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Abstract

The importance of clustering for creating groups of observations is well known.

The emergence of high-dimensional data sets with a huge number of features

leads to co-clustering techniques, and several methods have been developed for

simultaneously producing groups of observations and features. By grouping the

data set into blocks (the crossing of a row-cluster and a column-cluster), these

techniques can sometimes better summarize the data set and its inherent struc-

ture. The Latent Block Model (LBM) is a well-known method for performing

co-clustering. However, recently, contexts with features of different types (here

called mixed type data sets) are becoming more common. The LBM is not di-

rectly applicable to this kind of data set. Here a natural extension of the usual

LBM to the “Multiple Latent Block Model” (MLBM) is proposed in order to

handle mixed type data sets. Inference is performed using a Stochastic EM-

algorithm that embeds a Gibbs sampler, and allows for missing data situations.

A model selection criterion is defined to choose the number of row and column

clusters. The method is then applied to both simulated and real data sets.
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1. Introduction

Clustering algorithms have become a widely used method due to their abil-

ity to provide new insights into unlabeled data sets. They consist in forming

homogeneous groups of observations referred to as “clusters”. Clustering algo-

rithms highlight the data’s inherent structure. However, the recent “big-data”5

phenomenon has greatly increased the number of features, leading to the emer-

gence of high-dimensional data sets. Clustering techniques are consequently not

always sufficient to discern the structure. The analysis of a cluster relies on a

representative of the cluster (mean, mode. . . ). However, the latter is itself de-

scribed by a large number of features, which makes it more difficult to interpret10

and makes the summary of the data set less useful. From this consideration

comes the need to also “summarize” the features, which can be done by gath-

ering them into clusters, in parallel with the usual clustering of observations.

Co-clustering methods seems to be a good option for performing this task be-

cause they perform joint clustering of rows and columns. The initially large15

data matrix can be summarized by a limited number of blocks that result from

combining row-clusters and column-clusters.

Among the most famous co-clustering techniques, the Non-negative Matrix

Tri-Factorization consists in factorizing the N ×P data matrix x into three ma-

trices a (of size N ×G), b (G×H), c (H ×P ), with the property that all three20

matrices have non-negative elements, see for instance [1]. More specifically, the

approximation of x by x ≈ abc is achieved by minimizing the error function

min
(a,b,c)

||x − abc||F , with the constraints (a ≥ 0, b ≥ 0, c ≥ 0), meaning that all

elements of a, b and c are greater than 0, and ||.||F being a matrix norm to be

chosen. The matrix b represents the block matrix: an element bgh of b summa-25

rizes the observations belonging to row-cluster g and column-cluster h. Despite

the non-negative property of the matrices, it is not always easy to interpret the

resulting matrices. For example, matrices a and c are not always normalized

which makes it difficult to interpret them in terms of rows and columns be-

longing to corresponding clusters. Furthermore, this technique depends on the30
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choice of the distance measure. Conversely, probabilistic approaches propose

normalized membership matrices, and do not require the user to choose a par-

ticular distance measure. In the Latent Block Model [2], referred to as “LBM”,

the elements of a block are modeled by a parametric distribution. Therefore,

the results give more information than a simple scalar, as mentioned in the pre-35

vious methods. Each block is therefore interpretable via the parameters of the

block-distribution. Moreover, model selection criterion such as the ICL criterion

[3] can be used for model selection purposes, including the choice of the number

of co-clusters. This technique has proved its efficiency in co-clustering several

types of data: continuous [4], nominal [5], binary [6], ordinal [7], and functional40

[8, 9]. For this reason, an extension of this model is used in the present work,

although originally it was not able to take heterogeneous data as an input.

Heterogeneous data sets are composed of features of different types. For

example, in medicine, a patient’s file can be composed of images (X-rays), text

(medical reports), continuous data (age, blood test results. . . ), categorical data45

(social category, pregnancy, drug addiction. . . ), and even functional data (pulse,

blood pressure. . . ). Several clustering frameworks have been developed to ad-

dress this particularity. The latent class model [10] is frequently used. It as-

sumes that the variables are conditionally independent upon the row-cluster

membership. Consequently, the joint probability distribution function (PDF)50

of the features of different types is obtained by the product of the PDFs of each

individual feature (see an implementation using Mixtcomp software [11]). How-

ever, when the variables are inherently correlated in a row-cluster, this model is

not suitable. To overcome this issue, the authors of [12] want to conserve stan-

dard marginal distributions but also try to loosen the conditional independence55

on the variables. For this purpose, they use copula, which allow definition of

both the dependence model and the type of marginal distributions. The pro-

posed model relies on the main assumption that each cluster follows a Gaussian

copula. However, the authors note that model complexity increases with the

number of variables, which is not suitable in a big-data context. Another way60

to address the issues of heterogeneous data is to see some variables as the man-

3



ifestation of a latent vector. For example, in [13], the clustMD model considers

continuous and categorical data (nominal and ordinal) and assumes that a cate-

gorical variable is the representation of an underlying latent continuous variable.

Then, it is assumed that the continuous variables (observed and unobserved)65

follow a multivariate Gaussian mixture model. Until now, these methods have

proposed models for basic data such as categorical (nominal or ordinal) and

continuous data. In [14], the authors allow the introduction of more complex

data such as functional data or networks by projecting the data set into a re-

producing kernel Hilbert space. Regarding the analysis of variables, multiblock70

methods, widely used in Chemistry and Biology, handle data sets that share the

same observations but have variables measured differently. They aim at find-

ing underlying relationships between these data sets. In particular, multiblock

component models use latent variables to summarize the relevant information

between and within the sets (see [15] for a complete survey).75

However, none of these techniques were developed in a co-clustering frame-

work. To the best of our knowledge, the only work to co-cluster heterogeneous

data is [16], which extends the LBM for data sets with continuous and binary

data. The present work goes further by proposing an extension that can take

into account four types of data: categorical, continuous, count and ordinal data.80

Furthermore, the inference algorithm can deal with missing values and proposes

a way to impute them. Finally, the Integrated Completed Likelihood (ICL)

criterion [3] is adapted to the proposed model in order to select the number of

row-clusters and column-clusters.

Co-clustering techniques can be seen as an efficient alternative method to the85

selection of variables thanks to its parsimony, especially in very high dimensions.

In addition, it can produce interpretable sets of variables since it can group

redundant variables or noisy variables. In this way, a first, naive answer is to

manually select the informative blocks, but [17] alternatively defines a model

that automatically distinguishes the informative blocks for textual data sets. For90

mixed data, variable selection is more challenging. [18] performs clustering while

incorporating variable selection and this method can produce homogeneous row-
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clusters. However, compared to co-clustering, it does not provide interpretable

column-clusters, which may be essential for the summary of the data set, in

particular with a high number of variables.95

The paper is organized as follows. Section 2 gives an overview of the LBM to

help understanding of this paper. Then, it proposes an extension to a new LBM

version that allows heterogeneous data sets. Section 3 proposes an algorithm for

model inference, based on a Stochastic Expectation Maximization [19] algorithm

coupled with a Gibbs sampler. In Section 4, a description of the different types of100

data that can be taken into account with this method is given, and formulas for

model inference are presented. Section 5 assesses the efficiency of the proposed

method on simulated data while Section 6 shows how the method performs on

real data sets. Section 7 provides a conclusion.

2. Multiple Latent Block Model105

Here, the Latent Block Model is presented. Then its extension to the Mul-

tiple Latent Block Model is detailed.

2.1. Latent Block Model

The LBM is a widely used model to perform co-clustering [2]. Basically,

it assumes that all elements of a block follow the same distribution. In this110

section, the assumptions used for the LBM are defined, and the mathematical

details are given.

The LBM considers that all features can potentially be grouped together

(restrictions will be imposed in the next section to define the “Multiple LBM”).

Consider the data matrix x = (xij)i,j , where i ∈ {1, . . . , N} is the row (observa-115

tion) index and j ∈ {1, . . . , J} is the column (feature) index. It is assumed that

there are G row-clusters and H column-clusters that correspond to a partition

v = (vig)i,g of the rows and a partition w = (wjh)j,h of the columns, with

1 ≤ g ≤ G and 1 ≤ h ≤ H, where vig is equal to 1 if row i belongs to cluster

g, and 0 otherwise; and similarly wjh is equal to 1 when column j belongs to120
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cluster h, and 0 otherwise. In order to simplify the notations, the underlying

range of variation will be omitted in the sums and products, and they will be

written
∑
i

,
∑
j

,
∑
g

and
∑
h

,
∏
i

,
∏
j

,
∏
g

and
∏
h

.

The first LBM assumption is that the univariate random variables xij are

conditionally independent given the row and column partitions v and w. There-125

fore, the conditional probability density function of x given v and w is written:

p(x|v,w;α) =
∏

i,j,g,h

p(xij ;αgh)vigwjh ,

where α = (αgh)g,h is the distribution parameters of block (g, h).

The second LBM assumption is that the latent variables v and w are inde-

pendent so p(v,w;γ,ρ) = p(v;γ)p(w;ρ) with:130

p(v;γ) =
∏
i,g

γ
vig
g and p(w;ρ) =

∏
j,h

ρ
wjh

h ,

where γg = p(vig = 1) and ρh = p(wjh = 1). This implies that, for all i,

the distribution of vi is the multinomial distribution M(γ1, . . . , γG) and does

not depend on i. Similarly, for all j, the distribution of wj is the multinomial

distribution M(ρ1, . . . , ρH) and does not depend on j.135

From these considerations, the LBM parameter is defined as θ = (γ,ρ,α),

with γ = (γ1, . . . , γG) and ρ = (ρ1, . . . , ρH) the row and column mixing pro-

portions. Therefore, if V and W are the sets of all possible labels v and w, the

probability density function of x is written:

p(x;θ) =
∑

(v,w)∈V×W

∏
i,g

γvigg
∏
j,h

ρ
wjh

h

∏
i,j,g,h

p(xij ;αgh)vigwjh . (1)

2.2. Extension to Multiple Latent Block Model

Now, consider a matrix x composed of D different sets of features. It has

N rows and J =
∑D
d=1 Jd columns, Jd being the number of features of the d-th

set:

x = (x1, ...,xD), with xd = (xdij)i=1,...,N ; j=1,...,Jd .140

Here, the idea of “sets” of features is introduced to define the features we

potentially want to group together in a column-cluster, and those we do not
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want to be together. Thus, features of a same set can be grouped together

in an intra-set column-cluster; features of different sets cannot. There are two

reasons for separating features into different sets: a technical one and a semantic145

one. Firstly, two features of different types (e.g. a categorical feature and a

continuous one) are chosen so as not to be modeled with a similar probability

distribution, but rather with a standard distribution suitable to their type. Since

it will be assumed later that all the features in a column-cluster have the same

PDF., such an assumption is not suitable for features of different types. This is150

the reason for this work. Secondly, the user can consider, for practical reasons,

that some features necessarily have to be separated because it does not make

sense to gather them in a same column cluster. This case is not explored in the

present work, but the reader can refer to [20] for a detailed example. The sets

of elements (x1, . . . ,xD) are annotated (xd)d with d ∈ {1, . . . , D}.155

In the co-clustering framework, it is assumed that G row-clusters and H =

H1+ . . .+HD column-clusters exist, and that they are inherent to the matrix x.

Moreover, the sums and the products relating to sets of features will be written

in subscript by the letter d. Again, the underlying range of variation will be

omitted in the sums and products, thus they are written
∑
d

and
∏
d

.160

Finally, a data set may have missing data. To deal with this aspect, the

dth matrix xd is said to be made up of two sets x̌d and x̂d, where x̌d is the

observed data, and x̂d is the missing data. An element of xd will be annotated

x̌dij if xdij is observed, and x̂dij otherwise. To model missing values, three main

processes exist in data analysis (we refer to [21] for a complete review). The165

Missing Completely At Random (MCAR) process assumes that the missing data

mechanism is unrelated to the values of any variables: for example, in a survey,

participants accidentally skipped questions. The Missing At Random (MAR)

process supposes that a missing value has nothing to do with the variable whose

value is missing, but it does have to do with the values of other variables. For170

example, males are less likely to fill in a depression survey but this has nothing to

do with their level of depression, after accounting for maleness. The last process

is called Missing Not At Random (MNAR) and occurs when the missing value
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is directly influenced by the variable itself. For instance, a drug addict may

not answer a question about drugs precisely because of their addiction. In the175

present work, it is assumed that the whole missing process is MAR, because it

is the most frequent situation encountered in practice [22].

The LBM relies on the assumption that the block’s elements are the real-

izations of a random variable that follows a distribution with parameter α. In

this work, we chose to adopt a standard distribution for each kind of feature180

(e.g. Gaussian for continuous data and Poisson for count data). In this con-

text, if the elements of the blocks are not of the same type, it is not possible

to consider that they were sampled from the same distribution. The Multiple

Latent Block Model (MLBM) was defined in [23] for two matrices of binary

data separated into two blocks for semantic reasons. In this paper, the MLBM185

is extended for D ≥ 1 matrices such that each matrix may have continuous, cat-

egorical, ordinal or count data. In this model, the columns of the matrix x are

reordered such that x is composed of D matrices put side by side, each matrix

containing features of homogeneous type as described above. The co-clustering

is performed in such a way that features of different types cannot be part of190

a same column-cluster. Consequently, it is possible to define a distribution on

each block because it is made of variables of the same type. Figure 1 illustrates

the idea behind this model.

Let wd denote the column partitions of the d-th matrix (1 ≤ d ≤ D),

ρd = (ρd1, . . . , ρ
d
Hd

) the corresponding mixing proportions, and let us introduce195

the notations w = (wd)d and ρ = (ρd)d.

The MLBM relies on several assumptions. The first one states that the D

matrices data are conditionally independent of the row and column partitions,

and specifically that, for all t 6= d the matrix xd does not depend on the column

partitions wt:200

p(x|v,w) = p(x1|v,w1)× . . .× p(xD|v,wD).

The other assumptions of the MLBM are similar to those of the LBM. Firstly,

the univariate random variables xdij are assumed to be conditionally independent
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(a) (b)

Figure 1: (a) is the matrix x. The blue lines represent the separation of the features that

are not of same type. (b) is the matrix after having performed a co-clustering. The red lines

represent the co-clusters limits.

on partitions v and wd. Thus, the conditional probability function of x given

v and (wd)d is expressed as:205

p(x|v,w;α) =
∏

i,j,g,h,d

p(xdij ;α
d
gh)vigw

d
jh ,

where α = (αd)d with αd = (αdgh)g,h is the distribution parameters of block

(g, h) of matrix xd.

Second, the latent variables v,w1, . . . ,wD are assumed to be independent,

so: p(v,w;γ,ρ) = p(v;γ)
∏
d

p(wd;ρd), where:210

p(v;γ) =
∏
i,g

γ
vig
g and p(wd;ρd) =

∏
j,h

ρdh
wd

jh .

The MLBM parameter is thus defined by θ = (γ,ρ,α). Moreover, if V and

(W d)d are the sets of all possible labels v and (wd)d, the probability density

function p(x;θ) is written:

p(x;θ) =
∑

(v,(wd)d)∈V×(Wd)d

∏
i,g

γvigg
∏
d

∏
j,h

ρdh
wd

jh
∏
i,j,g,h

p(xdij ;α
d
gh)vigw

d
jh . (2)
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Note that so far the type of p(xdij ;α
d
gh) has not been defined. It will be in

Section 4, based on the type of xdij (nominal, ordinal, continuous, ...).

3. Model Inference

The MLBM inference aims at estimating θ that maximizes the observed

log-likelihood:

l(θ; x̌) =
∑
x̂

log p(x;θ). (3)

The EM-algorithm [24] is a well known method for performing this task with215

latent variables. However, with regard to the co-clustering case, it is not compu-

tationally tractable. Indeed, this method needs to compute the expectation of

the complete data log-likelihood. However, in the case of D = 1, this expression

contains the probability p(vig = 1, wjh = 1|x;θ), which needs to consider all

possible values for vi′ and wj′ with i′ 6= i and j′ 6= j. The E-step would require220

calculation ofGN×HJ terms: for example, ifG = 2, H = 2, N = 20 and J = 20,

each E step of the EM algorithm would need to compute 220×220 ≈ 1012 terms.

Different alternatives to the EM algorithm exist, such as the variational EM al-

gorithm, the SEM-Gibbs algorithm, and other algorithms linked to Bayesian

inference [2]. The SEM-Gibbs version is used in the present work because in225

addition to being known to be less sensitive to initialization, it is simple to

implement. Furthermore, it easily handles missing values x̂ in x, which is an

important advantage for real data sets.

3.1. SEM-Gibbs algorithm

The SEM-Gibbs algorithm begins with an initialization of partitions, pa-230

rameters and missing values v(0),w(0),θ(0), x̂(0). This initialization process is

described in more details later. The following five steps describe the q-th itera-

tion, with q ∈ (1, ..., nbSEM). The choice of the number of iterations (nbSEM)

will also be described later.
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(a) Sampling row partitions. Generate the row partitions with:

p(v
(q)
ig = 1 | x,w(q−1);θ(q−1)) ∝ γ(q−1)g ×

∏
d

tdg(x
d
i.|wd(q−1)

;αd
(q−1)

), (4)

where tdg(x
d
i.|wd(q−1);αd

(q−1)

) =
∏
j,h

f(xdij ;αgh
d(q−1)

)w
d
jh

(q−1)

with xdi. = (xdij)j .235

Note that this probability depends on the data type of the d-th matrix through

the PDF f(xdij ;αgh
d(q−1)

), whose exact expression will be given in Section 4.

(b) First M-step. This first M-step consists in updating the co-cluster parame-

ters θ(q) to maximize the completed log-likelihood (3). The row mixing propor-

tions are consequently updated by:240

γ
(q)
g = 1

N

∑
i

v
(q)
ig ,

and the parameter αd
(q)

is updated as well. However, the computations depend

on the type of matrix x features. Section 4 describes how to update αd
(q)

according to the type of variables.

(c) Sampling column partitions. For all d ∈ {1, . . . , D} generate the column

partitions for the d-th matrix xd with:

p(wdjh
(q)

= 1 | xd,v(q);θ(q)) ∝ ρdh
(q) × sdh(xd.j |v(q);αd

(q−1)

), (5)

where sdh(xd.j |v(q);αd
(q)

) =
∏
i,g

f(xdij ;αgh
d(q−1)

)v
(q)
ig with xd.j = (xdij)i.245

Here, note that sdh obviously depends on the type of the d-th matrix (see Section

4).

(d) Second M-step. In this second M-step, the column mixing proportions are

updated by:

ρdh
(q)

= 1
Jd

∑
j

wdjh
(q)

,250

and the parameter αd
(q)

is also updated depending on the data type of the d-th

matrix (see Section 4).
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(e) Missing values imputation. Generate the missing data x̂d
(q)

ij according to:

p(x̂d
(q)

ij |x̌,v(q),wd(q) ;θ(q)) =
∏
g,h

f(x̂d
(q)

ij ;αd
(q)

)v
(q)
ig w

d
jh

(q)

.

The SEM-Gibbs algorithm is iterated for a given number of iterations. The255

first part of these iterations is called the burn-in period, meaning that the pa-

rameters of θ are not yet simulated according to its stationary distribution.

Consequently, only iterations that occurred after this burn-in period are taken

into account and are referred to as the sampling distribution hereafter. While

the final estimations of discrete parameters give the mode of the sampling distri-260

bution, the final estimations of the continuous parameters give the mean of the

sample distribution. This leads to a final estimation of θ called θ̂. Then, a sam-

ple of (x̂,v,w) is simulated by iterating steps (a), (c) and (e) of the SEM-Gibbs

algorithm with θ = θ̂. The final partitions (v̂, ŵ) and the missing observations

x̂ are estimated using the mode of their marginal sampled distribution.265

Initialization. The algorithm starts with an initialization of the partitions. Then

the mixing proportions and the block parameters are estimated with regard to

these partitions. In the case of D = 1, this initialization can be made randomly

[25], but with D > 1, this often leads to empty clusters. In this work, a spe-

cific initialization strategy was worked out to tackle this issue. It relies on an270

initial random initialization. However, for the first I iterations (such that I is

less than or equal to the burn-in number of iterations), whenever a row-cluster

becomes empty, a percentage of the row partitions is sampled from the Multi-

nomial distributionM(1/G, . . . , 1/G). Concretely, it means that at iteration q,

with q ≤ I, if a row-cluster does not have any element, a percentage of the rows275

of matrix v(q) are erased, and randomly re-sampled. Similarly when a column-

cluster becomes empty on the dth matrix, a percentage of the column partitions

is sampled from the multinomial distribution M(1/Hd, . . . , 1/Hd). Therefore,

if a column-cluster of the dth matrix does not have any element at iteration q

(q ≤ I), a percentage of the rows of matrix wd(q) are erased, and randomly280

re-sampled.
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Choice of the number of iterations. The SEM-algorithm can be slow to reach

its stationary state. After having arbitrarily chosen the total number of itera-

tions, the stability of the algorithm has to be checked. To accomplish that, the

evolution of the parameters through the iterations can simply be graphically an-285

alyzed. If the parameters are “stable” between the burn-in period and the last

iteration then the number of iterations was well chosen. Less subjective ways

exist to evaluate if the stationary distribution has been achieved. The authors

of [26] propose a general approach to monitoring convergence of Markov Chain

Monte Carlo (MCMC) output in which parallel chains are run with starting290

values that are spread relative to the posterior distribution. Convergence is

confirmed when the output from all chains is indistinguishable. This method is

not used in this paper but could have been. Indeed, in Section 5, we show that

we can obtain satisfactory results without this technique.

3.2. Model Selection295

To select the number of blocks (G,H1, . . . ,HD), a model selection criterion

must be used. The most standard ones, like Bayesian Information Criterion

(BIC) [27], rely on penalizing the maximum log-likelihood value l(θ̂; x̌). How-

ever, due to the dependency structure of the observed data x̌, this value is not

available.300

Alternatively, an approximation of the ICL information criterion [3], called

here ICL-BIC, can be invoked to overcome the previous problem due to the

dependency structure in the missing variables (x̌,v,w). The key point is that

this latter vanishes since ICL relies on the completed latent block information

(v,w), instead of integrating on it as it is the case in BIC. In particular, [28]305

detailed how to express ICL-BIC for the general case of categorical data. It is

possible to straightforwardly transpose the ICL-BIC expression given by these

authors by following their work step by step, with no new technical material.

As proved in [23], the resulting MLBM-specific ICL-BIC is expressed by:

ICL-BIC(G,H1, . . . ,HD) =310
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log p(x̌, v̂, ŵ; θ̂)− 1
2 (G− 1) logN −

∑
d

1
2 (Hd − 1) log Jd −

∑
d

1
2νd log(N × Jd),

where νd is the number of parameters to estimate for the d-th matrix xd. It

will depend on G, Hd and the type of the variables of xd. Table 1 in Section 4

gives νd for each type of distribution.

In theory, to find the best number of blocks (G,H1, . . . ,HD), the co-clustering315

has to be executed for each possible value and the result with the highest ICL-

BIC has to be retained. Let nG be the number of candidate values for G, while

nHd
is the number of candidate values for Hd, d ∈ {1, . . . , D}. Thus, the num-

ber of co-clustering to execute is nG × nH1 × . . .× nHD
. For example, if D = 3

and the user wants to try 10 values for G and for each Hd, then it would require320

execution of 104 co-clusterings. Depending on the data set, it might take too

much time to find the best solution. In practice, a good set (G,H1, . . . ,HD)

is found using the following heuristic. Let (Gmin) be the minimum of the can-

didate values for G. Then, (Hdmin
)d is the minimum of the candidate values

for (Hd)d. The algorithm starts with the set (Gmin, H1min
, . . . ,HDmin

). At325

iteration p, the current best set (G,H1, . . . ,HD) is called (G,H1, . . . ,HD)(p)

and is made of values: (G(p), H
(p)
1 , . . . ,H

(p)
D ). At the pth iteration, (D + 1)

co-clusterings are realized with sets (G(p) + 1, H
(p)
1 , . . . ,H

(p)
D ), (G(p), H(p) +

1, . . . ,H
(p)
D ),. . . ,(G(p), H

(p)
1 , . . . ,H

(p)
D + 1). Then, the ICL-BIC is computed

for each result. If none of the ICL-BIC values are better than for the set330

(G,H1, . . . ,HD)(p), the algorithm finishes and (G,H1, . . . ,HD)(p) is the set to

use. Otherwose, the set with the highest ICL-BIC is retained, and becomes

(G,H1, . . . ,HD)(p+1). The algorithm then reiterates the same steps.

4. Modeling of the different types of data

Representing the data as a mathematical object is challenging and requires335

compromise. Often the user has to find a trade-off between information loss, in-

terpretability and feasibility for their representation. The model described here

can work with the following types of data: categorical data (nominal, ordinal,

binary), count data, continuous data and document-term matrices. While the
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probability distributions for nominal (Multinomial), binary (Bernoulli), count340

(Poisson) and continuous (Gaussian) data are widely accepted, several ways to

model textual and ordinal data exist.

The simplest way to represent textual data is as a Document-Term count

matrix where a cell counts how many times a term appears in a document. The

Poisson distribution is a good distribution for modeling this matrix because it345

models the occurrences of an event (in this case, the appearances of a word).

In a more advanced way, the Document-Term TF-IDF matrix, counts the times

a term appears, but penalizes the result if this same term appears in the other

documents [29]. The resulting score is continuous numeric which implies the

usage of the Gaussian distribution. In the latter, the “stop-words” terms are350

discarded. However, even with the TF-IDF normalisation, the Gaussian dis-

tribution is not the best way to handle Document-Term matrices [30]. Lots of

other Document-Term matrix types exist, and they have proven their efficiency

in many applications [17, 6]. In this work, a simple Document-Term matrix

representation is considered. When handling Document-Term matrix data only355

(and no other kind of data), diagonal LBM or equivalent approaches are more

appropriate since the matrix is sparse [31, 32].

Ordinal data is also a sensitive data type. It may seem very easy to model

them as if they were nominal, but doing that would spoil the order between

the different levels, which is an intrinsic property of this type of data. In some360

applications, it can be interpreted as continuous [33] but in other cases it is

not an option. For example, for clinical surveys, psychologists sometimes spend

years defining ordinal scales on abstract concepts like pain, perception of control

or anxiety [34, 35]; it is therefore difficult to project their results onto other

scales or into a continuous space. In the present work, a recent distribution for365

ordinal data (BOS for Binary Ordinal Search model, [36]) is used. It has proven

its efficiency for modeling and clustering ordinal data. The main advantages of

the BOS model are its parsimony and the interpretability of its parameters.

This section describes the expression of the PDF f(xdij ;α
d(q−1)

) and the way

to update αd
(q−1)

, in the SEM-Gibbs algorithm, depending on the type of the370
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matrix xd. The superscripts (q) and (d) are omitted to simplify the expressions.

4.1. Modeling nominal data

A nominal variable is a variable that can take on one of a limited, fixed,

number of possible values. Each of the possible values of a categorical variable

is referred to as a level. For a block (g,h) of nominal data, we consider the375

multinomial distributionM(1,βgh), where βgh = (βrgh)r=1,...,m, and
m∑
r
βrgh = 1.

Therefore, with this type of data, the MLBM block parameter αgh is quoted as

βgh, and the PDF is given by:

f(xij ;βgh) =
m∏
r

(βrgh)I(xij=r),

where I(xij = r) = 1 if xij = r, and 0 otherwise. The update of each βrgh is:380

βrgh = 1
ngh

∑
i,j

vigwjhI(xij = 1),

where ngh is the number of elements belonging to block (g, h).

Firstly, note that if two nominal variables do not have the same number of

levels m, then their distribution are not defined on the same support. Con-

sequently, such variables should be separated into different matrices xd of x.385

Secondly, the co-clustering we propose is dependent on the order of the lev-

els. For example two categorical features with m = 3 levels having respective

parameters β = (0.1, 0.7, 0.2) and β = (0.7, 0.2, 0.1) won’t be detected as two

variables following the same distribution. Consequently they won’t be grouped

together in a similar column cluster, whereas a simple switch in the order of390

the levels could change this and lead to grouping these variables together. Note

that this problem is not specific to co-clustering and is also present in clustering

[37]. While the user should be aware that the results are conditional on the

encoding of levels, this is not an issue addressed in this work.

4.2. Modeling ordinal data395

Ordinal data is a special case of nominal data, where the order between the

levels has a meaning. In the present work, the BOS model [36] is chosen to
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model ordinal data. It is a probability distribution parametrized by a position

parameter µgh ∈ {1, . . . ,m} and a precision parameter πgh ∈ [0, 1]. This dis-

tribution has interesting properties from an interpretation standpoint: it rises400

from the uniform distribution when πgh = 0 to a more peaked distribution

around the mode µgh when πgh increases, and it reaches a Dirac distribution at

the mode µgh when πgh = 1. It is shown in [36] that the BOS distribution is a

polynomial function of πgh with degree m− 1 whose coefficients depend on the

position parameter µgh.405

Therefore, with this type of data, the MLBM block parameter αgh is quoted

as (µgh, πgh), and the PDF is given by:

f(xij ;µgh, πgh) =
m−1∑
r=0

Cr(µgh, xij)π
r
gh,

where Cr(µgh, xij) is a constant depending on µgh and xij .

Since BOS inference relies on an EM-algorithm, the update of parameter410

(µgh, πgh) is obtained through an EM-algorithm. For further details on this

algorithm, see [36]. Similarly to the nominal variables case, if two ordinal vari-

ables do not have the same number of levels, they have to be separated into

different matrices xd of x.

4.3. Modeling continuous data415

In the continuous case, the unidimensional Gaussian distributionN (µgh, σ
2
gh)

is considered. Thus, the MLBM block parameter αgh is here (µgh, σgh) and the

PDF is given by:

f(xij ;µgh, σgh) = exp{ −1
2σ2

gh
(xij − µgh)2}/

√
2πσ2

gh.

The update of parameters (µgh, σ
2
gh) is:420

µgh =
1

ngh

∑
i,j

vigwjhxij and σ2
gh =

1

ngh

∑
i,j

vigwjh(xij − µgh)2.

4.4. Modeling count data

Count variables are modeled by the Poisson distribution. For a block (g,h) of

count data, a Poisson distribution with a specific parametrization is considered:
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P(ni.n.jδgh), where ni. =
∑
j

xij and n.j =
∑
i

xij are the number of occurrences

in row i and the number of occurrences in column j. The parameters ni. and n.j425

are independent of the co-clustering and are consequently preliminary estimated

from the count data matrix. Consequently, the MLBM parameter αgh are only

the parameter δgh, which is the effect of the block (g, h) [38]. The PDF is given

by:

f(xij ; δgh) = 1
xij !

e−ni.n.jδgh(ni.n.jδgh)xij .430

The update of each parameter δgh is obtained by:

δgh =
1

ng.n.h

∑
i,j

vigwjhxij ,

where ng. =
∑
i,j

vigxij and n.h =
∑
i,j

wjhxij .

Finally, Table 1 summarizes the number of parameters ν for each type of data

described above.

Table 1: Number of parameters (ν) of the distribution properties

Data type Distribution αgh ν

Nominal Multinomial βgh = (βrgh)r=1,...,m) (m− 1)GH

Ordinal BOS (µgh, πgh) 2GH

Continuous Gaussian (µgh, σgh) 2GH

Count Poisson (µi, νj , δgh) GH

5. Numerical experiments on artificial data

This section has two goals. The first is to show that the proposed inference435

algorithm works appropriately. The second is to evaluate the model selection

strategy: the efficiency of the ICL-BIC criterion in selecting the true numbers

of clusters and the ability of the heuristic search to sparsely explore the space

of numbers of clusters.
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5.1. Simulation settings440

Two simulation settings are considered. While they both have the same

parameters, the first is built such that (N = J1 = J2 = J3 = J4 = 100), and

the second is built with (N = J1 = J2 = J3 = J4 = 500).

Parameters setup. Both settings were simulated with four types of distribution:

nominal (with m = 5 levels), continuous, ordinal (with m = 3 levels), and count445

data. The number of blocks was set to (G,H1, H2, H3, H4) = (3, 3, 3, 3, 3).

Furthermore, the mixing row proportions were γ = (0.2, 0.3, 0.5) and the mixing

column proportions were equal to: ρ1 = (0.25, 0.3, 0.45), ρ2 = (0.2, 0.35, 0.45),

ρ3 = (0.25, 0.35, 0.4), ρ4 = (0.25, 0.35, 0.4). Table 2 details the parameters that

were assigned to each block.450

Table 2: Value of block parameters. For the count data, parameters are not equal between

the first and second simulation because they depend on the margins.

Nominal m = 5

β1, β2, β3, β4, β5

col-cluster 1 col-cluster 2 col-cluster 3

row-cluster 1 0.05,0.05,0.8,0.05,0.05 0.1,0.25,0.3,0.3,0.05 0.1,0.2,0.4,0.2,0.1

row-cluster 2 0.05,0.1,0.7,0.1,0.05 0.8,0.05,0.05,0.05,0.05 0.4,0.05,0.1,0.05,0.4

row-cluster 3 0.2,0.5,0.2,0.05,0.05 0.8,0.05,0.05,0.05,0.05 0.05,0.8,0.05,0.05,0.05

Continuous

µ, σ

Ordinal m = 5

µ, π

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3

row-cluster 1 100,1 0.5,5 -90,5 3,0.4 1,0.2 3,0.7

row-cluster 2 10,4 -15,1 -95,1 2,0.1 3,0.5 2,0.8

row-cluster 3 -20,1 -30,3 500,4 2,0.5 1,0.8 2,0.2

Count 100

δ × 10−5

Count 500

δ × 10−7

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3

row-cluster 1 1.2 5.5 1.2 4.6 20.5 4.9

row-cluster 2 8.3 5.5 0.5 30.0 20.5 1.6

row-cluster 3 1.3 1.3 3.5 5.5 5.6 14.5
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Experimental setup. For both settings, 20 data sets are simulated, and the same

process is run through. Firstly, the co-clustering is performed on the 20 data

sets with the true numbers of clusters (G1, H1, . . . ,HD) and the correctness of

the parameter estimation is evaluated. Then, we assess the efficiency of the ICL-

BIC criteria by using an exhaustive search among possible values for the number455

of clusters. In order to reduce the number of ICL-BIC values to compute, we

consider only the number of clusters obtained by adding or removing one to

each of the element of the true (G,H1, . . . ,HD). Therefore, for each simulation,

35 = 243 co-clusterings are executed, because 3 values are tested forG,H1,H2,H3

and H4. Then, the set (G,H1, . . . ,HD) with the best ICL-BIC value is retained.460

Afterward, the heuristic search from Section 3.2 is evaluated. In this case, the

number of co-clusterings to be performed is not fixed because the algorithm

stops once it can’t find a better ICL-BIC value.

Choice for the number of iterations. The number of iterations for the SEM-

Gibbs algorithm was set to 150 and the burn-in period was considered to take465

100 iterations. To check if this number of iterations is enough, the evolution

of the parameters is graphically observed, as in Figure 2. Here, only a few

parameters are represented as an example, but it is useful to check for several

parameters. We notice in this example that some of the parameters reached their

stationary state from the beginning of the algorithm, and that other parameters470

needed 50 to 100 iterations to get stable. Therefore, in order to ensure that all

parameters have achieved their stationary distribution, a burn-in period of 100

iterations is considered (over a total number of 150 iterations). Numerical results

in Section 5.2 show that these numbers of iterations are large enough since the

parameters are well estimated with this particular setting.475

Choices for initialization. The number I corresponds to the number of iterations

a certain percentage of the partitions are randomly sampled when a cluster

becomes empty, as explained in Section 3.1. Here, I is tuned to be equal to the

number of iterations for burn-in, while the percentage value was fixed to 20.
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Figure 2: Evolution of parameters ρ through the SEM-Gibbs algorithm iterations. From left

to right, and from top to bottom, the graph represents the evolution of the first element of

each vector ρ1, ρ2, ρ3 and ρ4.

5.2. Parameter and partition estimation480

5.2.1. Parameter estimation

The co-clustering was performed on 20 data sets, with the true numbers

of clusters. The mean absolute errors for the mixing proportions are shown

in Figure 3 and Figure 4. The mean absolute errors between the parameter

values and their estimation are given in Table 3 and Table 4 for the continuous,485

ordinal and count data. For the nominal data, all the mean absolute errors

were less than 0.01. These errors are extremely low, which means that the

model parameters are correctly estimated.

21



Figure 3: Mean absolute error for the mixing proportions with N = Jd = 100.
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Figure 4: Mean absolute error for the mixing proportions with N = Jd = 500.
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Table 3: Value of the block parameters mean absolute error on simulation with N = Jd = 100

for the continuous, ordinal and count matrices.

Continuous

µ, σ

Ordinal m = 5

µ, π

Count

δ × 10−5

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3

row-cluster 1 0.01,0.01 0.03,0.02 0.02,0.02 0.00,0.05 0.00,0.03 0.00,0.05 0.16 1.89 1.33

row-cluster 2 0.04,0.02 0.00,0.00 0.00,0.00 0.00,0.04 0.00,0.03 0.00,0.05 0.87 1.97 1.4

row-cluster 3 0.00,0.00 0.01,0.01 0.01,0.01 0.00,0.02 0.00,0.03 0.00,0.03 0.34 0.83 1.06

Table 4: Value of the blocks parameters mean absolute error on simulation with N = Jd = 500

for the continuous, ordinal and count matrices.

Continuous

µ, σ

Ordinal m = 5

µ, π

Count

δ × 10−7

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 1 col-cluster 2 col-cluster 3

row-cluster 1 0.2,0.03 0.3,0.09 0.1,0.08 0.00,0.04 0.00,0.03 0.00,0.01 0.1 0.2 0.1

row-cluster 2 0.01,0.02 0.1,0.1 0.1,0.06 0.00,0.02 0.00,0.03 0.00,0.04 0.5 0.1 0.1

row-cluster 3 0.00,0.00 0.01,0.01 0.01,0.01 0.00,0.03 0.00,0.02 0.00,0.03 0.3 0.2 0.3

5.2.2. Partition estimation

The partition estimation is assessed using the Adjusted Rand Index, referred490

to as “ARI” [39]. The ARIs for the row and column partitions, on the two

simulated data sets are given in Table 5. We see that the co-clustering algorithm

succeeds in finding the true partitions for the rows and columns.

Table 5: Mean (standard deviation) ARIs for two data sets N = 100 and N = 500.

N Rows Categorical Continuous Ordinal Count

100 0.98 (0.09) 0.95 (0.14) 0.98 (0.07) 1 (0.01) 0.98 (0.09)

500 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00)

5.3. Model selection

In this section, the ICL-BIC criterion’s efficiency is assessed for choosing495

the right number of clusters by row and by column. Furthermore, the heuristic

search described in 3.2 is evaluated. The complexity of the problem should be

emphasized here. Usually, criteria such as BIC or ICL are used to find the right

number of clusters for the row partitions only. In the case of co-clustering, they
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Table 6: Exhaustive search results on 20 simulations results.

N = Jd = 100

(G,H1, H2, H3, H4) 34333 34334 43333 33333 44333 34433 34443 44334 44433

number of occurrences 6 3 3 2 2 1 1 1 1

N = Jd = 500

(G,H1, H2, H3, H4) 33333 33332 33323 43333 34342 32323 33343 34332 34322 44332

number of occurrences 6 3 2 2 2 1 1 1 1 1

are extended to find the right number of clusters for the row partitions and the500

column partitions. In the present work, it is used to find (D + 1) numbers of

clusters (one for the rows, and one for each kind of feature). Mathematically,

the search space is much larger which makes the problem more complex.

Exhaustive Search. Table 6 presents which sets (G,H1, H2, H3, H4) had the best

ICL-BIC value in the exhaustive search. The number of occurrences indicates505

how many times the sets were chosen. Note that the right numbers of clusters

(G,H1, H2, H3, H4) = (3, 3, 3, 3, 3) has been chosen more often for the larger

data set with (N = Jd = 500). This result is consistent because the proposed

ICL-BIC is based on asymptotic approximations. For the data set with (N =

Jd = 100), the model with (G,H1, H2, H3, H4) = (3, 3, 3, 3, 3) is only the fourth510

one to be chosen. However, the average means of the ARI for the co-clustering

when the model chosen was (G,H1, H2, H3, H4) 6= (3, 3, 3, 3, 3), are equal to

(0.94 (0.10), 0.93 (0.08), 0.98 (0.02), 0.98 (0.02), 0.98 (0.02)). This means

that when the criterion for model selection does not find the true model, the

algorithm still finds good partitions.515

Heuristic search. Table 7 presents which sets (G,H1, H2, H3, H4) were chosen

by the heuristic search. Once again, the algorithm works better for the larger

data set with (N = Jd = 500), although the results for (N = Jd = 100) are

good too.

Search computation time. The simulations were run using a Linux 4.9.0-3-520

amd64 server, on Debian 9. For the data set with N = Jd = 100, the exhaustive
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Table 7: Heuristic search results on 20 simulations results.

N = Jd = 100

(G,H1, H2, H3, H4) 33333 22223 22233 22234 22243 22244 22334 23223 32223 33334 34334 37334

number of occurrences 5 3 3 1 1 1 1 1 1 1 1 1

N = Jd = 500

(G,H1, H2, H3, H4) 33333 32233 22333 23234 32333

number of occurrences 10 5 3 1 1

search took 23 minutes, while the heuristic search took at most 18 minutes. For

the data set with N = Jd = 500, the exhaustive search lasted 33 hours whereas

the heuristic search took at most 2 hours. This means that in the case of a

small data set, it can be interesting to run an exhaustive search, as it does not525

take much more time than the heuristic search. However, an exhaustive search

as it was realized in this simulation requires knowledge of the neighborhood of

the right set (G,H1, H2, H3, H4). For a larger data set, the heuristic search is

recommended as it is very efficient and up to 15 times faster than the exhaustive

search. Furthermore, we can expect it to be even more than 15 times faster in530

case of larger data sets than the ones used in these simulations.

5.4. More challenging data sets

In Section 5.1 the parameter settings for the continuous variables generate

well separated clusters since the means are separate and the variances small.

Besides, the optimal ARIs (ARIs obtained while knowing the parameters) in535

line and in column were always equal to 1. In this section, we change these

parameters so that the clusters are not well separated with regard to the con-

tinuous variables. We used the simulated data set of Section 5.1 with 100 rows

and 400 columns and changed the parameters of the continuous variables. In

each block of the diagonal, we have µ = ε and σ = 1. On the other blocks,540

µ = 0 and σ = 1 (see Table 8). We performed the co-clustering algorithm

20 times for ε equals to 0.5 and 0.2. Then, we performed the co-clustering 20

times with the data set made of the continuous variables only. The optimal
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ARIs of the data set and the ARIs resulting from the co-clustering are given

in Table 9. In this simulation, we see that when the co-clustering algorithm

Table 8: Mean and Standard deviation for the blocks of continuous variables for the more

challenging data sets cases.

col-cluster 1 col-cluster 2 col-cluster 3

row-cluster 1 ε,1 0,1 0,1

row-cluster 2 0,1 ε,1 0,1

row-cluster 3 0,1 0,1 ε,1

Table 9: ARIs for the more challenging data set case.

optimal ARI Rows ARI Categorical ARI Continuous ARI Ordinal ARI Count ARI

ε = 0.5
all variables (1,1,0.89,1,1) 0.96 (0.1) 1 (0) 0.85 (0.11) 0.98 (0.09) 0.96 (0.11)

only continuous (0.86,0.90) 0.69 (0.2) - 0.7 (0.16) - -

ε = 0.2
all variables (1,1,0.28,1,1) 1 (0) 0.94 (0.17) 0.19 (0.12) 0.94 (0.16) 1 (0)

only continuous (0.14,0.28) 0 (0.03) - 0 (0.03) - -

545

is performed only on the continuous variables, it does not distinguish the dif-

ferent blocks well. Indeed, the row-clusters are too mixed. However, when the

other variables (categorical, ordinal and counting) are taken into account, the

co-clustering succeeds in finding the true partitions. In addition, the good es-

timation of the row partitions obtained thanks to the non-continuous variables550

improves the column partitions estimation for the continuous variables.

5.5. Missing data

In this section, we investigate the behavior of the ARIs when missing values

are introduced into the data. Again, we used the data set with 100 rows and

400 columns. We performed the co-clustering algorithm 20 times on the data555

set with 10%, 20%, 30%, 50% and 75% of missing values. Resulting ARIs for

row and column partitions are given in Table 10. We see that up to 30% of

missing values, the ARI does not changes significantly. However, with more

missing values, the ARI for the partitions reduces.
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Table 10: ARIs for a data set with missing values.

ARI type Rows Categorical Continuous Ordinal Counting

Original Simulation 0.98 (0.09) 0.95 (0.14) 0.98 (0.07) 1 (0.01) 0.98 (0.09)

10% NA 1 (0) 1 (0) 0.87 (0.2) 1 (0.01) 1 (0.01)

20% NA 1 (0) 1 (0) 0.88 (0.21) 0.99 (0.01) 0.99 (0.02)

30% NA 0.99 (0.04) 0.98 (0.1) 0.98 (0.07) 0.94 (0.14) 0.87 (0.14)

50% NA 0.59 (0.08) 0.99 (0.01) 0.98 (0.07) 0.93 (0.11) 0.76 (0.18)

75% NA 0.23 (0.13) 0.71 (0.07) 0.77 (0.14) 0.46 (0.08) 0.38 (0.2)

5.6. Conclusion560

As a conclusion for this simulation study, the SEM-Gibbs algorithm is effi-

cient in estimating the model parameters and the partitions. Regarding model

selection, while we know that the ICL-BIC criterion leads to a consistent esti-

mation of the number of blocks when the number of rows and column tends to

infinity (see [28]), its behavior for finite sample size remains robust. Moreover,565

using the proposed heuristic search enables drastic reduction in computing time

without significantly decreasing the performance of the estimation.

When the continuous variables have poorly separated parameters, the co-

clustering succeeds in finding the true row partitions and the true column par-

titions of the other variables.570

When up to 30% of missing values are introduced, the co-clustering succeeds

in finding the true row and column partitions. When there are more than 30% of

missing values, it is more difficult for the co-clustering to find the true partitions.

6. Real data applications

In this section, two real data sets are considered. The first one concerns575

the famous TED talks1 and contains the transcripts and ratings of TED Talks

uploaded to the official TED.com website until September 21st, 2017. It is a

mixed data set because the transcripts are textual data whereas the ratings are

1https://www.ted.com/talks
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numbers. The second data set is the result of a survey that Slovakian Statistic

students gave to people around them. The responses were categorical with580

different numbers of levels and some of them were ordinal.

6.1. Co-clustering of count and continuous data

The TED talks data set. TED is a non-profit organization which posts con-

ferences on-line for free distribution. The conferences address a wide range

of topics, including science, culture and innovation. The TED talks data set2585

contains information about 2 467 TED Talks. This work is focused on their

transcripts and their ratings given by the users. The rating system is particu-

lar on this website. A list of fourteen words was defined (beautiful, inspiring,

persuasive, fascinating, ok, longwinded, confusing, informative, courageous, in-

genious, funny, obnoxious, unconvincing, jaw-dropping). A user wanting to rate590

a talk is asked to choose the three words that best describe the talk.

Data set pre-processing. First of all, a couple of TED talks were actually a musi-

cal performance. Their transcripts were of the form “(Applause)(Music)(Applause)”,

which is informationless, so these talks were removed from the data set. Then,

the other transcripts were projected into a Document-Term matrix, each cell595

counting the occurrences of a term in a talk. It appears that some terms that

occurred only once were onomatopoeia such as “aargh” and “aaaaaaaargh”.

These terms were removed: we assumed that these words do not bring valuable

information, and that at the same time, removing them reduces the dimension

of the matrix. The ratings variables were used without any changes: no normal-600

ization was performed as a pre-processing. In contrast with the Document-Term

matrix, the ratings matrix is not sparse since only 1% of the values are equal

to 0. The mean and standard deviation of the ratings matrix are equal to

175.2 and 538.2 respectively. The resulting matrix is therefore of dimension

(2 464 × (40 137 + 14)), in other words, N = 2 464, J1 = 40 137 J2 = 14. The605

2https://www.kaggle.com/rounakbanik/ted-talks/data
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data set is seen as two matrices of different types (D = 2). The first one is the

Document-Term matrix of the transcripts whose occurrences are modeled by a

Poisson distribution. The second matrix represents, for each talk, the number of

users that voted for each of the words in the proposed adjectives list. Given the

high number of votes, this number is modeled by a Normal distribution. This610

matrix could be seen as a counting matrix as well. However, the proposed Pois-

son model takes into account margins on rows and columns (see ni. and n.j in

Section 4.4). These margins make sense on document-term matrices. However,

on the rating matrix of this application, they are not as relevant. Furthermore,

the Gaussian distribution is more suitable because with a Poisson distribution,615

the mean is equal to the variance: over large numbers like those in the rating

matrix, the Poisson parameters are less informative.

Co-clustering as a parsimonious clustering. The main motivation on this data

set is to cluster the TED talks to distinguish the different kinds of talks, and to

observe the ratings of each row-cluster. Using a classical clustering technique620

is not conceivable because of the high dimension of the data set. The latent

class model, for example, would define a distribution for each of the 40 151

variables and for each class, which is definitely over-parameterized and not in-

terpretable. With a co-clustering technique not only will the talks be clustered,

but the variables will be clustered as well, which will result in a small number625

of interpretable blocks.

Co-clustering results. After having searched for the highest ICL-BIC as ex-

plained in Section 3.2 with (Gmin, H1min
, H2min

) = (2, 2, 1), the best set (G,H1, H2)

was found to be equal to (8, 6, 2). Figure 5 gives a representation of the block

parameters. For the Document-Term matrix, the δ parameters are represented630

by shades of gray. The lighter the block, the lower its corresponding δ param-

eter. When a block’s δ parameter is high, this means that the column-cluster

terms of this block are quite specific to the corresponding row-cluster. For the

ratings matrix, the shades of gray represent the µ parameter of the resulting

blocks. The darker the block, the higher the µ parameter.635
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First of all, we focus on the row-clusters of the document-term-matrix. Note

from the titles of talks with the same row-cluster number that the co-clustering

grouped talks with similar topics. For example the third group seems to be

about high technology and science with titles such as “A robot that runs and

swims like a salamander”, “A mobile fridge for vaccines” and “The hunt for640

a supermassive black hole”; whereas the fourth group refers to politics, with

talks called as “Why Brexit happened – and what to do next”, “How ideas

trump crises” , and “Aid for Africa? No thanks.”. From the ratings row-cluster

parameters, it can be seen that the seventh row-cluster’s talks were rated about

ten times more than the documents of the other row-clusters. It is interesting645

to observe that this corresponds to a row-cluster closely related to psychology

and introspection. Table 11 gives an overview of the Document-Term matrix

row-clusters, giving some titles and the topic that was deduced from them. On

the other hand, two row-clusters were more difficult to interpret. For example,

the eighth row-cluster gathers talks with titles such as “Dare to educate Afghan650

girls”, “Averting the climate crisis”, “Fighting with nonviolence” and “What it’s

like to be a parent in a war zone”. While the talks tend to be about education

and parenting, the inherent topic is not obvious nor unique. The same issue was

observed with the third row-cluster: with titles such as “The magic of Fibonacci

numbers”, “A new equation for intelligence” and “New thinking on the climate655

crisis”, it is hard to define a unique subject for this group.

It is not easy to interpret directly the terms clusters because these column-

clusters contain on-average about 6 000 variables. However, we have extracted

some of the 100 most frequent words for some notable blocks with high δ pa-

rameters to check if they are relevant to the row-clusters’ topics of Table 11.660

Firstly, from Figure 5a, block (6, 1),corresponding to the 6th row-cluster and 1st

column cluster, was noted. Among the most frequent words are “knowledge”,

“future”, “company”, “information”, “community”, “working”, and“imagine”,

which are relevant to the 6th row-cluster topic about innovation and high-

technology. Similarly, block (4, 5) was noted. Some of the most frequent terms665

are “phenomenon”, “coffee”, “discovery”, “organisms”, and “suffering”, which
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(a) (b)

Figure 5: Block representation of the Document-Term matrix (left) and of the ratings matrix

(right). The shades of gray represent the δ parameter of each block for the Document-Term

matrix. For the rating matrix, they represent the µ parameter.

correspond to the 4th row-cluster topic about medicine and health. Finally,

block (5, 6) was investigated. It appears that its column-cluster terms are spe-

cific to the 5th row-cluster about politics, with the words “india”, “history”,

“technology”, “program”, and “impact” among the most frequent ones.670

We now consider the column-clusters of the ratings for the TED talks. The

adjectives were split into two groups. The first column cluster is composed

of the following adjectives: “Inspiring”, “Beautiful”, “Courageous”, “Persua-

sive”, “Fascinating”, “Informative”, and “Funny”. These adjectives were on

average voted for more than those of the second column-cluster, and this for675

all the row-clusters. The second column-cluster is made up of the adjectives

“Ingenious”, “Confusing”, “Jaw-dropping” “Obnoxious”, “Longwinded”, “Un-

convincing”,and “OK”.

From these observations, we can conclude that the co-clustering results

helped provide understanding and a summary of the data set. Firstly, it clus-680

tered the TED-talks documents. The resulting classes were relevant regarding

the titles topics and corresponding term column-clusters. Furthermore, the rat-

ing matrix gives information about the kinds of talks preferred. Overall, the

co-clustering results gave an overview of a big data set that cannot be done

easily by a human.685
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Table 11: Row-cluster interpretation for the TED talks data set.

Row-cluster

number
Example titles Interpreted topics

1

”My year of living biblically”,

”My journey from Marine to actor”,

”How I’m preparing to get Alzheimer’s”,

”12 truths I learned from life and writing”,

”The year I was homeless”

Story-telling

2

”Art that craves your attention”,

”Building a museum of museums on the web”,

”How to engineer a viral music video”,

”A one-man orchestra of the imagination”,

”Moving sculpture”

Art,

Culture

3

”The magic of Fibonacci numbers”,

”How behavioral science can lower your energy bill”,

”New thinking on the climate crisis”,

”A new equation for intelligence”,

”Winning the oil endgame”

Energy,

Climate,

Mathematics

4

”A map of the brain”,

”Your brain hallucinates your conscious reality”,

”Is anatomy destiny?”,

”Growing new organs”,

”A doctor’s case for medical marijuana”

Medicine,

Health

5

”Why Brexit happened – and what to do next”,

”How ideas trump crises”,

”Aid for Africa? No thanks.”,

”The surprising way groups like ISIS stay in power”,

”The attitudes that sparked Arab Spring”

Politics

6

”A robot that runs and swims like a salamander”,

”A mobile fridge for vaccines”,

”The hunt for a supermassive black hole”,

”Hands-on science with squishy circuits”,

”How we’ll find life on other planets”

High technology,

Science,

Innovation

7

”Who are you, really? The puzzle of personality”,

”How to succeed? Get more sleep”,

”Your body language may shape who you are”,

”A kinder, gentler philosophy of success”,

”What really matters at the end of life”

Psychology,

Introspection

8

”What it’s like to be a parent in a war zone”,

”Teachers need real feedback”,

”Averting the climate crisis”,

”Dare to educate Afghan girls”,

”Fighting with nonviolence”

Education,

Crisis
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Co-clustering of each set separately. In this section we perform the co-clustering

algorithm on the Document-Term matrix and on the ratings matrix separately.

We also compare these results with the co-clustering performed with both matri-

ces thanks to the MLBM. On the Document-Term matrix, the row and column

partitions ARIs were on average equal to 0.36 (0.04) and 0.30 (0.04). On the690

ratings matrix, the row and column partitions ARIs were on average equal to

0.04 (0.00) and 0.27 (0.16). This means that the co-clusters obtained with sepa-

rate matrices are very different from the co-clusters obtained using the MLBM.

In particular, co-clustering of each set separately is not relevant to providing a

unified row partition.695

6.2. Co-clustering of ordinal and nominal data

Young People Responses to questionnaires. In 2013, Slovakian students of a

statistics class were asked to invite their friends to participate in a survey that

concerned several aspects of their life 3. The responses were defined on different

scales; for example, a question such as “I enjoy listening to music.” could be700

answered from 1 (“Don’t enjoy at all”) to 5 (“Enjoy very much”). The questions

regarding music preferences, movie preferences, hobbies and interests, spending

habits and phobias are seen as 5 levels ordinal data, not only because the answers

are on a scale, but also because two answers can be compared. For example,

questions concerning the music preferences could be : “I enjoy classical music.”705

or “I enjoy rock music.”, and both could have a reply on a scale from 1 (“Don’t

enjoy at all”) to 5 (“Enjoy very much”). In this case, the order in the responses

is clear, and one can easily compare the two answers of a same user. However,

in the case of personality traits, views on life and opinion, questions could

be: “I have to be well prepared before public speaking.”or “I always keep my710

promises.”, still on a 5 level scale from 1 (“Strongly disagree”) to 5 (“Strongly

agree”). The order of the responses can not be compared, so considering them to

be ordinal makes their interpretation too arbitrary. That is why these questions

3https://www.kaggle.com/cardot/se-young-people-survey/data
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were considered to be categorical variables, with a number of levels equal to

5. Furthermore, demographic questions such as “What is my gender?”, with715

responses “Female” and “Male” are modeled as categorical variables with 2

levels. This survey was completed by 1 010 people.

Thus, the resulting matrix is of dimension (1 010 × (80 + 5 + 54)), so N =

1 010, J1 = 80, J2 = 5 and J3 = 54. The data set is seen as three matrices

of different types. The first contains the 80 questions with answers considered720

as ordinal, with 5 levels. The second contains the 5 questions with answers

considered as nominal, with 2 levels. Finally, the third contains the 54 questions

with answers considered as nominal, with 5 levels.

Finally, the data set had a small amount of missing data (0.4%), which will

be estimated using the SEM-Gibbs algorithm as described in Section 3.725

Co-clustering results. The SEM-Gibbs algorithm used 150 iterations and the

burn-in period was set at 100 iterations. These numbers were defined using the

same technique as in Section 6.1, by checking the evolution of several parameters

through the SEM-Gibbs iterations. The best set (G,H1, H2, H3) was found to

be equal to (3, 4, 2, 4). Figure 6 shows the resulting co-clustering, and Table 12730

gives the estimated parameters of each block.

First of all, we notice that the first row-cluster has the lowest position pa-

rameter µ on the first column cluster of ordinal data. This means that people

from this group have less overall enjoyment – or are less interested in, or are less

afraid of – the topics of this column cluster’s questions. These topics included735

classical music, branded clothing, psychology, politics and dangerous dogs. In

addition, the parameters show that this row-cluster is quite heterogeneous. This

row-cluster has the lowest position parameters π on the two first column-clusters

of ordinal data, and they systematically have the highest β1 and β5 on cate-

gorical data with 5 levels. We will now consider the second row-cluster. We740

notice that it has a β3 parameter equal to 0.5 on the personality questions first

column-clusters, which is high. It means that people from this row-cluster are

quite indecisive about the topics of these column-clusters. The questions in-
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Figure 6: Co-clustering result on Young People Survey.

cluded “I am 100% happy with my life.”, “I believe all my personality traits are

positive.”, “I have lot of friends.”, and “My moods change quickly.”.745

Finally, we analyse the fourth column-cluster of the ordinal variables. We

notice that it has the highest position parameter for all the row-clusters with

µ = 5. The questions of this column-cluster are: “I enjoy listening to music”,

“I enjoy watching movies”, “I enjoy comedies”, “I am interested in internet”,

and “I am interested in socializing”. It means that the interviewed people are750

in overall agreement about being very interested in these topics.

Table 12: Resulting co-clustering parameters for the student survey data set.

Ordinal (m = 5)

µ, π

Nominal (m = 2)

β1, β2

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 4 col-cluster 1 col-cluster 2

row-cluster1 1,0.08 5,0.16 1,0.41 5,0.69 0.1,0.9 0.63,0.37

row-cluster 2 3,0.25 3,0.21 1,0.31 5,0.52 0.11,0.89 0.62,0.38

row-cluster 3 3,0.14 5,0.28 1,0.24 5,0.74 0.1,0.9 0.7,0.3

Nominal (m = 5)

β1, β2, β3, β4, β5

col-cluster 1 col-cluster 2 col-cluster 3 col-cluster 4

row-cluster1 0.10,0.13,0.32,0.2,0.25 0.3,0.15,0.25,0.12,0.18 0.10,0.10,0.19,0.16,0.45 0.39,0.10,0.15,0.09,0.27

row-cluster 2 0.02,0.14,0.5,0.28,0.06 0.13,0.29,0.38,0.16,0.04 0.02,0.13,0.34,0.33,0.18 0.23,0.23,0.26,0.16,0.12

row-cluster 3 0.03,0.11,0.36,0.35,0.15 0.16,0.25,0.31,0.18,0.10 0.03,0.08,0.20,0.31,0.38 0.24,0.16,0.19,0.18,0.23
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7. Conclusion

This work presents a model-based co-clustering model for data sets made of

mixed type data. It relies on the latent block model and inference is performed

using an SEM-Gibbs algorithm. The method has the great advantage of having755

an efficient criterion to select the number of row and column clusters. Further-

more, the parameters that are estimated on each block allow the user to easily

interpret the partitions. Finally, missing data is handled, which is often useful

in the case of real data sets. The efficiency of the algorithm was illustrated on

a simulated data set and then on real data. An R package implemented using760

with C++ is available upon request to the authors. Moreover, if a user is inter-

ested in clustering the observations, the co-clustering algorithm proposed gives

a parsimonious way to do this, by grouping all the features into a small number

of clusters.

The proposed model has certain limitations. A major issue is that the vari-765

ables of different types cannot be part of the same column-cluster as the model

is based on the assumption that the elements of a same block share the same

distribution. It would be interesting to find an approach to overcome this limi-

tation. Furthermore, as noted in Section 4.1, the way the data is encoded can

have a strong impact on the resulting co-clustering partition. Although there770

are ways to address the matter in some cases, as detailed in [37], the user should

be aware of it. Additionally, the influence of each kind of feature on the result-

ing row partitions is to be investigated more deeply in a future work. Indeed,

certain types of data will have more impact on the probability for a row belong-

ing to a particular row-cluster, even if the D matrices have the same number775

of features Jd. Also, the case where the Jd are not highly unbalanced should

be studied. An interesting approach could be to give the same importance to

the D matrices, even if they do not have the same number of features. Finally,

the way nominal and ordinal variables are modeled can raise the dimensionality

of the problem. When the number of nominal and/or ordinal variables with780

differing levels increases, the number of sets xd increases. However, the num-
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ber of parameters will not significantly increase, because the proposed model is

very parsimonious. In addition, even though it may significantly increase the

number of competing models, the negative impact on the model selection pro-

cess time will be limited thanks to the heuristic search procedure introduced in785

Section 3.2.
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