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A WEIGHTS AND COMPACTNESS OF CONFORMAL METRICS UNDER
L"™/2 CURVATURE BOUNDS

CLARA L. ALDANA
UNIVERSITY OF LUXEMBOURG, GILLES CARRON
UNIVERSITE DE NANTES, AND SAMUEL TAPIE
UNIVERSITE DE NANTES

ABSTRACT. We study sequences of conformal deformations of a smooth closed Riemann-
ian manifold of dimension n, assuming uniform volume bounds and L™/2 bounds on their
scalar curvatures. Singularities may appear in the limit. Nevertheless, we show that un-
der such bounds the underlying metric spaces are pre-compact in the Gromov-Hausdorff
topology. Our study is based on the use of A-weights from harmonic analysis, and pro-
vides geometric controls on the limit spaces thus obtained. Our techniques also show that
any conformal deformation of the Euclidean metric on R™ with infinite volume and finite
L™/2 norm of the scalar curvature satisfies the Euclidean isoperimetric inequality.

1. INTRODUCTION

This paper is devoted to the question of sequential compactness of Riemannian metrics
inside a conformal class given uniform bounds on their volume and integral bounds on
their curvatures. It was shown by Gursky in that (unless gg is conformal to the round
sphere), if the Riemann curvature tensor is bounded in L” for some p > 3 and if the
volume is uniformly controlled, then the sequence of metric is pre-compact in the C*
topology for some « € (0, 1).

It was later shown that no such compactness can hold when the curvature tensor is
bounded in L"/2. Indeed, in [16] Chang, Gursky and Wolff constructed two examples
of families of sequences of conformal metrics with uniform volume and L"/? curvature

bounds which have no convergent sub-sequences. Let us briefly recall these examples.

Example 1: spherical blowup. Let (S™, gs) be the standard sphere, N € S™ be some
fixed point and S be its antipodal point. Let o : S*\{N} — R™ be the stereographic
projection with pole N, and let eucl denote the Euclidean metric on R™. For all A > 0, let
gx = o* (X eucl): it is well known that g extends to a smooth metric on S™, conformally
equivalent to ggs.

Note that since g is merely a pullback of gg by some conformal diffeomorphisms, the
volume of (S™, gx) and all L? norms of the curvature tensor are preserved. Moreover, as
A — +00, the Riemannian measures dy,, converge to a Dirac mass at 5.

It should also be noticed that for any R > 0, the gg-ball B(S, R) of radius R contains
asymptotically all the curvature of gy. In particular, we have

n

lim / (Scalgx)% dug, | = an,2),
B(S,R)

A—+oo
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2
where «(n, 2) = a7 n(n — 1) is the L"™/?-total scalar curvature of the standard round unit

niz ..
sphere, and o, = % is its n-th volume.

It was shown in [16] that this family of conformal deformations of the sphere can be
glued on any compact Riemannian manifold (M, go) at any point z, giving rise to a se-
quence of conformal deformations (gx = €2 gg) =0 such that:

e the volume and diameter of the complement of any open ball centered at x( go to
0as A — +oo;

e the L™/? norm of the Riemann curvature tensor are uniformly bounded;

o the sequence of Riemannian measures dj,, develop a Dirac mass at zo and the
volume stays in some fixed interval [v, V].

In particular, this implies that the associated sequence of distances (dy, ) x>0 is not precom-
pact for the uniform C° topology. Once again, in this example, for any fixed R > 0, the
go-ball B(xg, R) of radius R contains asymptotically a large part of the scalar curvature of
gx. In particular it can be shown that, in this case, we have

lim inf Scal” )% d > a(n, 2).
A o </IB(10,R)(Cag)\) ng> z #(n,2)

We will see below that if we consider sequences of conformal measures whose volume
and L™/?-total scalar curvature are uniformly bounded, and the scalar curvature concen-
tration (in L™/2 norm) in a go-ball is strictly less than o(n,2), then this kind of spherical
blowup cannot occur.

Example 2: Schrodinger type blowup. The second construction in exploits the
Schrodinger-type structure of the conformal Laplacian, where the potential is only in L"/2.
We present a simple example inspired by their construction.

Let (M, go) be a compact smooth Riemannian manifold, let xyo € M and Ry be such
that inj, (M, go) > 2Ro, where inj, (M, go) denotes the injectivity radius of go at z.
For x € M, define

(1 fw) = (I (ER2)] i 0 <o) < o

0 if d(xo, ,T) Z 2R0

with uniformly bounded second derivatives when Ry < d(xo,z) < 2Ro. Let (f : M —
R)xen be a sequence of smooth maps which converges to fo, in W23, We consider
for all k > 0 the conformal metric g, = e*/*gg. The volume of (M, g;) is uniformly
bounded, and it follows from Theorem 1.159 in [4} p 58] that the LZ norm of the Rie-
mannian curvature of (M, gx) are uniformly bounded. Note that eventhough the sequence
of Riemannian metrics (g ) will blow up at x, the diameter of (M, g; ) remains bounded
and the associated volume measures will not develop a Dirac mass. Using the sequence of
metrics (g = e~ 2k 90)keN, we get an analogous example where the metric vanishes at xg
as k — +o00.

Analogously, one can construct examples of sequences of conformal deformations whose
volumes and L% norms of the scalar curvatures are uniformly bounded, for which the limit
metric blows up (or goes to 0) at any countable (even dense) set of points.
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The reader may easily show that in this example, eventhough the sequence of conformal
factors is unbounded, the sequence of associated distances (dgk )ken converges for the CO-
uniform topology to the Riemannian distance associated to the (singular) metric go, =
e2fgq on M.

Our first theorem is a precompactness result which follows from an elementary appli-
cation of Sobolev embeddings.

Theorem 1.1. Let (M, go) be a compact smooth Riemannian manifold and let M“s/ be
the space of conformal smooth metrics on M, g; = e?f go with associated Riemannian
measure djiy = e”fdvolgo, such that there exists V' > 0, 6 > 0 such that:

(1) puy(M)<V,and

(2) ||(Scaly, < «(n,2) — 0.

)+”L%(M,duf)
Then for some o € (0, 1), the set of distances {dy, ; g5 € M$} is precompact for the

C* topology on M x M. In particular, the set of metric spaces {(M,d,, ), g5 € MS Y is
precompact for the Gromov-Hausdorff topology.

It follows from the Example 1 presented above that the upper bound
2
H(Scalgf)_kHL%(M’dﬂf) <oa(n,2)—0d=opnn—1)—9¢

is optimal to get C* precompactness of the sequence of distances.

Theorem [Tl does not exclude the possible collapsing of some part of the manifold in
the limit of such conformal deformations. We will show in Corollary 2.4 that adding to the
previous hypotheses a lower bound on the volume and a L? bound on the scalar curvature
for some p > 5 is enough to recover C* precompactness of the sequence of Riemannian
metrics as in [23]].

The rest of our paper is devoted to the exploration of conformal deformations for which
only volume bounds and L2 bounds on the scalar curvature are imposed. We will see in
particular that, no collapsing can occur if the L™/? norm of the scalar curvature is small at
small scales.

Our ideas come from a paper by Yi Wang [42]], who was interested in conformal de-
formations with integral bounds on the )-curvature related to the so-called Muckenhoupt
weights, or Ao-weights. If (M, g) is a closed manifold, a non-negative L}, . function w
is called an A,-weight with respect to g if there exist C' > 0,q > 1 such that for all

g-geodesic balls B C M,
1
<][ wqdug) < c][ wdpiy,
B B

where p, is the volume measure associated to g. Several equivalent characterizations of
these A..-weights will be presented in Section[3l

Theorem [[.2] below establishes that, under L"/? pinching conditions on the scalar cur-
vature closely related to those in Theorem[I1] the volume densities e™f are uniformly A
weights with respect to gg.

Theorem 1.2. Let (M™, go) be a closed Riemannian manifold, Ry € (0,diam(M, go)]
and §,A > 0. Let f : M — R be a smooth function such that the metric g5 = e?! g and
its associated Riemannian measure djy = " dvoly, satisfy

i) [y [Scaly, |% dpy < A
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n

ii) Forany x € M, / (Scadgf)?r dpy < (n,2) — 4.
B(I,Ro)

Then ™/ is an Ao.-weight with respect to go, with constants only depending on n, go, Ro, &
and A.

The hypotheses as well as the conclusion of Theorem [[.2] are scale invariant. We will
see in Section[3that if we fix upper and lower volume bounds, having A, control for ™/
implies C* bounds for the distance associated to the metric e2f g, for some v > 1. This
implies as well uniform control on certain analytic quantities associated to the conformal
metric. Denoting gy = e/ go, the fact that ™/ is an A, weight implies that for any go-
geodesic ball, its g¢-diameter is bounded from above in terms of its gy-volume and that
the measure dyy = e”fd,ugo is doubling, with constants only depending on d, A and Rj.

Notice that in the second family of examples presented above, for which Theorem [[.2]
applies, the Riemannian volumes of the members of the family satisfy a uniform Strong Ao
bound in the sense of [17]], see Definition [@.1lin Section @ below. This implies that for a
sequence of metrics coming from these examples, the Gromov-Hausdorff limit (M, dso)
is homeomorphic to M and endows M with a distance d, that is uniformly bi-Holder
to (M,dg,). In addition, the metrics in this family of examples have uniform Sobolev,
Poincaré and isoperimetric inequalities. Our main result shows that this is always the case,
provided the L"/?-pinching of the scalar curvature is small enough at small scales.

Theorem 1.3. Let (M™, go) be a closed Riemannian manifold. Then there exists a constant
Ao = Ao(go) with the following property: Let gy be given by €%/ go with f € C*(M). If
there is a Ry € (0, diam(M, go)] such that

®) Vo € M, |Scaly, | * duy < Ao
B(I,Ro)

then €7 is a strong A weight with respect to go, with constants only depending on go, R
and No. Moreover; for all o € (0,1), the distances dy and dy are uniformly a-bi-Holder
with constants depending only on go, Ro, Ao and o

Before we continue, let us introduce some notation. Let (M™, go) be a closed Riemann-
ian manifold, for v, V,§, A > 0 and Ry € (0, diam(M, go)], define MSVRO as the set of
smooth functions f on M such that the associated metric gr = e21 gy satisfies

D) v<Vol(M,g;) <V
2
i) foranyz € M: (fy(, g, [Scaly, | * diig) " < A

As mentioned previously, strong A..-weight control coupled with volume bounds has
many interesting geometric consequences. Some of them are listed in the following corol-
lary.

Corollary 1.4. Let (M™, go) be a closed Riemannian manifold. Then there exists Ay =
A(go) such that for all Ry € (0,diam(M, go)] and any v,V with 0 < v <V, the set of
metric spaces

{(M,dg,); f €My}

is precompact for the Gromov-Hausdorff topology. In addition, any sequence in this set
has a subsequence whose limit (M, d,) is a-bi-Holder to (M, dg, ) for all o € (0, 1).
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It is worth noticing that the conclusion of Theorem [[.2]is weaker than the conclusion
of Corollary [L4 but holds under an explicit (and optimal, due to examples of [16]) L™/?-
pinching of the scalar curvature. The constant A(go, Ro) can be explicited in terms of
the Ricci curvature of g and its diameter. We could not produce a sequence of examples
satisfying the hypotheses of Theorem[I.2] which would not be uniformly Strong A..

Remark 1.5. Our proof of Theorem shows that, under the same hypotheses, €™ is
actually a stronger A, weight in the sense of [33|. This implies by Theorem 5.2 of
that there exists N > 0 such that any such (M, g5 = €2/ go) can be embedded in RN via
a bi-Lipschitz embedding, with uniform bi-Lipschitz constant. We will not further discuss
this fact here.

Eventhough our initial objective was to study conformal deformations of closed mani-
folds, our techniques also provide an interesting criterion to get strong A, on (R", eucl).

Theorem 1.6. Let g = e2/ eucl be a conformal deformation of the Euclidean metric on
R™ such that:

e Vol(R™, g) = 400,
o / | Scal, "/ 2du, < +oc.
Rn

Then e/ is a strong A, weight on R™ with respect to eucl.

As mentionned above, being a strong A, weight has many implications in terms of geo-
metric control. In particular, this theorem has the following striking geometric corollary,
which seems to have remain unknown.

Corollary 1.7. Let g = €%/ eucl be a conformal deformation of the Euclidean metric on
R™ such that:

e Vol(R™, g) = 400,
o / | Scal, "/ 2du, < +oc.
Rn

Then there are positive constants 0,y such that any g-geodesic ball By(z, ) satisfies
071" < pg(By(z,7)) < 0r™.

Moreover, (R", g) satisfies the Euclidean isoperimetric inequality: for any bounded smooth
open subset ) C R™ we have:

Y 119 ()1 < 11g(99).

Let us conclude by an intricate question. Let (g = €2/*go)ren be a sequence of
conformal deformations of gy with f; € Mﬁ”v R,» Where Ay satisfies the conclusion of
Corollary [[.4] Then, up to extracting a subsequence, the sequence of associated metric
spaces (M, dg, ) converges in Gromov-Hausdorff topology to some distance do, on M,
which is bi-Holder equivalent to dy. Moreover, a subsequence of the Riemannian volume
measures ji, = djig, = enfr djig, converges in the weak—x* topology to a positive measure
ltoo O M. Since all the i, are uniformly strong A..-weights with respects to dvoly,, so
is fioo: there exists e™/> € L1(M) such that p = e™/>dvoly, and po is still a strong
As-weight with respect to dvoly,. Hence the weight €™/~ induces another distance ds__
on M, analogous to a conformal Riemannian distance (see Section [7] below or [33] for a
precise definition).
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A natural question is: Under which assumption do the distances d, and dy__ coincide?
We could not give a full answer to this question. We know that they do coincide in Example
2 presented above. On the other hand, in the last section of this paper we will describe
another example which shows that uniform strong A.,-weight control is not enough to
establish this equality in general. Nevertheless, volume bounds and a L"/2 bound on the
scalar curvature give a much stronger control on the geometry than just strong A..-weight
controls. Thus, the distances could still coincide under the integral pinching of the scalar
curvature under consideration.

From now on, given a background Riemannian manifold (M, go), for any conformal
deformation gy = €2/ gg, we will denote by dy = dg, the associated Riemannian distance
and by djuy = dvol,, the associated Riemannian volume measure. In particular, do and 110
are the distances and volume measure associated to g, respectively.

Acknowledgements: The authors are grateful for the support of the ANR grants ACG
(ANR-10-BLAN 0105) and CCEM (ANR-17-CE40-0034) which made this collaboration
possible. C.L. Aldana was also supported by the Fonds National de la Recherche, Luxem-
bourg 7926179.

2. INTEGRAL BOUNDS FOR THE SCALAR CURVATURE AND CONVERGENCE OF
DISTANCES

This first section is devoted to the proof of Theorem[I Tl This theorem is an immediate
consequence of Propositions and given below. The proof will show that for any
sequence of metrics (g, )nen in MS,, the sequence of distances (dy, )nen converges in
some Holder topology up to extracting a subsequence. This implies the precompactness of
the sequence of metric spaces (M, dg,, )nen for the Gromov-Hausdorff topology, as shown
by the following lemma which will be used several times in the sequel.

Lemma 2.1. Let (X, dy) be a compact metric space, « € (0,1), C > 0, and (d,,)nen be
a sequence of distances on M which is bounded in the a-Holder topology with respect to
do, i.e. such that for all x,z',y,y'" € M and alln € N,

|dn((E, y) - dn(UC/,y/)| S c (dO(‘T’ x/)a + dO(ya y/)a) .

Then up to extracting a subsequence, d,, is converging uniformly and in the o' -Hélder
topology for all o/ € (0, ) to amap doo : M x M — [0,400). Moreover, the sequence
of metric spaces (M, d,,) converges in the Gromov-Hausdorf{f topology to the metric space

(Moo, doo) where Moo = M/ ~, with & ~ y if and only if doo (2, y) = 0.

Proof. Let (dy,)nen be a sequence of distances on M satisfying the above hypotheses. By
Arzela-Ascoli Theorem, it has a subsequence which converges in the C’-uniform topology
on M x M to some non-negative map do. : M x M — [0, +00), satisfying the triangular
inequality. By construction, d., induces a distance on M, = M/ ~, with x ~ y if and
only if duo (7, ) = 0. The C%-uniform convergence of the dj, implies that the sequence of
metric spaces (M, d,,) converges in the Gromov-Hausdorff topology to the metric space
(Mso, doo), see for instance [9] p.260, Example 7.4.4.

An elementary computation shows that the convergence of (d,,) is actually uniform in
all C*" Holder spaces for all 0 < o’ < «, which concludes the proof of our lemma. O

Proposition 2.2. Let (M, go) be a compact Riemannian manifold and let (g, = €% go) >0
be a sequence of smooth conformal metrics. Assume that there exist p > n and A > 0
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such that for all k € N,
/ ePledpg < A.
M

Then the sequence of distances (dy, : M x M — [0,+00)), oy is precompact in the a-
Hélder topology for all o« € (0,1 — %) In particular, the sequence of metric spaces
(M, dy, )ken is precompact for the Gromov-Hausdorff topology.

Proof. Let x € M be fixed. Recall that for any smooth Riemannian metric g on M,

[V9dg4(z,.)], = 1 almost everywhere, see e.g. Prop. 4.8]. Let gf = e*/gy be
conformal metric, we have hence for almost all i # ,
IV (@, ), (1) = /.
Therefore, there exists C' > 0 such that
) [ i <4 = 1y g < OA

where WP (M, go) is the Sobolev space of functions on M with distributional derivative
in LP(go).

Now, let (gr. = e2/xgg)x>0 be a sequence of smooth conformal metrics. Assume that
there exist p > 1 and A > 0 such that for all k € N,

/ ePPedpuy < A.
M

It follows from () that the sequence of distances (d, (z, .))ken is bounded in WP (M, go).
Therefore, since for all k£ € N, dy, (z,.) vanishes at x, by Sobolev embeddings the se-
quence is bounded in C* with « = 1 — % by some constant C” independent of x.

We have hence, for all z,2’,y,y € M and alln € N,

|dfk(‘r7y)_dfk(‘rl7y/)| = |dfk(‘rvy)_dfk(‘rlvy)""dfk(‘rlvy)_dfk(xlvylﬂ
< C'(do(x,2")* + do(y,y')") .

By Lemma[2.1] this implies Proposition[2.2}
O

We now show that any conformal deformation of gy whose scalar curvature has a pos-
itive part with L™/2 norm strictly less than the round sphere has a conformal factor that
satisfies the integrability condition required in Proposition 2.2l

Proposition 2.3. Let (M™, go) be a closed Riemannian manifold. Let V., § be positive real
numbers. There exists A = A(V,0) > 0 such that for all € > 0 small enough, if

i) Vol(M, g5) < V.

ii) |[(Scalg )|, rr g,y < ¥(1:2) =0
then

%) / e"(He)fdugo < A.
M

Proof. We are going to use the following optimal Sobolev inequality du to E. Hebey and
M. Vaugon ([24])) (this inequality had been conjectured by T. Aubin [2])): if we write again
2

a(n,2) = oy n(n — 1), then there is a constant B such that for all p € C*°(M),
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1—2
3 «n,2) (/ gpnz?duo) < (7)/ |d|?, dpig, +/ Bprdvy,.
M n—2 Jy M

Ifgr = s go if follows from that

4(n—1)

_4
(6) Scalg, u™=2 u = —

Agou + Scalg, u.

In particular for any € > 0 we get

4(n—1)
n—2

de(l+¢€)
-2

= (1 + €) Scaly, uwz (e,

Agou'™€ + (1 + €)Scalyy u' ™€ + (n— 1) u€71|du|!2]0

Using the Hebey and Vaugon Sobolev inequality for ¢ = u(11€), we get

1_’7l
a(n,2) (/ u(1+e)f—"zduq0>
y .

4(n—1
< %/ u(1+€)Agoul+€dugo+B/ U2(1+€)dﬂgo
M M

IN

(1+ e)/ (Scalgf)Jruﬁ O dy,,
M
+((1+€)So + B) /M W dy,

where Sp = || Scaly, ||zo=. When e < 2/(n — 2), using the Holder inequality we get

_z2
om n
((oc(n, 2)—(1+ (—:)H(Scalgf)+ ”L%(M,duf)) (/M wHe) s dugo> <

2—(n—2)e

(1 + €)So + B) (Volg, (M) 7 (Voly, (M) 1T

. . . _4
which gives with 2/ = u7-2,

2—(n—2)e

sy (LS04 B) (Volyy (M) 5 s
/M ‘ g0 =< d —e(a(n,2) —9) v ’

[
x(n,2)—6"

which is precisely (@) when € is small enough, say € <

Notice that under our very weak hypotheses, the limit space (M, d~ ) obtained as the
Gromov-Hausdorff limit of the sequence (M, d,, )ren may be very singular; the singu-
larities depending on the set where do, vanishes. Even if the volume of (M, g;) remains
constant (recall that the L™2 bound of the scalar curvature is invariant under rescaling),
we cannot a priori prevent collapsing of some open part of the manifold. In the sequel,
we look for stronger conditions on the scalar curvatures and the volumes so that we get a
better geometric picture of the limit.

Let us first note that if we add to the hypotheses in Theorem[I.1] a lower bound on the

volume and a uniform L? bound on the scalar curvature (and not the full Riemann tensor)

with p > %, then we get C*-precompactness for the conformal factors:
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Corollary 2.4. Let (M™, go) be a closed Riemannian manifold. Let v,V, A, 0 be positive
real numbers and let p > n /2. Then the set Mf}’:e"s of smooth functions f € C>(M) such
that gy = e/ gy satisfies

i) v <Vol(M,gs) <V,

i) [y |Scaly, " duy < A

iii) ||(Scaly, < aén(n —-2)—=94

)+HL%(M,dM)
. . a 2p—n
is precompact in C*(M) for 0 < a < ==

Proof. 1t follows from Proposition that for all metrics gy = e?f gy in Mﬁje’(s, the
volume density e™/ satisfies a L'*¢ uniform bound given by (@).

Combining this uniform stronger integrability of ef together with LP bounds for the
scalar curvature and volume bounds, a Harnack inequality due to Trudinger in [41]] together

with elliptic regularity will give C*-precompactness for the space of metrics for 0 < a <
2”%. This is explained with details in Section 2.2 of [29]. O

In particular, any sequence of metrics satisfying some LP bound on the scalar curvature,
p > n/2, and the above L"/? bounds on its positive part, converges (up to extraction
of a subsequence) in some C“-topology to a Riemannian metric go, = e/ gy, where
foo € C*(M). This slightly improves the well known result by M. Gursky given in [23].

The rest of our paper is devoted to the study of sequences of conformal deformations
with fixed volume bounds and a mere L"™/2 bound on the scalar curvature. It follows from
[16] that in this setting, one cannot get C° precompactness for the sequence of conformal
factors (or, equivalently, for the sequence of Riemannian metrics). Nevertheless, we will
show that the sequence of associated measured metric spaces and the limit metric spaces
(M, dso) thus obtained satisfy many uniform geometrical properties.

3. OPTIMAL L™/2 BOUNDS FOR THE SCALAR CURVATURE AND A, WEIGHTS

In this section, we study sequences (gr = e2/*gg)ren of conformal metrics with a
uniform upper bound on the volumes, such that the L"/2-norms of the positive part of the
scalar curvature on small spheres is uniformly bounded by the one of the standard sphere,
and which moreover have some uniform L"/2 bound for the total scalar curvature. We will
show that the Riemannian volume densities {e"/*}rcn are then uniformly A..-weights
with respect to gg, see Definition 311

To be uniformly A..-weights has several nice geometrical consequences. First of all,
the sequence of volume measures (djiy, )zen is uniformly doubling with respect to the
initial distance dy. In particular, this rules out the kind of blowups presented in Example
1 in our introduction. More precisely, we will see that the A, control implies that the
Riemannian distances dy, are uniformly controlled in terms of the volumes dyy, , locally.
We will show as well Gromov-Hausdorff precompactness for the set of conformal metrics
satisfying a uniform A.,-weight bound, independently of any control on the curvature.

In the afore mentioned work of Gursky [23]], a key step to get C* compactness for a
sequence of conformal metrics (g = e2fr go)ken Whose Riemann curvatures satisfy a
uniform L? bound (p > n/2) is to show that if gg is not conformal to the standard sphere,
then the conformal factors in such sequences satisfy a uniform Harnack inequality: there
exists C' > 1 such that for all k € N,

sup efk
inf efx
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Uniform volume bounds and (even very small) L™/2 bounds on the scalar curvature
cannot ensure such Harnack inequality, as shows Example 2 in our introduction. A uniform
A control on the weight e™/* is actually a local L9 integral version of this Harnack
inequality for some ¢ > 1.

3.1. A weights and conformal metrics. We now give a presentation of A, weights on
a closed Riemannian manifold. The reader can find a good exposition and more details in
(36, chapter V]. Then, we will draw some geometric consequences for conformal metrics
having such A, control.

Let (M™, gg) be a closed Riemannian manifold. Throughout this document we will
denote by

B(z,7) : the go-geodesic ball centered at 2: and of radius 7.
We will sometimes write B for a gg-geodesic ball whose radius will be denoted by r(B).
For 6 > 0, 6B will be the ball with the same center and with radius 6r(B). D will denote

the diameter of (M™, gg). The measure po will still be the go Riemannian volume. If
E C M is a measurable set and f € L*(E, dug) the average of f over E will be denoted

by
1
]{Efduo— —MO(E)/Efduo-

Definition 3.1. We say that a non negative functionw € L*(M, duo) is a Ao, weight with
respect to g if one of the following equivalent properties is satisfied:

i) There is a ¢ > 1 and a constant C such that for any geodesic ball B C M, the
following reverse Holder inequality with exponent q holds:

(][ wqduo) ! < C][wduo.
B B

ii) There is p > 1 and a constant C such that for any geodesic ball B C M:

(o) (o) <0

If w satisfies this condition, it is called A,-weight.

iii) There are constant 6, € (0,1) such that for any geodesic ball B C M and any
E C M if E C B satisfies juo(E) < dpo(B) then [, wdpo < e [; wdp.

iv) There are constants o > 1 and C > 0 such that for any geodesic ball B C M and
any E C B:

o (08) < f <o ()

Remark 3.2. The different constants in the different definitions are mutually controlled.
In particular, we will use the following fact: If w is an A, weight satisfying part ii) above
forall p > 1, then it fulfills reverse Holder inequality 1) with exponent q for all ¢ > 1, with
mutually controlled constants. See p-196-203] for a proof.

It is possible to show that the properties in Definition 3.1 hold for all geodesic balls if
and only if they hold for geodesic balls of radius less than some fixed Ry > 0. We will
prove this statement for the Reverse Holder inequality. In order to do that, we need the
following general result.
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Lemma 3.3. If (X, d, 1) is a metric measure space whose balls B with radius less than
Ry satisfy the doubling condition:

(1(2B) < 0u(B)

then for any Ry > Ry there is a constant ' depending only on © and Ry / Ry such that any
ball B with radius less than R, satisfies the doubling condition:

1(2B) < 0'u(B)

Proof. Indeed let B(z, R) a ball of radius R € [Ry, R1], then from [11, Lemma 3.10], we
have
2R
p(B(x,2R)) < 0% 1y (B(x, Ry)) < 0V 1y(B(x, R)).
O
Lemma 3.4. Let ¢ > 1, and C, Ry > 0 be fixed. Let w be a uniformly (q, Ry, C')-Aso
weight, i.e. every geodesic ball B of radius r < Ry satifies:

(][ wqduo) ! < C][wduo.
B B

Then the measure wdjig has the doubling volume property and there exists C' = C'(q, C, Ry, go) >
0 such that for all balls B of radius v > 0, one has

) (][ wqdu()) ey ][ wdo.
B B

Proof. Assume that w satisfies the hypotheses of the lemma for some ¢ > 1 and C, Ry >
0. We first show that wd o has the doubling volume property. Let us first consider geodesic
balls of radius less than Ry > 0. We start by showing that there is © > 0 such that for the
measure dw = wdj we have the doubling property:

r(B) < Ry/2 = w(2B) < 6w(B).
Indeed using both Holder and Reverse Holder inequalities we easily get for any 7 € (0, 1) :
wB\7B) _ (uo(]B% \ 7B) ) =g
w(B) 1o (1B) '
The manifold M is compact hence there is a constant B such that for any geodesic ball :
po(B\ 7B) < B(1 — 7)uo(B).
We choose 7 € (0,1) such that C' (B(1 — T))l_é = 3 and we get w(B) < 2w(7B),

1
therefore w(B) < 2Nw(7VB). Choosing now N such that 7V < 3 < 7N =1 gives the

result with © = 27,
As the diameter of (M, go) is finite, we deduce from the Lemma[3.3] that the measure w
is doubling: there is a constant 0 such that for any ball B C M:

w(2B) < Bw(B).

We can now show that the reverse Holder inequality holds for any ball. Let B be a
geodesic ball of radius r € (R, D], then we can find a minimal family of geodesic balls
B = B(xq, Ro/2) of radius Ry/2 such that B C U,B,, and the balls B(x,, Ry/4) are
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disjoint, hence include in 2B. Since w satisfies reverse Holder on the balls B(z,,, Ro/2),

we get
T Cpo(Ba)
</ wqduo> < M/ wdpy = O/LO(BQ)%_l/ wdpo.
@ MO(BO‘) @ @

From the doubling condition on (M, dg, p1o) there is a constant such that
Ho (B) S CNO (Ba ) .

Hence

(/ Uﬂdﬂo) < CMO(B)%I/ wdpo

o4

< O3 pofB)' (/) i)
<@ ([ o)
< Cro®)' 10 Y (w158

< cuipr-s (Ztan)

[e3

< Cuo(B)'~70%(2B)? < Cuo(B)' ~10%9w(B)¢,
from which the conclusion follows. O

Letnow f € C*°(M) and g5 = €2/ gy be a Riemannian metric conformal to go. A key
geometric consequence of having A, control on the weight e™/ is given in the following
lemma.

Lemma 3.5. Let f : M — R be a smooth map. Assume that w = e™f is an A, weight
satisfying the above reverse Holder inequality with constants C' > 0 and q > 1. Then there
is a constant B, depending only on C, q and (M, go), such that for any x,y € M :

df(z,y)" < B/ ™ dpp.
B(z,do(z,y))
This lemma has been shown on the Euclidean space by G. David and S. Semmes, see

inequality (1.2)] and [33] Proposition 3.12b].

Proof. By Sobolev inequality (see for instance [20] p.148), there is a constant C' > 0
depending only on the geometry of (M, go) and ¢, such that for p = gn, we have for any
balls B C M and any ¢ € W1P(2B) and z,y € B:

lo(z) — p(y)| < Cr(B)'~» </m Idwlpdu())% .
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If we use this for the function ¢ = ds(x,.) and B a ball centered at some point m with
do(x,m) = do(m,y) = do(x,y)/2 and with radius 2do(x,y). we will get

ds(v,y) < Cr(B)' > ( /2 et f duo)

Then the conclusion follows from the reverse Holder inequality and the fact that the g
measure of 2B is comparable to r(B)™. (]

1
qn

B

Let us show now that the space of conformal metrics with uniform A, bounds is pre-
compact in the Gromov-Hausdorff topology. We will not need this result in the sequel
since Theorem [[.T] will already ensure Gromov-Hausdorff precompactness once we fix a
suitable L™/ bound on the scalar curvature. Nevertheless, this is an easy consequence of
the measure being A, weights which seems to have remained unnoticed.

Proposition 3.6. Let (M™, go) be a closed Riemannian manifold let C;V > 0, Ry €
(0, diam(M, go)] and q > 1.
Let My, g,.q,c be the set of smooth functions such that f € My g, q.c satisfies the
following conditions:
i) for the Riemanian metric g5 = e2f go, Vol(M, gr) <V;
ii) w = e is (Ry,q, C)-uniformly A i.e. for any geodesic ball B of radius less or

equal than Ry we have:
1
(][ wqduo) ! < C][wduo.
B B

Then the set of distances {dy, f € My R, q.c} is pre-compact in the C* topology for all
a € (0,1 - %) In particular, the set of metric spaces {(M,ds), f € My ry.qc}t is

precompact for the Gromov-Hausdorff topology.

Proof. By Lemma [3.4] there exists C’ > 0 such that for all f € M, v g, qc and all
geodesic balls B (of any radius),

<][ wqd,uo) ’ < C][wd,uo.
B B

In particular, if the radius of B is larger than the diameter of (M, go), we get that for all
.f € MU,V,Ro,q,Cy

/ emaf < C'(Vol(M, go))a V.
M
The conclusion follows then immediately from Proposition 2.2l (]

3.2. A control from Z"/2 bound on the scalar curvature. We now show that a L™/2
bound on the scalar curvature, with L™/2 bound on the positive part of the scalar curvature
uniformly smaller than what it is for the standard sphere at some (even small) fixed scale,
implies a uniform A., control of the conformal factor. Once again, it follows from the
Example 1 presented in our introduction that these integral bounds are optimal to get such
Axo control. Theorem 3.7 below implies Theorem [I.2] of the introduction and explicit its
result.

Theorem 3.7. Let (M™, go) be a closed Riemannian manifold, §; A > 0 and Ry > 0.
Then there exist p = p(n, go, Ro, A) > 0 and C = C(n, go, Ro,d,A) > 0 such that for
any smooth function f : M — R whose associate metric gy = e?f gy satisfies
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i) fM ‘Scalgf |% dpy <A, and

n

ii) forany x € M: / (Scaulgf)?r dps | < a(n,2)—0,
B(I,Ro)

we have that for any go-geodesic ball B of radius less that R /2,

nf p
(/ e"fduo) (/ eruo) <C.
B B

In particular, €™ is an As.-weight with respect to go, with constants only depending on

n, go, Ro, 6 and A.

Proof. The proof of this theorem was directly inspired by the proof of the Harnack in-
equality for positive solution of second order elliptic equation, see theorem 8.20] and
its proof.

Let Ry € (0,diam(M, go]), 6,A > 0 and let f : M — R be a smooth function

satisfying the hypotheses above. We write again gy = = go.ie. ef = w72 The proof
is done in two steps.

Lemma 3.8. Under the same hypothesis of Theorem[3 2 there exist e = e(n, go, Ro, A) >
0 and C = Ci(n, go, Ro, A) > 0 such that for any go-geodesic ball B of radius less than

Ry/2,
() () s

Proof. Since we consider g5 = e go, let us recall equation [6}
4(n—1)
n—2
Set V = Scal,, um—2, W = V — Scal,, and Ay = || Scalg, || .. We have

4(n—1) 4(n—1)

n

Scalg, uT y = Agyu + Scalgy u

Agln(u) =W +

Now let B and ¢ be a Lipschitz cut-off function with support in 2B such that ¢ = 1 on B
and |d¢| < r(B)~!. Then

o A=1) \  An—1)
/M§ (W + 2= jdin(u) ) dpo = = /M 26 (dg, dn(u))dpo

16(n — 1)2
<t [ el duo+ L [ jdglane
M ( 2) M

n—
By Holder inequality, we have

| eviam <|
M

Moreover, for go there is an uniform constant w such that for any r € (0, diam(M, go)]
and any x € M:

n—2

Ho (ZB) ,

! Ln/2(2B)

Scal; ‘

(8) %r" < po(B(z, 1)) < wr'™.

Hence we get

(M _ 4) /B |d1n(w)|2,dpo < Chor(B)"+C <1 +|

n—2

Scal;f ‘

5 ) Fa(ZEIE)
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L%(z}g)) ’

There is a o > 0 such that all the geodesic balls B(z, ro) are almost Euclidean: i.e. there
is a smooth map ¢, : B(0,ro) — B(x,ro) with

In particular we have

) T(B)Q][ |dIn(w)|%, dpo < C (1 + Hscal;f
B

1
ieucl < prgo < 2eucl,

where eucl is the Euclidean metric and B(0, r) the Euclidean ball of radius ro. Hence
there are positive constants 0 and A that only depends on n such that if B is a gy geodesic
ball of radius (B) < r(/2 then

10 (2B) < Buo(B)

V¢ € C'(B): /IB ((b — ]I[B¢)2duo < Ar(B)? /IB |do|*dpso.

We can assume that Ry < rg, hence the above estimation (9)) and the above Poincaré in-
equality implies a BMO (bounded mean oscillation) estimate on the function In(u). More-
over, we also get from (@) that for all balls B with radius R < Ry,

and

1/2
/|dln(u)|g0 duo < CR™? (/ ldIn(u)|?, duo) < CR™ 1.
B B

Therefore by John-Nirenberg inequality (cf [20, Theorem 7.21]), there exists ¢ > 0 such
that for any geodesic ball B of radius less that Ry /2,

][eaﬂnu—(lnu)mduo < 07
B

where (Inu)p = ][ In(u) dpg. This implies that
B

][Uiadllto < Ceia(lnu)m'
B

(][ uadMO) (f U_Edﬂ()) S Cea(lnu)ge—a(lnu)g S C'
B B

So far we have only used an estimate of the negative part of the scalar curvature of g
in L™/2. However, we will need the L"/2 bound on the positive part of the scalar curvature
in order to get the following estimate.

Therefore

O

Lemma 3.9. Assume the same hypothesis of Theorem 3. For all € > 0, there exists
C = C(n, go, Ro, 0, A, €) > 0 such that for all go-geodesic balls of radius less than Ry,

o B
][ un=2dpy | <C <][ usd,uo) .
1p B

Proof. The proof of this lemma is done in two stages, the first one being a localization of
what we did in the proof of Proposition23l Let R, 7 > 0 such that r + R < Rg and let £
be a cut-off function with support in B(z, r + R) such that

s 0<e<,



16 A weights and compactness of conformal metrics

o [d|g, < 1

I

e {=1onB(z, R)
We have the equality

4(n—1) / 9
— |d(&w)[g, dp
n—2 B(z,R+7r) g0=H0

4(n—1) / 2 4(n—1) 2 2
=— (Agou)u&dpg + ——= |d€|Z udp
n—2 B(z,R+r) . 0 n—2 B(z,R+7) g 0

:/ Vu?e2dpuo —/ Scalg, u?&2dpg
B(z,R+T) B(xz,R+r)
An—1) / 2 2
U d€ 2, u®dpo.
n—2 B(xz,R+r) 7

We use now the Hebey-Vaugon Sobolev inequality (@) and we get that

on " 4(n —1
a(n,2) ( / (€U)_"2duo> <MD [ Jatew)Pug
(10) B(z,R+r) n B(z,R+r)

vB [ (et
B(xz,R+r)

Hence with Holder inequality, we get

(1)

n " 4n—-1) 1
Y N L ) B <B+Ao n M—g) [ au
B(z,R+7) n—=2 1°) JB(e,R4r)

1-2
([ o2 ) ([ i)
B(R+7) B(z,R+T)

We obtain hence that for a constant C' that depends only on gg, R and n:

1—-2
n " C
(12) [owtam) <[ e
B(z,R) or B(z,R+7)

Therefore, if ¢ > 2, using again Holder inequality and setting r = R < Ry/2 we get

n-2 2

2n T C B e—2

U“dﬂo) <= (/ UEduo) po(B) =
(/ 572 \ s )

which gives Lemma[3.9]

Assume now that ¢ < 2 and let us go to the second stage of the proof. We will use a
trick of P. Li and R. Schoen Theorem 2.1] in order to obtain the wanted conclusion.
Assuming now that » < R < Ry/2, and using Holder inequality with exponent

3o

we obtain
1-2

1—L1
n " C “ n
/ unzfzduo < 3 / u®dpg / unzjduo
B(z,R) or B(z,R+T) B(z,R+7)

Rl
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« 2’
1-2 1—1
M(R) = / w2 dpg and I= / udpg .
B(z,R) B(z,2R)
1 2
Notice that A € (0, 1) since 3= 1+ ﬁ Equation (I2)) shows hence that
n(2 —
C1
Iterating this equation with 1 + ro + -+ - + 1, < R/2 leads to
CT 14+ 4Nk .
M(R)g(T) 1:[ M(R+7ri+r2+ - +rp)t .
If we choose 7y = R27/72, with 3 = 11, a ittle bit of arithmetic gives that

M(R) < oty

R?8
It follows that
. EcEo)
][ wizdpg | < C ][ udug
B(z,R) B(x,2R)
which concludes the proof of Lemma[3.9 O

Let us now conclude the proof of Theorem[3.7} Let & > 0 be given by Lemma[3.8] and
setp = 5(3—?2) Let us write w = un-2 = "/, It follows from Lemmas 3.8 and 9] that
there exists C = C(n, go, Ro, 9, A, £) > 0 such that for all go-balls B with radius less than

Ry /2,
() )

2

Hence for any go-ball B with radius less than Ry /4:

(F i) (foa) <o (fuin) (£ ba) <o

where 0 is the doubling constant for the volume measure gg. This is precisely characteri-
zation 74) of A, weights, cf Definition[3.1] O

4. STRONG A,, WEIGHTS AND BI-HOLDER COMPACTNESS

We now introduce so-called strong A, weights, also known as metric doubling mea-
sures, which are special cases of A,, weights with strong geometric controls, such as
Sobolev, Poincaré and isoperimetric inequalities.

We could not produce examples of sequences of conformal deformations satisfying the
hypotheses of Theorem [[.2] which would not be uniformly strong A.,. Our Theorem 3]
shows that any conformal deformation is actually uniformly strong A, provided the L"™/?
norm of the scalar curvature on small balls is pinched enough, which explains this fact.

4.1. Definitions and basic facts. Let (M, go) be a closed Riemannian manifold, p its
Riemannian volume. If g; = €2/ gy is a metric conformal to go, we continue to denote by
iy and by d s the corresponding Riemannian volume and distance respectively.
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4.1.1. Definitions.

Definition 4.1. Let g5 = €%/ gy be a conformal deformation of go. We say that the volume
density e is a strong-A, weight with respect to the Riemannian metric g if there are
positive constants 1), 0 such that

(1) x € M,r <n= pu;Bx,2r)) <OusB(z,1)).
) ay € Modo(w,y) <n = LEI < s (B0, do,9)) < 0y ()"

In above definition, B(z, r) is a geodesic ball of radius r for the fixed dy = d,, distance.
Notice that the strong A, condition is invariant under scaling: if duy = e dug is a
strong- A, weight with constants (6, 7) then for every i > 0, h™dpy is also a strong-A
weight with same constants (6, 7).

These strong A, weights were introduced in [[17], in relation with the quasiconformal
jacobian problem. The jacobian of a quasiconformal map is a strong A, weight, as is any
Aj-weight (see Definition 3] ii)). A strong A., weight with constants (6,7) is an A.-
weight with constants only depending on 6,7, see Proposition 3.4 of [33]. Nevertheless,
not all A, weights are strong A.,. Various characterizations of strong A., weights can be
found in and [33]], together with examples and details about their relationships with
the quasiconformal jacobian problem and the bi-Lipschitz embedding problem.

It is easy to see that if the conditions in definition [£.]] are satisfied for some 0, 7 then
for any other 7 > 7 there is a constant 6’ depending on (0, ) and on the geometry of gg
such that the same conditions are satisfied with constant (8, ). We also remark that the
doubling condition on (¢ implies that if m € M is a point such that

1
p = do(m,z) = do(m,y) = §do(£v,y) <

N3

then the balls B(m, p), B(z, do(x,y)), B(y, do(z, y)) have comparable 1y mesure.

Note that when do (2, y) < inj(M, go). there is a unique point € M such that

1
p= dO(mu‘T) = dO(may) = §d0($7y)

The ball B(m, p) will be denoted B, ,,. We obtain thus the following alternative and equiv-
alent definition of strong A., weight.

Definition 4.2. [f 0,7 are positive number such that n < %inj (M, go), we say that the

volume density e™f associated to the metric gr = €2/ gy is a strong-A., weight (with
respect to go) with constant (0,n) if

(1) x € M,r <n= pu;Bx,2r)) <OusB(z,7)).
d x’ " n n
@) aye Maofay) <m= LED < @, ) <0dy(e)

It follows from Lemma [3:3] that the left inequality in property (2) in definition 1] is
satisfied for all A, weights. The specificity of strong A., weights relies hence in the
other inequality.

Letgy = e/ go be a conformal deformation of go such that its volume density "/ is a
strong- A, weight (with respect to gg) with constants (6, 7). We are going to show several
basic controls on the geometry of (M, gy).
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4.1.2. Geometry of gy balls. In this subsection, we show that the strong A, condition
implies that the geodesic ball for gy and gg are comparable.

Let By (x, ) denote the g -geodesic ball of center x and radius .

In this section and in what follows we use the following notation:

Rz, ) := iy (B, 7)) 7
where, as before, B(x, ) is the g geodesic ball of center 2 and radius r.
Lemma 4.3. There exists k = k(n,0) > 0 such that for any r < n/k :
By(x,R(z,r/k)) C B(z,r) C By(x, R(z, kr)).

Proof. The doubling condition implies a reverse doubling estimate (see [22] Lemma 2.10]):
there are positive constants «, w depending only on 7 and 6 such that

r

(13) xEM,O<s<T§n:>w_"(;)§<M<w"(s)na.

~ g (B(z,r)) T

The doubling condition also implies that the 1. p-measure of gg-geodesic spheres is zero
(141 [38])), hence the function  — R(x,r) is continuous and strictly increasing, in partic-
ular we have

R(z,s) < R(xz,r) <= s <.

We have for do(z,y) <17

d¢(z
(14) 0! < 7}%@20&5??/)) <.
and
reEMO<s<r<n=w! (;)é < ggi:i; gw(z)a,
With k = (w@)é, and assuming without loss of generality that = > 1, we get for any
r<n/k:

OR(x,7) < R(x,kr) and R(x,r/r) < 0 ' R(z,7).
Since by (I4), we have
By (x, R(z,r)/6) C B(z,r) C By(z,0R(z,7))

we get

By(x,R(z,r/k)) C B(z,r) C By(x, R(z, kr)).

Note that the two radius R(x,r/k) and R(z, xr) are uniformly comparable:

g2 < Blasn) o
R(z,r/K)
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4.1.3. Volume doubling for (M,dy, j1y). As we mentioned above, if a weight is strong-
A, itis As. We proved that A, weights are doubling for the balls of the background
metric. We show now that the metric measure space (M,dy, puys) is doubling (for gy-
geodesic balls) with constants only depending on 7 and 6.

Lemma 4.4. There exists 6 = 6(n,0) > 0 and k = k(n,0) > 0 such that for all R €
(0,9),

py(By(z,2R)) < 2kuf(Bf(‘rv R)),
where By (z, R) is the dg-geodesic ball of radius R and center x.

Proof. Let D be the diameter of (M, go), then according to [11, Lemma 3.10], the volume
doubling condition for (M, dy, 15) implies that for any € M and any r < 7 :

(15) (M) < 0°0F50% 1 (B(x, 7))
Hence .
R(z,s) < (070" F (M) " = s <.
Now we have forr < n/k :
pf(By(z, R(x,7))) < pg(B(x, k7))
< 0% (B(x,27"rk))
< 01y (By(x, R(x, 27 rr?))

But
R(z,27Frr?) <w (271%2)0‘ R(z,r)

Chosing k such that w (27%k2)" < 1 we get
lj’f(Bf (‘Ta R(‘Tv T‘))) < ekﬂf(Bf(‘rv R(‘Tv T‘)/Q))

Hence with

3=

5= (9—50—50;{%”]0(1\4)) ,
this eventually implies that
R <26 = ps(By(x,2R)) < 25 (B (x, R)).
O

4.1.4. Estimate of the diameter of (M, gy). We are going to show that the diameter of
(M, gy) is comparable to 5 (M),

Lemma 4.5. There is a constant C depending only on go, 0, n such that
1 . 1
C™H (g (M))™ < diam(M, g5) < C (g (M))™ .

Proof. The upper bound for diam(M, gy) is an immediate consequence of Lemma [3.3]
Let us show the lower bound.
It is always possible to assume moreover that 7 < D. Then there is always two points
x,y € M with dy(x,y) = n and we have
diam(M, g7) > dg(z.y) > 0~ (s (Bz,m) "
therefore by (13), we get

diam(M, g7) > C(0,7, D) (g (M))™ .
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4.1.5. Bi-Holder compactness for sequence of Strong A conformal metric. Let (g, =
e?/rgo)ren be a sequence of conformal deformations of go such that the weights e™/*
are strong-A., weight with uniform constant (6,7). As mentioned earlier, it follows
from that all the gj are uniformly A.. If the volumes of (M, gy) are uniformly
bounded, Proposition[3.6limplies then that the sequence of metric spaces (M, d, )ken has
a subsequence which converges in Gromov-Hausdorff topology to some limiting space
(M, ds)- Strong A, weights will give the following stronger convergence result.

Proposition 4.6. Let (g = €*/* go)ren be a sequence of Riemannian metrics conformal
10 go such that the weights e"%+ are strong- A, weights with uniform constant (0,7).

i) If there are positive constants v,V such that Vk: v < py (M) < V, then there is a
subsequence that converges in the C* and Gromov-Hausdorff topology to (M, d,),
where do is a distance on M which is bi-Hélder equivalent to dy.

i) If limy o0 pf, (M) = 0, then the sequence of metric spaces ((M,dy, )), converges
in the Gromov-Hausdorff topology to a point.

iit) If there is a positive constant v such that Vk: v < py, (M), then for any p € M,
there is a subsequence of the sequence of pointed metric spaces ((M,dy, ,p)), that
converges in the pointed Gromov-Hausdorff topology to a pointed metric space.

Proof. We will only show 1); the other cases follow from a straightforward scaling argu-
ment. As soon as €™/ is a strong A, with constants 7, 0, we have seen that if do(z,y) < 7
then

0~ R(w, do(w,y)) < ds(w,y) < OR(x, do(w,y)).

Moreover by (13) we have

w*(@%ﬁﬁawme»%sm@%mw»Sw(@%ﬁanmum»#

Hence if v < pp(M) < V, there is a constant A depending only on v, V, 0, w, n, & such
that

5 (Ao, ) < dp(e,y) <A (do(,)°

Hence the identity map
Id: (M,dy) — (M,dyp)
is uniformly bi-Holder continuous
Therefore a uniform strong A, estimate for the (e"f *)gen together with a uniform
control on the volume 0 < v < py, (M) < V implies that the sequence (dy, ) is precom-
pact in the Holder topology and for any converging subsequence, the limiting map d is a

distance on M which is uniformly bi-Holder equivalent to d.
O

4.1.6. Sobolev, Poincaré and isoperimetric inequalities. Let us now mention some other
important geometric facts about strong A, weights shown in .

Theorem 4.7 (David-Semmes (1990)). Let (M, go) be a compact smooth Riemannian
manifold, and let w = "™/ be a strong A, weight with respect to gy with constants n and
0, and let g5 = ¢*/ go = w%go. Then
i) There is a constant © = 0(go,n,0) such that for any x € M and any g;-geodesic
B(z,r) of radius less than diam,, (M ):

0 1" < puyp(B(x,7)) < 0Or™.
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ii) There is a constanty = y(go,n,0) > 0 such that for any smooth domain Q C M
with 17 (Q) < Suyp (M), we have

Yig Q)T <y (092).

iii) There is a constant A = N(go, 1, 0) such that for any g;-geodesic B(x,r) of radius
less than diam (M ): and any ¢ € C*(B(z,r)) with fB(I iy = 0 then

/ loldus < 7\?‘/ dolg, dpy
B(x,r) B(xz,r)

Sobolev inequalities for (M, g¢) are consequences of doubling and Poincaré inequality,

see [17].

4.2. Q-curvature and Strong A., bounds. Let us finish this section by presenting the
results of S. Brendle [7] and Yi Wang [42] which have inspired our analysis of conformal
metrics with L"/2 pinching of the scalar curvature via A, weights. These works are de-
voted to the study of conformal deformations with L' bounds for the Branson Q-curvature,
which we present now.

Let (M, g) be a Riemannian manifold of dimension n = 4. The Branson @Q)-curvature
of (M, g) is defined by

1 1 9
Qy = o <Ag Scalg +Z Scaly —3 |Eg|g) ,
where £ is the traceless part of the Ricci tensor. This ()-curvature has a natural conformal
invariance: if gy = €2/ go, then

(16) 2e"Qq, = Py f +2Qq,,

where Py, is the Paneitz operator on (M, go), which we shall not define here (see for in-
stance [7]). This equation is the analogous for the Q-curvature or the Yamabe equation
(6) for the scalar curvature. The existence of a Paneitz operator and a Q-curvature satisfy-
ing the conformal covariance property (I6) has been generalized to all even dimension by
Fefferman and Graham in [I8]. Note that the leading term of Py, is always (A, )%, and

P,y = (Ay,)? when g is a flat metric.

The following result was shown in [7]], Proposition 1.4.

Theorem 4.8 (Brendle (2003)). Let (S™, gs) be the standard n-sphere and let C,6 > 0
and Ry € (0,diam(S")) be fixed. Let (gx = €2/*gs)ren be a sequence of conformal
deformations of gs with constant volume such that:

° / ng dvoly, < C;

Sn
e forallz € S,

1
/ |Q(]k | dVOlgk < _(n - 1)'0n - 57
B(z,Ro 2

where B(x, Ro) is the gs-geodesic ball of radius x and center .

Then (fi)ren is bounded in H™ = W?2™ with bounds only depending on C,§,n and
Ro.
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Note that on the round sphere, we have

/S |Qgs| dvolys = (n —1)loy,

the critical constant in Brendle theorem is half of the total (J-curvature of the sphere. It
was later shown by Wang in that under an analogous L' pinching condition for the
@-curvature, conformal deformations of the euclidean metric on R™ are uniformly strong
Ao weights.

Theorem 4.9 (Wang (2013)). Let C,§ > 0 be fixed and let (g; = e* eucl)yen be a
conformal deformation of the euclidean plane (R™, eucl), which is normal metrics, and
such that:

* / |Qos | dug < C;
M )

° / Q;‘fduf < 5(71— Do, — 6.
M

Then the Riemannian volume density (e™)en is a strong A, weight with respect to
the standard Lebesgue measure on R™, with constants only depending on n, C and J.

A normal metric on R™ is a Riemannian metric whose behaviour at infinity is not too
pathological, we refer to [42] for a precise definition. For instance, any smooth metric
whose scalar curvature is non-negative at infinity is normal.

The previous theorem is a reformulation of Theorems 3.2 and 4.1 of [42]]. The parallel
between Brendle and Wang’s assumptions and the assumptions of our Theorem[I 3]is obvi-
ous; indeed our approach was inspired by Wang’s proof. Note that the constant % (n—1)loy,
is optimal to get a strong A, weight, as can easily be shown by considering a sequence of
metrics built from removing a ball in R™ and gluing on its boundary a very long cylinder
with a round cap. Such sequence (even smoothed) cannot be uniformly strong A, since
it has no uniform isoperimetric inequality.

The proof of Wang can be localized using the same approach as we do in this paper,
which gives following result.

Theorem 4.10. Ler (M, go) be a compact smooth manifold, and C,§ > 0 and Ry €
(0, diam(M, go)) be fixed. Let (g5 = €*/ go)ren be a sequence of conformal deformations
of go, such that:

° /M‘ng|dﬂf <C
e forallx € M,

1
QF duy < =(n—1)lo, — 4.
/IB(z,RO) el 2 "
Then the Riemannian volume density (e™)en is a strong A, weight with respect to
9o, with constants only depending on (M, go), C and é.

We will not detail here the proof of this result, which is a combination of our arguments
with those of [42].

5. L™/? PINCHING FOR THE SCALAR CURVATURE AND STRONG A, WEIGHTS

In Sectionl we explained that a uniform strong A, control coupled with uniform volu-
me bounds has important geometric consequences, which were gathered in Corollary [[.4]
This section is devoted to the proof of Theorem [[.3] which is our second main result. In
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order to motivate the sequel of our study, we start with the proof of Theorem[I.3]assuming
Theorems[5.1land[5.7] which will be stated and proved in Sections[5.2land 5.3 respectively.

5.1. Proof of Theorem Let g; = €%/ go be a conformal deformation such that for
some A small enough (only depending on ¢¢) and for some Ry > 0, we have

Vo € M, ‘Scalgf’%duf < Ap.
B(z,Ro)

. . .. 2f _ .
By Yamabe’s equation (@), writing e?/ = u7-2, we have

4(n—1)

1
— Agou = Scalg, wEy — Scalg, u.

This is a Schrodinger type equation of the form Agju + ¢y u = 0, with

n—2

2
qf = m (Scalg0 —Scalg, e f) .

Moreover, forall x € M,

2
n

1951 .% (0, Roy.g0) < Cl90)BE + (le(ac,Ro) |Scaly, | * dvolgf)
< C(go)Rg + Ao.

Hence if one chose Ag to be smaller that the half of the € of the Theorem[3.1], then for Ry
small (so that C(go) R < €/2) the Schrodinger operator A, + g7 satisfies the hypothesis
of the Theorem [3.1] and since u is a positive smooth solution of (Ay, + gf)u = 0, the
lowest eigenvalue of Ay, + ¢ is necessary zero, with eigenfunction u. By Theorem[3.1]
we can decompose

f=h+w,
where h € W22 (M, go) and w € C*(M, dp), with
w(z) — w(y)|
sup ———— < C(go, Ro, A
z,ye%w dO(‘Tvy)a B (go 0 O)

and
amn |dh|[z» + AR, 2 < C(go, Ro, Ao)-

Let ¢ be a chosen base point in M. Since w is bounded in the C* topology induced by
do, there exists C' > 0 such that for all x € M,

|w(x) —w(xg)| < Cdiam(M, go)<.

Now, combining (I7) with Theorem 57 there exists n = 7(go, Ro,Aog) and 6 =
0(go, Ro, Ao) such that e™” is a strong A, weight with respect to (M, go) with constants
7 and 0. Since w — w(xg) is uniformly bounded from above and below, and since being
Strong A, weight is a scale invariant condition, this implies that ™/ = en(hFw—w(zo)) gnw(zo)
is also a strong A, weight with constants 1 and 6. Moreover, by Proposition[3.9] for all
a € (0,1), the distances dy and d are a-bi-Holder with constants only depending on g,
Ry, Ao and «, which concludes the proof of Theorem[[.3l
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5.2. On the ground state of Schrodinger operators with critical potential. The pur-
pose of this section is to give a regularity result for the first eigenfunction of a Schrédinger
operator whose potential has small L"/? norm on small balls, which is the first key step in
the proof of Theorem[I.3] The results presented in this paragraph are valid for any compact
Riemannian manifold (M, g) and of independent interest.

Theorem 5.1. Let (M™, g) be a closed Riemannian manifold of dimension n. > 2. There
are constants €, o > 0 depending only of (M™, g) such that if V € L3 satisfies:

(1) the lowest eigenvalue of the Schridinger operator A — 'V is zero;
(2) there is some p > 0 such that for any x € M :

/ VE <e
B(z,p)

Then for all positive C* solution ¢ > 0 of Ap — Vi = 0, there are f € W>% and
w € C*(M) such that

o =eltv,
2
Moreover, writing 1 := sup / V|2 | we have
@ B(z,p)
w(z) —w(y
fullen = _sup PO =00 < 0y, 1)

eweMm  do(z,y)®
and
ldflln + |Afll 2 < Clg,p)L.

This theorem is a key step in showing that conformal deformations whose scalar curva-
ture has small L"/2 norm on small balls are strong A, weights.

In order to prove Theorem[3.1] we need some preliminary tools. Let us start by recalling
the following classical consequence of the fixed point theorem.

Proposition 5.2. Ler (X, || e ||) be a Banach space, k € (0,1). If S: B(0,p) - X isa
k-Lipschitz map with
1SO) +5p < p

then there is a unique x € (0, p) such that S(x) = x. Moreover we have ||z| < T

Let A(g) be the best constant in the following functional inequality on the closed Rie-
mannian manifold (M, g):

(18) Vo € C(M): |ldplln < A(g)|Aw]l, 3

Proposition 5.3. Let (M, g) be a compact smooth Riemannian manifold such that Ric, >
—(n — 1)k2g, then the best constant A(g) in (I8) satisfies

15O

K

~ diam (M
Ag) < ec(m(1+k dlam(M7g))M
vol™ (M, g)

The above estimate on A(g) can be shown using a lower bound on the Ricci curvature,
and upper bounds on the diameter and volume of (M, g); it follows from results of S.
Gallot and of D. Bakry [3, Théoreme 4.1, Lemme 4.2 and Corollaire 4.3]. We will not
show it here, since we will not need this expression.

Let us now show the following property of the ground state of the Schrodinger operator
A-V.
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Proposition 5.4. Let V € L°>°(M) N L= (M) and let A be the bottom of the spectrum of
the Schrodinger operator A — V. If

8A(9)?IVIl, 3 <1
then for any ¢ > 0 satisfying Ap — Vi = Ao, we have
|dlogpllLn <2A(g)|V]|, 2
Proof. We remark that if ¢ = e* satisfies
Ap =V = Xop,
then we have
Au — |dul®> =V + Xo.
Moreover up to a scaling constant, there is a unique non trivial solution to the equation
Ay — Vi = A\gp. We introduce the Banach space
WL = fv e Wl’"(M),/ v =0}
M
endowed with the norm
[ollL = lldv]|zn-
We introduce the operator S: W™ — W™ defined by
S() = ATV + A dol?.
where for all f € L%, we have denote u := A~ f the solution of the equation
Au=f—fu
fM u = 0.
By definition of A(g), we have
[SO)L <AV, %,
and
[15(u) = S(w)llL < A(g)llu — wl| L (lull L + [[w][ L)

As a consequence the restriction of S to the ball B(0, p) C Wj_’", is 2A(g)p-Lipschitz and
if

(19) ANVl s +24(9)p* < p
then there is a unique v € B(0, p) with S(v) = v and
VI3
vl|L < A(g) ——L2—.
ol < Al g

Choosing p = (4A(g)) ™}, the condition ([9) is satisfied as soon as
A@IIVILz < (8A(9)
We have obtained hence a function v € W™ such that S(v) = vand ||v|| | < 24V, 2 -
Therefore there is a constant ¢ such that
Av — |dv|* =V +e,
therefore
Ae” — Ve = ce”.
Since the only positive eigenfunction of A — V' is associated to \g, we have ¢ = g,
e¥ = ke for some k > 0 and |dlog ¢| ;. = |v| | <2A4(9) |V]pns-- O
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Let us now define the Sobolev constant 5 = 5(gg) > 0 of (M, go) to be the best
constant in the inequality

(20) Vip € C(M): BlIEI 2n, < lld@lIZ2 + Il 7o
Note that this Sobolev inequality implies that
B < Vol(M, go) .
We also have that for any ¢ € (0,1):

Ve €Cx(): BBl s, < [ (Ml + 810 duo,
Hence we can easily prove the following lemma:

Lemma 5.5. [fW € L% satisfies W,z < B6° then the Schrédinger operator A +
0% + W is non negative.

Proof. The Holder inequality implies that if o € C1(M):

- / W < Wil g el 2, <Blel? 2 < / [ldl2, + 62Iol?] dpo
M L L M
O

Lemma 5.6. Assume that xo € M and rq are chosen so that

Vol B(zg, ro) < (g)

2

Ifq € L% is such that
supp(q) C B(zo,70) and [|gfl, 2 <

then there is a constant cq satisfying :

ol < Zlall 5
/8 L2
such that the lowest eigenvalue of the Schrodinger operator
A+ g+ co LanB(ao,r0)
is zero.
Proof. Let \g(c) be the lowest eigenvalue of the Schrédinger operator
A+ q+clanBzo,r) -

Using the constant function, we get that Ag(c¢) < 0 as soon as

/ g+ ¢ Volg, (M \ B(zg,70)) <O0.
M

Vol (M,
M,henceforc, = —m Jas lal, wehave Ag(c—) <

Moreover, Vol B(zg, ro) <
0

Using Lemma[S.5for W = ¢ — ¢ 1 we also see that if ¢ > 0 satisfies

10,7‘0)7
Hq - CHL% (B(z0,70)) < BC

then A\g(c) > 0. For instance for ¢ = %||q||L%, we have A\o(cy) > 0. Hence there is a
o € [c—, cy] such that A\g(co) = 0.
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Moreover, by Holder inequality we have

_2 2
(Volg, (M))' ™7 |lqll .3 < VTHqHL% <

n
Olgo

le_| < lall 5 -

| o

2
Volg, (M)

2
Therefore |co| < 3 llqll, 2 » which concludes the proof of Lemmal[5.6l

We can now prove Theorem[3.1]

Proof of Theorem[3.1] We will use the constants A(go) and 3 given by the estimate (I8))
and the Sobolev inequality (20). We can always assume that p also satisfies

2
Vo € M: Volg B(x,p) < (g) .

We choose a finite cover
such that for any i # j : B(z;, p/4) N B(z;, p/4) = 0. If

2
I:=sup / |V|% < é
e \JB(p) 2

then for any 7 € {1,..., N}, using Lemma[5.6 we find ¢; such that with
¢ =V 1p(a;,p) TCi Lan\B(w:,p)»
the lowest eigenvalue of the Schrodinger operator A — g; is zero. We have

3Voly, (M) =
||(Jz'||L% < 5 ||V||L%(B(%p)).

Hence using Proposition[3.4] we know that if

Vol, (M)*
70'(]0; ) IA2(90)<1

then we find ¢; € ker(A — ¢;), ¢ > 0, with
|[dlog @il Ln < C(go) L.

24

On the other hand,
Alogp; = g; + |dlog p;]?
hence

[Alog will, 2 < C(go)I.

2
We choose € such that 24% A%(go) e = 5. Let ¢ : M — (0,+00) be a global
solution of Ap = V. Foralli € {1, ..., N}, we define ¢, : B(z;, p) — R by

© = 0.
Since on the ball B(z;, p), we also have Ap; = Vp;, we get
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Using the work of O. A. Ladyzhenskaya and N. N. Ural’tseva and of M.V. Safonov
(30, we know that v; is Holder continuous. There is some o = «(go, p, €) such that

[Vi(z) = i(y)] :
Vill ¢ (Ba = sup — == < (C(go,p,1 inf Wi (x).
Willee @ sor vyeBzidp/a)  do(T,y)* 0.2, pnl 4 Vil)

efi

We let §; = infp(y, 3,/4) % and ¢; = §;e** and ¢; = 5 and f; = Foes spya) fir We
have '

||wiHL°°(IB(m73p/4)) + Hwi”c‘a(B(mi,gp/@) < O(govpv I)
and

dfillen +[|Afill 5 < Clg0)L.
Moreover, by Sobolev inequality
Ifi = Fill» < C(g0)L.
Note that on all ball B(z;, p), we have
1) o = ity = eWieli.

Let us fix now a partition of unity (x;)ic1,... n} With suppx; C B(x;,3p/4) and x; =
1 on B(z;, p/4). This partition of unity only depends on (M, go). Let us define

f::ZXi(fi—ﬁ) and w:ZXi(wi"'ﬁ)'

The functions f and w are well defined on M and it follows from @2I) that ¢ = efe™.
We have moreover |dlog f|z» + [[Af| ;2 < C(go)I. We also have logp = f + w
and
Alog o — |dlog > =V

Hence by Stokes formula,
_z2
[ tatoseldn < [ Widuo < (oM F VI, < Cloot
M M
Using the Poincaré inequality, one conclude that for ¢ = fM log(p)duo:

Ilf +w—clz2 < C(go)L.

On each ball B(z;, p/4), the oscillation of w; = w — f; are controlled hence one get that

|fi = ¢| < Clgo)ll fi = €l L2 B .p/a)) < Cg0, D).
Hence w = 3_ x; (w; + f;) is bounded in C*(M). O
5.3. Strong A, weights from W1 bounds. In this section, we explain how the proof

of Theorem 3.1 of [6] can be adapted for closed Riemannian manifolds, which gives the
following result. This is the second key step in the proof of Theorem [L.3l

Theorem 5.7. Let (M, go) be a closed Riemannian manifold. If f: M — R is such that
||deL" < Iu

for some 1. Then the weight €™ is a strong A, weight with respect to go, with constants
, M) where 1 depends only on gg an epends only on gy and 1.
0 h d ds onl d 0 d ds onl dl

Note that, unlike Theorem 3.1 of [6]], our statement and our proof are scale invariant.
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5.3.1. Presentation of the setting. The estimates will depend on several geometric and
analytic estimates. We continue to denote by (o the Riemannian volume measure and by
dy the Riemannian distance associated to gg. There is some 1 > 0 and positive constants
0,v, C (that can be chosen depending only on the dimension n) such that for any ball
B C M with radius 7(B) < 21 we have

i) as already mentioned in ), 0~ 1r(B)" < uo(B) < 0r(B)";

ii) as shown in [20], Lemma 7.16, for any Lipschitz function ¢: B — R and any x € B:

|deplg, (2) ,
Bmd 0(2);

iii) the following Adams-Moser-Trudinger inequality: for any Lipschitz function ¢: B —
R and any z € B:
(’Y\cp(z)ﬂ/’ﬂ)ﬁ
][8 ldell n (m) d,lLO(I) < C.
B
For the Euclidean space R", this inequality is due to N. Trudinger [40]. Accord-

ing to [20, Lemma 7.13], the first two geometric control i-ii) implies the Trudinger
inequality.

o(z) —pB| < C

We will use several times the following integration by parts formula

/ o (do (. ) f (4)dpioly) = o(R) / F()dpo(y)
B(xz,R)\B(z,r)

B(z,R)
R
e / Tl - / o (r) / @

5.3.2. Estimate on j;(B). We are going to prove that y is an A, weights for every p > 1
using characterization ii) in Definition3.1] Let B(o, p) C M be such that its radius satisfies
r(B) < n. We have for any « € B and any A € R:

n=1 (Alf@) = fs\TT L (N "
o) = gol < ot (EEN T L (B )

Hence, using Adams-Moser-Trudinger inequality, we get

i < W) oy (DB
é dpo < ® éep<(|ﬂhmm dpio(z)

< 0(907 |)‘|7 I)ekﬁs

Using the Cauchy-Schwarz inequality, this implies

1< ][e’\fduo X ][e_’\fduo < C(go, |\, T) ][ M dpge,
B B B

and we eventually get
M s
C(g0, A, T)

This easily implies that for any p > 1 there is a constant C' depending on go, I, p such
that

p—1
(23) ][e"fduo (][ e_Pnlfduo> <C.
B B

(22) < ][e*f dpo < C(go, |\, T)e e
B
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Hence, e™/ is an A, weight, in particular dy. s is a doubling measure. Moreover, by Lemma
this implies that there exists a constant C' = C/(gg, I) > 0 such that

do(z,y) <100 = ds(z,y) < C(pus(Bry))™ .

5.3.3. Distance estimate. To show that dy.5 is a strong A, weight, we are only left with
showing that for all x,y € M and for some C' > 0,

1
dgs(2,y) = Cpiy (B y) ™

In this purpose, we will need the following lemma:

Lemma 5.8. For any € > 0 there is a constant C depending on go,1 and € > 0 such that
for any ball B C M with r(B) <1 there is a set E C B such E C |, B, with

> r(Ba) < er(B)

and
xe€B\E=|f(x)— fz] <C.

Proof. Assume that « € B is such that for any » € (0, 2r(B)) we have

T
|df|" < A—
/]B(ac,r) T(B)
then using V' (z,r) := fB(I " |df (y)|dpo(y) and one gets

If(I)—fBIS/

B(z,2r(B)) dg’il ((E, y)

C E (n—1)C
< or @) V(z,2r(B)) +/O o V(x,r)dr

With Hoélder inequality, one has

1/n 1/n
<gl-3%,n-1 n < gl-2Z,n-1 r '
V(x7r) - ¥ " </]B(ac,r) |df| ) - 0 " (AT(B)

Hence there is a constant depending only of gg such that

|f (@) = fsl < OAn.
If now E is the subset of point = where there is a r,, € (0,27(B)) such that

|df (y)|dpo(y)

T
|df " > A\—
/IB(z,TI) T(B)

Then using Vitali covering lemma, one gets a covering £ C UB,, where B, = 5B(zq, 74 )

such that
To

ldf[" > A—<
/IB(zQ,rQ) T(B)

and the balls B(x,, 7o) are disjoints. In particular this implies that

5T B n 5T B n
Sre) =Y < TEY [ < X [ jarr

Choosing A = -3, we get the desired result. O

eln’
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Let now x,y € M such that p := dg(z,y) < 10n and let v: [0,1] — M be a C* curve

joining z to y:
7(0) = zand (1) =y

Let 7 > 0 be the first time with do(x,7(7)) = pandlet § = v(7), B := B, 5 =
B(m, p/2). We have for any t € [0,7],7(t) € 3B. Let ¢(t) = exp,,(tu) be the unit
speed gop geodesic joining x to § and L := ¢([—3p/2,3p/2]) it is a diameter of 3B and
II: 3B — L the projection onto L associated to the Euclidean metric de,; induced by
exp,,. We know that II is 1-Lipschitz for the Euclidean distance and for z,y € L :

denci(x,y) = do(x,y). Hence IT is x-Lipschitz for the distance dy. According to Lemma
with

1
24 =
(24) €= 6n
we can find £ C 3B such that & C |J,, B, with
ZT(IB%Q) < €§p
- 2
and

x€3B\E=|f(z)— fa] <C.
We have

Y

Loy () 2 Loy (o) 2 Loy (Yo \ B)
e Cefs L, (7|[0,T] \ E)
e ek Lonal (”Y|[0,T] \E)

b (1 (1 )

(V2R AYS

Y

Since 11 (7|[0J]) contains the geodesic segment joining x to ¥,

Leucl (H (7|[O,T])) > p.

whereas
Lewet (T(E)) < Leuer (THUB,)) < kY 2r(By) < 2%%[).

With the choice of € given by 24), we get

Leucl (H(E)) < P

N~

hence

p-

N~

Leucl (H (’7'[077] \E))) Z
Eventually using (22) we obtain:
: 1
Ly, (7) = CePrrp > C (g (Bay)) ™ -
This concludes the proof of Theorem[3.7}

Let us now show that the previous proof implies that the distances dy and dj are a-bi-
Holder for all « € (0, 1).
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Proposition 5.9. Let (M, go) be a closed Riemannian manifold. If f: M — R is such that
ldfl[en <1
Then for each o € (0,1) there is a constant C(go, I, o) such that for any x,y € M

1

pop (M)

et <d < C(go, I M)% d2(z, ).
Clan Loy %6 (@) < ds(@y) < Clgo,T, ) (M) d (a,9)

Proof. We have shown in Theorem 5.7 that the two weights e/ and e~/ are Strong
Ao weight. In particular, there is a constant C' depending on g¢ and I such that for all
z,y € M:

1 n n

1 n n
6 d—f(xuy) < H—f (Bm,y) < Cd_f(xay)

The estimate (22) implies that for each A € R there is a constant C” depending on gg, A
and I such that for any x, y:

1 - n
5%@MS<A<NWQ<A e”wgsa%@m.

Hence, there is a constant A such that for any x,y € M:
1
A

Notice that this implies that for some constant C":

(25) dg"(z,y) < df(z,y)d" ;(x,y) < Adg"(x,y).

& < up(Mp (M) < C.

But with the Holder inequality, we get that for any p > 1 and z,y € M:

_1
1p

d(z,y) < Cdg(z,y) (JI[B eﬁfduo> :

and again the estimate (22)) implies that

1

1—
<][ epﬂfd,uo> S Olu’f(vay) S O ‘LLf M) )
Ba,y

dg (2, y) dg (2, y)
So that we get that for any z,y € M and any p > 1,
dj(z,y) < Cdf (z,y)us (M)
which is the right-hand side inequality of Proposition[5.9] Moreover, since

d p(x,y) < Cdf (2, y)p— (M) < Cdg (x,y) (us (M)~

using the comparison (23) we get:

3" (z,y) < Cdo(w,y) v dy(z,y)" (up (M)~
We get therefore for all p > 1,

2n—2 n _
dy " (,y) < Cd}(a,y) (up (M),
which is the left-hand side inequality of Proposition 5.9l O
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6. CONFORMAL DEFORMATIONS OF R™ WITH SCALAR CURVATURE IN ["/2

In this section, we present some interesting application of our techniques to conformal
deformations of (R™, eucl).
Let us first provide the following sufficient criterion to get strong A, weights.

Theorem 6.1. Let f: R™ — R be such that
de”L"(]R",eucl) <I

for some I > 0. Then the weight e™/ is a strong A, weight with respect to eucl, with
constants (0,n), where n depends only on gy and 0 depends only on go and L.

This slightly improves Theorem 3.1 of [[6]], since our statement is scale invariant. The
proof of this result is an immediate adaptation of our proof of Theorem[5.71 We will not
provide further details since it would be a mere repetition of the previous section.

Nevertheless, we show now that Theorem [6.1] implies Theorem [[.6l which provides a
completely new criterion to get Strong A, weights on (R™, eucl).

Proof of Theorem[L.6] Let g = e*feucl be a conformal metric on the Euclidean space
R"™>?2 such that
i) Vol(R™, g) = 4o0;
i) [p. |Scaly |2 (x) dvoly(z) < +oc.
We will show that "/ is a strong A, weight with respect to eucl.
The following lemma shows that our infinite volume assumption is often satisfied.

Lemma 6.2. A complete conformal deformation g = e*feucl of the Euclidean metric on
R">2 that satisfies [, | Scaly |2 (z) dvoly(x) < +o00 has necessary infinite volume.

Proof. According to this hypothesis, the Riemannian manifold (R™, ¢) satisfies the Sobolev
inequality ([12] Proposition 2.3] ): for some C' > 0,

1—2
Vo € CH(R™): (/ |7 dvolg>

< C/ |de|? dvoly.
Hence (R™, g) has an infinite volume, since the volume of geodesic balls is then bounded
from below ([ [10]):
c(n, p)r"™ < Volg(B(z,r)).

Now, our proof of Theorem[I.6 will be based on the following elementary lemma.

Lemma 6.3. Let (M, g) be a complete Riemannian manifold that satisfies the elliptic Har-
nack inequality. Then harmonic functions which are bounded from below are constant.

Proof. Harnack inequality establishes the existence of a constanty > 0 such that for every
geodesic ball B(xz,r) C M and every positive harmonic function h defined over B(x, 2r)
one has
sup  h(y) <y inf h(y).
yEB(z,r) yEB(z,r)
Hence if h: M — R is bounded from below, setting A = inf,ear h(y), we get that for
every geodesic ball

sup  (h(y) —A) <7y inf (h(y) —A).
yeB(x,r) yEB(z,7)
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But as r — 400, we have

li inf  A(y) =A
T‘iIEOOyEIBI%;E,T) (y)

therefore for ally € M, h(y) = A. O

As an example that will be useful later, let us consider the case where g = e2%eucl is a
conformal metric on the Euclidean space R™ and assume that

/ |du|™ (z)dz < +oo.

It follows from Theorem[6.1] that ™" is a strong A, weight and that the metric g satisfies
the Poincaré inequality and the doubling condition: there are constants 0, A such that for
all g-geodesic balls B(x, r), we have

Vol; B(z,2r) < 0 Vol; B(x,r)

and, writing ¢ g ;) = fB(z_T) ¢ dvolg,

1 . 2 2
Yo € C (B(x7 2T)) HSD — ©B(z,r) HLz(B(ac,r),g) < HVQ)OHLQ(B(LQT),@) )
Moreover, by the results of Section[.1] the metric space (R", g, dvol;) is Alhfors regu-
lar: there is a constant 1 such that for every g-geodesic ball B(x,r) :
nr"™ < Volg B(z,r) <r"/n.

In particular by result in [21}[32]], g satisfies the parabolic and the elliptic Harnack inequal-
ities and if n > 3, then (R, §) is a non parabolic manifold and has a positive Green kernel
Gg(x,y) that satisfies the estimates

(26) cdy " (2,y) < Gg(x,y) < Cdi ™" (2,y)
or equivalently :

¢ (Volg(B,.,))) ' < Gyla,y) < C (Voly(B,,)) "1+
Let us go back to our metric g = e?feucl with
Vol(R™, g) = +oo and /|&mﬂﬂm&mgm<+w.
Rn

Let A be the Euclidean Laplacian and let A,, be the norm of the operator JA™': L% —
L". Since the L"/? norm of Scaly, is finite, for R large enough we have

2

n—2 l/ N B |
_— Scal, |2 (z) dvol,(z < —.
A(n—1) < Rn\IB(R)| o) o )> 84,

Therefore, as was done in the proof of Proposition[5.4} we can find v € Lz (R™, dz) such
that

12 n—2
v — |dA 1’0‘ g m Scalg 82f ]-]R"\]B(R) .
Now, let u € VVI?)C% (R™) be such that Au = v, for instance  is a primitive of dA~'v €
L™ or
1 1
u(x) = cn/ < — — — >v(y)dy.
re \lz—yl"=2  lyl"—2
We have 5
Ae" = oz Scalg et 1rn\B(R) €"-

4(n—1)
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Writing ¢ = "=/, Yamabe equation (6) implies that

n —

2
Ap = ———Scal, e* ¢.
) 4(n_1)Scage o)
Hence if we define {p = dpe™ we get
n—2 of
All) — <du, dl,')> = m Scalg e 1]B(R) 1.')

. _4 . .
As du € L™, the metric § = en—2"eucl induces a strong A, weight, but

Agp = e 73 (AP — (du, d)) = Scaly €27 1) e~ 72",

n—2
4(n—1)
As Az has compact support and is in L? for every 1 < p < 400, we can find a solution
of the equation

Aga = Aﬁll-)u

for instance let us choose
) = [ Galo)Agb(wvoly(y).

Since supp Ay C K, it follows from (26) that there exists C' > 0 such that for all
x € M\K,

1

E(z) < C ( /K Gl(a, y)dvolg(y)) " < Cdy(, K)*

In particular, [, |&(y)| = dvols(y) < 400, the map & tends to zero at infinity and is in
w2p (R™) for every 1 < p < 4o0. Therefore ¢ is a bounded function and P — & is a

loc
g-harmonic function that is bounded from below: it is hence a constant function. If this

constant is 0 then \ = & and
_2n_ 2n_
Vol(R", g) = W(y)»-2dvol;(y) = / En—2(y)dy < +o0.
R’Vl n
This is contradictory with our hypothesis hence there is a positive constant ¢ such that
b=c+d,
hence there are positive constants «, A such that

a<p <A

This implies that the metric ¢ = ¢ "= eucl and § = e?“eucl are bi-Lipischitz, hence since
e™ is a strong A, weight with respect to geycl, el = g7z is also.

(]

We emphasize again on the fact that this implies very strong geometric constraints

on conformal deformations of (R", geuc1) with | Scaly |2 (z) dvoly(z) < 400 and
R’Vl

Voly(R™, g) = +oo. It implies in particular Poincaré inequality, Euclidean-type isoperi-
metric inequality and Sobolev inequalities, which were unknown on such examples.
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7. GROMOV-HAUSDORFF LIMIT AND CONFORMAL DISTANCES

Let us conclude by presenting a natural question about the limiting distances which
arise in our Theorem[I.3] which we could not answer.

Let us first recall that to any strong A, weight e™f> (with respect to dvol,, ) is naturally
associated a distance d s, defined as follows. Forall x,y € M, we write agin B,,, the largest
go-geodesic ball whose diameter is the go-geodesic segment [zy]. Let us write

dp(z,y) = <wl_nw(Bzy))l/n B <Wi"/3

where w,, is the Euclidean volume of the unit n-ball, and define

1/n
e @ dvol,, (x)) ,

ry

N
(27) ds(z,y) = lim inf {Z Op(xi, xig1) 5 To =z, xn+1 = Y, do(x4, Tiv1) < E} .
e—0 P
It can be easily shown that e”/ € L'(M) is a strong A, weight if and only if dyis a
distance (see [33] for more details). Moreover, an elementary approximation argument
shows that if f is continuous, then d coincides with the classical Riemannian distance
associated to the Riemannian metric gy = e/ go.

Let us now consider a sequence (g, = 21 9o)ken of conformal metrics satisfying the
hypotheses of Corollary[[.4l Up to extracting a subsequence, the sequence of associated
metric space (M, dg, ) converges in Gromov-Haudsorff topology to some distance do, on
M, which is bi-Holder equivalent to dy. Moreover, still up to extracting a subsequence,
the Riemannian volume measure j, = dvoly, = e™ftdvol,, converge in the weak—x
topology to a positive measure [, on M. Since all the jy are uniformly strong Ao
weights with respects to dvoly,, (1o is also: there exists hence e/~ € L(M) which
is still a strong A, weight with respect to gg. This weight is therefore associated to a
distance dy_ defined by @7). Does d and d._ coincide ?

The reader will can check that in the Example 2 presented in our introduction, where the
conformal factors converge in W22 to the singular conformal factor given by [I)) and the
distances converge in the Gromov-Hausdorff topology, these distances indeed coincide.

One can easily show from semi-continuity arguments that do, < dy_. Let us present
now a striking example of pathological behaviour which shows that in general, for a se-
quence of (unifom) strong A, weights (e"/*),cn, the converse inequality is not true. The
following examples of conformal deformations is due to D. Burago, in [§]]

Let us consider the standard flat torus (T™ = R"™ /T, eucl), where I' = (27Z)". For
all £ > 1, we consider the conformal deformation of the euclidean metric gy given by
ge = e2freucl, where

1
eMe(zy, . ) =1— 5(308(&61).

Since "/ is uniformly bounded from above and below, all the metric space (T", d; = d,)
are uniformly bilipschitz to T" equiped with the Euclidean distance and the (e™/¢);>; are
uniformly strong A, weights with respect to the Lebesgue metric. Nevertheless, the dis-
tance associated to the limit of the volume measures and the limit of distances are radically
distinct as shows the following result.

Theorem 7.1. Under the above notations, as { — +00,

e the sequence (e"7¢), converges weakly in L*(T) to the function 1;
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o the sequence of metric spaces (T™,d;), ¢ € N converges in the Gromov-Hausdorff
topology to metric space (T",d,) where d is the Finsler metric associated to
the stable norm of the periodic metric on R™ given by

2
1 »
g= (1 ~3 cos(xl)) eucl.

Proof. The first assertion is classical. As for the second assertion, let us recall that if d
is the Riemannian distance on R" associated to the metric g then the associated stable
norm || e ||, is defined for all z € R" by ||z, = lim;, o 7d(0,tz). Using the change
of variable §; = lz;,i = 1...n, we get that (T",d, = dy,) is isometric to the quotient
R"/(T") with the metric . More exactly let 7: R" — T™ = R"/T" the quotient map.
if z,y € R" then

de (m(x), m(y)) = iréfp %d(w, Y+ Lly)

If doo (m(z), 7(y)) = inf eer ||z — y — ||+, then we clearly have

z_?é%n |de (7(x), 7(y)) — doo (7(2), 7(y))| <

Hence the result. O

~lQ

We emphasize on the fact that in this example, df__ = deyc1, Whereas do is a Finsler
non-Riemannian metric: it cannot in any weak sense be considered as a conformal metric
for some limiting conformal factor.

The reader will easily notice than in the previous example, the volume of the conformal
metrics are uniformly bounded, but the L™/2-norm of the scalar curvature blows up. Un-
der the L"/2 assumptions on the scalar curvature which ensures Theorem[[3land Corollary
[L4] we have a stronger control on the geometrical and analytical behaviour of the confor-
mal factors than the information given by the strong A, bounds. Nevertheless, we cannot
show yet equality for d, and dy__ under these hypotheses, nor give a counterexample.
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