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Interchange destabilization of collisionless tearing modes by temperature gradient

Using a uid theory, the stability of collisionless tearing modes in plasmas is analyzed in the presence of an inhomogeneous magnetic eld, electron temperature and density gradients. It is shown that small scale modes, characterized by a negative stability parameter (∆ < 0), can be driven unstable due to a combination of the magnetic eld and electron temperature gradients. The destabilization mechanism is identied as of the interchange type similar to that for toroidal Electron Temperature Gradient modes.

Tearing modes [START_REF] Drake | Kinetic theory of tearing instabilities[END_REF] are instabilities that can occur in fusion plasmas in the presence of non-ideal eects (such as resistivity or inertia). They are responsible for change of the topology of magnetic elds [START_REF] Fl Waelbroeck | Theory and observations of magnetic islands[END_REF] and lead to the formation of magnetic islands through magnetic reconnection processes [START_REF] Biskamp | Magnetic reconnection via current sheets[END_REF] . Particles can then follow the perturbed eld lines inside the magnetic islands connecting the inner and outer regions. This increases the radial transport from the core and causes a degradation in connement [START_REF] Fl Waelbroeck | Theory and observations of magnetic islands[END_REF] and can possibly lead to disruption [START_REF] Sauter | Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime[END_REF] . The tearing mode instability has been observed in a wide variety of astrophysical and laboratory plasmas [START_REF] Ellen | Magnetic reconnection in astrophysical and laboratory plasmas[END_REF] and is thought to be responsible for the reconnection processes in the Earth magnetotail [START_REF] Galeev | Explosive tearing mode reconnection in the magnetospheric tail[END_REF] . It has been extensively studied analytically within the framework of magnetohydrodynamics (MHD) since the seminal work by Furth et al. [START_REF] Harold P Furth | Finiteresistivity instabilities of a sheet pinch[END_REF] The tearing mode is linearly excited by the radial gradient of the equilibrium parallel current. The radial domain is separated into an ideal region fully described by ideal MHD equations and a narrow resonant region inside which nonideal eects take place and the perturbed parallel current in highly localised. The tearing mode stability is commonly parametrized by ∆ , a parameter calculated from the solution of the tearing mode equations in the ideal outer region. It is dened as the jump in the logarithmic derivative of the parallel vector potential A across the non-ideal region, inside which A is assumed constant. This assumption is known as the constant-ψ approximation [START_REF] Harold P Furth | Finiteresistivity instabilities of a sheet pinch[END_REF] , where ψ is the parallel scalar potential of the magnetic eld. Generally, large scale modes with low poloidal number m, may have ∆ > 0. They are driven by the free energy in the outer region. The stability of such modes has been calculated in the collisionless limit in the framework of uid theory 911 as well as kinetic theory 1214 . On the other hand, small scale tearing modes with high m are not much aected by the large scale current density gradient in the outer region. Such modes are characterized by a negative ∆ ≈ -2k y = -2m/r < 0 where k y is the perpendicular wave vector and r the minor radius. Therefore the high m modes with ∆ > 0 would be stable. It was shown previously that high m tearing modes can be driven linearly unstable 1517 by the thermal force eects related to collisions [START_REF] Connor | Theory of isolated, small-scale magnetic islands in a high-temperature tokamak plasma[END_REF][START_REF] Zocco | Kinetic microtearing modes and reconnecting modes in strongly magnetised slab plasmas[END_REF] . Such modes were called microtearing modes. It is important to note that the thermal force destabilization (due to the energy dependence of the Coulomb collision frequency) is related to the current contribution in the inner tearing mode layer but not to the outer ideal region (parameterized by the value of ∆ ).

Current and future tokamaks are characterized by weakly collisional scenarios which makes it important to understand the stability of tearing modes in such a limit. Recently a large body of gyrokinetic simulations have indicated the presence of an additional, collisionless, destabilization mechanism for small scale micro-tearing modes, likely related to magnetic gradients 2022 . Alternative or additional mechanisms may be related to nonlinear excitation of magnetic islands via non-linear coupling from pressure gradient driven microturbulence [START_REF] Muraglia | Nonlinear dynamics of magnetic islands imbedded in smallscale turbulence[END_REF] or electromagnetic magnetic utter uctuations 2428 .

In this paper we investigate the linear collisionless destabilization mechanism due to magnetic eld inhomogeneity and plasma gradients with a uid theory.

Near the tokamak rational surfaces one can introduce a slab-like geometry with a Cartesian coordinates system (x, ŷ, ẑ). The magnetic eld can then be represented in the form

B = B 0 (x) z + ∇ψ × z (1) ψ = 1 2 B 0 x 2 L s + A (x, y, t) (2) 
where B 0 is the equilibrium magnetic eld along the zdirection, A is the z-component of the perturbed magnetic vector potential, ψ is the auxiliary vector potential introduced to describe the magnetic shear eect for the helical perturbations, k y y = m (θ -ζ/q) , L s = qR/s, q is the safety factor, s = (r/q)dq/dr is the magnetic shear, R is the tokamak major radius and x = r -r s the distance to the resonant surface position r s . With Eq. 2, the total parallel gradient operator along the magnetic eld ∇ = (B 0 + B) • ∇/B can be split into the linear (shear magnetic eld) and nonlinear parts as follows:

∇ 0 = B 0 • ∇ B 0 = ik (x) = i k y x L s (3) 
∇ = B • ∇ B 0 = i k y A B 0 ∂ ∂x (4) 
The electron dynamics is described by standard uid equations in the absence of collisions and neglecting the electrostatic potential. Similarly to Ref. 13, we neglect the contribution to the parallel current due to the electrostatic potential which is valid for small scale magnetic islands. The electron continuity equation takes the form

∂n e ∂t + ∇ ⊥ • (n e v ⊥e ) + ∇ (n e V e ) = 0 (5) 
The parallel electron velocity V e is found from the electron parallel momentum balance equation, given by

m e n e ∂V e ∂t + b • (V • ∇V ) = en e E -∇ p e (6) 
where m e is the electron mass, n e the electron density, b = B/B 0 is the unit vector in the equilibrium magnetic eld direction, E = -∂A /c∂t is the parallel electric eld and p e is the electron pressure. In the low frequency regime, i.e. ω ω ce where ω ce = m e c/eB > 0 is the electron cyclotron frequency and neglecting the electrostatic potential, the electron perpendicular velocity is the diamagnetic drift. To the lowest order, it is given by

v e = - c en 0e b × ∇p e B 0 (7) 
The second term in the continuity equation ( 5) can be written

∇ ⊥ (n e v e ) = 1 T 0e v De • ∇p e (8) 
where v De is the electron magnetic drift velocity given by

v De = - 2cT 0e eB 0 b × ∇ ln B 0 (9) 
Linearizing Eqs. ( 5) and (6) gives [START_REF] Ai Smolyakov | On the parallel momentum balance in low pressure plasmas with an inhomogeneous magnetic eld[END_REF] ∂ ñe ∂t

+n 0e v De • ∇ p e p 0e + ∇ 0 (n 0e V ) = 0 ( 10 
)
m e n 0e ∂ V e ∂t - 4cp 0e n 0e eB 0 b × ∇ ln B • ∇ V e (11) 
= -en 0e E -∇ 0 p e -∇ p 0e

where p 0e = n 0e T 0e and p e = n e T 0e + n 0e T e are respectively the equilibrium and perturbed pressure. Unless stated otherwise, all quantities in this text refer to electrons. The subscript e to designate electrons will be dropped in the following.

In the simplest case of neglecting magnetic eld gradient and temperature perturbations these equations read

-ω n + n 0 k V = 0, (12) 
m e n 0 ω V = en 0 c ω A + k T n, (13) 
giving the following parallel electron response in terms of the perturbed magnetic potential

V = - e cm e ω 2 k 2 v 2 th -ω 2 A . (14) 
The limit in Eq.( 14) reproduces the collisionless tearing mode instability studied by the kinetic theory in Refs. 12 and 13 and in the uid theory in Refs. 9, 10, and 30. The reconnection here is driven by the parallel electron current due to inertia balanced by the inductive electric eld and electron pressure perturbation. The parallel electron current is accompanied by electron density perturbation. When the gradient of the magnetic eld is included, there is an additional contribution to the parallel current which comes from the compressibility of the perpendicular electron diamagnetic current in equation (10).

The pressure perturbation (the second term in Eq. ( 10)) needs a closure for the temperature evolution. In general, one needs a closure which is uniformly valid in the whole range of the k v T e /ω parameter, which changes from zero at the rational surface to some nite value at the inertial layer width. Similarly to earlier work 3133 we adopt here a constant temperature model along the perturbed magnetic surface giving

∇ 0 T + ∇ T 0 = 0 (15)
This closure is appropriate for small scale magnetic islands as in Ref. 16 for which the condition ω k (w)v T e is satised, where w is the magnetic island width or the inertial layer width in the linear case determined by the electron skin depth parameter [START_REF] Porcelli | Collisionless m= 1 tearing mode[END_REF][START_REF] Fitzpatrick | Magnetic reconnection in weakly collisional highly magnetized electron-ion plasmas[END_REF] . In a more accurate model, the closure of the Hammett-Perkins type [START_REF] Hammett | Fluid moment models for Landau damping with application to the ion-temperature-gradient instability[END_REF] valid for ω ≈ k v T e , could be used to account for the Landau damping eects. The latter however is outside of the scope of our work here. We note also that the condition of the electron temperature attening across the magnetic islands seems well satised for small scale islands as shown in gyrokinetic simulations [START_REF] Bergmann | The bootstrap current in small rotating magnetic islands[END_REF] .

The electron continuity and parallel momentum balance, Eqs. ( 10) and ( 11) together with the closure on the temperature (15) read

-(ω -ω D ) n + ω D ω T en 0 ck A + n 0 k V = 0 ( 16 
)
m e n 0 (ω -2ω D ) V = en 0 c (ω -ω n ) A + k T 0 n (17) k T + k y B 0 A ∂T 0 ∂x = 0 (18) 
where plasma and magnetic eld gradients enter the system of equations through ω n,T and ω D , respectively given by

ω T,n = - ck y eB 0 T 0 ∂ ln T 0 , n 0 ∂x = -k y ρ e v th L T,n (19) 
ω D = - ck y eB 0 T 0 ∂ ln B 0 ∂x = -2k y ρ e v th L B (20) 
Here ρ e = mcv th /eB 0 is the thermal electron Larmor radius,

v th =
T 0 /m e is the electron thermal velocity, L B,n,T is the gradient length scale of the magnetic eld, density and temperature respectively, dened by L G = -(1/G)∂G/∂x, where G = (n, T, B).

The above system of uid equations is closed with Ampère's law. Projected onto the direction parallel to the equilibrium magnetic eld, it takes the form

-∇ 2 ⊥ A = 4π c J . (21) 
Here J = -en 0 V is the perturbed electron parallel current which contains the destabilizing eect of the collisionless tearing mode. The perturbed electron parallel velocity is calculated by coupling the system of Eqs. ( 16), ( 17) and ( 18)

V = - e cm e (ω -ω n )(ω -ω D ) + ω D ω * T k 2 v 2 th -(ω -2ω D )(ω -ω D ) A (22) 
For small scale islands ∂/∂x k y , Eq. ( 21) is written

∂ 2 A ∂x 2 = - ω 2 pe c 2 (ω -ω n )(ω -ω D ) + ω D ω * T k 2 v 2 th -(ω -ω D ) (ω -2ω D ) A ( 23 
)
where ω pe = 4πe 2 n 0 /m e is the electron plasma frequency. The tearing mode dispersion relation is obtained by integrating Ampère's law across the resonant layer. We employ the constant-ψ approximation which consists in assuming that in the non-ideal region the perturbed parallel vector potential does not vary signicantly. The collisionless tearing mode dispersion relation then reads

∆ + ω 2 pe c 2 ∞ -∞ dx (ω -ω n )(ω -ω D ) + ω D ω T k 2 v 2 th x 2 -(ω -ω D ) (ω -2ω D ) = 0 (24) 
Here k = k y s/qR and ∆ is the tearing mode stability parameter 2 that matches the solutions in the ideal outer region and non-ideal inner region. It is dened as the jump in the logarithmic derivative of A , solution in the outer region, across the resonant layer, i.e.

∆ = lim ε→0 ∂ ln A ∂x rs+ε rs-ε (25) 
The x-integral in Eq. ( 24) is converging for complex ω. Using the properties of the complex logarithm [START_REF] Sarason | Complex Function Theory (2/e)[END_REF] one can obtain the expression

∞ -∞ dx k 2 x 2 v 2 th -Ω 2 =    iπ k v th Ω for (Ω) > 0 -iπ k v th Ω for (Ω) < 0 (26) 
where we have introduced the notation

Ω 2 ≡ (ω -ω D ) (ω -2ω D ).
The expression (26) can be better understood by integrating in the complex plane and using the residue theorem. For this purpose, we extend the integration domain over a given real interval [x 1 , x 2 ] to the complex plane

x2 x1 dx x 2 -Ω 2 + Γ dz z 2 -Ω 2 = C dz z 2 -Ω 2 (27)
where we have dened Γ as a half-circle that lies in the upper (resp. lower) complex half-plane for (Ω) > 0 (resp. < 0) and C is the closed contour C = [x 1 , x 2 ] ∪ Γ. The integral over the closed contour in both the upper and lower halves of the complex plane can be calculated by the residue theorem. Therefore, we decompose the integrand as follows

C dz z 2 -Ω 2 = 1 2 1 Ω C dz 1 z -Ω - 1 z + Ω (28)
Depending on the sign of the imaginary part of Ω the rst or the second term on the right hand side denes the value of the integral,

1 2 1 Ω C dz 1 z -Ω - 1 z + Ω = 1 2Ω
2πi, for (Ω) > 0 (29)

1 2 1 Ω C dz 1 z -Ω - 1 z + Ω = - 1 2Ω
2πi, for for (Ω) < 0.

(30) Finally, taking the limit x 1 → -∞ and x 2 → ∞ and noticing that within this limit the integral over Γ vanishes, we obtain the expression (26). The dispersion relation in Eq. ( 24) is therefore expressed as

∆ ± ω 2 pe c 2 iπ k v T e (ω -ω * n ) (ω -ω D ) + ω D ω * T (ω -ω D ) (ω -2ω D ) = 0. (31) 
The ± sign has to be chosen according to the condition for (Ω) given in Eq. ( 26). When curvature eects are neglected, i.e. ω D = 0, an unstable solution is found only for

∆ > 0 ∆ = ω 2 pe c 2 π k v th γ ω r = ω n (32) 
Such a solution has been found for the collisionless tearing mode using a uid model in Refs. 10, 9, and 30. The dispersion relation in Eq. ( 32) obtained from uid theory is not fully identical to the kinetic result [START_REF] Laval | Electromagnetic instabilities in collisionless plasma[END_REF][START_REF] Drake | Kinetic theory of tearing instabilities[END_REF] which is

∆ = ω 2 pe c 2 2 √ π k v th γ ω r = ω n (1 + η e /2) (33) 
where η e = L n /L T . The kinetic 2 √ π and uid π coecients are quite close. The dierence in the real part of the frequency, ω r = ω n (1 + η e /2) in kinetic theory and ω = ω n in uid theory, is due to our approximation in Eq. ( 15) on the closure which is not uniformly valid for all k (x).

It is interesting to note that the solution in Eq. ( 31) for ω D = 0 is in fact

∆ = ω 2 pe c 2 π k v th |γ| . (34) 
Thus it means that there are two solutions; with positive and negative gamma, for ∆ > 0, and no solutions exist for ∆ < 0.

In the general case with ω D = 0 and ω * T = 0, there are two solutions which may have the additional destabilization mechanism due to the magnetic drift gradient and the temperature gradient, provided ω T ω D > 0. The modes with ∆ > 0 can be driven by the free energy from the outer region. However, the high m modes have negative ∆ , but they can be driven by temperature and magnetic eld gradient effects. This destabilizing mechanism can be easily illustrated for the marginal stability case ∆ = 0. In this case the solution of Eq. ( 31) is found as

ω = ω * n + ω D 2 ± (ω * n -ω D ) 2 4 -ω * T ω D , (35) 
which has the instability for suciently large values of ω T ω D > 0. Thus, the additional destabilization mechanism can be identied of the toroidal ETG (interchange) type [START_REF] Zielinski | Electromagnetic electron temperature gradient driven instability in toroidal plasmas[END_REF] rather than the tearing type due to ∆ > 0. Furthermore, when ∆ is negative and small, the approximate solution of Eq. ( 31) has the same tendency as Eq. ( 35), as follows from numerical solutions.

When ω D is nite Eq. ( 31) is solved numerically by looking for unstable solutions, i.e. solutions with (ω) = γ > 0.

We nd the zeros of the left hand-side of Eq. ( 31) by plotting the inverse of its modulus in the complex (ω r , γ) plane and looking for its poles as outlines in Refs. 3840. We nd that for nite ω D the temperature gradient generally destabilizes the mode while the density gradient modies the mode growth rate and becomes stabilizing for stronger gradients around 1/L n ≈ 6, as can be seen from the general tendency of the curves in Fig. 2a. Here, frequencies are normalized to the electron transit frequency ω t = v th /R 0 , lengths are normalized to the major radius R0, ∆ is normalized to d 2 e /ρ e where d e = c/ω pe is the electron skin depth. Figs. 1 and2 show a scan of the normalized growth rate (a) and frequency (b) with the temperature and density gradient scale lengths respectively, at the low eld side (i.e. L B , L n,T > 0). The dierent lines correspond to dierent modes, at the same resonant surface r s = 0.22 such that q(r s ) = m/n = 2. Fixing the values of the shear to s = 1.44 and the major radius to R 0 = 3m, one can determine the values of k y ρ e and k . The magnetic drift and the diamagnetic frequencies are determined by choosing the values of L -1 B , L -1 n and L -1 T respectively. The choice of 1/L n,T,B > 0 implies a negative gradient for the respective quantities. The destabilizing mechanism occurs when the destabilization condition ω D ω T > 0 holds. For the chosen numerical values, this corresponds to the low eld side position where prole gradients and the magnetic eld gradient are of the same sign.

The numerical solution shows that, in agreement with Eq. ( 35), unstable solutions for high-m modes are present only if the combined eect of magnetic eld inhomogeneity
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(a) Growth rate (γ) (ω D ) and plasma temperature gradient (ω T ) is considered. This can be seen in Fig. 1a where at null temperature gradient the growth rate of both high-m modes (dashed orange and dotted purple lines) is equal to zero. Figs. 1b and2b show that the mode's frequency varies very little against temperature gradient variations and is linear in 1/L n , which is consistent with Eqs. ( 32) and (35). Notice that for 1/L n = 0 the mode's frequency is not null, contrary to the case without magnetic drift (Eq. 32). This shows that the frequency eect is indeed a toroidal one, as was observed in Ref. 41. In addition, the instability has an upper threshold in the density gradient at 1/L n ≈ 6 after which the mode is stable with (ω) = 0 and oscillates only with a real frequency. Note that the growth rate and real frequency scale linearly with k y ρ e . This indenite increase would be terminated by thenite electron Larmor radius eects which are neglected here.
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Furthermore, there is a threshold for the instability for low values of ω * T ω D such that

(ω * n -ω D ) 2 4 > ω * T ω D , (36) 
when the mode becomes stable. For ω * T ω D → 0, only the mode with ∆ > 0 remains unstable as is shown on the insert in Fig. 1a.

It is important to note that our uid model results in the non-analytic dispersion relation in Eq. (34). In fact, the same result is obtained in kinetic derivations of Refs. 12 and 13. In the latter case, the non-analytic nature of the dispersion relation is not apparent since the result was formulated in terms of the Plasma Dispersion Function which was dened for (ω) > 0 and analytically continued into the (ω) < 0 plane. In the kinetic theory, the non-analytic nature of the dispersion relation is related to the presence of the singular (continuous spectrum) eigen-functions which stipulates the use of the Landau pole rule (or Laplace transform for the initial value problem). In uid theory, one can introduce some dissipation which would also regularize the singular eigenfunctions. We should note however that our main result of the interchange destabilization for ω D ω * T > 0 is not aected as the ∆ = 0 limit given by Eq. ( 35) shows.

Some restrictions that limit direct application of our theory to the realistic tokamak geometry are essential to note. Our theory assumes the local (constant) value of ω D . In the tokamak geometry, the main part of the ω D is oscillating in the poloidal direction (or equivalently along the magnetic eld line) and the mean (constant part) only appears in the next order of the plasma pressure β parameter. These oscillations have been taken into account in Refs. 4244 in the framework of resistive MHD where an average curvature is calculated to the ε 2 order after toroidal coupling of the central (low-m, low-n) mode to its side bands. Its eect was found to be stabilizing for the large scale tearing mode.

Our local ω D is the same approximation as made in the uid theory of ITG/ETG modes 4547 which shows good agreement [START_REF] Asp | Strand, and Jet Efda Contributors. Critical gradient response, of the weiland model[END_REF][START_REF] Dimits | Comparisons and physics basis of tokamak transport models and turbulence simulations[END_REF] with results from fully nonlocal kinetic simulations. One can think that the local approximation may be acceptable for high m modes, for which the mode spans a narrow poloidal region and any nonlocal corrections come as as the next order toroidal eects [START_REF] Kadomtsev | Plasma transport in tokamaks[END_REF] . In general more accurate account of the structure of the magnetic eld gradient would be required.

Another two assumptions of our model, namely, the neglect of the electrostatic potential and the simplied temperature response model in Eq. 15 will also have to be abandoned in a more accurate model. The integral formulation in Ref. 50 which does take into account the eects of the electrostatic potential predicts stabilization with increasing values of density gradient (albeit no magnetic eld gradient was included there). The isothermal approximation for electrons should be improved with a more complete energy equation as in Ref. 51. Including all the terms of the pressure equation of the Hammett-Perkins [START_REF] Hammett | Fluid moment models for Landau damping with application to the ion-temperature-gradient instability[END_REF] closure would give a more accurate description to the model. Such closure could be added to the gyrouid models of the magnetic reconnection, e.g. those studied in Refs. 52 and 53. It would be interesting to investigate whether collisionless closures might also lead to the regularization of the singular eigen-functions. These questions and improvements of our model are left for future work.

In this paper, a uid model has been used for the description of linear collisionless tearing modes taking into account magnetic eld, plasma density and temperature gradients. The linear dispersion relation has been derived using the constant-ψ approximation. For a uniform magnetic eld this dispersion equation reduces to the previous uid and kinetic results that predict the instability of ∆ > 0 modes only. When the magnetic eld gradient is included, our dispersion equation predicts an additional destabilization mechanism linearly driven by the combination of the nite temperature and magnetic eld gradients persisting even for small scale tearing modes with ∆ < 0. Eects of large density gradients have been found to be stabilizing, which is in agreement with general tendencies of earlier results [START_REF] Porcelli | Collisionless m= 1 tearing mode[END_REF][START_REF] Mahajan | Collisionless current-channel tearing modes[END_REF] . The instability mechanism identied in our work requires the condition of the interchange type: ω D ω * T > 0, which is similar to the instability of ETG modes. The ETG instability was also suggested as a source of small scale magnetic islands due to the nonlinear energy transfer [START_REF] Sydora | Nonlinear dynamics of small-scale magnetic islands in high temperature plasmas[END_REF] . A somewhat similar idea of the "mesoscopic" reconnection was also proposed in Ref. 32. Furthermore, it was suggested that the unstable ETG type modes can be responsible for the nonlinear excitation of the linearly stable microtearing modes [START_REF] Hatch | Magnetic stochasticity and transport due to nonlinearly excited subdominant microtearing modes[END_REF] . The dening feature of stable microtearing modes was their independence of the electrostatic potential φ (which can be omitted for such modes) contrary to the ETG modes which involve essential perturbations of φ. In our work we show that in neglect of φ, the tearing type perturbations can be eectively destabilized by the interchange type mechanism related to the temperature and magnetic eld gradients. We conjecture here that the interchange destabilization identied in our paper may be operative in numerical simulations that demonstrate collisionless destabilization of micro-tearing modes. We note that linear drift-kinetic and gyro-kinetic simulations with local magnetic eld gradient in Ref. 22 also show the growth rate of negative ∆ tearing mode increasing with the value of the local magnetic eld gradient in very-low collisionality regimes. Alternative explanations, based on the nonlinear coupling to unstable modes 2328,[START_REF] Hatch | Magnetic stochasticity and transport due to nonlinearly excited subdominant microtearing modes[END_REF][START_REF] Terry | Overview of gyrokinetic studies of nite-beta microturbulence[END_REF] are also plausible. 

Figure 1 :

 1 Figure 1: Normalized (a) growth rate γ, and (b) real frequency ω r as a function of the temperature gradient scale length 1/L T ; m = 10, ∆ = -1.1360, k y ρ e = 0.0011; m = 20, ∆ = -2.2718, k y ρ e = 0.0023; m = 2, ∆ = 0.5, k y ρ e = 2.2891 × 10 -4 . The density and magnetic eld gradient scale lengths are xed to resp. 1/L n = 2 and 1/L B = 1.

Figure 2 :

 2 Figure 2: Normalized (a) growth rate γ; and (b) real frequency ω r , as a function of the normalized density gradient scale length 1/L n ; m = 10, ∆ = -1.1360, k y ρ e = 0.0011 ; m = 20, ∆ = -2.2718, k y ρ e = 0.0023; m = 2, ∆ = 0.5, k y ρ e = 2.2891 × 10 -4 . The temperature and magnetic eld gradient scale lengths are xed to resp.1/L T = 2 and 1/L B = 1.
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