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ABSTRACT. We study sequences of conformal deformations of a smooth closed Riemann-

ian manifold of dimension n, assuming uniform volume bounds and Ln/2 bounds on their

scalar curvatures. Singularities may appear in the limit. Nevertheless, we show that un-

der such bounds the underlying metric spaces are pre-compact in the Gromov-Hausdorff

topology. Our study is based on the use of A∞-weights from harmonic analysis, and pro-

vides geometric controls on the limit spaces thus obtained. Our techniques also show that

any conformal deformation of the Euclidean metric on Rn with infinite volume and finite

Ln/2 norm of the scalar curvature satisfies the Euclidean isoperimetric inequality.

1. INTRODUCTION

This paper is devoted to the question of sequential compactness of Riemannian metrics

inside a conformal class given uniform bounds on their volume and integral bounds on

their curvatures. It was shown by Gursky in [23] that (unless g0 is conformal to the round

sphere), if the Riemann curvature tensor is bounded in Lp for some p > n
2 and if the

volume is uniformly controlled, then the sequence of metric is pre-compact in the Cα

topology for some α ∈ (0, 1).
It was later shown that no such compactness can hold when the curvature tensor is

bounded in Ln/2. Indeed, in [16] Chang, Gursky and Wolff constructed two examples

of families of sequences of conformal metrics with uniform volume and Ln/2 curvature

bounds which have no convergent sub-sequences. Let us briefly recall these examples.

Example 1: spherical blowup. Let (Sn, gS) be the standard sphere, N ∈ Sn be some

fixed point and S be its antipodal point. Let σ : Sn\{N} → Rn be the stereographic

projection with pole N , and let eucl denote the Euclidean metric on Rn. For all λ > 0, let

gλ = σ∗(λ eucl): it is well known that gλ extends to a smooth metric on Sn, conformally

equivalent to gS .

Note that since gλ is merely a pullback of gS by some conformal diffeomorphisms, the

volume of (Sn, gλ) and all Lp norms of the curvature tensor are preserved. Moreover, as

λ→ +∞, the Riemannian measures dµgλ converge to a Dirac mass at S.

It should also be noticed that for any R > 0, the gS-ball B(S,R) of radius R contains

asymptotically all the curvature of gλ. In particular, we have

lim
λ→+∞

(

ˆ

B(S,R)

(Scalgλ)
n
2 dµgλ

)
2
n

= α(n, 2),

1
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where α(n, 2) = σ
2
n
n n(n− 1) is the Ln/2-total scalar curvature of the standard round unit

sphere, and σn = 2πn/2

Γ(n/2) is its n-th volume.

It was shown in [16] that this family of conformal deformations of the sphere can be

glued on any compact Riemannian manifold (M, g0) at any point x0, giving rise to a se-

quence of conformal deformations (gλ = e2fλg0)λ>0 such that:

• the volume and diameter of the complement of any open ball centered at x0 go to

0 as λ→ +∞;

• the Ln/2 norm of the Riemann curvature tensor are uniformly bounded;

• the sequence of Riemannian measures dµgλ develop a Dirac mass at x0 and the

volume stays in some fixed interval [v, V ].

In particular, this implies that the associated sequence of distances (dgλ)λ>0 is not precom-

pact for the uniform C0 topology. Once again, in this example, for any fixed R > 0, the

g0-ball B(x0, R) of radiusR contains asymptotically a large part of the scalar curvature of

gλ. In particular it can be shown that, in this case, we have

lim inf
λ→+∞

(

ˆ

B(x0,R)

(

Scal+gλ
)

n
2 dµgλ

)
2
n

≥ α(n, 2).

We will see below that if we consider sequences of conformal measures whose volume

and Ln/2-total scalar curvature are uniformly bounded, and the scalar curvature concen-

tration (in Ln/2 norm) in a g0-ball is strictly less than α(n, 2), then this kind of spherical

blowup cannot occur.

Example 2: Schrödinger type blowup. The second construction in [16] exploits the

Schrödinger-type structure of the conformal Laplacian, where the potential is only in Ln/2.

We present a simple example inspired by their construction.

Let (M, g0) be a compact smooth Riemannian manifold, let x0 ∈ M and R0 be such

that injx0
(M, g0) ≥ 2R0, where injx0

(M, g0) denotes the injectivity radius of g0 at x0.

For x ∈M , define

(1) f∞(x) =







√

∣

∣

∣
ln
(

d(x0,x)
R0

)∣

∣

∣
if 0 < d(x0, x) ≤ R0

0 if d(x0, x) ≥ 2R0

with uniformly bounded second derivatives when R0 ≤ d(x0, x) ≤ 2R0. Let (fk : M →
R)k∈N be a sequence of smooth maps which converges to f∞ in W 2,n2 . We consider

for all k ≥ 0 the conformal metric gk = e2fkg0. The volume of (M, gk) is uniformly

bounded, and it follows from Theorem 1.159 in [4, p 58] that the L
n
2 norm of the Rie-

mannian curvature of (M, gk) are uniformly bounded. Note that eventhough the sequence

of Riemannian metrics (gk) will blow up at x0, the diameter of (M, gk) remains bounded

and the associated volume measures will not develop a Dirac mass. Using the sequence of

metrics (g̃k = e−2fkg0)k∈N, we get an analogous example where the metric vanishes at x0
as k → +∞.

Analogously, one can construct examples of sequences of conformal deformations whose

volumes and L
n
2 norms of the scalar curvatures are uniformly bounded, for which the limit

metric blows up (or goes to 0) at any countable (even dense) set of points.
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The reader may easily show that in this example, eventhough the sequence of conformal

factors is unbounded, the sequence of associated distances (dgk )k∈N converges for the C0-

uniform topology to the Riemannian distance associated to the (singular) metric g∞ =
e2f∞g0 on M .

Our first theorem is a precompactness result which follows from an elementary appli-

cation of Sobolev embeddings.

Theorem 1.1. Let (M, g0) be a compact smooth Riemannian manifold and let Mδ
V be

the space of conformal smooth metrics on M , gf = e2fg0 with associated Riemannian

measure dµf = enfdvolg0 , such that there exists V > 0, δ > 0 such that:

(1) µf (M) ≤ V , and

(2)
∣

∣

∣

∣(Scalgf )+
∣

∣

∣

∣

L
n
2 (M,dµf )

≤ α(n, 2)− δ.

Then for some α ∈ (0, 1), the set of distances {dgf ; gf ∈ Mδ
V } is precompact for the

Cα topology on M ×M . In particular, the set of metric spaces {(M,dgf ), gf ∈ Mδ
V } is

precompact for the Gromov-Hausdorff topology.

It follows from the Example 1 presented above that the upper bound

∣

∣

∣

∣(Scalgf )+
∣

∣

∣

∣

L
n
2 (M,dµf )

≤ α(n, 2)− δ = σ
2
n
n n(n− 1)− δ

is optimal to get Cα precompactness of the sequence of distances.

Theorem 1.1 does not exclude the possible collapsing of some part of the manifold in

the limit of such conformal deformations. We will show in Corollary 2.4 that adding to the

previous hypotheses a lower bound on the volume and a Lp bound on the scalar curvature

for some p > n
2 is enough to recover Cα precompactness of the sequence of Riemannian

metrics as in [23].

The rest of our paper is devoted to the exploration of conformal deformations for which

only volume bounds and L
n
2 bounds on the scalar curvature are imposed. We will see in

particular that, no collapsing can occur if the Ln/2 norm of the scalar curvature is small at

small scales.

Our ideas come from a paper by Yi Wang [42], who was interested in conformal de-

formations with integral bounds on the Q-curvature related to the so-called Muckenhoupt

weights, or A∞-weights. If (M, g) is a closed manifold, a non-negative L1
loc function w

is called an A∞-weight with respect to g if there exist C > 0, q > 1 such that for all

g-geodesic balls B ⊂M ,

(
 

B

wqdµg

)
1
q

≤ C

 

B

wdµg ,

where µg is the volume measure associated to g. Several equivalent characterizations of

these A∞-weights will be presented in Section 3.

Theorem 1.2 below establishes that, under Ln/2 pinching conditions on the scalar cur-

vature closely related to those in Theorem 1.1, the volume densities enf are uniformly A∞

weights with respect to g0.

Theorem 1.2. Let (Mn, g0) be a closed Riemannian manifold, R0 ∈ (0, diam(M, g0)]
and δ,Λ > 0. Let f : M → R be a smooth function such that the metric gf = e2fg0 and

its associated Riemannian measure dµf = enfdvolg0 satisfy

i)
´

M

∣

∣Scalgf
∣

∣

n
2 dµf ≤ Λ.
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ii) For any x ∈M ,

(

ˆ

B(x,R0)

(

Scalgf
)

n
2

+
dµf

)
2
n

≤ α(n, 2)− δ.

Then enf is anA∞-weight with respect to g0, with constants only depending on n, g0, R0, δ
and Λ.

The hypotheses as well as the conclusion of Theorem 1.2 are scale invariant. We will

see in Section 3 that if we fix upper and lower volume bounds, having A∞ control for enf

implies Cα bounds for the distance associated to the metric e2fg, for some α > 1. This

implies as well uniform control on certain analytic quantities associated to the conformal

metric. Denoting gf = e2fg0, the fact that enf is an A∞ weight implies that for any g0-

geodesic ball, its gf -diameter is bounded from above in terms of its gf -volume and that

the measure dµf = enfdµg0 is doubling, with constants only depending on δ,Λ and R0.

Notice that in the second family of examples presented above, for which Theorem 1.2

applies, the Riemannian volumes of the members of the family satisfy a uniform StrongA∞

bound in the sense of [17], see Definition 4.1 in Section 4 below. This implies that for a

sequence of metrics coming from these examples, the Gromov-Hausdorff limit (M∞, d∞)
is homeomorphic to M and endows M with a distance d∞ that is uniformly bi-Hölder

to (M,dg0). In addition, the metrics in this family of examples have uniform Sobolev,

Poincaré and isoperimetric inequalities. Our main result shows that this is always the case,

provided the Ln/2-pinching of the scalar curvature is small enough at small scales.

Theorem 1.3. Let (Mn, g0) be a closed Riemannian manifold. Then there exists a constant

Λ0 = Λ0(g0) with the following property: Let gf be given by e2fg0 with f ∈ C2(M). If

there is a R0 ∈ (0, diam(M, g0)] such that

(2) ∀x ∈M,

ˆ

B(x,R0)

∣

∣Scalgf
∣

∣

n
2 dµf ≤ Λ0

then enf is a strongA∞ weight with respect to g0, with constants only depending on g0, R0

and Λ0. Moreover, for all α ∈ (0, 1), the distances df and d0 are uniformly α-bi-Hölder

with constants depending only on g0, R0, Λ0 and α.

Before we continue, let us introduce some notation. Let (Mn, g0) be a closed Riemann-

ian manifold, for v, V, δ,Λ > 0 and R0 ∈ (0, diam(M, g0)], define MΛ
v,V,R0

as the set of

smooth functions f on M such that the associated metric gf = e2fg0 satisfies

i) v ≤ Vol(M, gf ) ≤ V

ii) for any x ∈M :
(

´

B(x,R0)

∣

∣Scalgf
∣

∣

n
2 dµf

)
2
n

≤ Λ.

As mentioned previously, strong A∞-weight control coupled with volume bounds has

many interesting geometric consequences. Some of them are listed in the following corol-

lary.

Corollary 1.4. Let (Mn, g0) be a closed Riemannian manifold. Then there exists Λ0 =
Λ(g0) such that for all R0 ∈ (0, diam(M, g0)] and any v, V with 0 < v ≤ V , the set of

metric spaces

{(M,dgf ) ; f ∈ MΛ0

v,V,R0
}

is precompact for the Gromov-Hausdorff topology. In addition, any sequence in this set

has a subsequence whose limit (M,d∞) is α-bi-Hölder to (M,dg0) for all α ∈ (0, 1).
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It is worth noticing that the conclusion of Theorem 1.2 is weaker than the conclusion

of Corollary 1.4 but holds under an explicit (and optimal, due to examples of [16]) Ln/2-

pinching of the scalar curvature. The constant Λ(g0, R0) can be explicited in terms of

the Ricci curvature of g0 and its diameter. We could not produce a sequence of examples

satisfying the hypotheses of Theorem 1.2 which would not be uniformly Strong A∞.

Remark 1.5. Our proof of Theorem 1.3 shows that, under the same hypotheses, enf is

actually a stronger A∞ weight in the sense of [33]. This implies by Theorem 5.2 of [33]

that there exists N > 0 such that any such (M, gf = e2fg0) can be embedded in RN via

a bi-Lipschitz embedding, with uniform bi-Lipschitz constant. We will not further discuss

this fact here.

Eventhough our initial objective was to study conformal deformations of closed mani-

folds, our techniques also provide an interesting criterion to get strong A∞ on (Rn, eucl).

Theorem 1.6. Let g = e2f eucl be a conformal deformation of the Euclidean metric on

R
n such that:

• Vol(Rn, g) = +∞,

•

ˆ

Rn

| Scalg |
n/2dµg < +∞.

Then enf is a strong A∞ weight on Rn with respect to eucl.

As mentionned above, being a strongA∞ weight has many implications in terms of geo-

metric control. In particular, this theorem has the following striking geometric corollary,

which seems to have remain unknown.

Corollary 1.7. Let g = e2f eucl be a conformal deformation of the Euclidean metric on

Rn such that:

• Vol(Rn, g) = +∞,

•

ˆ

Rn

| Scalg |
n/2dµg < +∞.

Then there are positive constants θ,γ such that any g-geodesic ball Bg(x, r) satisfies

θ−1rn ≤ µg(Bg(x, r)) ≤ θr
n.

Moreover, (Rn, g) satisfies the Euclidean isoperimetric inequality: for any bounded smooth

open subset Ω ⊂ Rn we have:

γ µg(Ω)
1− 1

n ≤ µg(∂Ω).

Let us conclude by an intricate question. Let (gk = e2fkg0)k∈N be a sequence of

conformal deformations of g0 with fk ∈ MΛ0

v,V,R0
, where Λ0 satisfies the conclusion of

Corollary 1.4. Then, up to extracting a subsequence, the sequence of associated metric

spaces (M,dgk) converges in Gromov-Hausdorff topology to some distance d∞ on M ,

which is bi-Hölder equivalent to d0. Moreover, a subsequence of the Riemannian volume

measures µk = dµgk = enfkdµg0 converges in the weak−∗ topology to a positive measure

µ∞ on M . Since all the µk are uniformly strong A∞-weights with respects to dvolg0 , so

is µ∞: there exists enf∞ ∈ L1(M) such that µ∞ = enf∞dvolg0 and µ∞ is still a strong

A∞-weight with respect to dvolg0 . Hence the weight enf∞ induces another distance df∞
on M , analogous to a conformal Riemannian distance (see Section 7 below or [33] for a

precise definition).
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A natural question is: Under which assumption do the distances d∞ and df∞ coincide?

We could not give a full answer to this question. We know that they do coincide in Example

2 presented above. On the other hand, in the last section of this paper we will describe

another example which shows that uniform strong A∞-weight control is not enough to

establish this equality in general. Nevertheless, volume bounds and a Ln/2 bound on the

scalar curvature give a much stronger control on the geometry than just strongA∞-weight

controls. Thus, the distances could still coincide under the integral pinching of the scalar

curvature under consideration.

From now on, given a background Riemannian manifold (M, g0), for any conformal

deformation gf = e2fg0, we will denote by df = dgf the associated Riemannian distance

and by dµf = dvolgf the associated Riemannian volume measure. In particular, d0 and µ0

are the distances and volume measure associated to g0, respectively.

Acknowledgements: The authors are grateful for the support of the ANR grants ACG

(ANR-10-BLAN 0105) and CCEM (ANR-17-CE40-0034) which made this collaboration

possible. C.L. Aldana was also supported by the Fonds National de la Recherche, Luxem-

bourg 7926179.

2. INTEGRAL BOUNDS FOR THE SCALAR CURVATURE AND CONVERGENCE OF

DISTANCES

This first section is devoted to the proof of Theorem 1.1. This theorem is an immediate

consequence of Propositions 2.2 and 2.3 given below. The proof will show that for any

sequence of metrics (gn)n∈N in Mδ
V , the sequence of distances (dgn)n∈N converges in

some Hölder topology up to extracting a subsequence. This implies the precompactness of

the sequence of metric spaces (M,dgn)n∈N for the Gromov-Hausdorff topology, as shown

by the following lemma which will be used several times in the sequel.

Lemma 2.1. Let (X, d0) be a compact metric space, α ∈ (0, 1), C > 0, and (dn)n∈N be

a sequence of distances on M which is bounded in the α-Hölder topology with respect to

d0, i.e. such that for all x, x′, y, y′ ∈M and all n ∈ N,

|dn(x, y)− dn(x
′, y′)| ≤ C (d0(x, x

′)α + d0(y, y
′)α) .

Then up to extracting a subsequence, dn is converging uniformly and in the α′-Hölder

topology for all α′ ∈ (0, α) to a map d∞ : M ×M → [0,+∞). Moreover, the sequence

of metric spaces (M,dn) converges in the Gromov-Hausdorff topology to the metric space

(M∞, d∞) where M∞ =M/ ∼, with x ∼ y if and only if d∞(x, y) = 0.

Proof. Let (dn)n∈N be a sequence of distances on M satisfying the above hypotheses. By

Arzela-Ascoli Theorem, it has a subsequence which converges in the C0-uniform topology

on M ×M to some non-negative map d∞ :M ×M → [0,+∞), satisfying the triangular

inequality. By construction, d∞ induces a distance on M∞ = M/ ∼, with x ∼ y if and

only if d∞(x, y) = 0. The C0-uniform convergence of the dk implies that the sequence of

metric spaces (M,dn) converges in the Gromov-Hausdorff topology to the metric space

(M∞, d∞), see for instance [9] p.260, Example 7.4.4.

An elementary computation shows that the convergence of (dn) is actually uniform in

all Cα′

Hölder spaces for all 0 < α′ < α, which concludes the proof of our lemma. �

Proposition 2.2. Let (M, g0) be a compact Riemannian manifold and let (gk = e2fkg0)k≥0

be a sequence of smooth conformal metrics. Assume that there exist p > n and A > 0
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such that for all k ∈ N,
ˆ

M

epfkdµ0 ≤ A.

Then the sequence of distances (dfk :M ×M → [0,+∞))k∈N
is precompact in the α-

Hölder topology for all α ∈ (0, 1 − n
p ). In particular, the sequence of metric spaces

(M,dfk)k∈N is precompact for the Gromov-Hausdorff topology.

Proof. Let x ∈ M be fixed. Recall that for any smooth Riemannian metric g on M ,

||∇gdg(x, .)||g = 1 almost everywhere, see e.g. [31, Prop. 4.8]. Let gf = e2fg0 be

conformal metric, we have hence for almost all y 6= x,

||∇g0df (x, .)||g0 (y) = ef(y).

Therefore, there exists C > 0 such that

(3)

ˆ

M

epfdµ0 ≤ A ⇒ ||df (x, .)||W 1,p(M,g0)
≤ CA,

where W 1,p(M, g0) is the Sobolev space of functions on M with distributional derivative

in Lp(g0).
Now, let (gk = e2fkg0)k≥0 be a sequence of smooth conformal metrics. Assume that

there exist p > 1 and A > 0 such that for all k ∈ N,
ˆ

M

epfkdµ0 ≤ A.

It follows from (3) that the sequence of distances (dfk (x, .))k∈N is bounded inW 1,p(M, g0).
Therefore, since for all k ∈ N, dfk(x, .) vanishes at x, by Sobolev embeddings the se-

quence is bounded in Cα with α = 1− n
p by some constant C′ independent of x.

We have hence, for all x, x′, y, y′ ∈M and all n ∈ N,

|dfk(x, y)− dfk(x
′, y′)| = |dfk(x, y)− dfk(x

′, y) + dfk (x
′, y)− dfk(x

′, y′)|

≤ C′ (d0(x, x
′)α + d0(y, y

′)α) .

By Lemma 2.1, this implies Proposition 2.2.

�

We now show that any conformal deformation of g0 whose scalar curvature has a pos-

itive part with Ln/2 norm strictly less than the round sphere has a conformal factor that

satisfies the integrability condition required in Proposition 2.2.

Proposition 2.3. Let (Mn, g0) be a closed Riemannian manifold. Let V, δ be positive real

numbers. There exists A = A(V, δ) > 0 such that for all ε > 0 small enough, if

i) Vol(M, gf ) ≤ V,
ii)
∣

∣

∣

∣(Scalgf )+
∣

∣

∣

∣

L
n
2 (M,dµf )

≤ α(n, 2)− δ

then

(4)

ˆ

M

en(1+ǫ)fdµg0 ≤ A.

Proof. We are going to use the following optimal Sobolev inequality du to E. Hebey and

M. Vaugon ([24]) (this inequality had been conjectured by T. Aubin [2]): if we write again

α(n, 2) = σ
2
n
n n(n− 1), then there is a constant B such that for all ϕ ∈ C∞(M),
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(5) α(n, 2)

(
ˆ

M

ϕ
2n

n−2dµ0

)1− 2
n

≤
4(n− 1)

n− 2

ˆ

M

|dϕ|2g0dµg0 +

ˆ

M

Bϕ2dvg0 .

If gf = u
4

n−2 g0 if follows from [43] that

(6) Scalgf u
4

n−2 u =
4(n− 1)

n− 2
∆g0u+ Scalg0 u.

In particular for any ǫ > 0 we get

4(n− 1)

n− 2
∆g0u

1+ǫ + (1 + ǫ) Scalg0 u
1+ǫ + (n− 1)

4ǫ(1 + ǫ)

n− 2
uǫ−1|du|2g0

= (1 + ǫ) Scalgf u
4

n−2 u(1+ǫ).

Using the Hebey and Vaugon Sobolev inequality for ϕ = u(1+ǫ), we get

α(n, 2)

(
ˆ

M

u(1+ǫ) 2n
n−2 dµg0

)1− 2
n

≤
4(n− 1)

n− 2

ˆ

M

u(1+ǫ)∆g0u
1+ǫdµg0 +B

ˆ

M

u2(1+ǫ)dµg0

≤ (1 + ǫ)

ˆ

M

(Scalgf )+u
4

n−2 u2(1+ǫ)dµg0

+((1 + ǫ)S0 +B)

ˆ

M

u2(1+ǫ)dµg0 ,

where S0 = ‖ Scalg0 ‖L∞ . When ǫ ≤ 2/(n− 2), using the Hölder inequality we get

(

(α(n, 2)− (1 + ǫ)‖(Scalgf )+ ‖
L

n
2 (M,dµf )

)

(
ˆ

M

u(1+ǫ) 2n
n−2 dµg0

)1− 2
n

≤

((1 + ǫ)S0 +B) (Volg0(M))
2−(n−2)ǫ

n
(

Volgf (M)
)(1+ǫ)n−2

n ,

which gives with e2f = u
4

n−2 ,

ˆ

M

en(1+ǫ)fdµg0 ≤
((1 + ǫ)S0 +B) (Volg0(M))

2−(n−2)ǫ
n

δ − ǫ(α(n, 2)− δ)
V (1+ǫ)n−2

2 ,

which is precisely (4) when ǫ is small enough, say ǫ < δ
α(n,2)−δ .

�

Notice that under our very weak hypotheses, the limit space (M∞, d∞) obtained as the

Gromov-Hausdorff limit of the sequence (M,dgk)k∈N may be very singular; the singu-

larities depending on the set where d∞ vanishes. Even if the volume of (M, gk) remains

constant (recall that the Ln/2 bound of the scalar curvature is invariant under rescaling),

we cannot a priori prevent collapsing of some open part of the manifold. In the sequel,

we look for stronger conditions on the scalar curvatures and the volumes so that we get a

better geometric picture of the limit.

Let us first note that if we add to the hypotheses in Theorem 1.1 a lower bound on the

volume and a uniform Lp bound on the scalar curvature (and not the full Riemann tensor)

with p > n
2 , then we get Cα-precompactness for the conformal factors:
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Corollary 2.4. Let (Mn, g0) be a closed Riemannian manifold. Let v, V,Λ, δ be positive

real numbers and let p > n/2. Then the set Mp,Λ,δ
v,V of smooth functions f ∈ C∞(M) such

that gf = e2fg0 satisfies

i) v ≤ Vol(M, gf) ≤ V,

ii)
´

M

∣

∣Scalgf
∣

∣

p
dµf ≤ Λ

iii)
∣

∣

∣

∣(Scalgf )+
∣

∣

∣

∣

L
n
2 (M,dµf )

≤ σ
2
n
n n(n− 2)− δ

is precompact in Cα(M) for 0 < α < 2p−n
p .

Proof. It follows from Proposition 2.3 that for all metrics gf = e2fg0 in Mp,Λ,δ
v,V , the

volume density enf satisfies a L1+ε uniform bound given by (4).

Combining this uniform stronger integrability of ef together with Lp bounds for the

scalar curvature and volume bounds, a Harnack inequality due to Trudinger in [41] together

with elliptic regularity will give Cα-precompactness for the space of metrics for 0 < α <
2p−n

p . This is explained with details in Section 2.2 of [29]. �

In particular, any sequence of metrics satisfying some Lp bound on the scalar curvature,

p > n/2, and the above Ln/2 bounds on its positive part, converges (up to extraction

of a subsequence) in some Cα-topology to a Riemannian metric g∞ = e2f∞g0, where

f∞ ∈ Cα(M). This slightly improves the well known result by M. Gursky given in [23].

The rest of our paper is devoted to the study of sequences of conformal deformations

with fixed volume bounds and a mere Ln/2 bound on the scalar curvature. It follows from

[16] that in this setting, one cannot get C0 precompactness for the sequence of conformal

factors (or, equivalently, for the sequence of Riemannian metrics). Nevertheless, we will

show that the sequence of associated measured metric spaces and the limit metric spaces

(M∞, d∞) thus obtained satisfy many uniform geometrical properties.

3. OPTIMAL Ln/2 BOUNDS FOR THE SCALAR CURVATURE AND A∞ WEIGHTS

In this section, we study sequences (gk = e2fkg0)k∈N of conformal metrics with a

uniform upper bound on the volumes, such that the Ln/2-norms of the positive part of the

scalar curvature on small spheres is uniformly bounded by the one of the standard sphere,

and which moreover have some uniformLn/2 bound for the total scalar curvature. We will

show that the Riemannian volume densities {enfk}k∈N are then uniformly A∞-weights

with respect to g0, see Definition 3.1.

To be uniformly A∞-weights has several nice geometrical consequences. First of all,

the sequence of volume measures (dµfk)k∈N is uniformly doubling with respect to the

initial distance d0. In particular, this rules out the kind of blowups presented in Example

1 in our introduction. More precisely, we will see that the A∞ control implies that the

Riemannian distances dfk are uniformly controlled in terms of the volumes dµfk , locally.

We will show as well Gromov-Hausdorff precompactness for the set of conformal metrics

satisfying a uniformA∞-weight bound, independently of any control on the curvature.

In the afore mentioned work of Gursky [23], a key step to get Cα compactness for a

sequence of conformal metrics (gk = e2fkg0)k∈N whose Riemann curvatures satisfy a

uniform Lp bound (p > n/2) is to show that if g0 is not conformal to the standard sphere,

then the conformal factors in such sequences satisfy a uniform Harnack inequality: there

exists C > 1 such that for all k ∈ N,

sup efk

inf efk
≤ C.
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Uniform volume bounds and (even very small) Ln/2 bounds on the scalar curvature

cannot ensure such Harnack inequality, as shows Example 2 in our introduction. A uniform

A∞ control on the weight enfk is actually a local Lq integral version of this Harnack

inequality for some q > 1.

3.1. A∞ weights and conformal metrics. We now give a presentation ofA∞ weights on

a closed Riemannian manifold. The reader can find a good exposition and more details in

[36, chapter V]. Then, we will draw some geometric consequences for conformal metrics

having such A∞ control.

Let (Mn, g0) be a closed Riemannian manifold. Throughout this document we will

denote by

B(x, r) : the g0-geodesic ball centered at x and of radius r.

We will sometimes write B for a g0-geodesic ball whose radius will be denoted by r(B).
For θ > 0, θB will be the ball with the same center and with radius θr(B). D will denote

the diameter of (Mn, g0). The measure µ0 will still be the g0 Riemannian volume. If

E ⊂ M is a measurable set and f ∈ L1(E, dµ0) the average of f over E will be denoted

by
 

E

fdµ0 =
1

µ0(E)

ˆ

E

fdµ0.

Definition 3.1. We say that a non negative functionw ∈ L1(M,dµ0) is a A∞ weight with

respect to g0 if one of the following equivalent properties is satisfied:

i) There is a q > 1 and a constant C such that for any geodesic ball B ⊂ M , the

following reverse Hölder inequality with exponent q holds:

(
 

B

wqdµ0

)
1
q

≤ C

 

B

wdµ0.

ii) There is p > 1 and a constant C such that for any geodesic ball B ⊂M :

(
 

B

wdµ0

)(
 

B

w− 1
p−1 dµ0

)p−1

≤ C.

If w satisfies this condition, it is called Ap-weight.

iii) There are constant δ, ε ∈ (0, 1) such that for any geodesic ball B ⊂ M and any

E ⊂M if E ⊂ B satisfies µ0(E) ≤ δµ0(B) then
´

E
wdµ0 ≤ ε

´

B
wdµ0.

iv) There are constants α > 1 and C > 0 such that for any geodesic ball B ⊂ M and

any E ⊂ B:

1

C

(

µ0(E)

µ0(B)

)α

≤

´

E
wdµ0

´

B
wdµ0

≤ C

(

µ0(E)

µ0(B)

)
1
α .

Remark 3.2. The different constants in the different definitions are mutually controlled.

In particular, we will use the following fact: If w is an Ap weight satisfying part ii) above

for all p > 1, then it fulfills reverse Hölder inequality i) with exponent q for all q > 1, with

mutually controlled constants. See [36, p.196-203] for a proof.

It is possible to show that the properties in Definition 3.1 hold for all geodesic balls if

and only if they hold for geodesic balls of radius less than some fixed R0 > 0. We will

prove this statement for the Reverse Hölder inequality. In order to do that, we need the

following general result.
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Lemma 3.3. If (X, d, µ) is a metric measure space whose balls B with radius less than

R0 satisfy the doubling condition:

µ(2B) ≤ θµ(B)

then for anyR1 ≥ R0 there is a constant θ′ depending only on θ andR1/R0 such that any

ball B with radius less than R1 satisfies the doubling condition:

µ(2B) ≤ θ′µ(B)

Proof. Indeed let B(x,R) a ball of radius R ∈ [R0, R1], then from [11, Lemma 3.10], we

have

µ(B(x, 2R)) ≤ θ50+50 2R
R0 µf (B(x,R0)) ≤ θ

50+50
2R1
R0 µ(B(x,R)).

�

Lemma 3.4. Let q > 1, and C,R0 > 0 be fixed. Let w be a uniformly (q, R0, C)-A∞

weight, i.e. every geodesic ball B of radius r ≤ R0 satifies:

(
 

B

wqdµ0

)
1
q

≤ C

 

B

wdµ0.

Then the measurewdµ0 has the doubling volume property and there existsC′ = C′(q, C,R0, g0) >
0 such that for all balls B of radius r ≥ 0, one has

(7)

(
 

B

wqdµ0

)
1
q

≤ C′

 

B

wdµ0.

Proof. Assume that w satisfies the hypotheses of the lemma for some q > 1 and C,R0 >
0. We first show thatwdµ0 has the doubling volume property. Let us first consider geodesic

balls of radius less than R0 > 0. We start by showing that there is θ > 0 such that for the

measure dω = wdµ we have the doubling property:

r(B) ≤ R0/2 =⇒ ω(2B) ≤ θω(B).

Indeed using both Hölder and Reverse Hölder inequalities we easily get for any τ ∈ (0, 1) :

ω(B \ τB)

ω(B)
≤ C

(

µ0(B \ τB)

µ0(B)

)1− 1
q

.

The manifold M is compact hence there is a constant B such that for any geodesic ball :

µ0(B \ τB) ≤ B(1 − τ)µ0(B).

We choose τ ∈ (0, 1) such that C (B(1− τ))
1− 1

q = 1
2 and we get ω(B) ≤ 2ω(τB),

therefore ω(B) ≤ 2Nω(τNB). Choosing now N such that τN ≤
1

2
< τN−1 gives the

result with θ = 2N .
As the diameter of (M, g0) is finite, we deduce from the Lemma 3.3 that the measure ω

is doubling: there is a constant θ such that for any ball B ⊂M :

ω(2B) ≤ θω(B).

We can now show that the reverse Hölder inequality holds for any ball. Let B be a

geodesic ball of radius r ∈ (R0, D], then we can find a minimal family of geodesic balls

Bα = B(xα, R0/2) of radius R0/2 such that B ⊂ ∪αBα, and the balls B(xα, R0/4) are
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disjoint, hence include in 2B. Since w satisfies reverse Hölder on the balls B(xα, R0/2),
we get

(
ˆ

Bα

wqdµ0

)
1
q

≤
Cµ0(Bα)

1
q

µ0(Bα)

ˆ

Bα

wdµ0 = Cµ0(Bα)
1
q−1

ˆ

Bα

wdµ0.

From the doubling condition on (M,d0, µ0) there is a constant such that

µ0(B) ≤ Cµ0(Bα).

Hence
(
ˆ

Bα

wqdµ0

)
1
q

≤ Cµ0(B)
1
q−1

ˆ

Bα

wdµ0

ˆ

B

wqdµ0 ≤
∑

α

ˆ

Bα

wqdµ0

≤ C
∑

α

µ0(Bα)
1−q

(
ˆ

Bα

wdµ0

)q

≤ Cµ0(B)
1−q

∑

α

(
ˆ

Bα

wdµ0

)q

≤ Cµ0(B)
1−qθq

∑

α

(

ω(
1

2
Bα)

)q

≤ Cµ0(B)
1−qθq

(

∑

α

ω(
1

2
Bα)

)q

≤ Cµ0(B)
1−qθqω(2B)q ≤ Cµ0(B)

1−qθ2qω(B)q,

from which the conclusion follows. �

Let now f ∈ C∞(M) and gf = e2fg0 be a Riemannian metric conformal to g0. A key

geometric consequence of having A∞ control on the weight enf is given in the following

lemma.

Lemma 3.5. Let f : M → R be a smooth map. Assume that w = enf is an A∞ weight

satisfying the above reverse Hölder inequality with constantsC > 0 and q > 1. Then there

is a constant B, depending only on C, q and (M, g0), such that for any x, y ∈M :

df (x, y)
n ≤ B

ˆ

B(x,d0(x,y))

enfdµ0.

This lemma has been shown on the Euclidean space by G. David and S. Semmes, see

[17, inequality (1.2)] and [33, Proposition 3.12b].

Proof. By Sobolev inequality (see for instance [20] p.148), there is a constant C > 0
depending only on the geometry of (M, g0) and q, such that for p = qn, we have for any

balls B ⊂M and any ϕ ∈W 1,p(2B) and x, y ∈ B:

|ϕ(x) − ϕ(y)| ≤ Cr(B)1−
n
p

(
ˆ

2B

|dϕ|pdµ0

)
1
p

.
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If we use this for the function ϕ = df (x, .) and B a ball centered at some point m with

d0(x,m) = d0(m, y) = d0(x, y)/2 and with radius 3
4d0(x, y). we will get

df (x, y) ≤ Cr(B)1−
n
p

(
ˆ

2B

eqnfdµ0

)
1
qn

Then the conclusion follows from the reverse Hölder inequality and the fact that the µ0

measure of 2B is comparable to r(B)n. �

Let us show now that the space of conformal metrics with uniform A∞ bounds is pre-

compact in the Gromov-Hausdorff topology. We will not need this result in the sequel

since Theorem 1.1 will already ensure Gromov-Hausdorff precompactness once we fix a

suitable Ln/2 bound on the scalar curvature. Nevertheless, this is an easy consequence of

the measure being A∞ weights which seems to have remained unnoticed.

Proposition 3.6. Let (Mn, g0) be a closed Riemannian manifold let C, V > 0, R0 ∈
(0, diam(M, g0)] and q > 1.

Let MV,R0,q,C be the set of smooth functions such that f ∈ MV,R0,q,C satisfies the

following conditions:

i) for the Riemanian metric gf = e2fg0, Vol(M, gf ) ≤ V ;
ii) w = enf is (R0, q, C)-uniformly A∞ i.e. for any geodesic ball B of radius less or

equal than R0 we have:

(
 

B

wqdµ0

)
1
q

≤ C

 

B

wdµ0.

Then the set of distances {df , f ∈ MV,R0,q,C} is pre-compact in the Cα topology for all

α ∈ (0, 1 − 1
q ). In particular, the set of metric spaces {(M,df ), f ∈ MV,R0,q,C} is

precompact for the Gromov-Hausdorff topology.

Proof. By Lemma 3.4, there exists C′ > 0 such that for all f ∈ Mv,V,R0,q,C and all

geodesic balls B (of any radius),

(
 

B

wqdµ0

)
1
q

≤ C

 

B

wdµ0.

In particular, if the radius of B is larger than the diameter of (M, g0), we get that for all

f ∈ Mv,V,R0,q,C ,
ˆ

M

enqf ≤ C′(Vol(M, g0))
1
q−1V.

The conclusion follows then immediately from Proposition 2.2. �

3.2. A∞ control from Ln/2 bound on the scalar curvature. We now show that a Ln/2

bound on the scalar curvature, with Ln/2 bound on the positive part of the scalar curvature

uniformly smaller than what it is for the standard sphere at some (even small) fixed scale,

implies a uniform A∞ control of the conformal factor. Once again, it follows from the

Example 1 presented in our introduction that these integral bounds are optimal to get such

A∞ control. Theorem 3.7 below implies Theorem 1.2 of the introduction and explicit its

result.

Theorem 3.7. Let (Mn, g0) be a closed Riemannian manifold, δ,Λ > 0 and R0 > 0.

Then there exist p = p(n, g0, R0,Λ) > 0 and C = C(n, g0, R0, δ,Λ) > 0 such that for

any smooth function f : M → R whose associate metric gf = e2fg0 satisfies
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i)
´

M

∣

∣Scalgf
∣

∣

n
2 dµf ≤ Λ, and

ii) for any x ∈M :

(

ˆ

B(x,R0)

(

Scalgf
)

n
2

+
dµf

)
2
n

≤ α(n, 2)− δ,

we have that for any g0-geodesic ball B of radius less that R0/2,
(
ˆ

B

enfdµ0

)(
ˆ

B

e−
nf
p dµ0

)p

≤ C.

In particular, enf is an A∞-weight with respect to g0, with constants only depending on

n, g0, R0, δ and Λ.

Proof. The proof of this theorem was directly inspired by the proof of the Harnack in-

equality for positive solution of second order elliptic equation, see [20, theorem 8.20] and

its proof.

Let R0 ∈ (0, diam(M, g0]), δ,Λ > 0 and let f : M → R be a smooth function

satisfying the hypotheses above. We write again gf = u
4

n−2 g0, i.e. ef = u
2

n−2 . The proof

is done in two steps.

Lemma 3.8. Under the same hypothesis of Theorem 3.7, there exist ε = ε(n, g0, R0,Λ) >
0 and C = C1(n, g0, R0,Λ) > 0 such that for any g0-geodesic ball B of radius less than

R0/2,
(
 

B

uεdµ0

)(
 

B

u−εdµ0

)

≤ C.

Proof. Since we consider gf = u
4

n−2 g0, let us recall equation 6:

Scalgf u
4

n−2 u =
4(n− 1)

n− 2
∆g0u+ Scalg0 u

Set V = Scalgf u
4

n−2 , W = V − Scalg0 and λ0 = ‖ Scalg0 ‖L∞ . We have

4(n− 1)

n− 2
∆0 ln(u) =W +

4(n− 1)

n− 2
|d ln(u)|2g0 .

Now let B and ξ be a Lipschitz cut-off function with support in 2B such that ξ = 1 on B

and |dξ| ≤ r(B)−1. Then
ˆ

M

ξ2
(

W +
4(n− 1)

n− 2
|d ln(u)|2g0

)

dµ0 =
4(n− 1)

n− 2

ˆ

M

2ξ〈dξ, d ln(u)〉dµ0

≤ 4

ˆ

M

ξ2|d ln(u)|2g0dµ0 +
16(n− 1)2

(n− 2)2

ˆ

M

|dξ|2dµ0

By Hölder inequality, we have
ˆ

M

ξ2(−V )dµ0 ≤
∣

∣

∣

∣

∣

∣
Scal−gf

∣

∣

∣

∣

∣

∣

Ln/2(2B)
µ0(2B)

n−2
2 ,

Moreover, for g0 there is an uniform constant ω such that for any r ∈ (0, diam(M, g0)]
and any x ∈M :

(8)
1

ω
rn ≤ µ0(B(x, r)) ≤ ωrn.

Hence we get
(

4(n− 1)

n− 2
− 4

)
ˆ

B

|d ln(u)|2g0dµ0 ≤ Cλ0r(B)
n+C

(

1 +
∣

∣

∣

∣

∣

∣
Scal−gf

∣

∣

∣

∣

∣

∣

L
n
2 (2B)

)

µ0(2B)r(B)
−2.
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In particular we have

(9) r(B)2
 

B

|d ln(u)|2g0dµ0 ≤ C

(

1 +
∣

∣

∣

∣

∣

∣
Scal−gf

∣

∣

∣

∣

∣

∣

L
n
2 (2B)

)

.

There is a r0 > 0 such that all the geodesic balls B(x, r0) are almost Euclidean: i.e. there

is a smooth map ϕx : B(0, r0) → B(x, r0) with

1

2
eucl ≤ ϕ∗

xg0 ≤ 2eucl,

where eucl is the Euclidean metric and B(0, r0) the Euclidean ball of radius r0. Hence

there are positive constants θ and λ that only depends on n such that if B is a g0 geodesic

ball of radius r(B) ≤ r0/2 then

µ0(2B) ≤ θµ0(B)

and

∀φ ∈ C1(B) :

ˆ

B

(

φ−

 

B

φ

)2

dµ0 ≤ λr(B)2
ˆ

B

|dφ|2dµ0.

We can assume thatR0 ≤ r0, hence the above estimation (9) and the above Poincaré in-

equality implies a BMO (bounded mean oscillation) estimate on the function ln(u). More-

over, we also get from (9) that for all balls B with radius R ≤ R0,
ˆ

B

|d ln(u)|g0 dµ0 ≤ CRn/2

(
ˆ

B

|d ln(u)|2g0 dµ0

)1/2

≤ CRn−1.

Therefore by John-Nirenberg inequality (cf [20, Theorem 7.21]), there exists ε > 0 such

that for any geodesic ball B of radius less that R0/2,
 

B

eε|lnu−(lnu)B|dµ0 ≤ C,

where (lnu)B =

 

B

ln(u) dµ0. This implies that

 

B

u±εdµ0 ≤ Ce±ε(lnu)B .

Therefore
(
 

B

uεdµ0

)(
 

B

u−εdµ0

)

≤ Ceε(lnu)Be−ε(lnu)B ≤ C.

�

So far we have only used an estimate of the negative part of the scalar curvature of gf
in Ln/2. However, we will need the Ln/2 bound on the positive part of the scalar curvature

in order to get the following estimate.

Lemma 3.9. Assume the same hypothesis of Theorem 3.7. For all ε > 0, there exists

C = C(n, g0, R0, δ,Λ, ε) > 0 such that for all g0-geodesic balls of radius less than R0,
(

 

1
2B

u
2n

n−2dµ0

)

≤ C

(
 

B

uεdµ0

)
2n

ε(n−2)

.

Proof. The proof of this lemma is done in two stages, the first one being a localization of

what we did in the proof of Proposition 2.3. Let R, r ≥ 0 such that r + R ≤ R0 and let ξ
be a cut-off function with support in B(x, r +R) such that

• 0 ≤ ξ ≤ 1,
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• |dξ|g0 ≤ 1
r

• ξ = 1 on B(x,R)

We have the equality

4(n− 1)

n− 2

ˆ

B(x,R+r)

|d(ξu)|2g0dµ0

=
4(n− 1)

n− 2

ˆ

B(x,R+r)

(∆g0u)uξ
2dµ0 +

4(n− 1)

n− 2

ˆ

B(x,R+r)

|dξ|2g0u
2dµ0

=

ˆ

B(x,R+r)

V u2ξ2dµ0 −

ˆ

B(x,R+r)

Scalg0 u
2ξ2dµ0

+
4(n− 1)

n− 2

ˆ

B(x,R+r)

|dξ|2g0u
2dµ0.

We use now the Hebey-Vaugon Sobolev inequality (5) and we get that

α(n, 2)

(

ˆ

B(x,R+r)

(ξu)
2n

n−2dµ0

)1− 2
n

≤
4(n− 1)

n− 2

ˆ

B(x,R+r)

|d(ξu)|2dµ0

+B

ˆ

B(x,R+r)

(ξu)2dµ0

(10)

Hence with Hölder inequality, we get

α(n, 2)

(

ˆ

B(x,R+r)

(ξu)
2n

n−2dµ0

)1− 2
n

≤

(

B + λ0 +
4(n− 1)

n− 2

1

r2

)
ˆ

B(x,R+r)

u2dµ0

+

(

ˆ

B(R+r)

(

Scalgf
)

n
2

+
dµf

)
2
n
(

ˆ

B(x,R+r)

(ξu)
2n

n−2dµ0

)1− 2
n

.

(11)

We obtain hence that for a constant C that depends only on g0, R0 and n:

(12)

(

ˆ

B(x,R)

u
2n

n−2dµ0

)1− 2
n

≤
C

δr2

ˆ

B(x,R+r)

u2dµ0.

Therefore, if ε ≥ 2, using again Hölder inequality and setting r = R ≤ R0/2 we get

(
ˆ

B

u
2n

n−2dµ0

)
n−2
n

≤
C

δR2

(
ˆ

2B

uεdµ0

)
2
ε

µ0(B)
ε−2
ε

which gives Lemma 3.9.

Assume now that ε < 2 and let us go to the second stage of the proof. We will use a

trick of P. Li and R. Schoen [28, Theorem 2.1] in order to obtain the wanted conclusion.

Assuming now that r ≤ R ≤ R0/2, and using Hölder inequality with exponent

α = 1 +
4

(2− ε)(n− 2)

we obtain
(

ˆ

B(x,R)

u
2n

n−2dµ0

)1− 2
n

≤
C

δr2

(

ˆ

B(x,R+r)

uεdµ0

)1− 1
α
(

ˆ

B(x,R+r)

u
2n

n−2dµ0

)
1
α

.
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Let us define now λ = 1
α

n
n−2 ,

M(R) =

(

ˆ

B(x,R)

u
2n

n−2dµ0

)1− 2
n

and I =

(

ˆ

B(x,2R)

uεdµ0

)1− 1
α

.

Notice that λ ∈ (0, 1) since
1

λ
= 1 +

2ε

n(2 − ε)
. Equation (12) shows hence that

M(R) ≤
CI

δr2
M(R+ r)λ.

Iterating this equation with r1 + r2 + · · ·+ rk ≤ R/2 leads to

M(R) ≤

(

CI

δ

)1+λ+···+λk−1 k
∏

ℓ=1

1

r2λ
ℓ−1

ℓ

M(R+ r1 + r2 + · · ·+ rk)
λk

.

If we choose rℓ = R2−ℓ−2, with β = 1
1−λ , a little bit of arithmetic gives that

M(R) ≤ C
1

R2β
I
β .

It follows that
(

 

B(x,R)

u
2n

n−2dµ0

)

≤ C

(

 

B(x,2R)

uεdµ0

)
2n

ε(n−2)

which concludes the proof of Lemma 3.9. �

Let us now conclude the proof of Theorem 3.7. Let ε > 0 be given by Lemma 3.8, and

set p = 2n
ε(n−2) . Let us write w = u

2n
n−2 = enf . It follows from Lemmas 3.8 and 3.9 that

there exists C = C(n, g0, R0, δ,Λ, ε) > 0 such that for all g0-balls B with radius less than

R0/2,

(

 

1
2B

wdµ0

)

(
 

B

w− 1
p dµ0

)p

≤ C.

Hence for any g0-ball B with radius less than R0/4:
(
 

B

wdµ0

)(
 

B

w− 1
p dµ0

)p

≤ θp
(
 

B

wdµ0

)(
 

2B

w− 1
p dµ0

)p

≤ θpC,

where θ is the doubling constant for the volume measure g0. This is precisely characteri-

zation ii) of A∞ weights, cf Definition 3.1. �

4. STRONG A∞ WEIGHTS AND BI-HÖLDER COMPACTNESS

We now introduce so-called strong A∞ weights, also known as metric doubling mea-

sures, which are special cases of A∞ weights with strong geometric controls, such as

Sobolev, Poincaré and isoperimetric inequalities.

We could not produce examples of sequences of conformal deformations satisfying the

hypotheses of Theorem 1.2 which would not be uniformly strong A∞. Our Theorem 1.3

shows that any conformal deformation is actually uniformly strongA∞ provided the Ln/2

norm of the scalar curvature on small balls is pinched enough, which explains this fact.

4.1. Definitions and basic facts. Let (M, g0) be a closed Riemannian manifold, µ0 its

Riemannian volume. If gf = e2fg0 is a metric conformal to g0, we continue to denote by

µf and by df the corresponding Riemannian volume and distance respectively.
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4.1.1. Definitions.

Definition 4.1. Let gf = e2fg0 be a conformal deformation of g0. We say that the volume

density enf is a strong-A∞ weight with respect to the Riemannian metric g0 if there are

positive constants η, θ such that

(1) x ∈M, r ≤ η ⇒ µf (B(x, 2r)) ≤ θµf (B(x, r)).

(2) x, y ∈M,d0(x, y) ≤ η ⇒
df (x, y)

n

θn
≤ µf (B(x, d0(x, y))) ≤ θ

ndf (x, y)
n.

In above definition, B(x, r) is a geodesic ball of radius r for the fixed d0 = dg0 distance.

Notice that the strong A∞ condition is invariant under scaling: if dµf = enfdµ0 is a

strong-A∞ weight with constants (θ, η) then for every h > 0, hndµf is also a strong-A∞

weight with same constants (θ, η).
These strong A∞ weights were introduced in [17], in relation with the quasiconformal

jacobian problem. The jacobian of a quasiconformal map is a strong A∞ weight, as is any

A1-weight (see Definition 3.1 ii)). A strong A∞ weight with constants (θ, η) is an A∞-

weight with constants only depending on θ, η, see Proposition 3.4 of [33]. Nevertheless,

not all A∞ weights are strongA∞. Various characterizations of strongA∞ weights can be

found in [17] and [33], together with examples and details about their relationships with

the quasiconformal jacobian problem and the bi-Lipschitz embedding problem.

It is easy to see that if the conditions in definition 4.1 are satisfied for some θ, η then

for any other η′ ≥ η there is a constant θ′ depending on (θ, η) and on the geometry of g0
such that the same conditions are satisfied with constant (θ′, η′). We also remark that the

doubling condition on µf implies that if m ∈M is a point such that

ρ = d0(m,x) = d0(m, y) =
1

2
d0(x, y) ≤

η

2

then the balls B(m, ρ), B(x, d0(x, y)), B(y, d0(x, y)) have comparable µf mesure.

Note that when d0(x, y) ≤
1
2 inj(M, g0), there is a unique point m ∈M such that

ρ = d0(m,x) = d0(m, y) =
1

2
d0(x, y).

The ball B(m, ρ) will be denoted Bx,y . We obtain thus the following alternative and equiv-

alent definition of strong A∞ weight.

Definition 4.2. If θ, η are positive number such that η ≤ 1
4 inj(M, g0), we say that the

volume density enf associated to the metric gf = e2fg0 is a strong-A∞ weight (with

respect to g0) with constant (θ, η) if

(1) x ∈M, r ≤ η ⇒ µf (B(x, 2r)) ≤ θµf (B(x, r)).

(2) x, y ∈M,d0(x, y) ≤ 2η ⇒
df (x, y)

n

θn
≤ µf (Bx,y) ≤ θ

ndf (x, y)
n.

It follows from Lemma 3.5 that the left inequality in property (2) in definition 4.1 is

satisfied for all A∞ weights. The specificity of strong A∞ weights relies hence in the

other inequality.

Let gf = e2fg0 be a conformal deformation of g0 such that its volume density enf is a

strong-A∞ weight (with respect to g0) with constants (θ, η). We are going to show several

basic controls on the geometry of (M, gf ).
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4.1.2. Geometry of gf balls. In this subsection, we show that the strong A∞ condition

implies that the geodesic ball for gf and g0 are comparable.

Let Bf (x, r) denote the gf -geodesic ball of center x and radius r.

In this section and in what follows we use the following notation:

R(x, r) := µf (B(x, r))
1
n ,

where, as before, B(x, r) is the g0 geodesic ball of center x and radius r.

Lemma 4.3. There exists κ = κ(η, θ) > 0 such that for any r ≤ η/κ :

Bf (x,R(x, r/κ)) ⊂ B(x, r) ⊂ Bf (x,R(x, κr)).

Proof. The doubling condition implies a reverse doubling estimate (see [22, Lemma 2.10]):

there are positive constants α,ω depending only on η and θ such that

(13) x ∈M, 0 < s < r ≤ η ⇒ ω−n
(s

r

)
n
α

≤
µf (B(x, s)))

µf (B(x, r)))
≤ ωn

(s

r

)nα

.

The doubling condition also implies that the µf -measure of g0-geodesic spheres is zero

([14, 38]), hence the function r 7→ R(x, r) is continuous and strictly increasing, in partic-

ular we have

R(x, s) < R(x, r) ⇐⇒ s < r.

We have for d0(x, y) ≤ η

(14) θ−1 ≤
df (x, y)

R(x, d0(x, y))
≤ θ.

and

x ∈M, 0 < s < r ≤ η ⇒ ω−1
(s

r

)
1
α

≤
R(x, s)

R(x, r)
≤ ω

(s

r

)α

.

With κ := (ωθ)
1
α , and assuming without loss of generality that κ > 1, we get for any

r ≤ η/κ :

θR(x, r) ≤ R(x, κr) and R(x, r/κ) ≤ θ−1R(x, r).

Since by (14), we have

Bf (x,R(x, r)/θ) ⊂ B(x, r) ⊂ Bf (x, θR(x, r))

we get

Bf (x,R(x, r/κ)) ⊂ B(x, r) ⊂ Bf (x,R(x, κr)).

�

Note that the two radius R(x, r/κ) and R(x, κr) are uniformly comparable:

ω−1κ
2
α ≤

R(x, κr)

R(x, r/κ)
≤ ωκ2α.
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4.1.3. Volume doubling for (M,df , µf ). As we mentioned above, if a weight is strong-

A∞, it is A∞. We proved that A∞ weights are doubling for the balls of the background

metric. We show now that the metric measure space (M,df , µf ) is doubling (for gf -

geodesic balls) with constants only depending on η and θ.

Lemma 4.4. There exists δ = δ(η, θ) > 0 and k = k(η, θ) > 0 such that for all R ∈
(0, δ),

µf (Bf (x, 2R)) ≤ 2kµf (Bf (x,R)),

where Bf (x,R) is the df -geodesic ball of radius R and center x.

Proof. Let D be the diameter of (M, g0), then according to [11, Lemma 3.10], the volume

doubling condition for (M,d0, µf ) implies that for any x ∈M and any r ≤ η :

(15) µf (M) ≤ θ50+50D
r µf (B(x, r)).

Hence

R(x, s) ≤
(

θ−50−50D
r µf (M)

)
1
n

⇒ s ≤ r.

Now we have for r ≤ η/κ :

µf (Bf (x,R(x, r))) ≤ µf (B(x, κr))

≤ θkµf (B(x, 2
−krκ))

≤ θkµf (Bf (x,R(x, 2
−krκ2))

But

R(x, 2−krκ2) ≤ ω
(

2−kκ2
)α
R(x, r)

Chosing k such that ω
(

2−kκ2
)α

≤ 1
2 we get

µf (Bf (x,R(x, r))) ≤ θ
kµf (Bf (x,R(x, r)/2)).

Hence with

δ :=
(

θ−50−50κD
η µf (M)

)
1
n

,

this eventually implies that

R ≤ 2δ ⇒ µf (Bf (x, 2R)) ≤ 2kµf (Bf (x,R)).

�

4.1.4. Estimate of the diameter of (M, gf ). We are going to show that the diameter of

(M, gf) is comparable to µf (M)
1
n .

Lemma 4.5. There is a constant C depending only on g0, θ, η such that

C−1 (µf (M))
1
n ≤ diam(M, gf) ≤ C (µf (M))

1
n .

Proof. The upper bound for diam(M, gf ) is an immediate consequence of Lemma 3.5.

Let us show the lower bound.

It is always possible to assume moreover that η ≤ D. Then there is always two points

x, y ∈M with d0(x, y) = η and we have

diam(M, gf) ≥ df (x, y) ≥ θ
−1 (µf (B(x, η)))

1
n ,

therefore by (15), we get

diam(M, gf ) ≥ C(θ, η,D) (µf (M))
1
n .

�
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4.1.5. Bi-Hölder compactness for sequence of Strong A∞ conformal metric. Let (gk =
e2fkg0)k∈N be a sequence of conformal deformations of g0 such that the weights enfk

are strong-A∞ weight with uniform constant (θ, η). As mentioned earlier, it follows

from [33] that all the gk are uniformly A∞. If the volumes of (M, gk) are uniformly

bounded, Proposition 3.6 implies then that the sequence of metric spaces (M,dfk)k∈N has

a subsequence which converges in Gromov-Hausdorff topology to some limiting space

(M∞, d∞). Strong A∞ weights will give the following stronger convergence result.

Proposition 4.6. Let (gk = e2fkg0)k∈N be a sequence of Riemannian metrics conformal

to g0 such that the weights enfk are strong-A∞ weights with uniform constant (θ, η).

i) If there are positive constants v, V such that ∀k : v ≤ µfk(M) ≤ V , then there is a

subsequence that converges in the Cα and Gromov-Hausdorff topology to (M,d∞),
where d∞ is a distance on M which is bi-Hölder equivalent to d0.

ii) If limk→∞ µfk(M) = 0, then the sequence of metric spaces ((M,dfk))k converges

in the Gromov-Hausdorff topology to a point.

iii) If there is a positive constant v such that ∀k : v ≤ µfk(M), then for any p ∈ M ,

there is a subsequence of the sequence of pointed metric spaces ((M,dfk , p))k that

converges in the pointed Gromov-Hausdorff topology to a pointed metric space.

Proof. We will only show i); the other cases follow from a straightforward scaling argu-

ment. As soon as enf is a strongA∞ with constants η, θ, we have seen that if d0(x, y) ≤ η
then

θ−1R(x, d0(x, y)) ≤ df (x, y) ≤ θR(x, d0(x, y)).

Moreover by (13) we have

ω−1

(

d0(x, y)

η

)
1
α

µf (B(x, η))
1
n ≤ R(x, d0(x, y)) ≤ ω

(

d0(x, y)

η

)α

µf (B(x, η))
1
n .

Hence if v ≤ µf (M) ≤ V , there is a constant λ depending only on v, V, θ,ω, η, α such

that
1

λ
(d0(x, y))

1
α ≤ df (x, y) ≤ λ (d0(x, y))

α .

Hence the identity map

Id: (M,df ) → (M,d0)

is uniformly bi-Hölder continuous

Therefore a uniform strong A∞ estimate for the (enfk)k∈N together with a uniform

control on the volume 0 < v ≤ µfk(M) ≤ V implies that the sequence (dfk) is precom-

pact in the Hölder topology and for any converging subsequence, the limiting map d∞ is a

distance on M which is uniformly bi-Hölder equivalent to d0.

�

4.1.6. Sobolev, Poincaré and isoperimetric inequalities. Let us now mention some other

important geometric facts about strong A∞ weights shown in [17].

Theorem 4.7 (David-Semmes (1990)). Let (M, g0) be a compact smooth Riemannian

manifold, and let ω = enf be a strong A∞ weight with respect to g0 with constants η and

θ, and let gf = e2fg0 = ω
2
n g0. Then

i) There is a constant θ = θ(g0, η, θ) such that for any x ∈ M and any gf -geodesic

B(x, r) of radius less than diamgf (M):

θ−1rn ≤ µf (B(x, r)) ≤ θrn.
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ii) There is a constant γ = γ(g0, η, θ) > 0 such that for any smooth domain Ω ⊂ M
with µf (Ω) ≤

1
2µf (M) , we have

γµf (Ω)
n−1
n ≤ µf (∂Ω).

iii) There is a constant λ = λ(g0, η, θ) such that for any gf -geodesic B(x, r) of radius

less than diamgf (M): and any ϕ ∈ C1(B(x, r)) with
´

B(x,r)
ϕdµf = 0 then

ˆ

B(x,r)

|ϕ|dµf ≤ λr

ˆ

B(x,r)

|dϕ|gf dµf

Sobolev inequalities for (M, gf ) are consequences of doubling and Poincaré inequality,

see [17].

4.2. Q-curvature and Strong A∞ bounds. Let us finish this section by presenting the

results of S. Brendle [7] and Yi Wang [42] which have inspired our analysis of conformal

metrics with Ln/2 pinching of the scalar curvature via A∞ weights. These works are de-

voted to the study of conformal deformations with L1 bounds for the BransonQ-curvature,

which we present now.

Let (M, g) be a Riemannian manifold of dimension n = 4. The Branson Q-curvature

of (M, g) is defined by

Qg =
1

12

(

∆g Scalg +
1

4
Scal2g −3 |Eg|g

)

,

whereEg is the traceless part of the Ricci tensor. ThisQ-curvature has a natural conformal

invariance: if gf = e2fg0, then

(16) 2e4fQgf = Pg0f + 2Qg0 ,

where Pg0 is the Paneitz operator on (M, g0), which we shall not define here (see for in-

stance [7]). This equation is the analogous for the Q-curvature or the Yamabe equation

(6) for the scalar curvature. The existence of a Paneitz operator and a Q-curvature satisfy-

ing the conformal covariance property (16) has been generalized to all even dimension by

Fefferman and Graham in [18]. Note that the leading term of Pg0 is always (∆g0)
n
2 , and

Pg0 = (∆g0)
n
2 when g0 is a flat metric.

The following result was shown in [7], Proposition 1.4.

Theorem 4.8 (Brendle (2003)). Let (Sn, gS) be the standard n-sphere and let C, δ > 0
and R0 ∈ (0, diam(Sn)) be fixed. Let (gk = e2fkgS)k∈N be a sequence of conformal

deformations of gs with constant volume such that:

•

ˆ

Sn

Q2
gkdvolgk ≤ C;

• for all x ∈ Sn,
ˆ

B(x,R0)

|Qgk | dvolgk ≤
1

2
(n− 1)!σn − δ,

where B(x,R0) is the gS-geodesic ball of radius x and center x.

Then (fk)k∈N is bounded in Hn = W 2,n with bounds only depending on C, δ, n and

R0.
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Note that on the round sphere, we have
ˆ

Sn

|QgS | dvolgS = (n− 1)!σn :

the critical constant in Brendle theorem is half of the total Q-curvature of the sphere. It

was later shown by Wang in [42] that under an analogous L1 pinching condition for the

Q-curvature, conformal deformations of the euclidean metric on Rn are uniformly strong

A∞ weights.

Theorem 4.9 (Wang (2013)). Let C, δ > 0 be fixed and let (gf = e2feucl)k∈N be a

conformal deformation of the euclidean plane (Rn, eucl), which is normal metrics, and

such that:

•

ˆ

M

∣

∣Qgf

∣

∣ dµf ≤ C;

•

ˆ

M

Q+
gfdµf ≤

1

2
(n− 1)!σn − δ.

Then the Riemannian volume density (enf )k∈N is a strong A∞ weight with respect to

the standard Lebesgue measure on Rn, with constants only depending on n, C and δ.

A normal metric on Rn is a Riemannian metric whose behaviour at infinity is not too

pathological, we refer to [42] for a precise definition. For instance, any smooth metric

whose scalar curvature is non-negative at infinity is normal.

The previous theorem is a reformulation of Theorems 3.2 and 4.1 of [42]. The parallel

between Brendle and Wang’s assumptions and the assumptions of our Theorem 1.3 is obvi-

ous; indeed our approach was inspired by Wang’s proof. Note that the constant 1
2 (n−1)!σn

is optimal to get a strongA∞ weight, as can easily be shown by considering a sequence of

metrics built from removing a ball in Rn and gluing on its boundary a very long cylinder

with a round cap. Such sequence (even smoothed) cannot be uniformly strong A∞, since

it has no uniform isoperimetric inequality.

The proof of Wang can be localized using the same approach as we do in this paper,

which gives following result.

Theorem 4.10. Let (M, g0) be a compact smooth manifold, and C, δ > 0 and R0 ∈
(0, diam(M, g0)) be fixed. Let (gf = e2fg0)k∈N be a sequence of conformal deformations

of g0, such that:

•

ˆ

M

∣

∣Qgf

∣

∣ dµf ≤ C;

• for all x ∈M ,
ˆ

B(x,R0)

Q+
gf
dµf ≤

1

2
(n− 1)!σn − δ.

Then the Riemannian volume density (enf )k∈N is a strong A∞ weight with respect to

g0, with constants only depending on (M, g0), C and δ.

We will not detail here the proof of this result, which is a combination of our arguments

with those of [42].

5. Ln/2 PINCHING FOR THE SCALAR CURVATURE AND STRONG A∞ WEIGHTS

In Section 4 we explained that a uniform strongA∞ control coupled with uniform volu-

me bounds has important geometric consequences, which were gathered in Corollary 1.4.

This section is devoted to the proof of Theorem 1.3, which is our second main result. In
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order to motivate the sequel of our study, we start with the proof of Theorem 1.3 assuming

Theorems 5.1 and 5.7 which will be stated and proved in Sections 5.2 and 5.3 respectively.

5.1. Proof of Theorem 1.3. Let gf = e2fg0 be a conformal deformation such that for

some Λ0 small enough (only depending on g0) and for some R0 > 0, we have

∀x ∈M,

ˆ

B(x,R0)

∣

∣Scalgf
∣

∣

n
2 dµf ≤ Λ0.

By Yamabe’s equation (6), writing e2f = u
4

n−2 , we have

4(n− 1)

n− 2
∆g0u = Scalgf u

4
n−2 u− Scalg0 u.

This is a Schrödinger type equation of the form ∆g0u+ qf u = 0, with

qf =
n− 2

4(n− 1)

(

Scalg0 − Scalgf e
2f
)

.

Moreover, for all x ∈M ,

‖qf‖L
n
2 (B(x,R0),g0)

≤ C(g0)R
2
0 +

(

´

B(x,R0)

∣

∣Scalgf
∣

∣

n
2 dvolgf

)
2
n

≤ C(g0)R
2
0 + Λ0.

Hence if one chose Λ0 to be smaller that the half of the ǫ of the Theorem 5.1 , then for R0

small (so that C(g0)R
2
0 ≤ ǫ/2) the Schrödinger operator ∆g0 + qf satisfies the hypothesis

of the Theorem 5.1 and since u is a positive smooth solution of (∆g0 + qf )u = 0, the

lowest eigenvalue of ∆g0 + qf is necessary zero, with eigenfunction u. By Theorem 5.1,

we can decompose

f = h+ w,

where h ∈W 2,n2 (M, g0) and w ∈ Cα(M,d0), with

sup
x,y∈M

|w(x) − w(y)|

d0(x, y)α
≤ C(g0, R0,Λ0)

and

(17) ‖dh‖Ln + ‖∆h‖
L

n
2
≤ C(g0, R0,Λ0).

Let x0 be a chosen base point in M . Since w is bounded in the Cα topology induced by

d0, there exists C > 0 such that for all x ∈M ,

|w(x) − w(x0)| ≤ Cdiam(M, g0)
α.

Now, combining (17) with Theorem 5.7, there exists η = η(g0, R0,Λ0) and θ =
θ(g0, R0,Λ0) such that enh is a strong A∞ weight with respect to (M, g0) with constants

η and θ. Since w − w(x0) is uniformly bounded from above and below, and since being

StrongA∞ weight is a scale invariant condition, this implies that enf = en(h+w−w(x0))enw(x0)

is also a strong A∞ weight with constants η and θ. Moreover, by Proposition 5.9, for all

α ∈ (0, 1), the distances df and d0 are α-bi-Hölder with constants only depending on g0,

R0, Λ0 and α, which concludes the proof of Theorem 1.3.
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5.2. On the ground state of Schrödinger operators with critical potential. The pur-

pose of this section is to give a regularity result for the first eigenfunction of a Schrödinger

operator whose potential has small Ln/2 norm on small balls, which is the first key step in

the proof of Theorem 1.3. The results presented in this paragraph are valid for any compact

Riemannian manifold (M, g) and of independent interest.

Theorem 5.1. Let (Mn, g) be a closed Riemannian manifold of dimension n > 2. There

are constants ǫ, α > 0 depending only of (Mn, g) such that if V ∈ L
n
2 satisfies:

(1) the lowest eigenvalue of the Schrödinger operator ∆− V is zero;

(2) there is some ρ > 0 such that for any x ∈M :
ˆ

B(x,ρ)

|V |
n
2 < ǫ.

Then for all positive C2 solution ϕ > 0 of ∆ϕ − V ϕ = 0, there are f ∈ W 2,n2 and

w ∈ Cα(M) such that

ϕ = ef+w.

Moreover, writing I := sup
x

(

ˆ

B(x,ρ)

|V |
n
2

)
2
n

we have

‖w‖Ċα := sup
x,y∈M

|w(x) − w(y)|

d0(x, y)α
≤ C(g, ρ, I)

and

‖df‖Ln + ‖∆f‖
L

n
2
≤ C(g, ρ)I.

This theorem is a key step in showing that conformal deformations whose scalar curva-

ture has small Ln/2 norm on small balls are strong A∞ weights.

In order to prove Theorem 5.1, we need some preliminary tools. Let us start by recalling

the following classical consequence of the fixed point theorem.

Proposition 5.2. Let (X, ‖ • ‖) be a Banach space, κ ∈ (0, 1). If S : B(0, ρ) → X is a

κ-Lipschitz map with

‖S(0)‖+ κρ < ρ

then there is a unique x ∈ B(0, ρ) such that S(x) = x. Moreover we have ‖x‖ ≤
‖S(0)‖

1− κ
.

Let A(g) be the best constant in the following functional inequality on the closed Rie-

mannian manifold (M, g):

(18) ∀ϕ ∈ C∞(M) : ‖dϕ‖Ln ≤ A(g)‖∆ϕ‖
L

n
2
.

Proposition 5.3. Let (M, g) be a compact smooth Riemannian manifold such that Ricg ≥
−(n− 1)k2g, then the best constant A(g) in (18) satisfies

A(g) ≤ ec(n)(1+k diam(M,g)) diam(M, g)

vol
1
n (M, g)

.

The above estimate on A(g) can be shown using a lower bound on the Ricci curvature,

and upper bounds on the diameter and volume of (M, g); it follows from results of S.

Gallot [19] and of D. Bakry [3, Théorème 4.1, Lemme 4.2 and Corollaire 4.3]. We will not

show it here, since we will not need this expression.

Let us now show the following property of the ground state of the Schrödinger operator

∆− V .
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Proposition 5.4. Let V ∈ L∞(M) ∩ L
n
2 (M) and let λ0 be the bottom of the spectrum of

the Schrödinger operator ∆− V . If

8A(g)2‖V ‖
L

n
2
< 1

then for any ϕ > 0 satisfying ∆ϕ− V ϕ = λ0ϕ, we have

‖d logϕ‖Ln ≤ 2A(g)‖V ‖
L

n
2
.

Proof. We remark that if ϕ = eu satisfies

∆ϕ− V ϕ = λ0ϕ,

then we have

∆u− |du|2 = V + λ0.

Moreover up to a scaling constant, there is a unique non trivial solution to the equation

∆ϕ− V ϕ = λ0ϕ. We introduce the Banach space

W 1,n
⊥ := {v ∈W 1,n(M),

ˆ

M

v = 0}

endowed with the norm

‖v‖⊥ = ‖dv‖Ln .

We introduce the operator S : W 1,n
⊥ →W 1,n

⊥ defined by

S(v) = ∆−1V +∆−1|dv|2.

where for all f ∈ L
n
2 , we have denote u := ∆−1f the solution of the equation

{

∆u = f − fM
´

M
u = 0.

By definition of A(g), we have

‖S(0)‖⊥ ≤ A(g)‖V ‖
L

n
2
,

and

‖S(u)− S(w)‖⊥ ≤ A(g)‖u− w‖⊥ (‖u‖⊥ + ‖w‖⊥) .

As a consequence the restriction of S to the ball B(0, ρ) ⊂W 1,n
⊥ , is 2A(g)ρ-Lipschitz and

if

(19) A(g)‖V ‖
L

n
2
+ 2A(g)ρ2 < ρ

then there is a unique v ∈ B(0, ρ) with S(v) = v and

‖v‖⊥ ≤ A(g)
‖V ‖

L
n
2

1− 2A(g)ρ
.

Choosing ρ = (4A(g))−1, the condition (19) is satisfied as soon as

A(g)‖V ‖
L

n
2
< (8A(g))−1.

We have obtained hence a function v ∈W 1,n
⊥ such thatS(v) = v and ‖v‖⊥ ≤ 2A(g)‖V ‖

L
n
2
.

Therefore there is a constant c such that

∆v − |dv|2 = V + c,

therefore

∆ev − V ev = cev.

Since the only positive eigenfunction of ∆ − V is associated to λ0, we have c = λ0,

ev = kϕ for some k > 0 and ||d logϕ||Ln = ||v||⊥ ≤ 2A(g) ||V ||Ln/2 . �
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Let us now define the Sobolev constant β = β(g0) > 0 of (M, g0) to be the best

constant in the inequality

(20) ∀ϕ ∈ C∞(M) : β‖ϕ‖2
L

2n
n−2

≤ ‖dϕ‖2L2 + ‖ϕ‖2L2 .

Note that this Sobolev inequality implies that

β ≤ Vol(M, g0)
2
n .

We also have that for any δ ∈ (0, 1):

∀ϕ ∈ C∞(M) : δ2β‖ϕ‖2
L

2n
n−2

≤

ˆ

M

[

|dϕ|2g0 + δ2|ϕ|2
]

dµ0.

Hence we can easily prove the following lemma:

Lemma 5.5. If W ∈ L
n
2 satisfies ‖W‖

L
n
2

≤ βδ2, then the Schrödinger operator ∆ +

δ2 +W is non negative.

Proof. The Hölder inequality implies that if ϕ ∈ C1(M):

−

ˆ

M

Wϕ2 ≤ ‖W‖
L

n
2
‖ϕ‖2

L
2n

n−2
≤ δ2β‖ϕ‖2

L
2n

n−2
≤

ˆ

M

[

|dϕ|2g0 + δ2|ϕ|2
]

dµ0

�

Lemma 5.6. Assume that x0 ∈M and r0 are chosen so that

VolB(x0, r0) ≤

(

β

2

)
n
2

.

If q ∈ L
n
2 is such that

supp(q) ⊂ B(x0, r0) and ‖q‖
L

n
2
≤ β

then there is a constant c0 satisfying :

|c0| ≤
2

β
‖q‖

L
n
2

such that the lowest eigenvalue of the Schrödinger operator

∆+ q + c0 1M\B(x0,r0)

is zero.

Proof. Let λ0(c) be the lowest eigenvalue of the Schrödinger operator

∆+ q + c1M\B(x0,r0) .

Using the constant function, we get that λ0(c) ≤ 0 as soon as
ˆ

M

q + cVolg0(M \ B(x0, r0)) ≤ 0.

Moreover,VolB(x0, r0) ≤
Vol(M,g0)

2 , hence for c− = − 2
Vol(M,g0)

´

M |q|, we haveλ0(c−) ≤
0.

Using Lemma 5.5 for W = q − c1B(x0,r0), we also see that if c > 0 satisfies

‖q − c‖
L

n
2 (B(x0,r0))

≤ βc

then λ0(c) ≥ 0. For instance for c+ = 2
β ‖q‖L

n
2

, we have λ0(c+) ≥ 0. Hence there is a

c0 ∈ [c−, c+] such that λ0(c0) = 0.
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Moreover, by Hölder inequality we have

|c−| ≤
2

Volg0(M)
(Volg0(M))1−

2
n ‖q‖

L
n
2
≤

2

Vol
2
n
g0(M)

‖q‖
L

n
2
≤

2

β
‖q‖

L
n
2
.

Therefore |c0| ≤
2

β
‖q‖

L
n
2

, which concludes the proof of Lemma 5.6.

�

We can now prove Theorem 5.1.

Proof of Theorem 5.1. We will use the constants A(g0) and β given by the estimate (18)

and the Sobolev inequality (20). We can always assume that ρ also satisfies

∀x ∈M : Volg0 B(x, ρ) ≤

(

β

2

)
n
2

.

We choose a finite cover

M = ∪N
i=1B(xi, ρ/2)

such that for any i 6= j : B(xi, ρ/4) ∩ B(xj , ρ/4) = ∅. If

I := sup
x

(

ˆ

B(x,ρ)

|V |
n
2

)
2
n

≤
β

2

then for any i ∈ {1, . . . , N}, using Lemma 5.6, we find ci such that with

qi = V 1B(xi,ρ) +ci 1M\B(xi,ρ),

the lowest eigenvalue of the Schrödinger operator ∆− qi is zero. We have

‖qi‖L
n
2
≤

3Volg0(M)
2
n

β
‖V ‖

L
n
2 (B(xi,ρ))

.

Hence using Proposition 5.4, we know that if

24
Volg0(M)

2
n

β
IA2(g0) < 1

then we find ϕi ∈ ker(∆− qi), ϕ > 0, with

‖d logϕi‖Ln ≤ C(g0) I.

On the other hand,

∆ logϕi = qi + |d logϕi|
2

hence

‖∆ logϕi‖L
n
2
≤ C(g0)I.

We choose ǫ such that 24
Volg0(M)

2
n

β A2(g0) ǫ = 1
2 . Let ϕ : M → (0,+∞) be a global

solution of ∆ϕ = V ϕ. For all i ∈ {1, ..., N}, we define ψi : B(xi, ρ) → R by

ϕ = ϕiψi.

Since on the ball B(xi, ρ), we also have ∆ϕi = V ϕi, we get

∆ψi − 2〈d logϕi, dψi〉 = 0.
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Using the work of O. A. Ladyzhenskaya and N. N. Ural’tseva [27] and of M.V. Safonov

[30], we know that ψi is Hölder continuous. There is some α = α(g0, ρ, ǫ) such that

‖ψi‖Ċα(B(xi,3ρ/4))
:= sup

x,y∈B(xi,3ρ/4))

|ψi(x)− ψi(y)|

d0(x, y)α
≤ C(g0, ρ, I) inf

x∈B(xi,3ρ/4))
ψi(x).

We let δi = infB(xi,3ρ/4) ψi and ψi = δie
wi and ϕi =

efi

δi
and fi =

ffl

B(xi,3ρ/4)
fi. We

have

‖wi‖L∞(B(xi,3ρ/4)) + ‖wi‖Ċα(B(xi,3ρ/4))
≤ C(g0, ρ, I)

and

‖dfi‖Ln + ‖∆fi‖L
n
2
≤ C(g0)I.

Moreover, by Sobolev inequality

‖fi − fi‖Ln ≤ C(g0)I.

Note that on all ball B(xi, ρ), we have

(21) ϕ = ϕiψi = ewiefi .

Let us fix now a partition of unity (χi)i∈{1,...,N} with suppχi ⊂ B(xi, 3ρ/4) and χi =
1 on B(xi, ρ/4). This partition of unity only depends on (M, g0). Let us define

f :=
∑

i

χi

(

fi − fi
)

and w =
∑

i

χi(wi + fi).

The functions f and w are well defined on M and it follows from (21) that ϕ = efew.

We have moreover ‖d log f‖Ln + ‖∆f‖
L

n
2
≤ C(g0)I. We also have logϕ = f + w

and

∆ logϕ− |d logϕ|2 = V

Hence by Stokes formula,
ˆ

M

|d logϕ|2dµ0 ≤

ˆ

M

|V |dµ0 ≤ (µ0(M))
1− 2

n ‖V ‖
L

n
2
≤ C(g0)I.

Using the Poincaré inequality, one conclude that for c =
ffl

M
log(ϕ)dµ0:

‖f + w − c‖L2 ≤ C(g0)I.

On each ball B(xi, ρ/4), the oscillation of wi = w − fi are controlled hence one get that

∣

∣fi − c
∣

∣ ≤ C(g0)‖fi − c‖L2(B(xi,ρ/4)) ≤ C(g0, I).

Hence w =
∑

χi

(

wi + fi
)

is bounded in Ċα(M). �

5.3. Strong A∞ weights from W 1,n bounds. In this section, we explain how the proof

of Theorem 3.1 of [6] can be adapted for closed Riemannian manifolds, which gives the

following result. This is the second key step in the proof of Theorem 1.3.

Theorem 5.7. Let (M, g0) be a closed Riemannian manifold. If f : M → R is such that

‖df‖Ln ≤ I,

for some I. Then the weight enf is a strong A∞ weight with respect to g0, with constants

(θ, η) where η depends only on g0 and θ depends only on g0 and I.

Note that, unlike Theorem 3.1 of [6], our statement and our proof are scale invariant.
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5.3.1. Presentation of the setting. The estimates will depend on several geometric and

analytic estimates. We continue to denote by µ0 the Riemannian volume measure and by

d0 the Riemannian distance associated to g0. There is some η > 0 and positive constants

θ,γ, C (that can be chosen depending only on the dimension n) such that for any ball

B ⊂M with radius r(B) ≤ 2η we have

i) as already mentioned in (8), θ−1r(B)n ≤ µ0(B) ≤ θr(B)n;

ii) as shown in [20], Lemma 7.16, for any Lipschitz function ϕ : B → R and any x ∈ B:

|ϕ(x) − ϕB| ≤ C

ˆ

B

|dϕ|g0 (z)

dn−1
0 (x, z)

dµ0(z);

iii) the following Adams-Moser-Trudinger inequality: for any Lipschitz function ϕ : B →
R and any x ∈ B:

 

B

e

(

γ|ϕ(x)−ϕB|
‖dϕ‖Ln(B)

) n
n−1

dµ0(x) ≤ C.

For the Euclidean space Rn, this inequality is due to N. Trudinger [40]. Accord-

ing to [20, Lemma 7.13], the first two geometric control i-ii) implies the Trudinger

inequality.

We will use several times the following integration by parts formula
ˆ

B(x,R)\B(x,r)

ϕ(d0(x, y))f(y)dµ0(y) = ϕ(R)

ˆ

B(x,R)

f(y)dµ0(y)

−ϕ(r)

ˆ

B(x,r)

f(y)dµ0(y)−

ˆ R

r

ϕ′(r)

ˆ

B(x,r)

f(y)dµ0(y)dr.

5.3.2. Estimate on µf (B). We are going to prove that µf is anAp weights for every p > 1
using characterization ii) in Definition 3.1. Let B(o, ρ) ⊂M be such that its radius satisfies

r(B) ≤ η. We have for any x ∈ B and any λ ∈ R:

λ|f(x) − fB| ≤
n− 1

n

(

γ |f(x)− fB|

‖df‖Ln(B)

)
n

n−1

+
1

n

(

|λ|

γ
‖df‖Ln(B)

)n

.

Hence, using Adams-Moser-Trudinger inequality, we get

 

B

eλfdµ0 ≤ eλfBe(
|λ|
c ‖df‖Ln(B))

n
 

B

exp

(

(

γ |f(x)− fB|

‖df‖Ln(B)

)
n

n−1

)

dµ0(x)

≤ C(g0, |λ|, I)e
λfB

Using the Cauchy-Schwarz inequality, this implies

1 ≤

 

B

eλfdµ0 ×

 

B

e−λfdµ0 ≤ C(g0, |λ|, I)

 

B

e±λfdµ0e
λfB ,

and we eventually get

(22)
eλfB

C(g0, |λ|, I)
≤

 

B

eλfdµ0 ≤ C(g0, |λ|, I)e
λfB .

This easily implies that for any p > 1 there is a constant C depending on g0, I, p such

that

(23)

 

B

enfdµ0

(
 

B

e−
n

p−1 fdµ0

)p−1

≤ C.
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Hence, enf is anAp weight, in particular dµf is a doubling measure. Moreover, by Lemma

3.5, this implies that there exists a constant C = C(g0, I) > 0 such that

d0(x, y) ≤ 10η ⇒ df (x, y) ≤ C (µf (Bx,y))
1
n .

5.3.3. Distance estimate. To show that dµf is a strong A∞ weight, we are only left with

showing that for all x, y ∈M and for some C > 0,

dgf (x, y) ≥ Cµf (Bx,y)
1
n .

In this purpose, we will need the following lemma:

Lemma 5.8. For any ǫ > 0 there is a constant C depending on g0, I and ǫ > 0 such that

for any ball B ⊂M with r(B) ≤ η there is a set E ⊂ B such E ⊂
⋃

α Bα with
∑

α

r(Bα) ≤ ǫr(B)

and

x ∈ B \ E ⇒ |f(x)− fB| ≤ C.

Proof. Assume that x ∈ B is such that for any r ∈ (0, 2r(B)) we have
ˆ

B(x,r)

|df |n ≤ λ
r

r(B)

then using V (x, r) :=
´

B(x,r) |df(y)|dµ0(y) and one gets

|f(x)− fB| ≤

ˆ

B(x,2r(B))

C

dn−1
0 (x, y)

|df(y)|dµ0(y)

≤
C

(2r(B))n−1
V (x, 2r(B)) +

ˆ 2r(B)

0

(n− 1)C

rn
V (x, r)dr

With Hölder inequality, one has

V (x, r) ≤ θ1−
1
n rn−1

(

ˆ

B(x,r)

|df |n

)1/n

≤ θ1−
1
n rn−1

(

λ
r

r(B)

)1/n

.

Hence there is a constant depending only of g0 such that

|f(x)− fB| ≤ Cλ
1
n .

If now E is the subset of point x where there is a rx ∈ (0, 2r(B)) such that
ˆ

B(x,rx)

|df |n > λ
rx
r(B)

Then using Vitali covering lemma, one gets a coveringE ⊂ ∪Bα where Bα = 5B(xα, rα)
such that

ˆ

B(xα,rα)

|df |n > λ
rα
r(B)

and the balls B(xα, rα) are disjoints. In particular this implies that

∑

r(Bα) =
∑

5rα ≤
5r(B)

λ

∑

ˆ

B(xα,rα)

|df |n ≤
5r(B)

λ

ˆ

M

|df |n.

Choosing λ = 5
ǫIn

, we get the desired result. �
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Let now x, y ∈ M such that ρ := d0(x, y) ≤ 10η and let γ : [0, 1] → M be a C1 curve

joining x to y:

γ(0) = x and γ(1) = y

Let τ > 0 be the first time with d0(x, γ(τ)) = ρ and let ȳ = γ(τ), B := Bx,ȳ =
B(m, ρ/2). We have for any t ∈ [0, τ ], γ(t) ∈ 3B. Let c(t) = expm(tu) be the unit

speed g0 geodesic joining x to ȳ and L := c([−3ρ/2, 3ρ/2]) it is a diameter of 3B and

Π: 3B → L the projection onto L associated to the Euclidean metric deucl induced by

expm. We know that Π is 1-Lipschitz for the Euclidean distance and for x, y ∈ L :

deucl(x, y) = d0(x, y). Hence Π is κ-Lipschitz for the distance d0. According to Lemma

5.8 with

(24) ǫ =
1

6κ

we can find E ⊂ 3B such that E ⊂
⋃

α Bα with

∑

α

r(Bα) ≤ ǫ
3

2
ρ

and

x ∈ 3B \ E ⇒ |f(x)− fB| ≤ C.

We have

Lgf (γ) ≥ Lgf (γ|[0,τ ]) ≥ Lgf (γ|[0,τ ] \ E)

≥ e−CefBLg0

(

γ|[0,τ ] \ E
)

≥ e−CefBκ−1Leucl

(

γ|[0,τ ] \ E
)

≥ e−CefBκ−1Leucl

(

Π
(

γ|[0,τ ] \ E
))

)

Since Π
(

γ|[0,τ ]

)

contains the geodesic segment joining x to ȳ,

Leucl

(

Π
(

γ|[0,τ ]

))

≥ ρ.

whereas

Leucl (Π(E)) ≤ Leucl (Π(∪Bα)) ≤ κ
∑

α

2r(Bα) ≤ 2κǫ
3

2
ρ.

With the choice of ǫ given by (24), we get

Leucl (Π(E)) ≤
1

2
ρ

hence

Leucl

(

Π
(

γ|[0,τ ] \ E
))

) ≥
1

2
ρ.

Eventually using (22) we obtain:

Lgf (γ) ≥ CefBrρ ≥ C (µf (Bx,y))
1
n .

This concludes the proof of Theorem 5.7.

Let us now show that the previous proof implies that the distances df and d0 are α-bi-

Hölder for all α ∈ (0, 1).
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Proposition 5.9. Let (M, g0) be a closed Riemannian manifold. If f : M → R is such that

‖df‖Ln ≤ I

Then for each α ∈ (0, 1) there is a constant C(g0, I, α) such that for any x, y ∈M

µf (M)
1
n

C(g0, I, α)
d

1
α
0 (x, y) ≤ df (x, y) ≤ C(g0, I, α)µf (M)

1
n dα0 (x, y).

Proof. We have shown in Theorem 5.7 that the two weights enf and e−nf are Strong

A∞ weight. In particular, there is a constant C depending on g0 and I such that for all

x, y ∈M :

1

C
dnf (x, y) ≤ µf (Bx,y) ≤ C dnf (x, y)

1

C
dn−f (x, y) ≤ µ−f (Bx,y) ≤ C dn−f (x, y)

The estimate (22) implies that for each λ ∈ R there is a constant C′ depending on g0, λ

and I such that for any x, y:

1

C′
dn0 (x, y) ≤

(

ˆ

Bx,y

eλfdµ0

)(

ˆ

Bx,y

e−λfdµ0

)

≤ C′ dn0 (x, y).

Hence, there is a constant Λ such that for any x, y ∈M :

(25)
1

Λ
d2n0 (x, y) ≤ dnf (x, y) d

n
−f (x, y) ≤ Λ d2n0 (x, y).

Notice that this implies that for some constant C:

1

C
≤ µf (M)µ−f (M) ≤ C.

But with the Hölder inequality, we get that for any p > 1 and x, y ∈M :

dnf (x, y) ≤ Cdn0 (x, y)

(

 

Bx,y

e
p

p−1fdµ0

)1− 1
p

,

and again the estimate (22) implies that

(

 

Bx,y

e
p

p−1 fdµ0

)1− 1
p

≤ C
µf (Bx,y)

dn0 (x, y)
≤ C

µf (M)

dn0 (x, y)
.

So that we get that for any x, y ∈M and any p > 1,

dnf (x, y) ≤ C d
n
p

0 (x, y)µf (M)

which is the right-hand side inequality of Proposition 5.9. Moreover, since

dn−f (x, y) ≤ C d
n
p

0 (x, y)µ−f (M) ≤ C d
n
p

0 (x, y) (µf (M))
−1
,

using the comparison (25) we get:

d2n0 (x, y) ≤ C d0(x, y)
n
p df (x, y)

n (µf (M))−1

We get therefore for all p > 1,

d
2n−n

p

0 (x, y) ≤ C dnf (x, y) (µf (M))
−1
,

which is the left-hand side inequality of Proposition 5.9. �
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6. CONFORMAL DEFORMATIONS OF Rn WITH SCALAR CURVATURE IN Ln/2

In this section, we present some interesting application of our techniques to conformal

deformations of (Rn, eucl).
Let us first provide the following sufficient criterion to get strong A∞ weights.

Theorem 6.1. Let f : Rn → R be such that

‖df‖Ln(Rn,eucl) ≤ I

for some I > 0. Then the weight enf is a strong A∞ weight with respect to eucl, with

constants (θ, η), where η depends only on g0 and θ depends only on g0 and I.

This slightly improves Theorem 3.1 of [6], since our statement is scale invariant. The

proof of this result is an immediate adaptation of our proof of Theorem 5.7. We will not

provide further details since it would be a mere repetition of the previous section.

Nevertheless, we show now that Theorem 6.1 implies Theorem 1.6, which provides a

completely new criterion to get Strong A∞ weights on (Rn, eucl).

Proof of Theorem 1.6. Let g = e2feucl be a conformal metric on the Euclidean space

Rn>2 such that

i) Vol(Rn, g) = +∞;

ii)
´

Rn | Scalg |
n
2 (x) dvolg(x) < +∞.

We will show that enf is a strong A∞ weight with respect to eucl.
The following lemma shows that our infinite volume assumption is often satisfied.

Lemma 6.2. A complete conformal deformation g = e2feucl of the Euclidean metric on

Rn>2 that satisfies
´

Rn | Scalg |
n
2 (x) dvolg(x) < +∞ has necessary infinite volume.

Proof. According to this hypothesis, the Riemannian manifold (Rn, g) satisfies the Sobolev

inequality ([12, Proposition 2.3] ): for some C > 0,

∀ϕ ∈ C1
0(R

n) :

(
ˆ

|ϕ|
2n

n−2 dvolg

)1− 2
n

≤ C

ˆ

|dϕ|2g dvolg.

Hence (Rn, g) has an infinite volume, since the volume of geodesic balls is then bounded

from below ([1, 10]):

c(n, µ)rn ≤ Volg(B(x, r)).

�

Now, our proof of Theorem 1.6 will be based on the following elementary lemma.

Lemma 6.3. Let (M, g) be a complete Riemannian manifold that satisfies the elliptic Har-

nack inequality. Then harmonic functions which are bounded from below are constant.

Proof. Harnack inequality establishes the existence of a constant γ > 0 such that for every

geodesic ball B(x, r) ⊂M and every positive harmonic function h defined over B(x, 2r)
one has

sup
y∈B(x,r)

h(y) ≤ γ inf
y∈B(x,r)

h(y).

Hence if h : M → R is bounded from below, setting λ = infy∈M h(y), we get that for

every geodesic ball

sup
y∈B(x,r)

(h(y)− λ) ≤ γ inf
y∈B(x,r)

(h(y)− λ).
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But as r → +∞, we have

lim
r→+∞

inf
y∈B(x,r)

h(y) = λ

therefore for all y ∈M , h(y) = λ. �

As an example that will be useful later, let us consider the case where ḡ = e2ueucl is a

conformal metric on the Euclidean space Rn and assume that
ˆ

Rn

|du|n(x)dx < +∞.

It follows from Theorem 6.1 that enu is a strong A∞ weight and that the metric ḡ satisfies

the Poincaré inequality and the doubling condition: there are constants θ, λ such that for

all ḡ-geodesic balls B(x, r), we have

Volḡ B(x, 2r) ≤ θVolḡ B(x, r)

and, writing ϕB(x,r) :=
ffl

B(x,r)
ϕdvolḡ ,

∀ϕ ∈ C1(B(x, 2r)) :
∥

∥ϕ− ϕB(x,r)

∥

∥

2

L2(B(x,r),ḡ)
≤ ‖∇ϕ‖2L2(B(x,2r),ḡ) .

Moreover, by the results of Section 4.1, the metric space (Rn, ḡ, dvolḡ) is Alhfors regu-

lar: there is a constant η such that for every ḡ-geodesic ball B(x, r) :

ηrn ≤ Volḡ B(x, r) ≤ rn/η.

In particular by result in [21, 32], ḡ satisfies the parabolic and the elliptic Harnack inequal-

ities and if n ≥ 3, then (Rn, ḡ) is a non parabolic manifold and has a positive Green kernel

Gḡ(x, y) that satisfies the estimates

(26) cd2−n
ḡ (x, y) ≤ Gḡ(x, y) ≤ Cd2−n

ḡ (x, y)

or equivalently :

c (Volḡ(Bx,y)))
−1+ 2

n ≤ Gḡ(x, y) ≤ C (Volḡ(Bx,y)))
−1+ 2

n .

Let us go back to our metric g = e2feucl with

Vol(Rn, g) = +∞ and

ˆ

Rn

| Scalg |
n
2 (x) dvolg(x) < +∞.

Let ∆ be the Euclidean Laplacian and let An be the norm of the operator d∆−1 : L
n
2 →

Ln. Since the Ln/2 norm of Scalg is finite, for R large enough we have

n− 2

4(n− 1)

(

ˆ

Rn\B(R)

| Scalg |
n
2 (x) dvolg(x)

)
2
n

<
1

8An
.

Therefore, as was done in the proof of Proposition 5.4, we can find v ∈ L
n
2 (Rn, dx) such

that

v −
∣

∣d∆−1v
∣

∣

2
=

n− 2

4(n− 1)
Scalg e

2f
1Rn\B(R) .

Now, let u ∈W
2,n2
loc (Rn) be such that ∆u = v, for instance u is a primitive of d∆−1v ∈

Ln or

u(x) = cn

ˆ

Rn

(

1

‖x− y‖n−2
−

1

‖y‖n−2

)

v(y)dy.

We have

∆eu =
n− 2

4(n− 1)
Scalg e

2f
1Rn\B(R) e

u.
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Writing φ = e
n−2
2 f , Yamabe equation (6) implies that

∆φ =
n− 2

4(n− 1)
Scalg e

2fφ.

Hence if we define ψ = φe−u we get

∆ψ− 〈du, dψ〉 =
n− 2

4(n− 1)
Scalg e

2f
1B(R)ψ.

As du ∈ Ln, the metric ḡ = e
4

n−2ueucl induces a strong A∞ weight, but

∆ḡψ = e−
4

n−2u (∆ψ− 〈du, dψ〉) =
n− 2

4(n− 1)
Scalg e

2f
1B(R) e

− 4
n−2uψ.

As ∆ḡψ has compact support and is in Lp for every 1 ≤ p < +∞, we can find a solution

of the equation

∆ḡξ = ∆ḡψ,

for instance let us choose

ξ(x) =

ˆ

Rn

Gḡ(x, y)∆ḡψ(y)dvolḡ(y).

Since supp∆ḡψ ⊂ K , it follows from (26) that there exists C > 0 such that for all

x ∈M\K ,

ξ(x) ≤ C

(
ˆ

K

Gq
ḡ(x, y)dvolḡ(y)

)
1
q

≤ Cdḡ(x,K)2−n.

In particular,
´

Rn |ξ(y)|
2n

n−2 dvolḡ(y) < +∞, the map ξ tends to zero at infinity and is in

W 2,p
loc (R

n) for every 1 ≤ p < +∞. Therefore ξ is a bounded function and ψ − ξ is a

ḡ-harmonic function that is bounded from below: it is hence a constant function. If this

constant is 0 then ψ = ξ and

Vol(Rn, g) =

ˆ

Rn

ψ(y)
2n

n−2dvolḡ(y) =

ˆ

Rn

ξ
2n

n−2 (y)dy < +∞.

This is contradictory with our hypothesis hence there is a positive constant c such that

ψ = c+ φ,

hence there are positive constants α,A such that

α ≤ ψ ≤ A.

This implies that the metric g = φ
4

n−2 eucl and ḡ = e2ueucl are bi-Lipischitz, hence since

enu is a strong A∞ weight with respect to geucl, e
nf = φ

2n
n−2 is also.

�

We emphasize again on the fact that this implies very strong geometric constraints

on conformal deformations of (Rn, geucl) with

ˆ

Rn

| Scalg |
n
2 (x) dvolg(x) < +∞ and

Volg(R
n, g) = +∞. It implies in particular Poincaré inequality, Euclidean-type isoperi-

metric inequality and Sobolev inequalities, which were unknown on such examples.
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7. GROMOV-HAUSDORFF LIMIT AND CONFORMAL DISTANCES

Let us conclude by presenting a natural question about the limiting distances which

arise in our Theorem 1.3, which we could not answer.

Let us first recall that to any strongA∞ weight enf∞ (with respect to dvolg0 ) is naturally

associated a distance df , defined as follows. For all x, y ∈M , we write aginBxy the largest

g0-geodesic ball whose diameter is the g0-geodesic segment [xy]. Let us write

δf (x, y) =

(

1

ωn
µf (Bxy)

)1/n

=

(

1

ωn

ˆ

Bxy

enf(x)dvolg0(x)

)1/n

,

where ωn is the Euclidean volume of the unit n-ball, and define

(27) df (x, y) = lim
ε→0

inf

{

N
∑

i=0

δf (xi, xi+1) ; x0 = x, xN+1 = y, d0(xi, xi+1) ≤ ε

}

.

It can be easily shown that enf ∈ L1(M) is a strong A∞ weight if and only if df is a

distance (see [33] for more details). Moreover, an elementary approximation argument

shows that if f is continuous, then df coincides with the classical Riemannian distance

associated to the Riemannian metric gf = e2fg0.

Let us now consider a sequence (gk = e2fkg0)k∈N of conformal metrics satisfying the

hypotheses of Corollary 1.4. Up to extracting a subsequence, the sequence of associated

metric space (M,dgk) converges in Gromov-Haudsorff topology to some distance d∞ on

M , which is bi-Hölder equivalent to d0. Moreover, still up to extracting a subsequence,

the Riemannian volume measure µk = dvolgk = enfkdvolg0 converge in the weak−∗
topology to a positive measure µ∞ on M . Since all the µk are uniformly strong A∞

weights with respects to dvolg0 , µ∞ is also: there exists hence enf∞ ∈ L1(M) which

is still a strong A∞ weight with respect to g0. This weight is therefore associated to a

distance df∞ defined by (27). Does d∞ and df∞ coincide ?

The reader will can check that in the Example 2 presented in our introduction, where the

conformal factors converge in W 2,n2 to the singular conformal factor given by 1) and the

distances converge in the Gromov-Hausdorff topology, these distances indeed coincide.

One can easily show from semi-continuity arguments that d∞ ≤ df∞ . Let us present

now a striking example of pathological behaviour which shows that in general, for a se-

quence of (unifom) strongA∞ weights (enfk)k∈N, the converse inequality is not true. The

following examples of conformal deformations is due to D. Burago, in [8]

Let us consider the standard flat torus (Tn = R
n/Γ, eucl), where Γ = (2πZ)

n
. For

all ℓ > 1, we consider the conformal deformation of the euclidean metric g0 given by

gℓ = e2fℓeucl, where

enfℓ(x1, . . . , xn) = 1−
1

2
cos(ℓx1).

Since enfℓ is uniformly bounded from above and below, all the metric space (Tn, dℓ = dfℓ)
are uniformly bilipschitz to Tn equiped with the Euclidean distance and the (enfℓ)ℓ≥1 are

uniformly strong A∞ weights with respect to the Lebesgue metric. Nevertheless, the dis-

tance associated to the limit of the volume measures and the limit of distances are radically

distinct as shows the following result.

Theorem 7.1. Under the above notations, as ℓ→ +∞,

• the sequence (enfℓ)ℓ converges weakly in L1(T) to the function 1;
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• the sequence of metric spaces (Tn, dℓ), ℓ ∈ N converges in the Gromov-Hausdorff

topology to metric space (Tn, d∞) where d∞ is the Finsler metric associated to

the stable norm of the periodic metric on Rn given by

ḡ =

(

1−
1

2
cos(x1)

)
2
n

eucl.

Proof. The first assertion is classical. As for the second assertion, let us recall that if d̄
is the Riemannian distance on Rn associated to the metric ḡ then the associated stable

norm ‖ • ‖∗ is defined for all x ∈ Rn by ‖x‖∗ = limt→+∞
1
t d̄(0, tx). Using the change

of variable ξi = ℓxi, i = 1 . . . n, we get that (Tn, dℓ = dfℓ) is isometric to the quotient

Rn/(ℓΓ) with the metric 1
ℓ2 ḡ. More exactly let π : Rn → Tn = Rn/Γ the quotient map.

if x, y ∈ Rn then

dℓ (π(x), π(y)) = inf
γ∈Γ

1

ℓ
d(x, y + ℓγ)

If d∞ (π(x), π(y)) = infγ∈ℓΓ ‖x− y − γ‖∗, then we clearly have

sup
x,y∈Rn

|dℓ (π(x), π(y)) − d∞ (π(x), π(y))| ≤
C

ℓ
.

Hence the result. �

We emphasize on the fact that in this example, df∞ = deucl, whereas d∞ is a Finsler

non-Riemannian metric: it cannot in any weak sense be considered as a conformal metric

for some limiting conformal factor.

The reader will easily notice than in the previous example, the volume of the conformal

metrics are uniformly bounded, but the Ln/2-norm of the scalar curvature blows up. Un-

der the Ln/2 assumptions on the scalar curvature which ensures Theorem 1.3 and Corollary

1.4, we have a stronger control on the geometrical and analytical behaviour of the confor-

mal factors than the information given by the strong A∞ bounds. Nevertheless, we cannot

show yet equality for d∞ and df∞ under these hypotheses, nor give a counterexample.
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