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Abstract—In this paper, we address the problem of channel es-
timation and signal detection in large MIMO FEC-coded systems
assuming finite alphabet modulations. We consider a semi-blind
iterative expectation maximization algorithm which relies on a
limited number of pilot sequences to initialize the estimation
process. We propose to include the estimation process within a
turbo finite-alphabet simplicity (FAS)-based detection receiver.
To that purpose we define two estimation updates from the
FEC decoder output. Simulations carried out in both determined
and undetermined configurations show that the resulting scheme
outperforms the state-of-the-art receiver which uses an MMSE
estimation criterion and that it reaches the maximum-likelihood
lower-bound.

Index Terms—Channel estimation, simplicity, signal detection,
massive MIMO, turbo-detection

I. INTRODUCTION

Massive MIMO is considered as a potential candidate to
address the challenges of 5G. The idea is to implement a large
number of antennas to better exploit the spatial diversity so
as to provide higher throughput under spectrum limitations.
Efficient channel estimation with a minimum overhead is a
key step to take up the challenge.

A first family of channel estimation techniques, called
training-based estimation, uses pilot sequences inserted in the
transmitted frame and perfectly known at the receiver [1]. In
the case of massive MIMO which involves a high number
of channel impulse responses, the definition of orthogonal
sequences is an issue and the required training sequence
length and number may become huge resulting in a waste of
bandwidth and power. To overcome the pilot sequences issue,
a second class of techniques referred to as blind estimation
exploits received data only [2]. Unfortunately, in this case,
channel parameters may be identified within scaling and
permutation ambiguities which limits their exploitation.

To meet a trade-off between waste of bandwidth and power
on one hand and, blind channel estimation ambiguities on the
other hand, an intermediate solution is semi-blind estimation
[3]: it uses a limited number of pilot sequences compared to
training-based methods and improves the quality of channel
estimation compared to blind estimation algorithms [4]. The
idea here is to get a first raw estimate of the channel using
pilot symbols and then, to progressively improve its accuracy
by considering recovered symbols to define extended pilot
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sequences within an iterative estimation procedure [4], [5].
Following this approach, one can either improve channel
estimation or reduce the required pilot symbol number.

Different ways to refine the channel state information
(CSI) after a first raw training-based estimation exist as for
example Kalman estimators [6]. The so-called Expectation-
Maximization (EM) algorithm is particularly interesting. It
provides a framework to iteratively calculate probabilities
of unknown data elements to be used to estimate channel
parameters.

Decision-directed estimators are fed with hard decisions
taken on detection output. The risk is poor performance due to
information loss especially with MMSE-based detection [7].
Substituting hard decisions with soft decisions provides confi-
dence measures which iteratively improves channel estimation
and makes it more accurate [8].
An outer FEC is usually applied before the modulation.
Turbo-like receivers based on iterative information exchanges
between their components (detection, decoder, channel estima-
tion, synchronisation, . . .) [9] were proved efficient to achieve
near-optimal performance. To that purpose, the authors of [10]
proposed to associate an EM-based detection and estimation
with a SISO decoder within an iterative process.

In this paper, we consider large-scale MIMO FEC-coded
systems. We address the problem of channel estimation and
signal detection. We first describe the turbo finite-alphabet
simplicity-based (FAS) detection scheme introduced in [11] for
a perfect channel knowledge. Then we consider the iterative
channel estimation method defined and analysed in [12] which
combines FAS detection with EM algorithm. Our goal is the
definition of a turbo FAS-based receiver which iteratively and
successively performs large-scale MIMO channel estimation,
data detection and FEC decoding.

Our contributions are: (i) a turbo FAS-based detection
receiver which combines estimation, detection and FEC de-
coding. (ii) two ways of updating the FAS-based EM channel
estimation from FEC decoder output.

This paper is organized as follows. Section II describes the
large-scale MIMO system model. Section III details the turbo
FAS-detection scheme introduced in [11] for perfect channel
knowledge. Section IV deals with the introduction of the FAS-
based EM channel estimation within the turbo receiver. We
propose two ways of exploitation of FEC decoder output to
update the EM channel estimation. Section V is dedicated to



simulation results. Finally, Section VI concludes the paper.
Notations: boldface upper case letters and boldface lower

case letters denote matrices and vectors, respectively. For the
transpose, transpose conjugate and conjugate matrices we use
(·)T ,(·)H and (·)∗, respectively. ⊗ is the Kronecker product.
Ip is the p × p identity matrix and 1p is the all-one size-
p vector. Given a complex-valued vector x, its real-valued
transform is the vector x defined by x =

[
<(x) =(x)

]T
.

Given a complex-valued matrix X , its real-valued transform

is the matrix X =

(
<(X) −=(X)
=(X) <(X)

)
.

II. SYSTEM MODEL

Let us consider a large-scale MIMO system equipped with
N antennas at the transmitter and n antennas at the receiver
(n ≤ N ). Each transmitted frame consists of Tp pilot vectors
and Td data vectors (T = Tp + Td). Under the above
assumptions, the received signal can be modelled as:

Y = HX +Z. (1)

Y = (Yp,Yd) is the received signal matrix. Yp and Yd are the
n×Tp pilot received matrix and the n×Td data received matrix
respectively. X stands for the transmitted signal matrix. This
N×T complex matrix can be decomposed as X = (Xp,Xd).
Xp and Xd are the N × Tp pilot transmitted matrix and the
N × Td data transmitted matrix respectively.

We denote by x the t-th column of X which is the
transmitted vector at time t. Its k-th element xk belongs to
B = {β1, β2, .., βM} such that its real and imaginary parts
take values on F = {α1, α2, .., αp} where p =

√
M . Pilot

symbols are assumed to be known at the BS and to be mutually
orthogonal: xxH = IN for all x with t = 0, . . . , Tp − 1.
Transmitted data symbols are independent and identically
distributed (i.i.d.): E[xxH ] = IN for all x with t = Tp, . . . , T .
Z is the n×T noise matrix. Its components are i.i.d.complex

circularly-symmetric complex Gaussian variables with zero
mean and variance σ2. H is an n×N complex random matrix
which stands for the channel matrix. It can be written as

H = GΓ
1
2 , (2)

where G is an n×N matrix representing small-scale fading
with i.i.d. coefficients and Γ is a diagonal matrix which models
large-scale fading. Its coefficients account for the path loss
and shadow fading. We assume that the the columns of G are
independent from Γ and are i.i.d circularly-symmetric complex
normal vectors. We consider a block fading model: channel
coefficients are constant over a frame of T symbols and change
independently at next coherence block (time division duplex
assumption). The uplink received signal at time t is denoted
by y and is given by

y = Hx+ z, (3)

We first transform the complex-valued system into an equiv-
alent real-valued system, which reads

y = Hx+ z, (4)

where y, x, z and H are the real-valued transforms of y, x,
z and H respectively (cf. notations paragraph). The detection
described hereinafter applies on this model.

III. TURBO DETECTION ASSUMING PERFECT CHANNEL
ESTIMATION

In this section, we consider that the binary stream is FEC
encoded, then randomly interleaved before being converted
into QAM symbols and passed through a serial-to-parallel
converter. We briefly remind the turbo receiver based on the
FAS detection and proposed in [11].

1) FAS detection: Let us describe the first detection it-
eration which corresponds to the FAS algorithm introduced
in [13]. The data vector x, for all t-th column with t =
Tp + 1, . . . , T , is simple as its components belong to the
interval [α1, αp]. It can be decomposed as x = Bαr where
Bα = I2N ⊗ [α1, αp] and r ∈ [0, 1]4N . Based on this de-
composition, we proposed to solve the following optimization
problem [13]:

arg min
r
‖y −HBαr‖2 subject to (5)

B1r = 12N and r ≥ 0,

where B1 = I2N ⊗ 1T2 . The problem (5) can be solved by
the simplex [13] or the interior point methods [14]. In this
paper, we consider interior point methods. These algorithms
start by finding an interior point of the polytope defined by
the constraints and then proceed to the optimal solution by
moving inside the polytope.

The detector provides the FEC decoder with interleaved
log-likelihood ratios which are denoted by Λdecin and whose
definition requires the statistics of the detector output. Let r̂
stand for the solution of (5). The components of x̂ = Bαr̂
follow a censored normal distribution (combination of binary
distributions on the bounds and Gaussian ones inside), which
is given by [13] [11]:

fx̂k
(x) =

1

p

p∑
`=1

fx̂k|xk=α`
(x), (6)

with

(7)

fx̂k|xk=α`
(x) =

(
1

2
erfc

(
α` − α1√

2σx̂

)
δα1(x)

+
1

2
erfc

(
αp − α`√

2σx̂

)
δαp(x)

+
1√

2πσx̂
exp

(
− (x− α`)2

2σ2
x̂

)
1[α1,αp](x)

)
.

and

σ2
x̂ =

2n−2∑
k=0

(
2N

k

)(
1

p

)2N−k (
p− 1

p

)k
2nσ2

2n− k − 1
, (8)

where δα(x) is the Dirac delta function concentrated at α and
1Ω(x) is the indicator function of the subset Ω.
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Fig. 1: Turbo detection scheme

Let us now describe next detection iterations [11]. The
detector is fed with log-likelihood ratios denoted by Λdetin and
computed from the FEC decoder output. The probability vector
Pj defined from Λdetin by

Pj =
[
Pr(x1 = αj |Λdetin ), . . . , P r(x2N = αj |Λdetin )

]T
, (9)

is used to compute and define the Mean Absolute Error (MAE)
as a regularization term in the following optimization problem
[11]:

arg min
B1r=12N ,r≥0.

||y −HBαr||2 + γ

p∑
j=1

P T
j |r − dj |, (10)

with dj = αj × 12N and γ = σ
√

logN
n .

On one hand, the regularization term can be seen as a
penalty, imposed to ensure that the detector output remains
in the neighborhood of the decoder output. On the other hand,
γ enables to regulate the contribution of the FEC information
and thereby to question the FEC decision if necessary.

2) Symbol to Binary Converter: Let m = log2(p) and c
be the length-2mN coded and interleaved binary information
sequence at one channel use. Let also ψ be the binary-to-
symbol conversion defined as:

ψ : [ckm ckm+1 ... c(k+1)m−1] ∈ {0, 1}m 7→ xk ∈ F (11)

and c(j) = ψ−1(αj).
Let x̂detout stand for the detector output. The symbol-to-binary
converter (SBC) computes the log likelihood ratio on the i-th
bit associated to the k-th symbol, denoted by Λdetout and defined
by:

Λdetout(km+ i) = log

(
Pr(ckm+i = 1|y)

Pr(ckm+i = 0|y)

)
(12)

= log

(∑
αj∈Fi,1

fx̂k|xk=αj
(x̂detout,k)Pr(xk = αj |Λdetin ))∑

αj∈Fi,0
fx̂k|xk=αj

(x̂detout,k)Pr(xk = αj |Λdetin ))

)

with Fi,ε = {a ∈ F|c = ψ−1(a), ci = ε}.
Let us mention that an empirical study proved that the expres-
sion of σx̂ given by (8) keeps valid throughout the iterative
process.

IV. CHANNEL ESTIMATION ALGORITHM

A. Overview of EM estimator

The Maximum Likelihood (ML) estimate of H is given by

ĤML = arg max
H

log p(Y |H) (13)

As data symbols are not known, the ML problem cannot be
analytically solved. It is necessary to use iterative algorithms
that converge to the solution of (13). Among them, the EM
algorithm updates the channel estimate based on an old one
in the following manner:

Ĥi+1 = arg max
H

E[p(Xd|Y , Ĥi)](log p(Y ,Xd|H)). (14)

As we can see, the algorithm involves an expectation step and
a maximization one. The maximization step can be simplified
and the updated estimate of the channel matrix can be written
as

Ĥi+1 = (YpX
H
p + Yd E[Xd|Y , Ĥi]

H) (15)

×(XpX
H
p + E[XdX

H
d |Y , Ĥi])

−1.

B. EM channel estimation algorithm and FAS-detection

Contrary to [12] which considered uncoded systems, we
propose to feed the channel estimation with the FEC decoder
output. The proposed semi-blind iterative EM algorithm steps
are described hereinafter.

1) Initialization step: The first iteration only uses pilot se-
quences and relies on a maximum likelihood channel estimate,
which is given by

Ĥ0 = (YpX
H
p )(XpX

H
p )−1. (16)

The corresponding mean square error (MSE) is computed as

E(||H − Ĥ0||22) =
nNσ2

Tp
(17)

Then, the receiver handles the following model:

y = Ĥ0 x+ (H − Ĥ0)x+ z = Ĥ0 x+ η,

where η is the updated additive Gaussian noise vector with
zero mean and covariance matrix (nNTp

+ 1)σ2IN . The vari-
ance of real-valued FAS-detected vector is then calculated as
follows:

σ2
x̂ =

2n−2∑
k=0

(
2N

k

)(
1

p

)2N−k (
p− 1

p

)k 2n(nNTp
+ 1)σ2

2n− k − 1
.

(18)
To update the channel estimation, we propose two ap-

proaches that exploit the probability vectors Pj delivered by
the decoder: the first based on hard-decisions and the second
on soft-decisions.
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Fig. 2: MSE versus SNR with uncoded 4-QAM, n = N = 64,
Tp = 160 and T = 1024.

2) Hard decision-based estimation: Let X̃d be the n× Tp
hard-decision matrix. Let θi,k = Pr

(
xk = βi|Λdetin

)
computed

from Pj . The hard decision on xk is defined by

X̃d,k = βi∗ with i∗ = arg max
1≤i≤M

θi,k. (19)

We then propose to update the channel estimation by

Ĥi =
(
YpX

H
p + YdX̃

H
d

)(
XpX

H
p + X̃dX̃

H
d

)−1

. (20)

3) Soft decision-based estimation: So as to preserve the
information delivered by the FEC decoder, we propose to
use Θ(t) = (θi,k(t))1≤i≤M,1≤k≤N the probabilities matrix at
time t to compute soft-decisions and update the EM channel
estimation as follows:

Ĥi =

YpXH
p +

T∑
t=Tp+1

y(t)βHΘ(t)

 (21)

×

XpX
H
p +

T∑
t=Tp+1

ΘT (t)β βHΘ(t)

−1

,

where β = [β1, . . . , βM ]T is the modulation vector.

V. SIMULATION RESULTS

We first consider uncoded systems to support the efficiency
of the combination of FAS detection with EM estimation
update as compared to the MMSE detection-based one. In
Fig. 2, we consider n = N = 64 and M = 4. The EM
estimation update is done from hard-decisions taken from
detection output. The MSE is plotted after three iterations. The
EM estimation combined with FAS detection outperforms the
one with MMSE detection with a gain which increases as the

0 2 4 6 8 10 12 14
10

−2

10
−1

10
0

10
1

10
2

SNR(dB)

M
S

E

 

 

ML Training

EM-based data-aided estimation

ML Full Data

Fig. 3: MSE versus SNR with coded 4-QAM, n = N = 64,
Tp = 160 and T = 1024
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Fig. 4: BER performance with coded 4-QAM, n = N = 64,
Tp = 160 and T = 1024.

SNR gets higher (gain of about 2dB at MSE = 1 and 3.7dB
at MSE = 0.5).

In the remaining of this section, we consider coded systems
with 4-QAM and convolutional code (CC) whose polynomials
in octal are (13, 15) (code rate equal to 0.5). A frame consists
of 432 short codewords of length equal to 256 coded bits,
Tp = 160, which makes T = 1024.

In Fig. 3, n = N = 64. Our purpose is to evaluate the
channel estimate accuracy achieved by the turbo receiver (soft
decision-based, after six iterations) as compared to the ML
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Fig. 5: BER performance with coded 4-QAM, n = 50, N =
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training-based estimation and to the lower ML bound referred
to as "ML full-data". ML full-data assumes that the whole
frame (data and pilot) is known at the receiver and used
as training sequence. We observe that the proposed scheme
achieves the same MSE as the ML full-data from SNR =
10dB. The proposed semi-blind estimation outperforms the
ML training-based estimation, with a gain of about 9dB at
MSE = 1. These observations support the efficiency of the
proposed estimation.

Then, we compare the two proposed strategies to update the
EM channel estimation (hard-decision based and soft-decision
based) and we study their impact on the turbo receiver error
rate performance. We have also plotted the performance with
perfect channel state information, ML full-data estimation and
ML training-based estimation.

In Fig. 4, n = N = 64. Compared to the perfect CSI
knowledge lower bound, at BER = 10−3, we observe a loss
of 0.75dB for ML-full data, 1.4dB for soft decision-based EM,
1.8dB for hard decision-based EM and 2.5dB for ML-training.
The difference between soft and hard decisions-based versions
increases slowly with the SNR range and reaches 0.5dB at
BER = 10−4. In Fig. 5, we consider the underdetermined
case with N = 64 and n = 50. We get roughly the same losses
compared to the perfect CSI knowledge as in the determined
case. We can thus deduce that the use of detected data to
refine the EM channel estimation is efficient as it enables
to improve the receiver performance by 0.6-1dB depending
on the approach (either hard decision or soft decision-based).
Future work will study the best proportion between pilots and
data to achieve a compromise between spectral efficiency and
transmission quality.

VI. CONCLUSION

In this paper we addressed the problem of semi-blind
channel estimation in large MIMO FEC-coded systems with
finite alphabets assuming limited pilot sequence length. We
proposed a turbo FAS-based detection receiver which com-
bines estimation, detection and FEC decoding and we defined
two ways of updating the FAS-based EM channel estimation
from FEC decoder output. Simulations showed the efficiency
of the proposed scheme which performs close to the ML
full-data lower bound, with a superiority of the one based
on soft decisions. Future work will focus on a compromise
between spectral efficiency and target error rate performance
as a function of the system dimensions and the ratio between
pilots and data.
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