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INTRODUCTION

The last few decades has seen a tremendous increase in research on sampled-data systems as well as their applications [START_REF] Åström | Computer-Controlled Systems: Theory and Design[END_REF]; [START_REF] Chen | Optimal Sampled-Data Control Systems[END_REF]; [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF]]. The stability analysis of such systems is an important research track that has been explored over the years and an overview of the different approaches that have been proposed can be found in [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]]. The Time-delay approach, embeds the sampling phenomenon into a time-delay problem and generally consists of Lyapunov-Krasovskii Functional (LKF) based stability criteria [START_REF] Mikheev | Asymptotic analysis of digital control systems[END_REF]; [START_REF] Fridman | A refined input delay approach to sampled-data control[END_REF]; van de Wouw et al. (2010); [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF]]. Since sampleddata systems exhibit both continuous and discrete dynamics, the second approach, namely the Hybrid systems approach was developed [START_REF] Naghshtabrizi | Exponential stability of impulsive systems with application to uncertain sampled-data systems[END_REF]; [START_REF] Nesić | Input-to-state stability of networked control systems[END_REF]]. In the Discrete-time approach, stability criteria are obtained using system integration over sampling intervals and by convex embedding of the state transition matrix between sampling instants [START_REF] Fujioka | Stability analysis of systems with aperiodic sample-and-hold devices[END_REF]; [START_REF] Cloosterman | Controller synthesis for networked control systems[END_REF][START_REF] Van De Wouw | Tracking control for sampleddata systems with uncertain timevarying sampling intervals and delays[END_REF]]. The third, Input-output stability approach treats the error induced by sampling as a perturbation to the continuoustime control system, which aids in employing classical This work was supported by project UCoCoS, funded by the European Union's EU Framework Programme for Research and Innovation, Horizon H2020, Grant Agreement No: 675080. The project was also funded by ANR Project ROCC-SYS (agreement ANR-14-CE27-0008).

robust control tools to analyse the stability of the system [START_REF] Mirkin | Some remarks on the use of timevarying delay to model sample-and-hold circuits[END_REF]; [START_REF] Fujioka | Stability analysis of systems with aperiodic sample-and-hold devices[END_REF]; [START_REF] Omran | On the stability of input-affine nonlinear systems with sampled-data control[END_REF]]. The approach draws similarities with the input-output stability analysis of time-delay systems as provided in [START_REF] Fridman | Input-output approach to stability and l2-gain analysis of systems with time-varying delays[END_REF]; [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF]; [START_REF] Kao | Simple stability criteria for systems with time-varying delays[END_REF]] for the case of continuous time-varying delay. In this article, we focus on the input-output approach for stability analysis of aperiodic sampled-data systems subject to time-delay. A primary advantage of this approach is that it is intuitively simple to develop. The problem trickles down to the classical robust control framework that could possibly take into account various perturbations and non-linearities. However, several problems remain to be solved in the input-output framework. For example, the existing results provide only asymptotic stability criteria for sample-data systems. However, in numerous practical scenarios, it is desirable to at least have a measure of the system decay-rate so as to provide a basic performance. Furthermore, while the stability analysis of LTI systems in the presence of delay and sampling has been studied separately using the input-output approach, a result for sampled-data systems with time delay is yet to be provided. The extension towards this direction is challenging since directly embedding sampling as an additional delay leads to a discontinuous delay and the existing approaches in the input-output framework do not cover this scenario. In this paper, we close the aforementioned gap for Linear Time Invariant (LTI) systems. The main contribution of this article is to provide an exponential stability criterion for systems with aperiodic sampling and time-delay. We provide a detailed analysis of sampling and delay, by taking into account the specific discontinuities in delay. The provided result will lay the foundation for a possible extension to the stability analysis of Non-linear sampleddata systems with delay.

PROBLEM STATEMENT

We consider the following LTI system:

ẋ(t) = Ax(t) + Bu(t), ∀t ≥ 0, x(0) = x 0 , (1) 
where x(t) ∈ R n , u(t) ∈ R m , and A and B are matrices of appropriate dimensions. The time instant t s 0 specifies the first sampling instant, and belongs to the sampling sequence {t s k } k∈N defined by

t s k+1 -t s k = h k , ∀k ∈ N.
(2) The possibly time-varying sequence of sampling intervals {h k } k∈N satisfying h k ∈ [h, h], with h > 0, considers imperfections in sampling caused by jitter, data packet dropouts, etc. The actuation timing sequence {t a k } k∈N , implying the sequence of time-instants at which the control input u(t) based on x(t s k ) will be implemented at the level of the actuator, is given by

t a k = t s k + τ k , t a k ≤ t a k+1 , ∀k ∈ N (3) where τ k ∈ [τ , τ ]
represents the time-varying delay between sampling and actuations instants. Without loss of generality, we consider that the first actuation instance occurs at time t a 0 = τ + h, while the first sampling instant occurs at t s 0 = t a 0 -τ 0 . Based on the sequences ( 2) and (3), we have the control input u(t) in (1) satisfying the state-feedback and zero-order hold strategies given by

u(t) = 0, ∀t ∈ [0, t a 0 ), Kx(t s k ), ∀t ∈ [t a k , t a k+1 ), k ∈ N, (4) 
where K ∈ R n×n is the controller gain. The objective of this paper is to analyse the stability of the system defined by (1), ( 2), ( 3) and (4) using input-output stability analysis approach.

MAIN RESULTS

System Reformulation

In this section, we reformulate the sampled-data system model to include the effects of sampling and delay as perturbations to the system defined by ( 1)-( 4). We have,

for all t ∈ [t a k , t a k+1 ), k ∈ N, ẋ(t) = Ax(t) + Bu(t), = Ax(t) + BKx(t) -BKx(t) + BKx(t s k ), = A cl x(t) + B cl e(t), (5) 
where A cl = A + BK, B cl = BK, and e(t) = x(t s k ) -x(t), ∀t ∈ [t a k , t a k+1 ), k ∈ N (6) represents the error induced by sampling and delay. By choosing an auxiliary output y(t) = ẋ(t), we can reformulate system (1)-(4) as follows:

ẋ(t) = A cl x(t) + B cl e(t), ∀t ≥ t a 0 y(t) = ẋ(t) = A cl x(t) + B cl e(t), e(t) = x(t s k ) -x(t) = - t t s k y(s)ds, ∀t ∈ [t a k , t a k+1 ), k ∈ N. ( 7 
)
For t ∈ [0, t a 0 ), the system ( 1) is in open-loop and therefore can be remodelled as ẋ(t) = Ax(t), y(t) = ẋ(t) = Ax(t), e(t) = 0.

(8)

Stability criterion

By exploiting the properties of the error e(t) and using arguments inspired by the dissipativity theory, we derive the following result. Theorem 1. The system defined by ( 1)-( 4) or ( 7) and ( 8) is exponentially stable with a decay rate α/2 if there exist symmetric positive definite matrices P , R 1 , and R 2 such that the following linear matrix inequalities are feasible,

Q + C T cl (γ 2 1 R 1 + γ 2 2 R 2 )C cl P B cl + C T cl (γ 2 1 R 1 + γ 2 2 R 2 )D cl D T cl (γ 2 1 R 1 + γ 2 2 R 2 )D cl -(R 1 + R 2 ) < 0, (9) 
and

Q + γ 2 2 C T cl R 2 C cl P B cl + γ 2 2 C T cl R 2 D cl γ 2 2 D T cl R 2 D cl -R 2 < 0, (10) 
where

Q = A T cl P + P A cl + αP, (11) and γ 2 1 = ( h + τ ) 2 , γ 2 2 = ( h + τ ) 2 e α( h+τ ) . (12) 
Proof: We provide as follows, a sketch of the proof. The result is inspired by the frequency domain criteria provided by [START_REF] Fujioka | Stability analysis of systems with aperiodic sample-and-hold devices[END_REF]] for sampled-data systems without delay and further extended in [START_REF] Omran | Stability analysis of some classes of input-affine nonlinear systems with aperiodic sampled-data control[END_REF]]. The proof is based on the existence of a storage function V : R n → R + , V (x) = x T P x, and a supply function S t, y(t), e(t) : R + × R n × R n → R, such that the exponential dissipativity inequality V (x(t))+αV (x(t)) ≤ e -ατ (t) S t, y(t), e(t) , ∀t ≥ t a 0 , (13) with τ (t) = t -t a 0 , is satisfied. For the supply function given by S θ, y(θ), e(θ) = e T (θ) R 1 + e ατ (θ) R 2 e(θ)

-y T (θ) γ 2 1 R 1 + e ατ (θ) γ 2 2 R 2 y(θ), (14) 
with

R 1 = R T 1 > 0, R 2 = R T 2 > 0,
and γ 1 , γ 2 given by ( 12), it can be shown that the inequalities

t 0 S θ, y(θ), e(θ) dθ ≤ 0, ∀t ≥ 0, ( 15 
) - t a 0 0 S θ, y(θ), e(θ) dθ ≤ ηV (x(t a 0 )), (16) 
hold with

η = h + τ eigmin(P ) max θ∈[0,t a 0 ]
eigmax (e Aτ (θ) θ) ) .

) T A T (γ 2 1 R 1 + e ατ (θ) γ 2 2 R 2 )A(e Aτ (
(17) Using simple manipulations, ( 13), ( 15) and ( 16) imply V (x(t)) ≤ Ce -αt V (x(t a 0 )), ∀t ≥ t a 0 , (18) for some C > 0. To conclude, the set of LMI conditions ( 9) and ( 10) are sufficient for the dissipation inequality (13) to 

Numerical example

Consider the system (1)-( 4) characterized by the parameters [START_REF] Zhang | Stability Analysis of Networked Control Systems[END_REF]]

A = 1 3 2 1 , B = 1 0.6 , K = -[1 6] . (19) 
By virtue of Theorem 1, we can compute the maximum allowable values of h + τ with respect to α. The trade-off region thus obtained is shown in Figure 1. For example, considering α = 0.001, we obtain the stability domain shown in Figure 2. Choosing the following parameters in accordance with the stability region, h = 0.1,

τ = 0.06, (20) 
along with an initial condition x 0 = [0.8, 0.4] T , we can see from Figure 3 that the system is indeed exponentially stable. x 1 (t)

x 2 (t) 

CONCLUSION

In this paper we have considered the stability analysis of aperiodic sampled-data systems subjected to time-varying delay. A novel stability criterion based on the dissipativity theory has been provided. The criterion is obtained by designing a suitable supply function that satisfies a general dissipativity condition for stability. The effectiveness of the obtained result has been corroborated through simulation results.

Fig. 1 .Fig. 2 .

 12 Fig. 1. Trade-off between α and h + τ for system (19), satisfying Theorem 1
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 3 Fig. 3. Evolution of system (19) with parameters (20).