting for the impact conditions. This crucial aspect can4

be more successfully accommodated by reliability probabilistic approaches, through the use of5

meta-models which allow for the prediction of the barrier response as a function of the impact6

conditions, as described in the following sections.7

3. The meta-modeling approach8

This section provides the essential details of the meta-modelling strategy used in this study.9

Meta-models can be defined in this context as mathematical operators describing the response10

envelop of a given structure, by considering a large number of variables. With reference to a rock-11

fall protection structure, a meta-model can be developed from an optimized number of numerical12

simulations, performed using a detailed numerical model of the protection work, allowing for13

the prediction of its response to any set of variables, without running extra simulations. Due to14

its mathematical structure and computational cost-effectiveness, a meta-model can be integrated15

into probabilistic rockfall trajectory models rather easily.16

Within the context of rockfall hazard assessment, it is important for a meta-model to capture17

with accuracy the effects of the structure on the falling block in terms of trajectory and post-18

impact kinetic energy. In the light of these general observations, this study focuses on two19

essential and correlated aspects of the block-barrier interaction, which are the barrier ability20

to arrest a block and, in case of failure, the block post-impact kinetic energy. To the scope,21

two different meta-models were developed for these two aspects using classical meta-modeling22

techniques.23

The first meta-model is concerned with two classes: success and failure in arresting the block.24

Under the first class, referred to as BS ucc, the arrested block cases are grouped, while the passing25

block cases are found to the second class, BFail. As dealing with two classes, a Support Vector26

Machine (SVM), was used for creating the meta-model (Brereton and Lloyd, 2010; Kausar et al.,27

2011). The second meta-model was developed with reference to the BFail cases with the aim28

to predict the block kinetic energy reduction due to the block-barrier interaction. The value of29

energy reduction is given as the difference between the total (translational plus rotational) kinetic30
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energy posses by the block just prior to the impact and the total kinetic energy possessed by the1

block just after the impact (Eincident − Eout = ERED). The total kinetic energy was considered in2

order to account for possible coupling between translational and rotational velocities, after and3

before impact. To this aim, the Kriging method has been used (Kleijnen, 2009; Martin, 2009).4

Main features of these two meta-modeling approaches are given in the following sections.5

The two meta-models were developed using the results of the FE simulations carried out on6

the cable-net barrier, by considering the input parameters within wide (WR) and narrow (NR)7

ranges separately. For each range set, a meta-model was created based on the SVM approach to8

predict the success or failure of the barrier in stopping the block. Another meta-model was built9

based on the Kriging approach to estimate the post-impact total kinetic energy of blocks passing10

the barrier. The Kriging approach based meta-model was developed based on the data of the FE11

simulations in which the barrier failed in arresting the block.12

3.1. Support Vector Machine13

The Support Vector Machine (SVM) approach is based on statistical learning theory (Vap-14

nik, 1995), and can be used to build a meta-model which can predict the class of an output data.15

This method has been used in many different fields of study as for examples remote sensing16

(Mountrakis et al., 2011), shape recognition (Ma and Ding, 2002), genomics recognition (Son-17

nenburg et al., 2005) and spam detection (Wang et al., 2006). This method is adapted for binary18

or multi-class recognition and is here used for the former (success/failure of the barrier).19

The basic SVM approach (MS V M) consists of defining, in a space of input parameters, the20

optimal hyper-plane separating the regions associated with the different classes (success/failure21

of the barrier in this context). For that purpose, among all points of the space only those that22

are closest to the hyperplane, called support vector, are considered. The optimal hyperplane is23

defined as the hyperplane whose margin, i.e. distance from these closest points is maximal. It24

is thus calculated by maximizing the distance from the hyperplane to the closest points on each25

side.26

The optimal definition of the hyperplane can require non linear transformation of the data to27

another space of potentially higher dimension using kernel functions (Baudat and Anouar, 2001).28

In this study, the space of the input parameters corresponds to the different parameters as-29

sociated with the impact conditions. Linear and radial kernels have been used to build accurate30

meta-models (function svm in R (V 3.2.3) package e1071).31

13



3.2. Kriging1

The Kriging (Gaussian process modeling) approach is a procedure of interpolation which is2

used in various engineering and applied mathematical problems (Simpson et al., 2001; Sudret,3

2012; Zhang et al., 2014). This method is well adapted for approximating results of deterministic4

models, such as the post-impact kinetic energy of the block in this study (Martin, 2009). Kriging5

models are generally described as the combination of a deterministic component, defined by a6

regression model, with a stationnary Gaussian process associated with a constant variance and7

a correlation function. Contrary to polynomial regression models, Kriging models do not only8

assume an underlying global functional form. They can approximate arbitrary functions with9

high global and local accuracies.10

In this study, the meta-model based on a Kriging approach (MK) is developed using the11

matlab tool box UQLab (Marelli and Sudret, 2014) which enables the creation of an efficient12

Kriging predictor based on small number of data. A 3rd order polynomial regression model was13

used for the deterministic component of the Kriging model. Following recommendations for14

a default use in UQLab (Marelli and Sudret, 2014), an ellipsoidal Matern function was set as15

correlation function.16

3.3. Error quantification17

The accuracy of the developed meta-models was estimated by comparison with the data18

obtained from the FE simulations described and illustrated in Section 2. The prediction error19

for both meta-models was estimated using the leave-one-out cross validation method (Allen,20

1971).21

For the SVM approach based meta-model, n results M(xi) from the FEM simulations are con-22

sidered. For each parameters combination xi, a meta-model is created using all FEM simulation23

results except M(xi). The meta-model prediction for xi (Mi
S V M(xi)) is compared to the remaining24

result M(xi) observed from the FEM simulations. This comparison is repeated for all xi ranging25

between x1 and xn. The global accuracy of the meta-model (Q(MS V M)) is evaluated as follows :26

27

Q(MS V M) = 1 − (
1
n

n∑
i=1

M(xi) − Mi
S V M(xi)) (1)

14



The results of the SVM based meta-model were further discussed with reference to the mis-1

classification rate defined as follows. With reference to the FE observations, the SVM based2

meta-model can provide bad (false, F) or good prediction (true, T ). As described in Tab. 2, a3

false prediction can be positive (FP) if a barrier success (BS ucc) is estimated for a case in which4

failure (BFail) was observed; a false prediction can be negative (FN) if a barrier failure (BFail) is5

estimated for a case in which a success (BS ucc) was observed. In a similar way, good prediction6

can be positive when the barrier success (BS ucc) is both estimated and observed and negative7

when the barrier failure (BFail) is both estimated and observed. Based on these definitions, two8

indicators were used to discuss the performance of the SVM based meta-model: the false neg-9

ative rate (FNr = FN
FN+T P ) and the false positive rate (FPr = FP

FP+T N ). In the context of this10

study, the false positive rate (FPr = FP
FP+T N ) is the most relevant to deal with as it focuses on the11

most critical situation. In fact, a high FPr value is associated to an overestimation of the barrier12

capacity by the meta-model, with the meta-model erring on the unconservative side.13

Table 2: Definition of cases for assessing the meta-models performance

SVM prediction

FE observation BFail BS ucc

BFail T N FP

BS ucc FN T P

For the Kriging approach based meta-model, a similar leave-one-out cross validation method14

as for the SVM approach based meta-model was used. The values of the residual block kinetic15

energy predicted by the meta-model Mi
E,K(xi) were compared to those obtained from the FE sim-16

ulations (ME(xi)). The accuracy of the meta-model is evaluated using the mean (MeanErr) and17

standard deviation (S dErr) of the residual error. MeanErr was calculated as:18

19

MeanErr =
1
n

n∑
i=1

(ME(xi) − Mi
E,K(xi)) (2)

S dErr is calculated as:20

S dErr =

√∑n
i=1(ME(xi) − Mi

E,K(xi))2

n
− Mean2

Err (3)
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4. Meta-models of the cable-net barrier1

In this section the results of the meta-models of the cable-net barrier described in Section2

2 are illustrated and discussed. The validation of the meta-models was pursued by comparison3

with the data obtained by the FE simulations. Focus is placed on the influence of the parameters4

range on the performance of the considered meta-models.5

4.1. Wide range based meta-models6

This section presents and discusses the results from the two meta-models developed based7

on the wide range set FE simulations (WR, Tab. 1).8

Results of the meta-model addressing the ability of the barrier in stopping the block are given9

in Fig. 6 where symbols in grey stand for good prediction by the meta-model compared to FE10

simulations results. Bad predictions are grouped as positive (red) or negative (yellow) according11

to the definition given in Tab. 2. In particular, as described in Tab. 3, the meta-model failed12

to predict 8 out of 26 barrier success (FNr = 32%) and 5 out of 254 barrier failure (FPr =2%).13

Over the 5 misclassified failures of type FP, 1 was related to mesh perforation, 3 were related14

to global failure and 1 was related to block rolling over the barrier. It can be concluded that the15

barrier efficiency in arresting the block is slightly overestimated as only 2% of the failure cases16

are not predicted by the meta-model. The global accuracy of the meta-model, Q(MS V M), was17

found equal to 95% according to eq. 1.18

Table 3: SVM based meta-model: wide range results

Prediction

Observation BFail BS ucc

BFail 249 5 FPr = 2%

BS ucc 9 17 FNr =35%

The meta-model dealing with the block kinetic energy reduction was created excluding the 2619

simulations in which the block were stopped by the barrier. According to eq. 2 and 3, the mean20

error, MeanErr, and standard deviation, S dErr of the MK , are 0.52 kJ and 200 kJ respectively. The21

former value indicates that the meta-model prediction is unbiased, with the practical implication22

that there are as many unconservative predictions than conservative ones. The later value appears23

rather high compared to the barrier nominal capacity.24
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Fig. 6. Prediction of the of BS ucc and BFail as a function of the block volume and translational velocity for the wide range

scenario.

The black curve on Fig. 7 gives the cumulative distribution of the difference between the1

energy reduction observed in the FE simulations (M(xi)) and the corresponding value as predicted2

by the meta-model (Mk(xi)) normalised by the incident block kinetic energy (Ein). Cases where3

the block kinetic reduction predicted by the meta-model is higher than values observed in the4

FE simulations correspond to negative ratio values, and reveal an error on the unconservative5

side. On the contrary, error on the conservative side consists in cases where the predicted energy6

reduction is less than the observed value, corresponding to positive ratio values. In 5% of the7

cases, the overstimation of the barrier capacity in reducing the block kinetic energy prediction8

by the meta-model exceeds 50 % of the incident block kinetic energy.9

4.2. Narrow range based meta-models10

The meta-models for the narrow range analysis were created using the second plan of exper-11

iments consisting of 280 combinations of the 6 input parameters (NR, Tab. 1).12
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Fig. 7. Cumulative distribution of the ratio between the prediction error (M(xi) − MK (xi)) of the block energy reduction

after the impact on the barrier and the total incident block kinetic energy Ein for the wide (black) and narrow (green)

ranges sets.

1

The accuracy of the model dealing with the barrier block arresting ability was evaluated2

according to eq. 1 and resulted in MS V M equal to 92%. The meta-model failed to predict 163

barrier success over 61 (FNr = 27%) and failed to predict 6 barrier failures over 219 (FPr =3%)4

(Table. 4). Over these 6 misclassified cases, 5 are related to mesh perforation and 1 is related to5

global failure (Fig. 8).6

Here again, the meta-model overestimates the barrier capacities and 3% of the failure cases are7

not predicted by the meta-model.8

Table 4: Quality evaluation for the meta-model created for narrow range values.

Prediction

Observation BFail BS ucc

BFail 213 6 FPr = 3%

BS ucc 16 45 FNr =27%

18
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As for the meta-model concerning the block kinetic energy reduction, the mean error, MeanErr1

, and standard deviation, S dErr, of the MK are -5.21 kJ and 111 kJ respectively. The same com-2

ments as for the wide range results hold. Neverthless, the lower standard deviation indicates that3

this meta-model is more efficient in predicting the block kinetic energy reduction.4

5. Discussion5

The aim of this article being to propose using meta-models for assessing rockfall protection6

barriers efficiency, this section compares the two approaches (WR and NR) and discusses the7

advantages over classical design approaches in using meta-models.8

5.1. Influence of the range considered9

The meta-models have been developed considering two ranges of values for the input param-10

eters. Intuitively, a meta-model developed for a range of input parameters fitted to the barrier11

19



nominal capacity is expected to provide much better results.1

Similar trends in terms of model quality are observed for both meta-models and the difference2

between meta-models developed for narrow and large ranges is not that pronounced. As for the3

MS V M almost the same global accuracy is obtained for wide and narrow ranges (92/95.3%). A4

significantly smaller FPr rate is observed for the narrow range (27/32 %). In addition, the model5

developed for the narrow range accounts for a larger number of arrested blocks over the 3006

simulations. Its ability in detecting success cases is thought to be higher.7

As for the the prediction of the block kinetic energy reduction, both models have a MeanErr8

around 0 kJ. However, the predictions MK are significantly more accurate for the narrow range9

compared to that for the wide range. Indeed, the error standard deviation of the meta-model10

based on the narrow range is almost half that of the meta-model based on the wide range (111 kJ11

compared to 200 kJ).12

13

In the end, the difference between the two meta-models appear rather small, the narrow range14

resulting in a slightly more accurate meta-model. Results obtained using the narrow range are15

considered in the following section.16

5.2. Benefits of the meta-models17

The current design practices are mainly based on the barrier nominal capacity. In this study,18

the nominal capacity was considered as the reference value obtained from impacts following the19

recommendations of the European guideline ETAG 027 (EOTA, 2013). A straightforward design20

for this specific barrier would consider that all the block having a kinetic energy less than 200 kJ21

are stopped. Similarly, the block kinetic energy reduction by this barrier would be computed as22

the block incident kinetic energy minus 200 kJ.23

As for the efficiency of the barrier in arresting the block, results presented in section 2 have24

shown the limits of an assessment based on the barrier nominal capacity, while section 4 has25

suggested the interest of meta-models. A detailed analysis of the results presented in Figure 826

shows that the prediction by the meta-models below the the iso-kinetic energy line results in27

4.8% of False Positive cases while considering the barrier nominal capacity as a criterion led28

to a value of 52% (see Figure 3). Restricting the comparison to a block size of 0.7m, leads to29

values of 4.54% for the meta-model compared to 33.7 % for the barrier nominal capacity based30

approach. This means that the later is far too optimistic with respect to the ability of the barrier31

20



in stopping the blocks and that the later is more realistic, demonstrating the benefit in using this1

meta-model for design or hazard assessment purpose.2

As for the kinetic energy reduction, Figure 9 compares estimates based on the barrier nom-3

inal capacity and that from the meta-model. The former is obtained substracting 200 kJ to the4

block total incident kinetic energy. The full curve is not shown as for large kinetic energies no5

difference is observed from one curve to the other. Negative block output kinetic energies results6

from the fact that in some cases the block incident kinetic energy is less than the barrier nominal7

capacity. These cases are accounted for in the figure but should be neutralised setting the kinetic8

energy to zero. The same comment holds for results from the meta-model. This figure shows9

that the meta-model MK fits rather well with the simulation results (in green). On the contrary,10

results based on the barrier nominal capacity shows important difference with the simulation re-11

sults, between 0 and 150 kJ. In fact, the kinetic energy reduction is overestimated when using12

the barrier nominal capacity. The overestimation by the meta-model is much less and is limited13

to the 0-50kJ range. Beyond 200 kJ, the two approaches are similar.14
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5.3. Towards application to real sites1

In the previous section, the benefit in using meta-models has been demonstrated, in particular2

by comparison with approaches based on the direct use of the barrier nominal capacity. The3

study has shown, that, at least, for the barrier considered, meta-models are much more efficient4

in assessing the barrier response.5

It is worth highlighting that the considered impact conditions did not consider biased trajecto-6

ries nor rotational velocities around all block axes. This simplification is thought not to call into7

question the conclusions drawn and is assumed to be of negligible influence on the developed8

meta-models accuracy.9

The meta-models were developed considering all the possible impact conditions, and thus10

are able to mimic the barrier response whatever the impact case. However, the different impact11

scenario within the given parameters ranges were considered equiprobable, which is not realistic.12

The impact conditions depend on the block trajectories as observed on real sites. This means that13

the statistics in relation to the barrier response that are presented in the previous section, including14

the comparison with the barrier nominal capacity, should not be considered for a real site. In lieu15

the statistics associated to the ability of the barrier in arresting the blocks for a given site should16

be based on the distribution of trajectories of that site. As a consequence, the next steps will17

consist in assessing the efficiency of this barrier for a real site. In this aim, the next development18

will consist in implementing the meta-models in rockfall trajectory simulation code for a fast and19

accurate assessment of the barrier effect on the blocks trajectory.20

The second meta-model was developed with the aim of evaluating the reduction in kinetic21

energy of the block, in case of barrier rupture. Such an event would also result in a change of22

the block propagation direction. Implementation of the kinetic energy reduction meta-model in23

a rockfall trajectory simulation tool would require making assumptions on the block trajectory24

changes after impact. Significant improvement would consist in a meta-model of the block ve-25

locity changes, but tackling the problem of building such a meta-model is a very difficult task26

because it entails input and output random variables that are statistically dependent. It is a very27

difficult problem that was already tackled in 2D for rebound (Bourrier et al., 2009b).28

22



6. Conclusion and perspectives1

In this article the application of meta-modelling techniques to rockfall protection structures,2

focusing on a specific barrier intended for low block kinetic energies has been proposed.3

The results of 560 FE simulations showed that the barrier efficiency in arresting the block de-4

pends not only on the block volume and its translational velocity but it is also controlled by other5

parameters related to the block trajectory. As a consequence, quantifying the barrier efficiency6

without accounting for their influence may lead to unconservative estimates. For instance, 33.77

% of the impact cases below the nominal barrier capacity, as deduced from a normal-to-the-fence8

and centered impact, in fact leads to barrier failure in arresting the block.9

Two meta-models have been developed, based on the results of the 560 FE simulations: one10

concerning the ability of the barrier to arrest the block, the other concerning its ability in re-11

ducing the block kinetic energy in case of barrier failure in arresting the block. Two parameters12

ranges were considered for creating these two meta-models. The one closer to the barrier nom-13

inal capacity appears to be slightly more accurate. Nevertheless, the difference being small,14

no optimisation is required with respect to the definition of the ranges for creating a reliable15

meta-model. Overall, the meta-models have been shown to provide an accurate prediction of the16

barrier response. In particular, the meta-model unconservative error associated to the ability of17

the barrier in arresting the block is less than 5%, compared to 33.7 % following a straightforward18

design approach. This clearly demonstrates that meta-models represent a promising approach19

for improving the design of protective structures, and consequently the rockfall risk mitigation.20

One possible limitation in the followed methodology is the number of barrier response sim-21

ulations required for creating a meta-model. In this case, 280 FE simulations were used. One22

perspective to this work would be to reduce the necesssary numerical simulations without alter-23

ing the meta-model accuracy.24

The meta-models have been developed with the final aim of quantifying the real efficiency of25

the barrier in reducing the hazard or the block kinetic energy downhill. The next step will consist26

in introducing the meta-models in rockfall trajectory simulations. This will allow accounting for27

the real distributions of the various parameters describing the possible block trajectories and will28

represent a significant improvment in quantitative rockfall hazard assessment in presence of a29

protective barrier (Corominas et al., 2005).30

Meta-models may also be used for helping in the optimisation of the design of rockfall barri-31
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ers, allowing fro the identification of detrimental mechanisms leading to structure failure. In this1

case parameters related to the design of the structures may be considered, such as the position2

and initial tension of the cables, post spacing, position of energy dissipating device, if present.3

This does represent an inspiring perspective for manufacturers, designers and researchers.4
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