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Abstract

Over decades, a lot of studies have shown the importance of clustering
to emphasize groups of observations. More recently, due to the emergence
of high-dimensional datasets with a huge number of features, co-clustering
techniques have emerged and proposed several methods for simultaneously
producing groups of observations and features. By synthesizing the dataset in
blocks (the crossing of a row-cluster and a column-cluster), this technique can
sometimes summarize better the data and its inherent structure. The Latent
Block Model (LBM) is a well-known method for performing a co-clustering.
However, recently, contexts with features of different types (here called mixed
type datasets) are becoming more common. Unfortunately, the LBM is not
directly applicable on this kind of dataset. The present work extends the usual
LBM to the so-called Multiple Latent Block Model (MLBM) which is able
to handle mixed type datasets. The inference is done through a Stochastic
EM-algorithm embedding a Gibbs sampler and model selection criterion is
defined to choose the number of row and column clusters. This method was
successfully used on simulated and real datasets.

Keywords— co-clustering; mixed-type data; latent block model

1 Introduction

Clustering algorithms have become a widely used method due to their ability to provide
new insights that may be difficult to perceive for human beings into unlabeled datasets.
They consist in forming homogeneous groups of observations that are called clusters. Per-
forming a clustering can therefore highlight an inherent structure of the data. However,
the recent "big-data" phenomenon has largely increased the number of features, leading to
the emergence of high-dimensional datasets. Clustering techniques are consequently not
always sufficient to discern structures. Indeed, the analysis of a cluster relies on a represen-
tative of the cluster (mean, mode. . . ). Yet, this latter is itself described by a high number
of features, which makes more difficult the interpretation and degrades the synthesis of the
dataset. From this consideration comes the need to also "summarize" the features, which
can be done by gathering them into clusters, symmetrically to the classical clustering of

1



observations. Co-clustering methods appear as a good candidate for performing this task
because it realizes a joint clustering of rows and columns. Thus, the initial large data
matrix can be summarized by a reduced number of blocks, resulting from the crossing of
row-clusters and column-clusters.

Among the most famous co-clustering techniques, the Non-negative Matrix Tri-Factorization
[10] consists in factorizing the N ×P data matrix x into three matrices a (of size N ×G),
b (size G×H), c (size H×P ), with the property that all three matrices have non-negative
elements. More specifically, the approximation of x by x ≈ abc is achieved by minimizing
the error function min

(a,b,c)
||x − abc||F , with the constraints (a ≥ 0, b ≥ 0, c ≥ 0), meaning

that all elements of a, b and c are greater than 0, and ||.||F being a matrix norm to be
chosen. The matrices a and c play the roles of row and columns cluster memberships re-
spectively. Each value of the matrix a (respectively c) corresponds to the degree in which
a row (resp. a column) belongs to a row-cluster (resp. a column-cluster). The matrix b
represents the block matrix: an element bgh of b summarizes the observations belonging
to row-cluster g and column-cluster h. Despite the non-negative property of the matri-
ces, it is not always easy to interpret the resulting matrices. For example the matrices a
and c are not always normalized which makes difficult the interpretation for the rows and
columns memberships to the corresponding clusters. Furthermore, this technique relies
on the choice for the distance which is not always obvious. An alternative probabilistic
approach considers the Latent Block Model (LBM, [16]). With this model, the elements
of a block are modeled by a parametric distribution, which gives more information than a
simple scalar, as in the previous methods. Each block is therefore interpretable thanks to
the parameters of the block-distribution. Moreover, model selection criterion as the ICL
criterion [2] can be used for model selection purpose, including the choice of the number
of co-clusters. This technique proved its efficiency for the co-clustering of numerous types
of data: continuous [26], nominal [30], binary [20], ordinal [17], functional [31, 7]. That is
why an extension of this model is used in the present work, although it is originally not
able to take heterogeneous data into account.

Heterogeneous data concern the datasets that are formed with features of different
types. For example, in medicine, a patient’s file can be made of images (X-rays pictures),
text (medical reports), continuous data (age, blood test results. . . ), categorical data (social
category, pregnancy, drug addiction. . . ), or even functional data (pulse, blood pressure. . . ).
In a clustering context, several frameworks were developed to address this particularity.
The latent class model [13] is one of the most used ones. It assumes that the variables
are independent conditionally to the row-cluster membership, and consequently, the joint
probability distribution function (p.d.f.) of features of different types is obtained by the
product of the p.d.f. of each individual feature (see an implementation with the Mixtcomp
software [3]). However, when the variables are inherently highly correlated in a row-cluster,
this model is not truly adapted. To overcome this matter, the authors of [24] want to con-
serve standard marginal distributions but also try to loosen the conditional independence
on the variables. For this purpose, they use copula, which allow to define on a side the de-
pendence model and on another side the type of the marginal distributions. The proposed
model relies on the main hypothesis that each cluster follows a Gaussian copula. However,
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the authors note that the model complexity increases with the number of variables, which is
sensitive in a big-data context. Another way of addressing the heterogeneous data is to see
some variables as the manifestation of a latent vector. For example, in [25], the clustMD
model considers continuous and categorical data (nominal and ordinal) and assumes that
all the categorical variables are the incarnation of an underlying latent continuous variable.
Then, it is assumed that all the continuous variables (observed and not observed) follow a
multivariate Gaussian mixture model. Until now, these methods propose models for basic
data as categorical (nominal or ordinal) and continuous data. In [8], the authors allow
the introduction of more complex data as functional data or networks by projecting the
dataset into a reproducing kernel Hilbert space.

However, these techniques were not developed in a co-clustering point of view. To the
best of our knowledge, the only work in a co-clustering context is [6], which extends the
LBM in the case of a dataset made of continuous and binary data. The present work
goes further by proposing an extension that allow to take into account more type of data:
categorical data (nominal, ordinal, binary), textual data, counting data and continuous
data. Furthermore, the algorithm for inference is able to deal with missing values and
proposes a way of imputing them. At last, the ICL criterion [2] is adapted to the proposed
model in order to select the number of row-clusters and column-clusters.

The paper is organized as follows. Section 2 gives an overview of the LBM for a good
understanding of this paper. Then, it proposes an extension to a new LBM version that
allows heterogeneous datasets. Section 3 proposes an algorithm for model inference, based
on a Stochastic Expectation Maximization [11] algorithm coupled with a Gibbs sampler.
In Section 4, a description of the different types of data that can be taken into account with
this method is given, and updates formulas for model inference are presented. Section 5
assesses the efficiency of the proposed method on simulated data while Section 6 shows
how the method can perform on real datasets. Section 7 concludes this paper.

2 Multiple Latent Block Model

Here, the Latent Block Model is presented. Then its extension to the Multiple Latent
Block Model, which is introduced in the present work, is detailed.

2.1 Latent Block Model

The LBM is a widely used model for performing co-clustering [16]. Basically, it assumes
that all the elements of a block follow the same distribution. In this section, the hypotheses
for the LBM are defined, and the mathematical details are given.

The LBM considers that all features can potentially be grouped together (restrictions
will be imposed in the next section to defined the so-called Multiple LBM). Let consider
the data matrix x = (xij)i,j , where i ∈ {1, . . . , N} is the row (observation) index and
j ∈ {1, . . . , J} is the column (feature) index. It is assumed that there exists G row-clusters
and H column-clusters that correspond to a partition v = (vig)i,g of the rows and a
partition w = (wjh)j,h of the columns, with 1 ≤ g ≤ G and 1 ≤ h ≤ H, where vig is equal
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to 1 if row i belongs to cluster g, and 0 otherwise; and similarly wjh is equal to 1 when
column j belongs to cluster h, and 0 otherwise. In order to simplify the notations, the
underlying range of variation will be omitted in the sums and products, which consequently
will be written

∑
i
,
∑
j
,
∑
g

and
∑
h

,
∏
i
,
∏
j
,
∏
g

and
∏
h

.

The first LBM hypothesis is that the univariate random variables xij are assumed to
be conditionally independent given the row and column partitions v and w. Therefore,
the conditional probability density function of x given v and w can be written:

p(x|v,w;α) =
∏

i,j,g,h

p(xij ;αgh)vigwjh ,

where α = (αgh)g,h is the distribution’s parameters of block (g, h).
The second LBM hypothesis is that the latent variables v and w are independent so

p(v,w;γ,ρ) = p(v;γ)p(w;ρ) with:

p(v;γ) =
∏
i,g
γ
vig
g and p(w;ρ) =

∏
j,h

ρ
wjh

h ,

where γg = p(vig = 1) and ρh = p(wjh = 1). This implies that, for all i, the distribution of
vi is the multinomial distribution M(γ1, . . . , γG) and does not depend on i. In a similar
way, for all j, the distribution of wj is the multinomial distribution M(ρ1, . . . , ρH) and
does not depend on j.

From these considerations, the LBM parameter is defined as θ = (γ,ρ,α), with γ =

(γ1, . . . , γG) and ρ = (ρ1, . . . , ρH) the rows and columns mixing proportions. Therefore, if
V and W are the sets of all possible labels v and w, the probability density function of x
can be written:

p(x;θ) =
∑

(v,w)∈V×W

∏
i,g

γ
vig
g

∏
j,h

ρ
wjh

h

∏
i,j,g,h

p(xij ;αgh)vigwjh . (1)

2.2 Extension to Multiple Latent Block Model

Now, let consider that the matrix x is made of D different sets of features. In this context,
it has N rows and J =

∑D
d=1 Jd columns, Jd being the number of features of the d-th set:

x = (x1, ...,xD), with xd = (xdij)i=1,...,N ; j=1,...,Jd .

Here, the idea of "sets" of features is introduced to define the features we potentially
want to group together in a column-cluster, and those we do not want to be together.
Thus, features of a same set can be grouped together in an intra-set column-cluster whereas
features of different sets can not. The motives for separating features into different sets
are twofold: a technical one and a semantic one. First, two features of different types (e.g.
a categorical feature and a continuous one) can not be modeled with a similar probability
distribution, and consequently should technically be separated. Indeed, since it will be
assumed afterwards that all the features into a column-cluster have the same p.d.f., such
assumption is not be possible for features of different types. The present work is motivated
by this first reason. Secondly, the user could consider, for practical reasons, that some
features necessarily have to be separated because it does not make sense to gather them in
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a same column cluster. This case is not explored in the present work, but the reader can
for instance refer to [29] for a detailed example. Besides, the sets of elements regarding
d ∈ {1, . . . , D} will not be entirely set forth: for example (x1, . . . ,xD) will be annotated
(xd)d.

Being in a co-clustering context, it is assumed that there exist G row-clusters and
H = H1 + . . . + HD column-clusters inherent to the matrix x. Moreover, the sums and
the products relating to sets the of features will be subscripted by the letter d. Again, he
underlying range of variation will be omitted in the sums and products, which consequently
will be written

∑
d

and
∏
d

.

Finally, a dataset can contain missing data. To deal with this aspect, the dth matrix xd

is said to be made with two sets x̌d and x̂d. x̌d is the observed data, and x̂d is the missing
data. An element of xd will be annotated x̌dij whether xdij is observed, and x̂dij otherwise.
To model missing values, three main processes exist in data analysis [21]. The Missing
Completely At Random (MCAR) process assumes that the missing data mechanism is
unrelated to the values of any variables: for example, in a survey, participants accidentally
skipped questions. The Missing At Random (MAR) process supposes that a missing value
has nothing to do with the concerned variable, but it does have to do with the values of
some other variable. As an example, males are less likely to fill in a depression survey
but this has nothing to do with their level of depression, after accounting for maleness.
The last process is called Missing Not At Random (MNAR) and occurs when the missing
value is directly influenced by the variable itself. As an example, a drug addict would not
answer to a question about drugs precisely because of their addiction. In the present work,
it is assumed that the whole missing process is MAR, because this is the most frequent
situation we encountered in practice.

In the case of heterogeneous data, the LBM as it was described can not be used.
Indeed, it relies on the hypothesis that the block’s elements are the realizations of a random
variable that follows a distribution with parameter α. If the elements of the blocks are
not of the same type, it is not possible to consider that they were sampled from the same
distribution. The Multiple Latent Block Model (MLBM) introduced in [27] and generalized
in this paper, offers a way of addressing this issue. In this model, D ≥ 1, and the columns
of the matrix x are reordered such that x is composed by D matrices put side by side, each
matrix containing features of homogeneous type as described above. The co-clustering is
performed so that features of different types can not be part of a same column-cluster.
Consequently, it is possible to define a distribution on each block because it is made of
variables of the same type. Figure 1 illustrates the intuition behind this model.

Letwd denote the column partitions of the d-th matrix (1 ≤ d ≤ D), ρd = (ρd1, . . . , ρ
d
Hd

)

the corresponding mixing proportions, and let introduce the notations w = (wd)d and
ρ = (ρd)d.

The MLBM relies on the following hypothesis, which states that the D matrices data
are independent conditionally on the row and column partitions, and that the dth matrix
does not depend on the column partitions different from wd:

p(x|v,w) = p(x1|v,w1)× . . .× p(xD|v,wD).
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(a) (b)

Figure 1: (a) is the matrix x. The blue lines represents the separation of the features
that are not of same type. (b) is the matrix after having performed a co-clustering.
The red lines represents the co-clusters limits.

The other assumptions of the MLBM are similar to those of the LBM. First, the univariate
random variables xdij are supposed to be independent conditionally on partitions v and
wd. Thus, the conditional probability function of x given v and (wd)d is expressed as:

p(x|v,w;α) =
∏

i,j,g,h,d

p(xdij ;α
d
gh)vigw

d
jh ,

where α = (αd)d with αd = (αdgh)g,h is the distribution’s parameters of block (g, h) of
matrix xd.

Second, the latent variables v,w1, . . . ,wD are assumed to be independent, so: p(v,w;γ,ρ) =

p(v;γ)
∏
d

p(wd;ρd), where:

p(v;γ) =
∏
i,g
γ
vig
g and p(wd;ρd) =

∏
j,h

ρdh
wd

jh .

The MLBM parameter is thus defined as θ = (γ,ρ,α). Moreover, if V and (W d)d are
the sets of all possible labels v and (wd)d, the probability density function p(x;θ) can be
written:

p(x;θ) =
∑

(v,(wd)d)∈V×(W d)d

∏
i,g

γ
vig
g

∏
d

∏
j,h

ρdh
wd

jh
∏
i,j,g,h

p(xdij ;α
d
gh)vigw

d
jh . (2)

Let remark that until now the type of p(xdij ;α
d
gh) has not be defined. It will be in Section 4,

depending on the type of xdij (nominal, ordinal, continuous, ...).
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3 Model Inference

The MLBM inference aims at estimating θ that maximizes the observed log-likelihood:

l(θ; x̌) =
∑
x̂

log p(x;θ). (3)

The EM-algorithm [12] is a well known method for performing this task with latent vari-
ables. Regarding the co-clustering case, it is not computationally tractable, though. In-
deed, this method needs to compute the expectation of the complete data log-likelihood.
Yet, in the case with D = 1, this expression contains the probability p(vig = 1, wjh =

1|x;θ), which needs to consider all the possible values for vi′ and wj′ with i′ 6= i and
j′ 6= j. The E-step would require to calculate GN ×HJ terms: as an example, if G = 2,
H = 2, N = 20 and J = 20, each E step of the EM algorithm would need to compute
220× 220 ≈ 1012 terms. There exist different alternatives to the EM algorithm as the vari-
ational EM algorithm, the SEM-Gibbs algorithm or other algorithm linked to a Bayesian
inference [16]. The SEM-Gibbs version is used in the present work since while it is know
to be less sensitive to initialization, it is also simple to implement. Furthermore, it han-
dles easily missing values x̂ in x, which is an important advantage, particularly with real
datasets.

3.1 SEM-Gibbs algorithm

The SEM-Gibbs begins with an initialization of partitions, parameters and missing values
v(0),w(0),θ(0), x̂(0). This initialization process is described further. The following five
steps describe the q-th iteration, with q ∈ (1, ..., nbSEM). The choice for nbSEM will be
described afterwards as well.

(a) Sampling row partitions. Generate the row partitions with

p(v
(q)
ig = 1 | x,w(q−1);θ(q−1)) ∝ γ(q−1)g ×

∏
d

tdg(x
d
i.|wd(q−1)

;αd
(q−1)

), (4)

where tdg(xdi.|wd(q−1);αd
(q−1)

) =
∏
j,h

f(xdij ;αgh
d(q−1)

)w
d
jh

(q−1)

with xdi. = (xdij)j .

Let note that this probability depends on the type of the data of the d-th matrix through
the p.d.f f(xdij ;αgh

d(q−1)
), whose exact expression will be given in Section 4.

(b) First M-step This first M-step consists in updating the co-clusters parameters θ(q)

to maximize the completed log-likelihood (3). The row mixing proportions are consequently
updated by:

γ
(q)
g = 1

N

∑
i
v
(q)
ig ,

and the parameter αd(q) is updated as well, yet the computations depend on the type of
matrix x features. Section 4 describes how to update αd(q) according to the type of the
variables.
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(c) Sampling column partitions. For all d ∈ {1, . . . , D} generate the column par-
titions for the d-th matrix xd with

p(wdjh
(q)

= 1 | xd,v(q);θ(q)) ∝ ρdh
(q) × sdh(xd.j |v(q);αd

(q−1)
), (5)

where sdh(xd.j |v(q);αd
(q)

) =
∏
i,g
f(xdij ;αgh

d(q−1)
)v

(q)
ig with xd.j = (xdij)i.

Here, note that sdh obviously depends on the type of the d-th matrix (see Section 4).

(d) Second M-step In this second M-step, the column mixing proportions are updated
by:

ρdh
(q)

= 1
Jd

∑
j
wdjh

(q),

and the parameter αd(q) is also updated depending on the type of the d-th matrix (see
Section 4).

(e) Missing values imputation. Generate the missing data x̂d(q)ij according to:

p(x̂d
(q)

ij |x̌,v(q),wd(q) ;θ(q)) =
∏
g,h

f(x̂d
(q)

ij ;αd
(q)

)v
(q)
ig w

d
jh

(q)

.

The SEM-Gibbs algorithm is iterated for a given number of iterations. The first part
of these iterations are called the burn-in period, meaning that the parameters θ are not
simulated yet according to its stationary distribution. Consequently, only the iterations
that occurred after this burn-in period are taken into account and are referred as sampling
distribution hereafter. While the final estimations of discrete parameters is the mode of the
sampling distribution, the final estimations of the continuous parameters are the median
of the sample distribution. It leads to a final estimation of θ called θ̂. Then, a sample of
(x̂,v,w) is simulated by iterating steps (a), (c) and (e) of the SEM-Gibbs algorithm with
θ = θ̂. The final partitions (v̂, ŵ) and the missing observations x̂ are estimated by the
mode of their marginal sampled distribution.

Choice for the number of iterations The SEM-algorithm can be slow at reaching
its stationary state. After having arbitrarily chosen the total number of iterations, the
stability of the algorithm has to be checked. To accomplish that, the evolution of the
parameters through the iterations can be simply graphically analyzed. If the parameters
are "stable" between the burn-in period and the last iteration then the number of iterations
was well chosen. Less subjective ways exist for evaluating if the stationary distribution has
been achieved. The authors of [14] propose a general approach to monitoring convergence
of MCMC output in which parallel chains are run with starting values that are spread
relatively to the posterior distribution. Convergence is confirmed when the output from
all chains is indistinguishable. This method is not used in this paper but could have been.
Indeed, in Section 5, we show that we can obtain satisfying results without this technique.
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Initialization The algorithm starts with an initialization of the partitions. Then the
mixing proportions and the block parameters are estimated regarding these partitions.
In the case of D = 1, this initialization can be made randomly [9], but with D > 1,
it often leads to empty the clusters. In this work, a specific initialization strategy was
worked out to tackle this issue. It relies on a first random initialization. However, for
the first I iterations (such that I is lower or equal to the burn-in number of iterations),
whenever a row-cluster gets empty, a percentage of the row partitions is sampled from the
Multinomial distribution M(1/G, . . . , 1/G). Similarly when a column-cluster gets empty
on the dth matrix, a percentage of the column partitions is sampled from the Multinomial
distributionM(1/Hd, . . . , 1/Hd).

3.2 Model Selection

To select the number of blocks (G,H1, . . . ,HD), a model selection criterion must be
involved. The most classical ones, like BIC [28], rely on penalizing the maximum log-
likelihood value l(θ̂; x̌). However, due to the dependency structure of the observed data
x̌, this value is not available.

Alternatively, an approximation of the ICL information criterion [2], called here ICL-
BIC, can be invoked to overcome the previous problem due to the dependency structure
in the missing variables (x̌,v,w). The key point is that this latter vanishes since ICL
relies on the completed latent block information (v,w), instead of integrating on it as it is
the case in BIC. In particular, [19] detailed how to express ICL-BIC for the general case
of categorical data. It is possible to straightforwardly transpose the ICL-BIC expression
given by these authors by following step by step their piece of work, with no new technical
material. The resulting MLBM-specific ICL-BIC is expressed by:

ICL-BIC(G,H1, . . . ,HD) =

log p(x̌, v̂, ŵ; θ̂)− 1
2(G− 1) logN −

∑
d

1
2(Hd − 1) log Jd −

∑
d

1
2νd log(N × Jd),

where νd is the number of parameters to estimate for the d-th matrix xd. It will depend
on G, Hd and the type of the variables of xd. Table 1 in Section 4 gives νd for each type
of distribution.

In theory, to find the best number of blocks (G,H1, . . . ,HD), the co-clustering has to be
executed for each possible value and the result with the highest ICL-BIC has to be retained.
Let nG be the number of candidate values forG, while nHd

is the number of candidate values
forHd, d ∈ {1, . . . , D}. Thus, the number of co-clustering to execute is nG×nH1×. . .×nHD

.
As an example, if D = 3 and the user wants to try 10 values for G and for each Hd,
then it would require to execute 104 co-clusterings. Depending on the dataset, it might
take too much time to find the best solution. In practice, a good set (G,H1, . . . ,HD) is
searched through the following heuristic. Let (Gmin) be the minimum of the candidate
values for G. Then, (Hdmin

)d is the minimum of the candidate values for (Hd)d. The
algorithm starts with the set (Gmin, H1min , . . . ,HDmin). At iteration p, the current best set
(G,H1, . . . ,HD) is called (G,H1, . . . ,HD)(p) and is made of values: (G(p), H

(p)
1 , . . . ,H

(p)
D ).

At pth iteration, (D + 1) co-clusterings are realized with sets (G(p) + 1, H
(p)
1 , . . . ,H

(p)
D ),
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(G(p), H(p) + 1, . . . ,H
(p)
D ),. . . ,(G(p), H

(p)
1 , . . . ,H

(p)
D + 1). Then, the ICL-BIC is computed

for each result. If none of the ICL-BIC is better than for the set (G,H1, . . . ,HD)(p), the
algorithm finishes and (G,H1, . . . ,HD)(p) is the set to use. In the other case, the set
with the highest ICL-BIC is retained, and becomes (G,H1, . . . ,HD)(p+1). The algorithm
afterwards reiterates the same steps.

4 Modeling of the different types of data

Representing the data as a mathematical object is challenging and requires to make a com-
promise. Often the user has to find a trade-off between information loss, interpretability
and feasibility for their representation. The present work allows to work with the follow-
ing type of data: categorical data (nominal, ordinal, binary), counting data, continuous
data and textual data. If the probability distributions for nominal (multinomial), binary
(Bernoulli), counting (Poisson) and continuous (Gaussian) data are commonly accepted,
there exist several ways to model textual and ordinal data.

The most simple way to represent textual data is as a Document-Term counting matrix
where a cell simply counts how many times a term appears in a document. The Poisson dis-
tribution is a good distribution for modeling this matrix because it models the occurrences
of an event (in this case, the appearances of a word). In a bit more advanced way, the
Document-Term TF-IDF matrix, counts the times a term appears, but penalizes the result
if this same term appears in the other documents [18]. The resulting score is a continuous
numeric which implies the usage of the Gaussian distribution. In the latter, the so-called
"stop-words" terms are therefore discarded, and the attention of the user is not diverted by
terms that do not really worth it. There exists also a lot of other Document-Term matrix
types, and they have proven their efficiency in many applications [1, 20]. In this work, a
simple Document-Term matrix representation is considered.

The ordinal data is also a sensitive type of data. It can seems very easy to model
them as if they were nominal, but it spoils the order between the different levels, which is
an intrinsic property of this type of data. In some applications, it can be interpreted as
continuous [22] but in other cases it is not an option. For example, for clinical surveys,
psychologists sometimes spend years to define ordinal scales on abstract concepts like pain,
perception of control or anxiety [23, 32]; it is therefore delicate to project their results on
other scales or in a continuous space. In the present work particularly, a recent distribution
for ordinal data (BOS for Binary Ordinal Search model, [4]) is used. It has proven its
efficiency for modeling and clustering ordinal data. One of the main advantage of the BOS
model is its parsimony and the significance of its parameters.

This section describes the expression of the p.d.f. f(xdij ;α
d(q−1)

) and the update of
αd

(q−1) , involved in the SEM-Gibbs algorithm, depending on the type of the matrix xd.
The superscripts (q) and (d) are omitted to simplify the expressions.
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4.1 Modeling nominal data

A nominal variable is a variable that can take on one of a limited, fixed, number of possible
values. Each of the possible values of a categorical variable is referred to as a level. For
a block (g,h) of nominal data, we consider the Multinomial distributionM(1,βgh), where

βgh = (βrgh)r=1,...,m, and
m∑
r
βrgh = 1. Therefore, with this type of data, the MLBM block

parameter αgh is quoted as βgh, and the p.d.f. is given by:

f(xij ;βgh) =
m∏
r

(βrgh)I(xij=r),

with I(xij = r) = 1 if xij = r, and 0 otherwise. The update of each βrgh is:

βrgh = 1
ngh

∑
i,j
vigwjhI(xij = 1),

with ngh being the number of elements belonging to block (g, h).
In a first place, let note that if two nominal variables do not have the same number

of levels m, then their distribution are not defined on the same support. Consequently,
such variables should be separated in different matrices xd of x. In a second place, the
co-clustering we propose is dependent on the order of the levels. For example two cat-
egorical features with m = 3 levels having respective parameters β = (0.1, 0.7, 0.2) and
β = (0.7, 0.2, 0.1) won’t be detected as two variables following the same distribution. Con-
sequently they won’t be grouped together in a similar column cluster, whereas a simple
switch in the levels’ order could change this and lead to group these variables together. Let
remark that this problem is not specific to co-clustering and is also present in clustering
[5]. While the user is aware that the results are conditional to the levels encoding, it is not
an issue addressed in this work.

4.2 Modeling ordinal data

Ordinal data is a special case of nominal data, where the order between the levels has a
meaning. In the present work, the BOS model [4] is chosen to model ordinal data. It
is a probability distribution parametrized by a position parameter µgh ∈ {1, . . . ,m} and
a precision parameter πgh ∈ [0, 1]. This distribution has interesting properties from an
interpretation point of view: it rises from the uniform distribution when πgh = 0 to a more
peaked distribution around the mode µgh when πgh grows, and reaches a Dirac distribution
at the mode µgh when πgh = 1. It is shown in [4] that the BOS distribution is a polynomial
function of πgh with degree m−1 whose coefficients depend on the position parameter µgh.

Therefore, with this type of data, the MLBM block parameter αgh is quoted as (µgh, πgh),
and the p.d.f. is given by:

f(xij ;µgh, πgh) =
m−1∑
r=0

Cr(µgh, xij)π
r
gh,

with Cr(µgh, xij) a constant depending on µgh and xij .
Since BOS inference relies on an EM algorithm, the update of parameter (µgh, πgh) is

obtained through an EM-algorithm. For further details on this algorithm, see [4]. Similarly
to nominal variables case, if two ordinal variables do not have the same number of levels,
they have to be separated in different matrices xd of x.
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4.3 Modeling continuous data

In the continuous case, the unidimensional Gaussian distributionN (µgh, σ
2
gh) is considered.

Thus, the MLBM block parameter αgh is here (µgh, σgh) and the p.d.f. is given by:

f(xij ;µgh, σgh) = exp{ −1
2σ2

gh
(xij − µgh)2}/

√
2πσ2gh.

The update of parameters (µgh, σ
2
gh) is:

µgh =
1

ngh

∑
i,j

vigwjhxij and σ2gh =
1

ngh

∑
i,j

vigwjh(xij − µgh)2.

4.4 Modeling counting data

Counting variables are modeled by the Poisson distribution. For a block (g,h) of counting
data, a Poisson distribution with a specific parametrization is considered: P(ni.n.jδgh),
where ni. =

∑
j
xij and n.j =

∑
i
xij are respectively the number of terms in document i

and the number of observations of term j in all documents. The parameters ni. and n.j
are independent of the co-clustering and are consequently preliminary estimated from the
document term matrix. Consequently, the MLBM parameter αgh are only the parameter
δgh, which is the effect of the block (g, h) [15]. The p.d.f. is given by:

f(xij ; δgh) = 1
xij !

e−ni.n.jδgh(ni.n.jδgh)xij .

The update of each parameter δgh is obtained by:

δgh =
1

ng.n.h

∑
i,j

vigwjhxij ,

with ng. =
∑
i,j
vigxij and n.h =

∑
i,j
wjhxij .

Finally, Table 1 summarizes the number of parameters ν for each type of data described
above.

Table 1: Number of parameters (ν) of the distributions properties

Data type Distribution αgh ν

Nominal Multinomial βgh = (βrgh)r=1,...,m) (m− 1)GH

Ordinal BOS (µgh, πgh) 2GH

Continuous Gaussian (µgh, σgh) 2GH

Count Poisson (µi, νj, δgh) GH

5 Numerical experiments on artificial data

This section has two goals. The first one is to illustrate the efficiency of the proposed
inference algorithm for parameter estimation. The second one is to evaluate the model
selection strategy: the efficiency of the ICL-BIC criterion to select the true numbers of
clusters and the ability of the heuristic search to sparsely explore the space of numbers of
clusters.
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5.1 Simulation settings

Two simulations settings are considered. While they both have the same parameters, the
first one is built such that (N = J1 = J2 = J3 = J4 = 100), and the second one is built
with (N = J1 = J2 = J3 = J4 = 500).

Parameters setup Both settings were simulated with four types of distribution: nom-
inal (with m = 5 levels), continuous, ordinal (with m = 3 levels), and counting data. The
number of blocks were fixed to (G,H1, H2, H3, H4) = (3, 3, 3, 3, 3). Furthermore, the mix-
ing row proportions were γ = (0.2, 0.3, 0.5) and the mixing column proportions were equal
to: ρ1 = (0.25, 0.3, 0.45), ρ2 = (0.2, 0.35, 0.45), ρ3 = (0.25, 0.35, 0.4), ρ4 = (0.25, 0.35, 0.4).
Table 2 details the parameters that were assigned to each block.

Table 2: Value of the blocks’ parameters. For the Count data, parameters are not
equal between the first and second simulation because it depends on the margins.

Nominal m = 5

β1, β2, β3, β4, β5

col-cluster 1 col-cluster 2 col-cluster 3
row-cluster 1 0.05,0.05,0.8,0.05,0.05 0.1,0.25,0.3,0.3,0.05 0.1,0.2,0.4,0.2,0.1
row-cluster 2 0.05,0.1,0.7,0.1,0.05 0.8,0.05,0.05,0.05,0.05 0.4,0.05,0.1,0.05,0.4
row-cluster 3 0.2,0.5,0.2,0.05,0.05 0.8,0.05,0.05,0.05,0.05 0.05,0.8,0.05,0.05,0.05

Continuous
µ, σ

Ordinal m = 5

µ, π

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3
row-cluster 1 100,1 0.5,5 -90,5 3,0.4 1,0.2 3,0.7
row-cluster 2 10,4 -15,1 -95,1 2,0.1 3,0.5 2,0.8
row-cluster 3 -20,1 -30,3 500,4 2,0.5 1,0.8 2,0.2

Count 100
δ × 10−5

Count 500
δ × 10−7

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3
row-cluster 1 1.2 5.5 1.2 4.6 20.5 4.9
row-cluster 2 8.3 5.5 0.5 30.0 20.5 1.6
row-cluster 3 1.3 1.3 3.5 5.5 5.6 14.5

Experimental setup For both settings, 20 datasets are simulated, and the same pro-
cess is run through. First, the co-clustering is performed on the 20 datasets with the true
numbers of clusters (G1, H1, . . . ,HD) and the correctness of the parameters estimation is
evaluated. Then, we assess the efficiency of the ICL-BIC criteria by using an exhaustive
research among possible values for the number of clusters. In order to reduce the number of
ICL-BIC to compute, we consider only the number of clusters obtained by adding or remov-
ing one to each of the element of the true (G,H1, . . . ,HD). Therefore, for each simulation,
35 = 243 co-clusterings are executed, because 3 values are tested for G,H1,H2,H3 and H4.
Then, the set (G,H1, . . . ,HD) with the best ICL-BIC value is retained. Afterward, the
heuristic search from Section 3.2 is evaluated. In this case, the number of co-clusterings to
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Figure 2: Evolution of parameters ρ through the SEM-Gibbs algorithm iterations.
From left to right, and from top to bottom, the graph represents the evolution of
the first element of each vector ρ1, ρ2, ρ3 and ρ4. The red vertical line indicates
the burn-in period’s end (i.e when the parameter is supposed to be stable).

be performed is not fixed because the algorithm stops once it can’t find a better ICL-BIC
value.

Choice for the number of iterations The number of iterations for the SEM-Gibbs
algorithm was fixed to 150 and the burn-in period was considered to take 100 iterations. To
check if this number of iterations is enough, the evolution of the parameters is graphically
observed, as in Figure 2. Here, only the a few parameters are represented as an example,
but it is useful to check for several parameters evolutions. We notice in this example that
some of the parameters reached their stationary state since the beginning of the algorithm,
and that other parameters need 50 to 100 iterations to get stable. Therefore, in order to
ensure that all parameters have achieved their stationary distribution, a burn-in period of
100 iterations is considered (over a total number of iterations equal to 150). Numerical
results also show that these choices are correct.

Choices for the initialization The number I corresponds to the number of iterations
a certain percentage of the partitions are randomly sample when a cluster gets empty. Here,
I is tuned to be equal to the number of iterations for burn-in, while the percentage value
was fixed to 15.
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5.2 Parameter estimation

The co-clustering was performed on 20 datasets, with the true numbers of clusters. The
mean absolute error for the mixing proportions are in Table 3 and Table 4. The mean
absolute error between the parameters values and their estimation are available in Table 5
and Table 6. All of these errors are extremely low, which means that the model parameters
are correctly estimated.

Table 3: Mean absolute error for the mixing proportions with N = Jd = 100.

γ ρ1 ρ2 ρ3 ρ3

(.09, .04, .06) (.04, .04, .04) (.03, .03, .03) (.04, .02, .04) (.05, .03, .05)

Table 4: Mean absolute error for the mixing proportions with N = Jd = 500.

γ ρ1 ρ2 ρ3 ρ3

(.05, .02, .04) (.01, .02, .02) (.01, .01, .01) (.02, .02, .02) (.02, .01, .01)

Table 5: Value of the blocks’ parameters mean absolute error on simulation with
N = Jd = 100.

Nominal m = 5

β1, β2, β3, β4, β5

col-cluster 1 col-cluster 2 col-cluster 3
row-cluster 1 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01
row-cluster 2 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01
row-cluster 3 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00

Continuous
µ, σ

Ordinal m = 5

µ, π

Integer
δ × 10−5

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3
row-cluster 1 0.01,0.01 0.03,0.02 0.02,0.02 0.00,0.05 0.00,0.03 0.00,0.05 0.16 1.89 1.33
row-cluster 2 0.04,0.02 0.00,0.00 0.00,0.00 0.00,0.04 0.00,0.03 0.00,0.05 0.87 1.97 1.4
row-cluster 3 0.00,0.00 0.01,0.01 0.01,0.01 0.00,0.02 0.00,0.03 0.00,0.03 0.34 0.83 1.06

5.3 Model selection

In this section, the ICL-BIC criterion’s efficiency is assessed to choose the right number
of clusters in row and in column. Furthermore, the heuristic search described in 3.2 is
evaluated. The complexity of the problem should be emphasized here. Usually, criteria
like BIC or ICL are used to find the right number of clusters for the row partitions only.
In the case of co-clustering, they are extended to find the right number of clusters for the
row partitions and the columns partitions. In the present work, it is used to find (D + 1)

numbers of clusters (one for the rows, and one for each kind of features). Mathematically,
the research space is much more extended which makes the problem more complex.
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Table 6: Value of the blocks’ parameters mean absolute error on simulation with
N = Jd = 500.

Nominal m = 5

β1, β2, β3, β4, β5

col-cluster 1 col-cluster 2 col-cluster 3
row-cluster 1 0.00,0.00,0.00,0.00,0.00 0.00,0.00,0.00,0.00,0.00 0.00,0.00,0.00,0.00,0.00
row-cluster 2 0.00,0.00,0.00,0.00,0.00 0.00,0.00,0.00,0.00,0.00 0.00,0.00,0.00,0.00,0.00
row-cluster 3 0.00,0.00,0.00,0.00,0.00 0.00,0.00,0.00,0.00,0.00 0.00,0.00,0.00,0.00,0.00

Continuous
µ, σ

Ordinal m = 5

µ, π

Integer
δ × 10−7

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3
row-cluster 1 0.2,0.03 0.3,0.09 0.1,0.08 0.00,0.04 0.00,0.03 0.00,0.01 0.1 0.2 0.1
row-cluster 2 0.01,0.02 0.1,0.1 0.1,0.06 0.00,0.02 0.00,0.03 0.00,0.04 0.5 0.1 0.1
row-cluster 3 0.00,0.00 0.01,0.01 0.01,0.01 0.00,0.03 0.00,0.02 0.00,0.03 0.3 0.2 0.3

Table 7: Exhaustive search results on 20 simulations results.

N = Jd = 100

(G,H1, H2, H3, H4) 34333 34334 43333 33333 44333 34433 34443 44334 44433
number of occurrences 6 3 3 2 2 1 1 1 1

N = Jd = 500

(G,H1, H2, H3, H4) 33333 33332 33323 43333 34342 32323 33343 34332 34322 44332
number of occurrences 6 3 2 2 2 1 1 1 1 1

Exhaustive Search Table 7 presents which sets (G,H1, H2, H3, H4) had the best ICL-
BIC value in the exhaustive search. The number of occurrences indicates how many times
the sets were chosen. It is here noticed that the right numbers of clusters (G,H1, H2, H3, H4) =

(3, 3, 3, 3, 3) has been chosen more times for the biggest dataset with (N = Jd = 500). This
result is coherent because the proposed ICL-BIC is based on asymptotic approximations.

Heuristic search Table 8 presents which sets (G,H1, H2, H3, H4) were chosen by the
heuristic search. Once again, the algorithm works better for the biggest dataset with
(N = Jd = 500).

Search computation time The simulations were run with Linux 4.9.0-3-amd64 server,
on a Debian 9 version. For the dataset with N = Jd = 100, the exhaustive search took

Table 8: Heuristic search results on 20 simulations results.

N = Jd = 100

(G,H1, H2, H3, H4) 33333 22223 22233 22234 22243 22244 22334 23223 32223 33334 34334 37334
number of occurrences 5 3 3 1 1 1 1 1 1 1 1 1

N = Jd = 500

(G,H1, H2, H3, H4) 33333 32233 22333 23234 32333
number of occurrences 10 5 3 1 1
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23 minutes, while the heuristic search took at most 18 minutes. For the dataset with
N = Jd = 500, the exhaustive search lasted 33 hours whereas the heuristic search took
at most 2 hours. This means that in the case of a small dataset, it can be interesting
to run an exhaustive search. Indeed, it does not take much more time than the heuristic
search. However, an exhaustive search as it was realized in this simulation requires to know
the neighborhood of the right set (G,H1, H2, H3, H4). For a bigger dataset, the heuristic
search is recommended as it is very efficient and until 15 times faster than the exhaustive
search. Furthermore, we can expect it to be even more than 15 times faster in case of
bigger datasets than the ones used in these simulations.

5.4 Conclusion

As a conclusion for this simulation study, the SEM-Gibbs algorithm is efficient for esti-
mating the model parameters and the partitions. For model selection, if we know that
the ICL-BIC criterion leads to a consistent estimation of the number of blocks when the
number of rows and column growth to infinity (see [19]), its behavior for finite sample
size remains satisfying. Moreover, using the proposed heuristic search among the possible
values for the number of clusters allows to drastically reduce the computing time without
significantly decreasing the performance of the estimation.

6 Real data applications

In this section, two real datasets are considered. The first one regards the famous TED
talks1 and contains the transcripts and ratings of TED Talks uploaded to the official
TED.com website until September 21st, 2017. It is a mixed dataset because the transcripts
are textual data whereas the ratings are numbers. The second dataset is the result of a
survey that Slovakian Statistic students gave to people around them. The responses were
categorical with different numbers of level and some of them were ordinal.

6.1 Co-clustering of count and continuous data

The TED talks dataset TED is a non-profit organization which posts conferences
on-line for free distribution. The conferences address a wide range of topics, including
science, culture and innovation. The TED talks dataset2 contains information about 2467

TED Talks. This work is focused on their transcript and their rating, which is given by
the users. The rating system is special on this website. A list of fourteen words was de-
fined (beautiful, inspiring, persuasive, fascinating, ok, longwinded, confusing, informative,
courageous, ingenious, funny, obnoxious, unconvincing, jaw-dropping). When a user wants
to rate a talk, he is asked to choose the three words that best describe the talk according
to him.

1https://www.ted.com/talks
2https://www.kaggle.com/rounakbanik/ted-talks/data

17

https://www.ted.com/talks
https://www.kaggle.com/rounakbanik/ted-talks/data


Dataset pre-treatments First of all, a couple of TED talks were actually a musical
performance. Their transcript were similar to "(Applause)(Music)(Applause)", which is
information-less, so these talks were removed from the dataset. Then, the other transcripts
were projected into a Document-Term matrix, each cell counting the occurrences of a term
in a talk. By observing the matrix, we realized that some of the term would occur only
once in the whole corpus. It appeared that most of them were onomatopoeia as "aargh"
or "aaaaaaaargh". We decided to remove them: we assumed that these words would not
bring valuable information, and that in the same time, it would reduce the dimension of
the matrix. The ratings variables were used without changes. The resulting matrix is
therefore of dimension (2 464 × (40 137 + 14)), in other words, N = 2 464, J1 = 40 137

J2 = 14. The dataset is seen as two matrices of different types (D = 2). The first one is
the Document-Term matrix of the transcripts whose occurrences are modeled by a Poisson
distribution. The second matrix represents, for each talk, the number of users that voted
for each of the words in the proposed adjectives list. Given the high number of votes, this
number is modeled by a Normal distribution.

Co-clustering as a parsimonious clustering The main motivation on this dataset
is to cluster the TED talks to distinguish the different kinds of talks, and to observe the
ratings of each row-cluster. Using a classical clustering technique is not conceivable because
of the high dimensionality of the dataset. The latent class model, for example, would define
a distribution for each of the 40 151 variables and for each class, which is definitely over-
parameterized not interpretable. With a co-clustering technique not only will the talks be
clustered, but the variables will be clustered as well, which will result in a small number
of interpretable blocks.

Co-clustering results After having searched for the highest ICL-BIC as explained in
Section 3.2 with (Gmin, H1min , H2min) = (2, 2, 1), the best set (G,H1, H2) was found to
be equal to (8, 6, 2). Figure 3 gives a representation of the blocks’ parameters. For the
Document-Term matrix, the δ parameters are represented by the shades of gray. The lighter
the block is, the lower its corresponding δ parameter is. When a block’s δ parameter is high,
it means that the column-cluster terms of this block are quite specific to the corresponding
row-cluster. For the ratings matrix, the shades of gray represent the µ parameter of the
resulting blocks. The darker the block is, the higher the µ parameter is.

First of all, we focus on the row-clusters of the document-term-matrix. By reading the
titles of the same row-clusters, we notice that the co-clustering grouped talks with similar
topics. As an example the third group seems to be about high technology and science
with titles like "A robot that runs and swims like a salamander", "A mobile fridge for
vaccines" or "The hunt for a supermassive black hole"; whereas the fourth group refers
to politics, with talks called as "Why Brexit happened – and what to do next", "How
ideas trump crises" , "Aid for Africa? No thanks.". By reading the ratings row-cluster
parameters, we realize that the seventh row-cluster were marked about ten times more than
the documents of the other row-clusters. It is interesting to observe that it corresponds to
a row-cluster closely related to psychology and introspection. Table 9 gives an overview
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of the Document-Term matrix row-clusters, by detailing some titles and the topic that
was deduced from these latter. On another side, two row-clusters were more difficult to
interpret. For example, the eighth row-cluster gathers talks as "Dare to educate Afghan
girls", "Averting the climate crisis", "Fighting with nonviolence" or "What it’s like to be
a parent in a war zone". Even if the talks tend to be about education and parenting, the
inherent topic is not obvious nor unique. The same issue was observed with the third row-
cluster: with titles as "The magic of Fibonacci numbers", "A new equation for intelligence"
or "New thinking on the climate crisis", it is hard to define a unique subject for this group.

It is not easy to explain the terms clusters because these column-clusters contain av-
eragely about 6 000 variables. However, we extract here some of the 100 most frequent
words for some notable blocks with high δ parameters to check if they are relevant to
the row-clusters inherent topics of Table 9. First, from Figure 3a we notice the block
(6, 1) (corresponding to the 6th row-cluster and 1st column cluster). Among the most
frequent words, we note "knowledge", "future", "company", "information", "community",
"working", "imagine", which are relevant to the 6th row-cluster topic about innovation and
high-technology. Then, we notice the block (4, 5). Some of the most frequent terms are
"phenomenon", "coffee", "discovery", "organisms", "suffering", which, again, correspond
to the 5th row-cluster topic about medicine and health. Finally, the block (5, 6) is inves-
tigated. It appears that its column-cluster terms are specific to the 5th row-cluster about
politics, and we find the words "india", "history", "technology", "program", "impact"
among the most frequent ones.

We focus now on the column-clusters of the ratings for the TED talks. The adjec-
tives were split into two groups. The first column cluster is composed of the following
adjectives: "Inspiring", "Beautiful", "Courageous", "Persuasive", "Fascinating", "Infor-
mative", "Funny". In average, these adjective were more voted than those of the second
column-cluster, and this for all the row clusters. The second column-cluster is composed
of the adjectives "Ingenious", "Confusing", "Jaw-dropping" "Obnoxious", "Longwinded",
"Unconvincing","OK".

From these observations, we can conclude that the co-clustering helped understanding
and summarizing the dataset. First, it allowed to cluster the TED-talks documents and
the resulting classes showed relevant results regarding the titles topics and corresponding
term column-clusters. Furthermore, the rating matrix allows the user to interpret which
kind of talks are preferred to the others. Overall, the co-clustering results gave an overview
of a big dataset which could not be easily done by a human.

6.2 Co-clustering of ordinal and nominal data

Young People Responses to questionnaires In 2013, Slovakian students of a
statistics class were asked to invite their friends to participate in a survey that concerned
several aspects of their life 3. The responses were defined on different scales; for example,
a question as "I enjoy listening to music." could be answered from 1 ("Don’t enjoy at all")
to 5 ("Enjoy very much"). The questions regarding music preferences, movie preferences,

3https://www.kaggle.com/cardot/se-young-people-survey/data

19

https://www.kaggle.com/cardot/se-young-people-survey/data


Table 9: Row-cluster interpretation for the TED talks dataset.

Row-cluster
number

Example titles Interpreted topics

1

"My year of living biblically",
"My journey from Marine to actor",
"How I’m preparing to get Alzheimer’s",
"12 truths I learned from life and writing",
"The year I was homeless"

Story-telling

2

"Art that craves your attention",
"Building a museum of museums on the web",
"How to engineer a viral music video",
"A one-man orchestra of the imagination",
"Moving sculpture"

Art,
Culture

3

"The magic of Fibonacci numbers",
"How behavioral science can lower your energy bill",
"New thinking on the climate crisis",
"A new equation for intelligence",
"Winning the oil endgame"

Energy,
Climate,

Mathematics

4

"A map of the brain",
"Your brain hallucinates your conscious reality",
"Is anatomy destiny?",
"Growing new organs",
"A doctor’s case for medical marijuana"

Medicine,
Health

5

"Why Brexit happened – and what to do next",
"How ideas trump crises",
"Aid for Africa? No thanks.",
"The surprising way groups like ISIS stay in power",
"The attitudes that sparked Arab Spring"

Politics

6

"A robot that runs and swims like a salamander",
"A mobile fridge for vaccines",
"The hunt for a supermassive black hole",
"Hands-on science with squishy circuits",
"How we’ll find life on other planets"

High technology,
Science,

Innovation

7

"Who are you, really? The puzzle of personality",
"How to succeed? Get more sleep",
"Your body language may shape who you are",
"A kinder, gentler philosophy of success",
"What really matters at the end of life"

Psychology,
Introspection

8

"What it’s like to be a parent in a war zone",
"Teachers need real feedback",
"Averting the climate crisis",
"Dare to educate Afghan girls",
"Fighting with nonviolence"

Education,
Crisis
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(a) (b)

Figure 3: Block representation of the Document-Term matrix (left) and of the ratings
matrix (right). The shades of gray represent, for the Document-Term matrix, the
δ parameter of each block, whereas they represent the µ parameter for the ratings
matrix.

hobbies and interests, spending habits and phobias are seen as 5 levels ordinal data, not
only because the answers are on a scale, but also because two answers can be compared. For
example, questions concerning the music preferences could be : "I enjoy classical music."
or "I enjoy rock music.", and both could be responded on a scale from 1 ("Don’t enjoy at
all") to 5 ("Enjoy very much"). In this case, the order in the responses is clear, and one
can easily compare the two answers of a same user. However, in the case of personality
traits, views on life and opinion, questions could be: "I have to be well prepared before
public speaking."or "I always keep my promises.", still on a 5 levels scale from 1 "(Strongly
disagree)" to 5 "(Strongly agree)". The order of the responses can not be compared, so
considering them as ordinal would make their interpretation too arbitrary. That is why
these questions where considered as categorical variables, with a number of levels equal
to 5. Furthermore, demographic questions like "What is my gender?", with responses
"Female" or "Male" are modeled as categorical variables with 2 levels. At last, 1 010

people answered this survey.
Thus, the resulting matrix is of dimension (1 010 × (80 + 5 + 54)), so N = 1 010,

J1 = 80, J2 = 5 and J3 = 54. The dataset is seen as three matrices of different types. The
first one regards the 80 questions answers considered as ordinal, with 5 levels. The second
one contains the 5 questions with answers considered as nominal, with 2 levels. Finally, the
third one represents the 54 questions with answers considered as nominal, with 5 levels.

At last, the dataset contained a few missing data (0.4%), which will be estimated
through the SEM-Gibbs algorithm as explained in Section 3.

Co-clustering results The SEM-Gibbs algorithm repeated 150 iterations and the
burn-in period was fixed to 100 iterations. These numbers were defined with the same
technique as 6.1, by checking the evolution of several parameters through the SEM-Gibbs
iterations. The best set (G,H1, H2, H3) was found to be equal to (3, 4, 2, 4). Figure 4 shows
the resulting co-clustering, and Table 10 gives the estimated parameters of each block.
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Figure 4: Co-clustering result on Young People Survey.

First of all, we notice that the first row cluster has the lowest position parameter µ
on ordinal data’s first column cluster. This means that people from this group globally
enjoy less – or are less interested in, or are less afraid of – the topics of this column clus-
ter’s questions. Among others, some of these topics are classical music, branded clothing,
psychology, politics or dangerous dogs. What’s more, the parameters show that this row
cluster is quite heterogeneous. Indeed, it has the lowest position parameters π on the two
first column clusters of ordinal data, and they systematically has the highest β1 and β5 on
categorical data with 5 levels. We observe now the second row-cluster. We notice that it
has a β3 parameter equals to 0.5 on the personality’s questions first column-clusters, which
is high. It means that people from this row-cluster are quite indecisive about the topics
of these column-cluster’s questions. Among others, the questions were "I am 100% happy
with my life.", "I believe all my personality traits are positive.", "I have lot of friends.",
"My moods change quickly.".

At last, we analyze the fourth column-cluster of the ordinal variables. We notice that
it has the highest position parameter for all the row-clusters with µ = 5. The questions of
this column-cluster are: "I enjoy listening to music", "I enjoy watching movies", "I enjoy
comedies", "I am interested in internet", "I am interested in socializing". This means that
the interviewed persons globally agree on being very interested in these topics.

7 Conclusion

This article presented a model-based co-clustering model for datasets made of mixed type
data. It relies on the latent block model and the inference is done through an SEM-Gibbs
algorithm. The method has the great advantage to have an efficient criterion for selecting
the number of row and column clusters. Furthermore, the parameters that are estimated
on each block allow the user to easily interpret the partitions. Finally, the missing data is
handled, which is often useful in the case of real datasets. The efficiency of the algorithm
was proven on a simulated dataset and on real application and an R package implemented
with C++ is available upon request to the authors. Moreover, if a user is interested in
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Table 10: Resulting co-clustering parameters for dataset about students’ survey.

Ordinal (m = 5)

µ, π

Nominal (m = 2)

β1, β2

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 4 col-cluster 1 col-cluster 2
row-cluster1 1,0.08 5,0.16 1,0.41 5,0.69 0.1,0.9 0.63,0.37
row-cluster 2 3,0.25 3,0.21 1,0.31 5,0.52 0.11,0.89 0.62,0.38
row-cluster 3 3,0.14 5,0.28 1,0.24 5,0.74 0.1,0.9 0.7,0.3

Nominal (m = 5)

β1, β2, β3, β4, β5

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 4
row-cluster1 0.10,0.13,0.32,0.2,0.25 0.3,0.15,0.25,0.12,0.18 0.10,0.10,0.19,0.16,0.45 0.39,0.10,0.15,0.09,0.27
row-cluster 2 0.02,0.14,0.5,0.28,0.06 0.13,0.29,0.38,0.16,0.04 0.02,0.13,0.34,0.33,0.18 0.23,0.23,0.26,0.16,0.12
row-cluster 3 0.03,0.11,0.36,0.35,0.15 0.16,0.25,0.31,0.18,0.10 0.03,0.08,0.20,0.31,0.38 0.24,0.16,0.19,0.18,0.23

clustering the observations, the proposed co-clustering algorithm gives a parsimonious way
to do this, by grouping all the features in a small number of clusters.

We discuss now the limits of this model. Obviously, the main issue is that the variables
of different types cannot be part of the same column-cluster since it assumes that the
elements of a same block share the same distribution. It would be interesting to find
an approach to overcome this problem. Furthermore, as it came up in Section 4.1, the
way the data is encoded can have a strong impact on the co-clustering resulting partition.
Although there exist ways to tackle the matter in some cases as detailed in [5], the user
should be aware of it. Additionally, the influence of each kind of features on the resulting
row partitions shall be investigated more deeply in a future work. Indeed, the expression
of the probability of a row to belong to some row-cluster will be more impacted by certain
types of data, even if the D matrices have the same number of features Jd. Also, the case
where Jd are not equal should be studied. Actually, the user could be interested in giving
the same importance to the D matrices, even if they do not have the same number of
features.
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