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Abstract: This extended abstract presents a dissipativity-based stability analysis of Linear
Time Invariant (LTI) systems subjected to aperiodic sampling and time-varying delay. We
provide a novel stability criterion which aids in making the trade-offs between maximum
allowable sampling interval and delays while guaranteeing stability. Simulation results have
been provided to demonstrate the effectiveness of the proposed criterion.
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1. INTRODUCTION

The last few decades has seen a tremendous increase in
research on sampled-data systems as well as their applica-
tions [Åström and Wittenmark (1996); Chen and Francis
(1995); Hespanha et al. (2007)]. The stability analysis of
such systems is an important research track that has been
explored over the years and an overview of the different
approaches that have been proposed can be found in [Hetel
et al. (2017)]. The Time-delay approach, embeds the sam-
pling phenomenon into a time-delay problem and generally
consists of Lyapunov-Krasovskii Functional (LKF) based
stability criteria [Mikheev et al. (1988); Fridman (2010);
van de Wouw et al. (2010); Seuret (2012)]. Since sampled-
data systems exhibit both continuous and discrete dy-
namics, the second approach, namely the Hybrid systems
approach was developed [Naghshtabrizi et al. (2008); Nes̃ić
and Teel (2004)]. In the Discrete-time approach, stability
criteria are obtained using system integration over sam-
pling intervals and by convex embedding of the state tran-
sition matrix between sampling instants [Fujioka (2009);
Cloosterman et al. (2010); van de Wouw et al. (2010)].
The third, Input-output stability approach treats the error
induced by sampling as a perturbation to the continuous-
time control system, which aids in employing classical
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robust control tools to analyse the stability of the system
[Mirkin (2007); Fujioka (2009); Omran et al. (2013)]. The
approach draws similarities with the input-output stability
analysis of time-delay systems as provided in [Fridman and
Shaked (2006); Kao and Rantzer (2007); Kao and Lincoln
(2004)] for the case of continuous time-varying delay.
In this article, we focus on the input-output approach for
stability analysis of aperiodic sampled-data systems sub-
ject to time-delay. A primary advantage of this approach
is that it is intuitively simple to develop. The problem
trickles down to the classical robust control framework
that could possibly take into account various perturbations
and non-linearities. However, several problems remain to
be solved in the input-output framework. For example, the
existing results provide only asymptotic stability criteria
for sample-data systems. However, in numerous practical
scenarios, it is desirable to at least have a measure of the
system decay-rate so as to provide a basic performance.
Furthermore, while the stability analysis of LTI systems
in the presence of delay and sampling has been studied
separately using the input-output approach, a result for
sampled-data systems with time delay is yet to be pro-
vided. The extension towards this direction is challenging
since directly embedding sampling as an additional delay
leads to a discontinuous delay and the existing approaches
in the input-output framework do not cover this scenario.
In this paper, we close the aforementioned gap for Linear
Time Invariant (LTI) systems. The main contribution of
this article is to provide an exponential stability criterion
for systems with aperiodic sampling and time-delay. We



provide a detailed analysis of sampling and delay, by
taking into account the specific discontinuities in delay.
The provided result will lay the foundation for a possible
extension to the stability analysis of Non-linear sampled-
data systems with delay.

2. PROBLEM STATEMENT

We consider the following LTI system:

ẋ(t) = Ax(t) +Bu(t),∀t ≥ 0,

x(0) = x0,
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, and A and B are matrices
of appropriate dimensions. The time instant ts0 specifies
the first sampling instant, and belongs to the sampling
sequence {tsk}k∈N defined by

tsk+1 − tsk = hk,∀k ∈ N. (2)

The possibly time-varying sequence of sampling intervals
{hk}k∈N satisfying hk ∈ [h, h̄], with h > 0, considers
imperfections in sampling caused by jitter, data packet
dropouts, etc. The actuation timing sequence {tak}k∈N,
implying the sequence of time-instants at which the control
input u(t) based on x(tsk) will be implemented at the level
of the actuator, is given by

tak = tsk + τk, t
a
k ≤ tak+1,∀k ∈ N (3)

where τk ∈ [τ , τ̄ ] represents the time-varying delay be-
tween sampling and actuations instants. Without loss of
generality, we consider that the first actuation instance
occurs at time ta0 = τ̄ + h̄, while the first sampling instant
occurs at ts0 = ta0 − τ0. Based on the sequences (2) and
(3), we have the control input u(t) in (1) satisfying the
state-feedback and zero-order hold strategies given by

u(t) =

{
0, ∀t ∈ [0, ta0),

Kx(tsk), ∀t ∈ [tak, t
a
k+1), k ∈ N,

(4)

where K ∈ Rn×n is the controller gain. The objective
of this paper is to analyse the stability of the system
defined by (1), (2), (3) and (4) using input-output stability
analysis approach.

3. MAIN RESULTS

3.1 System Reformulation

In this section, we reformulate the sampled-data system
model to include the effects of sampling and delay as
perturbations to the system defined by (1)-(4). We have,
for all t ∈ [tak, t

a
k+1), k ∈ N,

ẋ(t) = Ax(t) +Bu(t),

= Ax(t) +BKx(t)−BKx(t) +BKx(tsk),

= Aclx(t) +Bcle(t),

(5)

where Acl = A+BK, Bcl = BK, and

e(t) = x(tsk)− x(t),∀t ∈ [tak, t
a
k+1), k ∈ N (6)

represents the error induced by sampling and delay. By
choosing an auxiliary output y(t) = ẋ(t), we can reformu-
late system (1)-(4) as follows:

ẋ(t) = Aclx(t) +Bcle(t),∀t ≥ ta0
y(t) = ẋ(t) = Aclx(t) +Bcle(t),

e(t) = x(tsk)− x(t) = −
∫ t

ts
k

y(s)ds,∀t ∈ [tak, t
a
k+1), k ∈ N.

(7)

For t ∈ [0, ta0), the system (1) is in open-loop and therefore
can be remodelled as

ẋ(t) = Ax(t),

y(t) = ẋ(t) = Ax(t),

e(t) = 0.

(8)

3.2 Stability criterion

By exploiting the properties of the error e(t) and using
arguments inspired by the dissipativity theory, we derive
the following result.

Theorem 1. The system defined by (1)-(4) or (7) and (8)
is exponentially stable with a decay rate α/2 if there exist
symmetric positive definite matrices P , R1, and R2 such
that the following linear matrix inequalities are feasible,[

Q+ CTcl(γ
2
1R1 + γ2

2R2)Ccl
?

PBcl + CTcl(γ
2
1R1 + γ2

2R2)Dcl

DT
cl(γ

2
1R1 + γ2

2R2)Dcl − (R1 +R2)

]
< 0,

(9)

and [
Q+ γ2

2C
T
clR2Ccl PBcl + γ2

2C
T
clR2Dcl

? γ2
2D

T
clR2Dcl −R2

]
< 0, (10)

where
Q = ATclP + PAcl + αP, (11)

and
γ2

1 = (h̄+ τ̄)2,

γ2
2 = (h̄+ τ̄)2eα(h̄+τ̄).

(12)

Proof: We provide as follows, a sketch of the proof. The
result is inspired by the frequency domain criteria provided
by [Fujioka (2009)] for sampled-data systems without
delay and further extended in [Omran et al. (2016)]. The
proof is based on the existence of a storage function
V : Rn → R+, V (x) = xTPx, and a supply function
S
(
t, y(t), e(t)

)
: R+ × Rn × Rn → R, such that the

exponential dissipativity inequality

V̇ (x(t))+αV (x(t)) ≤ e−ατ(t)S
(
t, y(t), e(t)

)
,∀t ≥ ta0 , (13)

with τ(t) = t − ta0 , is satisfied. For the supply function
given by

S
(
θ, y(θ), e(θ)

)
= eT (θ)

(
R1 + eατ(θ)R2

)
e(θ)

− yT (θ)
(
γ2

1R1 + eατ(θ)γ2
2R2

)
y(θ),

(14)

with R1 = RT1 > 0, R2 = RT2 > 0, and γ1, γ2 given by
(12), it can be shown that the inequalities∫ t

0

S
(
θ, y(θ), e(θ)

)
dθ ≤ 0,∀t ≥ 0, (15)

−
∫ ta0

0

S
(
θ, y(θ), e(θ)

)
dθ ≤ ηV (x(ta0)), (16)

hold with

η =
h̄+ τ̄

eigmin(P )
max
θ∈[0,ta0 ]

{
eigmax

[
(eAτ(θ))TAT (γ2

1R1

+ eατ(θ)γ2
2R2)A(eAτ(θ))

]}
.

(17)
Using simple manipulations, (13), (15) and (16) imply

V (x(t)) ≤ Ce−αtV (x(ta0)),∀t ≥ ta0 , (18)

for some C > 0. To conclude, the set of LMI conditions (9)
and (10) are sufficient for the dissipation inequality (13) to
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Fig. 1. Trade-off between α and h̄ + τ̄ for system (19),
satisfying Theorem 1

h̄

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

τ̄

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 2. Feasible values of h̄ and τ̄ for system (19) with
α = 0.001, satisfying Theorem 1

hold, and are obtained by standard matrix manipulations
and convexity arguments.

3.3 Numerical example

Consider the system (1)-(4) characterized by the parame-
ters [Zhang (2001)]

A =

[
1 3
2 1

]
, B =

[
1

0.6

]
,K = − [1 6] . (19)

By virtue of Theorem 1, we can compute the maximum
allowable values of h̄+ τ̄ with respect to α. The trade-off
region thus obtained is shown in Figure 1. For example,
considering α = 0.001, we obtain the stability domain
shown in Figure 2. Choosing the following parameters in
accordance with the stability region,

h̄ = 0.1,

τ̄ = 0.06,
(20)

along with an initial condition x0 = [0.8, 0.4]T , we can
see from Figure 3 that the system is indeed exponentially
stable.
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Fig. 3. Evolution of system (19) with parameters (20).

4. CONCLUSION

In this paper we have considered the stability analysis of
aperiodic sampled-data systems subjected to time-varying
delay. A novel stability criterion based on the dissipativity
theory has been provided. The criterion is obtained by
designing a suitable supply function that satisfies a general
dissipativity condition for stability. The effectiveness of the
obtained result has been corroborated through simulation
results.
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