
HAL Id: hal-01893329
https://hal.science/hal-01893329

Submitted on 31 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A new method for constructing and reusing domain
specific design patterns: Application to RT domain

Saoussen Rekhis, Nadia Bouassida, Rafik Bouaziz, Claude Duvallet, Bruno
Sadeg

To cite this version:
Saoussen Rekhis, Nadia Bouassida, Rafik Bouaziz, Claude Duvallet, Bruno Sadeg. A new method
for constructing and reusing domain specific design patterns: Application to RT domain. Jour-
nal of King Saud University - Computer and Information Sciences, 2017, 29 (3), pp.325 - 348.
�10.1016/j.jksuci.2016.04.004�. �hal-01893329�

https://hal.science/hal-01893329
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Journal of King Saud University – Computer and Information Sciences (2017) 29, 325–348
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
A new method for constructing and reusing domain

specific design patterns: Application to RT domain
* Corresponding author.

E-mail addresses: saoussen.rekhis@fsegs.rnu.tn (S. Rekhis), nadia.

bouassida@isimsf.rnu.tn (N. Bouassida), raf.bouaziz@fsegs.rnu.tn

(R. Bouaziz), claude.duvallet@univ-lehavre.fr (C. Duvallet), bruno.

sadeg@univ-lehavre.fr (B. Sadeg).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2016.04.004
1319-1578 � 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Saoussen Rekhis a,*, Nadia Bouassida a, Rafik Bouaziz a, Claude Duvallet b,

Bruno Sadeg b
aMIRACL, Pôle Technologique de Sfax, BP 242, Sfax 3021, Tunisia
bLITIS, UFR des Sciences et Techniques, BP 540, 76 058 Le Havre Cedex, France
Received 18 September 2015; revised 19 April 2016; accepted 20 April 2016
Available online 27 April 2016
KEYWORDS

Design pattern engineering;

Model transformation;

Real-time application

modeling
Abstract Domain specific design patterns capture domain knowledge and provide solutions of non

trivial design problems in a specific domain. Their application improves considerably the quality of

software design. In order to benefit from these advantages and to reinforce the application of these

patterns, we provide, in this paper, new processes and tools for the development and the instanti-

ation of domain specific design patterns, especially those intended for real-time domain.

Initially, we propose a pattern development process that guides pattern developers in the con-

struction of patterns. The proposed process defines unification rules that apply a set of comparison

criteria on various applications in the pattern domain. This process is illustrated through the design

of the controller pattern. Moreover, we propose a process guiding the application designers in pat-

tern instantiation based on model transformation. Finally, the proposed RT patterns and their

development process are evaluated by calculating quality metrics and comparing the applications

designed with our RT patterns and others developed by experts without the use of our patterns.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Design patterns (Gamma et al., 1994) represent solutions to

common design problems in a given context. They improve
substantially software quality and reduce the development
cost. Nowadays, their use is wide spread since they capture
and promote best practices in software design. However, the

design patterns of GoF (Gamma et al., 1994) do not focus
on a particular domain, thus they need a great adaptation
effort since it is hard to determine in which context or in which

part of the system these patterns can be used (Port, 1998).
These reasons motivated several works on domain-specific
patterns which encapsulate the essence of a certain domain

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2016.04.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:saoussen.rekhis@fsegs.rnu.tn
mailto:nadia.bouassida@isimsf.rnu.tn
mailto:nadia.bouassida@isimsf.rnu.tn
mailto:raf.bouaziz@fsegs.rnu.tn
mailto:claude.duvallet@univ-lehavre.fr
mailto:bruno.sadeg@univ-lehavre.fr
mailto:bruno.sadeg@univ-lehavre.fr
http://dx.doi.org/10.1016/j.jksuci.2016.04.004
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2016.04.004
http://creativecommons.org/licenses/by-nc-nd/4.0/

326 S. Rekhis et al.
(e.g., human computer interaction, security and real-time
systems).

A domain-specific design pattern offers a flexible architec-

ture with clear boundaries, in terms of well-defined and highly
encapsulated parts that are in alignment with the natural con-
straints of the considered domain (Port, 1998). One of the

domains where reuse through patterns will bring many benefits
is the Real Time (RT) domain since it is a complex and evolv-
ing domain. The RT patterns help designers in developing

applications that express time-constrained data and time-
constrained methods. They provide various solutions to
addressing the fundamental RT scheduling, communications
and synchronization problems (Boukhelfa and Belala, 2015).

Design patterns specific to the RT domain are similar to
any domain specific pattern; they need a representation lan-
guage that shows the specificities of the domain. They need

also a design process that helps in their construction and
finally an instantiation process that will guide their reuse
(Boukhelfa and Belala, 2015).

Nowadays, representation of domain-specific design pat-
terns and their reuse receives special attention from many
researchers (e.g., Kim et al., 2004; Kim, 2007). They proposed

modeling languages in order to take into account pattern vari-
ability. In fact, when representing domain-specific patterns, the
design language, e.g., UML has to support not only the flexi-
bility characteristic of patterns, but also the specificities of the

domain itself (Port, 1998). Nevertheless, in the example of real-
time (RT) domain, the standard UML remains insufficient for
expressing all features of RT applications. Therefore, different

extensions to the UML language have been proposed to take
into account RT application characteristics (Douglass, 2004;
Lanusse et al., 1999; OMG, 2008). However, the proposed

modeling languages are not suitable to patterns. That is, RT
patterns must be generic designs intended to be specialized
and reused by any application in RT domain. For this reason,

in addition to the UML extensions representing RT aspects,
we need new notations distinguishing the commonalities and
differences between applications in the pattern domain.

On the other hand, the difficulty of the domain specific pat-

tern development and specification slows their expansion. This
is due essentially to the fact that they have to incorporate flex-
ibility and variability in order to be instantiated for various

applications in the domain. As a result there is a need for a
design process that guides the domain-specific patterns devel-
opment and defines rules to find similarities between a set of

applications in the considered domain and their possible vari-
ations. This need is crucial in the RT domain since it is an
evolving domain where the variety of applications is quite
large and the reuse is very important. In RT domain, we distin-

guish the case where applications use a lot of RT data that
must be stored in a database. We call this case ‘‘real-time
domain with intensive data”. Our contribution aims to guide

the development of RT design patterns specific to RT domain
with intensive data through the definition of unification rules
that facilitate their specification.

Finally, note that, even when assisting the pattern developers
in expressing and building design patterns, there is no certitude
that these patterns would be correctly instantiated, by applica-

tion designers. Thus, an ultimate assistance in validating the pat-
tern instantiation would be of a valuable benefit. Several
researchers (e.g., Kim and Carrington, 2006; Kajsa, 2013;
Hammouda et al., 2009; Koskinen et al., 2010) were interested
in the validation of pattern instances, however their approaches
are not adapted to the RT domain. They do not take into
account the UML extensions differentiating between passive

resources and RT active resources and specifying RT features
such as concurrency and deadline. As a consequence, there is
still a need for an efficient guidance process for RT patterns

reuse.
In our approach, we are interested in providing assistance,

not only for pattern designers to support RT design pattern

representation and development, but also for application
designers to instantiate RT design patterns. This assistance is
provided through:

(1) A UML profile intended for RT design pattern specifica-
tion and reuse. This profile establishes a relation
between the different systems that need similar facilities

and provides a good ground to build on in order to
establish a real pattern language for RT systems.

(2) A pattern development process using unification rules to

determine the fundamental elements and the variation
points of a pattern. This process facilitates the pattern
developers’ work, in order to specify patternswith a better

quality. It addresses the structural and behavioral aspects
describing how the different roles of a pattern interact.

(3) A guidance process for building and validating applica-
tions reusing patterns. When a pattern is deployed in an

application design, some constraints must be preserved
to make the pattern instantiation valid. The pattern
instantiation process guides the application designers

in patterns reuse and prevents them from violating pat-
tern constraints.

The first contribution of this paper consists in showing how
our pattern development process, initially presented in Rekhis
et al. (2010), can be improved, fine-tuned and automated in

order to define the structure of RT design patterns. Moreover,
in this paper the process was augmented with the specification
of the behavior of RT design patterns. A second contribution
of this paper consists in proposing a new pattern instantiation

process guiding the application designers in RT patterns reuse
and preventing them from violating pattern constraints. We
implement the instantiation process using an existing modeling

framework, EMF, and incorporate the implementation as
plug-in to the Eclipse modeling environment. The developed
plug-in can interpret automatically the properties of the pat-

terns since they are described in a precise manner using the
UML-RTDP profile (Rekhis et al., 2013) that we defined pre-
viously. A third contribution of this paper consists in defining
new metrics and using the CK metrics proposed in Chidamber

and Kemerer (1994) to assess experimentally the efficiency of

our design process. For the evaluation of the RT patterns
obtained with our proposed development process, we propose

some projects to experimented designers, while dividing them
into two groups, one group models RT applications using
our patterns approach, and the other will not use them. Then,

we calculate some quality metrics for the produced projects
(e.g., number of classes, average number of attributes, etc).
The evaluation answers two questions: do the RT patterns

have a good design quality? And do the RT patterns encapsu-
late really the concepts tied to RT domain?

The remainder of the paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 presents the pattern

Constructing and reusing domain specific design patterns 327
development process. Section 4 proposes a process guiding
the reuse and the validation of domain specific design patterns,
and describes its supporting CASE tool we have developed.

Section 5 presents the evaluation of the proposed RT
patterns. Section 6 concludes the paper and discusses future
works.

2. Related work

In this section, we firstly present the previously proposed pro-

file (Rekhis et al., 2013) that extends UML 2.2 with new stereo-
types representing design patterns for RT domain. Secondly,
we present, briefly, works interested in the development of pat-

terns through the unification of existing applications or
through domain analysis. Finally, we present works that pro-
vide support and guidance for design patterns instantiation.

2.1. Design patterns representation with UML-RTDP

In our previous work (Rekhis et al., 2013), we have proposed a
UML profile, named UML-RTDP, including MARTE stereo-

types describing RT features. This profile facilitates the pattern
comprehension and instantiation thanks to the stereotypes
described below:

– The hhoptionalii stereotype allows representing an optional
element (i.e., class, association, attribute, method, interface,

association Class).
– The hhmandatoryii stereotype allows representing a funda-
mental element that must be instantiated at least once.

– The hhvariableii stereotype indicates that the method imple-

mentation varies according to the pattern instantiation.
– The hhextensibleii stereotype indicates that a pattern class
may be extended by adding new attributes and/or methods.

– The hhpatternClassii stereotype is used to differentiate
between the instantiated pattern classes and the original
classes added by the designers in an application model

and to check the existence of any conflicts with pattern
properties.

In addition to the above stereotypes, the specification of RT
design patterns needs the use of UML extensions to model RT
aspects. Thus, we import from MARTE profile stereotypes
which deal with quantitative and qualitative features related

to behavior, communication and concurrency.
From HLAM (High Level Application Modeling) sub-

profile, we import the following stereotypes:

– The hhrtFeatureii (real-time feature) stereotype is used to
model temporal features such as deadline.

– The hhppUnitii (protected passive Unit) stereotype is used to
model the shared data requiring the specification of concur-
rency policy. Protected passive units specify their concur-

rency policy either globally for all their provided services
through their concPolicy attribute, or locally through the
concPolicy attribute of hhRtServiceii stereotype.

– The hhrtUnitii (real-time Unit) stereotype models a real-time

unit that may be seen as an autonomous execution resource,
able to handle different messages at the same time. A real-
time unit can manage concurrency and real-time constraints

attached to incoming messages.
– The hhrtServiceii (real-time service) stereotype is used to

specify the services concurrency policy (reader, writer or
parallel) provided by real-time units and protected passive
units.

Moreover, we import from NFP (Non Functional Proper-
ties) sub-profile two stereotypes: hhNfpii and hhNfpTypeii.
hhNfpii stereotype describes the attributes satisfying non func-

tional requirements. hhNfpTypeii stereotype specifies a compos-
ite type that contains value of an attribute and its unit. There is
a set of pre-declared NFP_Types which are useful for specify-

ing NFP values, such as NFP_Duration and NFP_Frequency.
In Fig. 1, we illustrate the usage of our UML-RTDP profile

through the design of RT sensor pattern, where mandatory

and optional elements are highlighted. As shown in Fig. 1,
there are three fundamental classes: the sensor class, the mea-
sure class and the observedElement class. The sensors are clas-
sified into passive or active. An active sensor takes the

transmission initiative of its current value (push mechanism).
While a passive sensor transmits its value only on demand
(pull mechanism). Depending to the designer’s problem in a

specific problem situation, the designer may decide which
implementation is suitable to solve the problem he/she is work-
ing on.

The Measure class models the RT data, which are classified
into either base data or derived data. Base data are issued from
sensors, whereas derived data are calculated from base data.

The derived data have the same characteristic of base data
(timestamp, validity duration, . . .). The relation between base
and derived RT data is represented by an optional and reflex-
ive association defined on the Measure class. This class is

stereotyped hhppUnitii since it represents a passive resource,
which needs to be set and controlled by active resources (like
controller). It provides a RT service called updateValue. This

operation carries the concurrency kind (writer) and the execu-
tion kind (remoteImmediate) indicating that the execution is
performed immediately with the called active object (Con-

troller). Besides, the active controller resource creates dynam-
ically schedulable resources to handle the execution of its
services needing to be achieved before a deadline.

2.2. Overview of development processes

In the literature many researchers were interested in pattern
extraction and not like in our case patterns construction. Their

approaches were based on graphs (e.g., Tsantalis et al., 2006;
Liamwiset et al., 2013), other works used XML (e.g., Satvinij
and Vatanawood, 2011; Bouassida et al., 2013), and others

were based on ontology (e.g., Alnusair and Zhao, 2010;
Robles et al., 2012). However, they are different from our con-
text since they are related to reverse-engineering context. (e.g.,

Tsantalis et al., 2006; Liamwiset et al., 2013). Moreover, all
these approaches are based on the structures of the expected
design patterns. That is the UML class diagrams of design pat-
terns are the input of the automatic tool used to extract the

patterns from the analyzed applications models. Our contribu-
tion consists in determining the structure and the behavior of
design patterns specific to a particular domain.

On the other hand, we note that existing development pro-
cesses of reusable elements (e.g., frameworks, patterns) can be
classified into either bottom-up or top-down. A bottom-up

Figure 1 RT sensor pattern.

328 S. Rekhis et al.
process starts from a set of applications representing the

domain and identifies their common and variable elements.
The purpose of examining sample applications is to create a
generic reusable component that is understandable and easy
to reuse. The bottom-up design process works well when a

domain is already well-understood, for example, after some
initial evolutionary cycles (Ben-Abdallah et al., 2004). How-
ever, there is no guarantee that all domain requirements are

met. Moreover, this process is known to be highly iterative,
thus it becomes not efficient in the case of large or complex
applications design.

A top-down process starts from a domain analysis and then
constructs the reusable element. As a result, the design is dri-
ven starting from functional requirements toward solution
alternatives. Top-down development processes represent the

best solution when the domain has not yet been sufficiently
explored (Ben-Abdallah et al., 2004). However, this type of
processes is time consuming and it lacks guidelines for the

domain requirements analysis. As an example, Raminhos
et al. (2006) and Caeiro et al. (2004) describe the steps a devel-
oper must follow, in order to build a pattern through domain

requirements analysis. However, the proposed processes do
not provide an efficient assistance for pattern development.
In addition, they do not guide the developer in finding the pat-

tern fundamental and variable elements.
To conclude, we think that it is necessary to define a process

that merges both the bottom-up and the top-down processes.
The pattern development process has to guide designers in cap-

turing domain requirements and in determining common
properties of application models belonging to a specific
domain in order to create design patterns.
2.3. Overview of patterns instantiation and validation works

Several works have been interested in providing assistance for
patterns instantiation and validation (e.g., Kim and

Carrington, 2006; Kajsa, 2013). They define the necessary steps
for the instantiation of patterns and, then, check the validity of
the resulting application. The validation of the reusable com-

ponents is accomplished, either, through the use of a formal
specification or through model transformation.

Recently, Kajsa (2013) has proposed a process for design
pattern instantiation. This process consists in defining (i) a

UML profile and (ii) model transformations based on seman-
tics. This profile proposes new stereotypes to depict the design
pattern participants and their relations in a specific application

model. Model transformations support and automate the
deployment of design patterns into specific applications mod-
els. This approach requires the definition of appropriate

stereotypes for each design pattern. Thereby, the developer
must know the different stereotypes related to each applied
design pattern and must also understand the semantic of each
stereotype meta-attributes (i.e., tagged values).

Kim and Carrington (2006) proposed a formal approach,
based on Object-Z (Graeme, 2000), which allows defining
and reusing design patterns. They formalized the role meta-

model that constitutes the modeling language used to define
design patterns and consistency constraints. The role meta-
model defined in Object-Z is automatically transformed to

an Ecore model and then implemented using the Eclipse
Modeling Framework (EMF) (Steinberg et al., 2008). These
authors used also Object-Z to formalize the binding meta-

Constructing and reusing domain specific design patterns 329
model that maps pattern entities to application model entities
and to define the constraints that must be preserved to make
the pattern deployment valid.

3. Development process for RT design patterns

Our process guides the development of domain-specific pat-

terns, in general, and it is particularly adapted to the RT
design patterns specific to RT domain with intensive data. It
adopts a top-down approach that allows the identification of

domain requirements, on one hand, and a bottom-up
approach that generates patterns from a given set of applica-
tions using unification rules, on the other hand. The generated

patterns are represented with the UML-RTDP profile.
The design pattern development process is decomposed into

five main phases as shown in Fig. 2. It is illustrated through the

modeling of RT controller pattern. This illustration is pro-
vided in Appendix A.

3.1. Identification of domain functionalities

The first step aims to delimit the domain boundaries and it
consists in identifying the most important domain sub-
problems. Each sub-problem has one main functional goal to

achieve, called domain functionality. The most important func-
tionalities related to the domain are identified through the col-
lection of information brought by experts and stakeholders.

The functionalities identified in this step help the developers
to determine the context of each created pattern.

In RT domain with intensive data, all applications share a
common behavior: they monitor and control an environment

via values reported by sensors. By examining these applica-
tions, we distinguish three main domain functionalities: (i)
acquisition of RT data from the environment via sensors, (ii)

RT data analysis and production of results within time con-
straints, and (iii) sending of orders to the environment via
actuators. For each functionality, we define a reusable design

pattern that captures RT domain knowledge and design exper-
tise. We focus in this paper, only, on the modeling of data con-
trol functionality through the definition of the RT controller

pattern.

3.2. Identification of requirements

This step consists of refinement of the domain functionalities.

Each identified functionality is decomposed iteratively into
functions until reaching a level at which the functions become
elementary. This step identifies all the domain concepts and

constraints associated to each functionality. The functional
domain requirements at this step are represented as a pair
hF,Efi where F is a domain functionality and Ef is an elemen-

tary function.

a. The RT data acquisition functionality is decomposed

into four elementary functions:

Ef1 {the sensors (e.g., radar, camera, . . .) observe physi-
cal elements in the environment, e.g., an aircraft, a vehi-
cle, a patient, and so on}.

Ef2 {the sensors acquire measures (e.g., speed, tempera-
ture, pressure, pulse, . . .)}.
Ef3 {the active sensors transmit periodically the acquired

measures to the compute unit in order to be stored in a
RT database (push mechanism)}.
Ef4 {the passive sensors are solicited periodically to

transmit the acquired measures to the compute unit in
order to be stored in a RT database (pull mecha-
nism)}.Note that Ef3 and Ef4 are the two possible alter-
natives of RT data transmission. Moreover, a set of

domain concepts, such as Sensor, Active Sensor, Passive
Sensor, Measure, and Observed Element, are identified
during the refinement step. Active Sensor and Passive

Sensor are domain concepts that represent a variation
of a general concept which is Sensor. These concepts will
be used in the next step, which is decomposition.

b. The RT data control functionality is decomposed into
five elementary functions:

Ef1 {a controller monitors the state of each observed
element}.

Ef2 {a controller calculates derived value (i.e., derived
data) from captured value (i.e., base data)}.
Ef3 {a controller checks if an action misses its deadline}.

Ef4 {a controller monitors the captured values of an
observed element to check if a measure’s value is
between the minimum and the maximum values defined

for this data}.
Ef5 {a controller initiates corrective actions when it
detects abnormal situation}.

Ef6 {a controller notifies the surveillance operator of any
detected abnormal situation}.

Note that Ef2, Ef3, Ef4, Ef5 and Ef6 are optional functions
that describe the possible scenarios of RT data control func-

tionality. The refinement of the data control functionality
allows the identification of domain concepts, such as Con-
troller, Observed Element, and so on.

3.3. Decomposition of applications

This step goes through the decomposition of the different

applications according to the already identified domain con-
cepts. It aims to determine the relations between the classes
of the application and the domain concepts related to the dif-

ferent functionalities according to the following two Decom-
position Rules (DRi). The first rule adds to the different
applications fragments the classes related to the domain con-
cepts. The second rule adds to the different fragments the other

classes (i.e., which are not related to the domain concepts).

DR1. For each class C 2 {CAi}, if the class name is identical
or synonymous to a domain concept CD 2 {CDj}, then the

class C is transferred to the fragment Fij, where

{CAi} is the set of classes belonging to the application i.
{CDj} is the set of domain concepts relative to the function-

ality j.
Fij is the fragment of application i relative to the function-
ality j.

If the application class C is not a synonym to any domain
concept, then the pattern designer has to verify if C plays the

role of a domain concept CD 2 {CDj} (e.g., the RoadSegment
class of COMPASS system plays the role of ObservedElement

Figure 2 Pattern development process.

330 S. Rekhis et al.
domain concept). In this case, the class C is added to the
fragment Fij.

DR2. For each pair of classes (C, C0) 2 {CAi}, if C 2 Fij,

C0 R Fij (i.e., C
0 is not related to any domain concept) and there

is an association between C and C0, then the class C0 is trans-
ferred to the fragment Fij.

The decomposition phase generates an initial version of a
domain dictionary containing the class names which are

synonymous or equivalent to RT domain concepts. It contains
also the class names which are identified by the designer as
playing the role of the domain concept.
3.4. Unification of application designs

The unification rules allow the unification of the different
application fragments and, then, the generation of RT design
patterns. The unification consists in finding the common

classes of all the applications and deriving the fundamental ele-
ments of the patterns. Then, the classes specific to the applica-

Constructing and reusing domain specific design patterns 331
tions are extracted as variable elements. The unification rules
are based on semantic comparison criteria. These latter rely
on linguistic relationships to define semantic equivalence and

variation between class, attribute and operation names. The
determination of the linguistic/semantic relations is handled
through either the lexical database WordNet or the domain

dictionary that we have created (cf. Fig. 3). Designers are
asked to verify whether the names of model elements (i.e.,
classes, attributes, operations, etc.) for which there is no lin-

guistic relations according to the WordNet dictionary, can
be synonyms, antonyms or hyponyms in the RT domain.

The unification rules of the class diagrams have already been
defined in an initial form in a previous work (Rekhis et al.,

2010). In this section we improve them and present new unifica-
tion rules which are relevant to sequence diagram unification.

Before the unification of applications fragments, a pretreat-

ment step for class names, attribute names and operation
names is necessary. For example, if the name of an attribute
is composed of several words separated by dashes or contain-

ing words whose first letter is capitalized, we propose to treat
each word separately. This allows to check if there is a linguis-
tic relationship between the words that compose the attribute

name with the words of other attribute names. For example,
the decomposition of the attribute names VehicleStatus and
SegmentStatus, belonging respectively to the classes Vehicle
and Segment, allows the identification of two identical words

(Status). Therefore, these two attributes are treated as two
Figure 3 Domain di
equivalent elements since the words Vehicle and Segment are
related to the class names containing these attributes.

3.4.1. Unification of class diagram fragments

The comparison criteria of class names, attribute names and
operation names use a set of linguistic relations. The class
name comparison criteria consist of the following three

relations:

� N_equiv(CA1j, . . . ,CAnj) means that the names of the

classes are either identical or synonymous.
� Note that the class C in the fragment j of an application Ai
is represented by CAij where the fragment j is the part of

application model relative to functionality j.
� N_var(CA1j, . . . ,CAnj) means that the names of the classes
are a variation of a concept, e.g., mobile-sensor, passive-

sensor, active-sensor.
� N_dist(CA1j, . . . ,CAnj) means that none of the above rela-
tions holds.

The attribute comparison criteria use the following three
relationships to compare the attribute names and types:

� Att_equiv(CA1j, . . . ,CAnj) means that the classes have
either identical or synonymous attribute names with the
same types.
ctionary creation.

332 S. Rekhis et al.
� Att_int(CA1j, . . . ,CAnj) means that the classes CA1j, . . . ,
CAnj have common attributes.

� Att_dist(CA1j, . . . ,CAnj) means that none of the above rela-
tions holds.

The operation comparison criteria use three relations
(Op_equiv(CA1j, . . . ,CAnj), Op_int(CA1j, . . . ,CAnj), and
Op_dist(CA1j, . . . ,CAnj)) to compare the operation names

and signatures (parameter types and returned types). These
relations are defined in a similar manner to attribute compar-
ison relations.

In order to ease the understanding of the unification rules,
we define, in the following, some new concepts:

� A model element (class, attribute, method or message) is
pertinent to RT domain if it is present in more than 50%
of the applications. For this purpose we define the domain
coverage ratio (Rdc) which is computed as follows:

RdcðEÞ
¼Number of occurrences of a model element E in the applications

Number of applications

Note that if domain coverage ratio of a model element E is
less than ø, then this element is not pertinent to RT domain
and it is too application-specific. Thus, if it is added to the pat-

tern, it may complicate unnecessarily the pattern comprehen-
sion. The arbitrary threshold value (50%) could be changed
by the pattern developers according to their need. Note that,

this threshold will be determined in a future work thanks to
experiments that can help to find the ideal threshold.

� A model element (class or object) plays a role of a domain

concept if in the decomposition phase it has been identified
by the designer as playing a role of a domain concept
(observed element, sensor, etc.) and it has already been

stored in the domain dictionary.

The design of a pattern class diagram is guided by the Uni-

fication Rules (URi):

UR1. If a set of classes {CA1j, . . . ,CAnj} are present in all
the applications with equivalent attributes, i.e., Att_equiv

(CA1j, . . . ,CAnj), and methods, i.e., Op_equiv(CA1j, . . . ,
CAnj), then a class is added to the pattern as a fundamental
class stereotyped hhmandatoryii.
UR2. If a set of classes {CA1j, . . . ,CAnj} share equivalent
attributes and/or methods, i.e., Att_int(CA1j, . . . ,CAnj)
and/or Op_int(CA1j, . . . ,CAnj), then there are three cases:
Case 1: If N_equiv(CA1j, . . . ,CAnj) is held, then a funda-
mental class is added to the pattern with common attri-
butes and methods. The distinct attributes and/or

methods are added as optional elements if they are per-
tinent to the domain.
Case 2: If N_var(CA1j, . . . ,CAnj), then a class with com-
mon attributes and methods is added to the pattern as a

fundamental class and two cases are possible:
1. If there exists a sub set from the classes (CA1j, . . . ,CAnj)

that play the same role of domain concepts (e.g., active
sensor, passive sensor) and that constitute a variation
of a general domain concept (e.g., sensor), then a set

of sub-classes inheriting from the fundamental class
and containing the pertinent attributes and/or methods
is added.For example, the classes CameraSensor, Induc-

tanceLoopSensor, BoundaryStickSensor and Actime-
trySensor presented in Fig. 4 share common
attributes and methods and their names represent a
variation of a concept. CameraSensor and

BoundaryStickSensor play the role of the domain con-
cept passive sensor whereas ActimetrySensor and Induc-
tanceLoopSensor play the role of the domain concept

active sensor. Since active sensor and passive sensors
represent a variation of the domain concept sensor,
then two subclasses inherited from the super class

named sensor are added.
2. If there does not exist a sub set from the classes (CA1-

j, . . . ,CAnj) playing the same role of a domain concept,
then the pertinent attributes and/or methods existing in

the classes (CA1j, . . . ,CAnj) are added to the fundamen-
tal class as optional elements.For example, the classes
WaterController, PatientController and TrafficCon-

troller presented in Fig. 5 share common methods
and their names represent a variation of one concept
which is Controller. Then a class Controller is added

to the pattern with notify() method as optional
element.
Case 3: If N_dist(CA1j, . . . ,CAnj) and the classes (CA1j, -
. . . ,CAnj) play a role of the same domain concept, then a
fundamental class is added to the pattern with common
attributes and methods and it will take the name of the

domain concept. In this case, the two possible alterna-
tives explained in case 2 of this rule are also applied.
For example, the classes RoadSegment, Vehicle and

Patient play the same role which is ObservedElement.
These classes share common attributes and methods.
Therefore, a class named ObservedElement is added to

the pattern.Note: For all the cases of rule UR2, if there
exists distinct attributes and/or methods that are not
pertinent for the considered domain, then the fundamen-
tal class is added to the pattern with the common attri-

butes and/or methods and it is stereotyped hhextensibleii
in order to indicate that the class can be extended when
the pattern is reused.

UR3. If there is a set of classes which are not common to all

applications, they share equivalent attributes and/or meth-
ods and they are pertinent to RT domain, then an optional
class is added to the pattern with common attributes and

methods.
UR4. If a method exists in all the applications with the
same name but with different signatures, then it will have
a corresponding method in the pattern with an undefined

signature and it is stereotyped hhvariableii.
UR5. If an attribute exists in all the applications with the
same name but with different types, then there are two

cases:
Case 1: If these types are compatible (real, integer, etc.),
then it will have a corresponding attribute in the pattern

with the most general type.
Case 2: If these types are not compatible, then it will
have a corresponding attribute in the pattern with the

Figure 4 Example of classes representing a variation of concepts with inheritance relationship.

Constructing and reusing domain specific design patterns 333
same name and the enumeration type which includes dif-
ferent types of conflict attributes.

UR6. If two or more classes are transferred in the pattern,
then all their relations (aggregation, inheritance, associa-
tion) will be maintained in the pattern.

3.4.2. Unification of sequence diagrams

The unification rules are applied to identify the common ele-

ments as well as the variable elements between different
sequence diagrams, relative to the same domain functionality.
Figure 5 Example of classes repres
The unification of sequence diagrams is based on linguistic
comparison criteria for objects and messages names. The com-
parison criteria of objects are similar to those of classes. They
are based on the following three relations:

� N_equiv(OA1j, . . . ,OAnj) means that the names of the
classes relative to the objects (OA1j, . . . ,OAnj) are either

identical or synonymous.
� Note that the object O in the sequence diagram j of an
application Ai is represented by OAij where the sequence

diagram j is relative to functionality j.
enting a variation of a concept.

334 S. Rekhis et al.
� N_var(OA1j, . . . ,OAnj) means that the names of the relative

to the objects (OA1j, . . . ,OAnj) are a variation of a concept.
� N_dist(OA1j, . . . ,OAnj) means that none of the above rela-
tions holds.

The message comparison criteria use the following two
relationships:

� N_equiv(MA1j, . . . ,MAnj) means that the messages have
either identical or synonymous names.

� N_dist(MA1j, . . . ,MAnj) means that messages have distinct

names.

The design of a RT design pattern sequence diagram is

guided by the following unification rules:

UR7. If there is a set of objects {OA1j, . . . ,OAnj} instantiat-
ing equivalent classes N_equiv(OA1j, . . . ,OAnj), then an

object is added to the pattern sequence diagram as a funda-
mental element and it must be stereotyped hhmandatoryii.
UR8. If there is a set of objects {OA1j, . . . ,OAnj} instantiat-

ing different classes playing the same role of a domain con-
cept, then an object is added as a fundamental element
stereotyped hhmandatoryii whose type corresponds to the

domain concept.
UR9. If there is a set of objects {OA1j, . . . ,OAnj} whose
types are a variation of a general concept N_Var(OA1j, -

. . . ,OAnj), then there are two cases:

Case 1: If these objects are instances of a class C in the
pattern class diagram, then an object is added as a fun-
damental element stereotyped hhmandatoryii whose type

corresponds to the class C.
Case 2: If these objects are instances of several sub-
classes inheriting from a general class and each of which

has its own operations in the pattern class diagram, then
the objects corresponding to these specialized classes are
added to the pattern sequence diagram as optional items

that are stereotyped hhoptionalii.
UR10. If there is a set of objects which are not common to
all applications, they have equivalent types and they are
pertinent to the RT domain, then an object is added to

the pattern as an optional element stereotype hhoptionalii.
UR11. If there is a set of messages {MA1j, . . . ,MAnj} hav-
ing equivalent names N_equiv(MA1j, . . . ,MAnj) for which

the sender objects and receiver objects have been already
transferred in the pattern sequence diagram, then there
are two cases:

Case 1: If these messages are common to all applica-
tions, then a fundamental message is added to the pat-
tern sequence diagram.

Case 2: If these messages are not common to all applica-
tions but they are pertinent to RT domain, then an
optional representative message is added to the pattern.
This message belongs to an optional combined fragment

having opt operator.
UR12. If there is a set of messages {MA1j, . . . ,MAnj} sent
by objects (OA1j, . . . ,OAnj) to other objects

(OA0
1j, . . . ,OA0

nj) such that N_Var(OA1j, . . . ,OAnj) or

N_Var(OA0
1j, . . . ,OA0

nj), then two cases are possible:

Case 1: If the sending objects (respectively receiving

objects) are transferred according to the rule UR9 (case
1), then one message is added to the pattern as funda-

mental message if it is common to all applications. Else,
if this message is not common to all applications but it is
pertinent to RT domain, then it is added to the pattern

sequence diagram in an optional combined fragment.
Case 2: If the sending objects (respectively receiving
objects) are transferred according to the rule UR9 (case
2), then the pertinent messages are added to the pattern

in a combined fragment with the alternative operator
alt.

3.5. Pattern validation

The last step of the pattern development process checks if all
the requirements and constraints are fulfilled by the generated

patterns, in order to validate them. This validation is per-
formed in two steps. First, the obtained RT patterns are
instantiated and confronted with the original application frag-
ments. Second, the completeness of the patterns is verified by

checking if all the requirements and constraints of the different
domain functionalities are fulfilled by the obtained patterns.

In the RT domain, the pattern validation phase is very

important since it defines additional constraints and dependen-
cies expressed with OCL. It allows also to add stereotypes
modeling RT features as well as properties supporting Quality

of Services (QoS) constraints. In this paper, we define the fol-
lowing five Validation Rules (VRi) to guide the RT pattern
developers, when adding the RT stereotypes:

VR1. Each property that provides information about non
functional requirements (e.g., throughput, delays or

scheduling policies) has to be stereotyped hhNfpii.

VR2. Each RT method whose execution must be achieved

before a deadline has to be stereotyped hhrtFeatureii.

VR3. Each passive class that includes shared RT data has to

be stereotyped hhppUnitii.

VR4. Each active class having its own execution resources and

handling simultaneously various messages has to be
stereotyped hhrtUnitii.

VR5. Each method belonging to a class stereotyped hhppUnitii
or hhrtUnitii and that has timing constraints to satisfy
requires to be stereotyped hhrtServiceii.

4. The instantiation process for RT design patterns

We present, in this section, the instantiation process for RT

design patterns and its associated tool based on model trans-
formation. This process has as input the RT design patterns
generated with our development process and it generates the

class diagram of one applications instantiating the RT pat-
terns, as shown in Fig. 6. The instantiation process consists
of two steps: the mapping step and the transformation step.

The first step defines the mapping model that links design pat-
tern elements to application elements and, then, validates the
application model against the pattern model. The transforma-

Constructing and reusing domain specific design patterns 335
tion step generates automatically the application model
deploying the instantiated patterns. Thus, the main objective
of this proposal is to use model transformation engineering

techniques in order to create a specific application model by
instantiating RT design patterns while respecting the con-
straints implicitly defined by the stereotypes hhmandatoryii
and hhextensibleii. The RT constraints defined by RT stereo-
types, such as hhrtFeatureii and hhrtUnitii, are transferred auto-
matically to the RT application models instantiating the RT

patterns. The verification of these constraints can be done only
at runtime. For instance, we can verify that an operation dead-
line will not be missed, only when running the RT system.
Figure 6 Pattern ins
4.1. Description and implementation of the mapping step

4.1.1. Mapping step description

The instantiation of a desired design pattern begins with an

interactive mapping step that allows the application designer
to instantiate the mandatory classes of the pattern as well as
their attributes and operations. Then, the application designer
has to choose the appropriate optional elements. Besides, the

designer may rename the mapped pattern elements and may
also add new application specific elements, such as attributes,
operations, classes and so on. The result of this step is a map-

ping model that matches the elements of a pattern to the appli-
tantiation process.

336 S. Rekhis et al.
cation model elements. The relational elements are transferred
automatically when their associated pattern elements are
mapped.

In the mapping model example, presented in Fig. 6, the
ObservedElement class of the RT controller pattern is mapped
twice in the application model (RoadSegment and Vehicle

classes). This example shows also the addition of two new
attributes (StartPointLocation and EndPointLocation).

4.1.2. Implementation of mapping step

The mapping model is implemented using Acceleo and EMF
(Steinberg et al., 2008). We use Acceleo generator in order to
transform each RT design pattern represented with UML to

an Ecore model. This transformation is performed through
the definition of the Acceleo template ‘‘UMLtoEcore.mt”.
The generated Ecore model will be the input model of the

EMF framework that allows the automatic generation of an
editor to instantiate the desired design pattern.

The generated editor shows a list of all classes correspond-
ing to the selected pattern model. Then, it shows the attributes

and the operations relevant for each selected pattern class.
Thus, to create an instance of the desired pattern, the applica-
tion designer chooses the appropriate elements from the list

and fills in their properties (such as the name and the type)
in the property window.

Note that, we have not chosen to use the automatic gener-

ation of an Ecore model from a UML model, which is pro-
vided by EMF, for two reasons:

– The generated Ecore model provided by EMF cannot allow
adding application specific elements (i.e., new attributes,
new operations, new classes) that do not instantiate pattern
elements. Thus, it prevents application designers from add-

ing new attributes or methods to a class which is stereo-
typed hhextensibleii.

– The association concept of UML is treated differently in

the Ecore meta-models (Kim and Carrington, 2006). In
UML, an association is an independent concept, while
in Ecore it is represented using references and opposites.

As a result, the creation of an Ecore Model from
pattern class diagram using EMF does not allow the
generation of an editor which lists all the classes
defined in the pattern model, especially those linked

with UML associations and not with UML composition
relationship.

4.1.3. Validation of the mapping model

The validity of the pattern instantiation is checked using EMF
validation framework. This framework verifies, on the one

hand, if all mandatory pattern elements (such as classes, attri-
butes and operations) are mapped to application model ele-
ments. In addition, it verifies that each mapped pattern class,

which is not stereotyped hhextensibleii, does not have new attri-
butes or new operations added by the application designer. On
the other hand, it verifies if each element in the mapping model

has a name and if each attribute has a type.
As a result, the validation of the mapping model is checked

and if any constraint is violated, the designer is informed with

a message displayed in the Problems tab, as shown the map-
ping model example presented in Fig. 7. In this example the
Measure fundamental class belonging to the RT sensor pattern
is not instantiated.

4.2. Description and implementation of the transformation step

Once a mapping model is created, EMF generates an XMI
output file and places it in a repository containing all instanti-

ated patterns. This file and the original pattern model file are
the inputs of the model transformation engine, which generates
automatically the class diagram of the pattern instance. The

model transformation is based on the definition of the Acceleo
template ‘‘UMLtoUML.mt” that specifies how to deploy a pat-
tern in a specific application. This template imports java ser-

vices that allow creating a copy of the selected pattern
elements with their corresponding names specified in the map-
ping model, and the copy of the new specified application
elements.

Then, the relationships between the mapped elements are
defined based on the relationships between their corresponding
elements in the original pattern model. This means that, for

each relational element RP that links the elements EP1 and
EP2 in the pattern, if there are two elements EA1 and EA2

belonging to the application and instantiating respectively

EP1 and EP2, then the relational element RP is copied to link
the elements EA1 and EA2. Moreover, if the element RP has
a name, then the same name is kept for the corresponding rela-
tional element in the application.

Besides, once a pattern class is mapped to an application
class, then the hhpatternClassii stereotype is automatically asso-
ciated to this application class in the transformation step. This

stereotype allows easy retrieval of the pattern-related informa-
tion used to check the existence of any conflicts with pattern
properties, if any modification is performed after the applica-

tion model generation. Also, the stereotypes modeling RT
aspects (hhNfpii, hhrtFeatureii, hhrtUnitii, . . .) are automatically
associated with their corresponding application attributes

and methods.

5. Evaluation

To determine the performance of our pattern development
process, two questions arise: do the obtained patterns have a
good design quality and also do they cover the essence of the
RT domain? For this purpose, we proposed some projects to

experts, while dividing them into two groups, one group mod-
els RT applications using our RT patterns, and the other will
not use them. Then, we evaluate the design quality of the

proposed RT patterns thanks to reuse metrics, reusability met-
rics and CK metrics proposed by Chidamber and Kemerer
(1994).

We have chosen ten case studies. The ten collected case
studies used in our experimental evaluation contain about
110 classes, 142 methods and 120 associations. They involve

30 different RT pattern occurrences.

5.1. Evaluation metrics

We evaluate the quality of the proposed RT patterns in terms

of domain coverage through two kinds of metrics: reuse met-
rics and reusability metrics. Reuse metrics calculate the per-
centage of reuse of RT pattern elements in software design,

Figure 7 Mapping model editor showing an instantiation error.

Constructing and reusing domain specific design patterns 337
whereas reusability metrics evaluate the possibility that a
design pattern can be reused.

Frakes et al. (2009) stipulated that reuse metrics aim to

determine how much reuse is present within a given system.
There are many ways to implement these metrics. For example,
the amount of code reuse is defined as the ratio between the

number of reused lines of code in a system and the total lines
of code in a system. Aggarwal et al. (2005) proposed two met-
rics for measuring the amount of reuse in object oriented soft-
ware using generic programing in the form of templates. The

first metric, called Class Template Factor (CTF) is defined as
a ratio between the number of classes using class templates
and the total number of classes in a source code. The second

metric, called Function Template Factor (FTF) is defined as
a ratio between the number of functions using function tem-
plates and the total number of functions. These works are

focused on different reuse metrics, aiming to measure the
amount of reuse of software components and to determine
the portion of the new or modified code and the portion of

the reused code. These metrics only deal with source code
which is typically available at the later stages of the software
life cycle, failing to address the importance of the software arti-
facts produced during earlier stages such as analysis and

design. Thus, we intend hereafter to adapt existing reuse met-
rics CTF and FTF defined in Aggarwal et al. (2005) to mea-
sure, respectively, the amount of pattern classe reuse and

operation reuse in a given designed with UML. Moreover,
we will add another metric to compute the amount of attribute
reuse.
On the other hand, reusability metrics indicate the possibil-
ity that a component is reusable and enable to identify a good
quality of a component for reuse, but, they don’t provide a

measurement of how many components are reused. Different
studies are based on the definition of reusability metrics. Gill
and Sikka (2011) have proposed new metrics which can be

computed from inheritance hierarchies: Breadth of Inheritance
Tree (BIT), Method Reuse Per Inheritance Relation (MRPIR),
Attribute Reuse Per Inheritance Relation (ARPIR), BIT
measures the breadth of the whole inheritance tree. MRPIR

and ARPIR metrics give a clearer picture of reuse since they
consider inheritance. MRPIR metric (respectively ARPIR
metric) computes the average number of reused methods

(respectively attributes) in an inheritance hierarchy and not
in all classes. Subedha and Sridhar (2012) have used reuse util-
ity percent and reuse frequency metrics as the assessment attri-

butes for reusability of the software component in context
level. These metrics determine which components have high
reuse potential from a set of standard components in an exist-

ing environment. The reusability metrics proposed in these
works indicate whether or not the components are reusable
in the future. But, they do not answer an essential question:
Do the reusable components represent the specificities of a par-

ticular domain? In order to fill this lack, we propose in this
paper new metrics for reusability assessment of domain specific
design patterns. The aim of these metrics is to show if these

patterns are well-defined by checking the presence of pattern
elements in a system designed without the usage of patterns.
In our context, these metrics are intended to measure if the

338 S. Rekhis et al.
RT patterns cover the RT domain specificities. They calculate
the number of elements identified as pattern elements in the
applications that do not reuse RT patterns divided by the

number of pattern elements in an application reusing the pat-
tern. When this ratio is close to one, this means that the major-
ity of the classes, attributes and operations of RT design

patterns are identified as similar to the classes, attributes and
operations of the applications designed by experts without
using patterns.

5.1.1. Reuse metrics

Three reuse metrics are proposed, they are: Class Reuse Level
(CRL), Attribute Reuse Level (ARL) and Operation Reuse

Level (ORL). Their values range from 0 to 1. When the reuse
metrics value is close to one, this indicates a high reuse level,
while when it is close to zero, this indicates that none of the

pattern elements is reused. Reuse metrics’ high values indicate
that the application designers need only to add some elements
specific to the domain (classes, attributes and operations) since
the majority of application elements are reused from the RT

patterns. This means that our RT patterns cover the essence
of the domain and that their adaptation does not necessitate
a great effort.

5.1.1.1. Class Reuse Level (CRL). This metric is defined as the
ratio between the number of reused pattern classes (RPC) and

the total number of classes in the model corresponding to an
instance of a pattern P as shown in (1).

Let us consider a model corresponding to an instance of a

pattern P with n classes C1, C2, . . . ,Cn

CRLp ¼
Pn

i¼1RPCðCiÞ
n

ð1Þ

where,

RPCðCiÞ ¼
1 if the class is reused from a pattern;

0 otherwise

�

;

5.1.1.2. Attribute Reuse Level (ARL). This metric is defined as

the ratio between the number of reused attributes (RAT) of
pattern classes and the total number of attributes in the model
corresponding to an instance of a pattern P as shown in (2).

Let us consider a model corresponding to an instance of a
pattern P and having n classes C1, C2, . . . ,Cn and mi attributes
a1, a2, . . . ,ami for each class Ci.

ARLp ¼
Pn

i¼1

Pmi
j¼1RATðaijÞPn
i¼1mi

ð2Þ

where,

RATðaijÞ ¼
1 if the attribute is reused from a pattern class

0 otherwise

�

IATðaijÞ ¼
1 if the attribute is identified as an attribute of a p

0 otherwise

�

5.1.1.3. Operation Reuse Level (ORL). This metric is defined

as the ratio between the number of reused Operations (ROP)
of pattern classes and the total number of operations in the
model corresponding to an instance of a pattern P as shown

in (3).
Let us consider a model corresponding to an instance of a

pattern P and having n classes C1, C2, . . . ,Cn and qi operations
op1, op2, . . . ,opqi for each class Ci.

ORLp ¼
Pn

i¼1

Pqi
k¼1ROPðopikÞPn

i¼1qi
ð3Þ

where,

ROPðopikÞ ¼
1 if the operation is reused from a pattern

0 otherwise

�

5.1.2. Reusability metrics

Three reusability metrics are proposed, they are: Class

Reusability (CR), Attribute Reusability (AR) and Operation
Reusability (OR). These metrics indicate whether the RT pat-
terns allow designing the specificities of the RT domain or

not. They are calculated from two releases of each application.
Release 1 is designed without using any pattern. Release 2 is
designed using design patterns.

5.1.2.1. Class Reusability (CR). The metric CR is defined as
the ratio between the number of identified pattern classes

(IPC) in a model designed without using patterns and the num-
ber of reused pattern classes (RPC) in this model when
designed using RT patterns as shown in (4).

Let us consider a model with n classes C1, C2, . . . ,Cn.

CRp ¼
Pn

i¼1IPCðCiÞPn
i¼1RPCðCiÞ ð4Þ

where,

IPCðCiÞ ¼
1 if the class is identified as a pattern class;

0 otherwise

�

RPCðCiÞ ¼
1 if the class is reused from a pattern;

0 otherwise

�

5.1.2.2. Attribute Reusability (AR). The metric AR is defined
as the ratio between the number of identified attributes

(IAT) of pattern classes in a model designed without using pat-
terns and the number of reused attributes (RAT) of pattern
classes in this model when designed using patterns as shown

(5).
Let us consider a model with n classes C1, C2, . . . ,Cn and mi

attributes a1, a2, . . . ,ami for each class Ci.

ARp ¼
Pn

i¼1

Pmi
j¼1IATðaijÞPn

i¼1

Pmi
j¼1RATðaijÞ

ð5Þ
attern class;

Constructing and reusing domain specific design patterns 339
where,

RATðaijÞ ¼
1 if the attribute is reused from a pattern class;

0 otherwise

�

5.1.2.3. Operation Reusability (OR). The metric OR is defined

as the ratio between the number of identified operations (IOP)
of pattern classes in a model designed without using patterns
and the number of reused operations (ROP) of pattern classes

in this model when designed using patterns as shown in (6).
Let us consider a model with n classes C1, C2, . . . ,Cn and qi

operations op1, op2, . . . ,opqi for each class Ci.

ORp ¼
Pn

i¼1

Pqi
k¼1IOPðopikÞPn

i¼1

Pqi
k¼1ROPðopikÞ

ð6Þ

where,
IOPðopikÞ ¼
1 if the operation is identified as an operation of a pattern class;

0 otherwise

�

ROPðopikÞ¼
1 if the operation is reused fromapattern class;

0 otherwise

�

5.1.3. CK metrics

Chidamber and Kemerer (1994) present a state of the art of
object-oriented metrics, called CK metrics, and classify them

essentially into four categories: coupling, cohesion, complexity
and inheritance. Next, we explain each category and we pre-
sent its associated metrics.

� Complexity: complexity measures the simplicity and under-
standability of a design. Many complexity measures have
been proposed in the literature, we present the most useful

ones which are Number of attributes (NAtt) and Weighted
Methods per Class (WMC).

� Cohesion: cohesion is a measure of how strongly-related

and focused the various responsibilities of a class. A cohe-
sive class is a class which all its methods are tightly related
to the attributes defined locally. The cohesion should be

maximized to get a design with a good quality. The essential
metric measuring the cohesion is Lack of Cohesion in
Methods (LCOM).

� Inheritance: inheritance measures the tree of inheritance

and the number of children. In this category, we find Depth
of Inheritance (DIT) and Number of Children (NOC).

� Coupling: coupling measures the degree of interdependency

between classes/objects. Two objects are coupled if and only
if at least one of them acts upon the other. The coupling
could, essentially, be measured with the Coupling between

Objects (CBO) and Response for Call (RFC) metrics. Note
that, the CBO value should be minimized, first, because,
when it increases, the sensibility to changes is higher and

therefore maintenance is more difficult (Chidamber and
Kemerer, 1994).
5.2. Evaluation results and interpretation

5.2.1. Evaluation of RT design patterns based on reuse and
reusability metrics

Table 1 shows the values of reuse metrics and reusability met-

rics obtained for the proposed RT design patterns (i.e., sensor,
controller and actuator patterns) which are used for modeling
ten different RT applications that we reference A1, A2, . . . ,
A10.

On one hand, the values obtained for reuse metrics show
that more than 60% of the classes, the attributes and the oper-
ations of RT applications are instantiated from the proposed

RT patterns in all cases, as shown in Fig. 8. Then, a few num-
bers of applications specific elements are added by designers.
For example, the values of reuse metrics obtained in Table 1

for the application A1 show that 85% of classes
(CRL = 0.85), 73% of attributes (ARL = 0.73) and 83%
operations (ORL = 0.83) are instantiated from RT patterns.

There are even cases (applications A7 and A8) where all appli-
cations classes are instances of pattern classes (CRL = 1).
Thus, we deduce a good reuse level of RT design patterns ele-

ments in the modeling of RT applications.
On the other hand, the values obtained for reusability met-

rics indicate that the degree of reusability of classes and attri-

butes is better than the reusability of operations, as shown in
Fig. 9. Indeed, we identified all the classes of the RT patterns
(CR = 1) in three cases of real-time applications modeled
without reusing this pattern. In addition, we have identified

the majority of the attributes reused from the pattern classes.
For example, the values of reusability metrics obtained in
Table 1 for application A1 show that 83% of RT patterns

classes are identified (CR = 0.83), 72% of the attributes are
identified (AR = 0.72) and 60% of operations are identified
(OR = 0.6). This means that the reuse of these patterns is

interesting in the RT domain because they are well-defined
and they represent adequately the specificities of the consid-
ered domain.

5.2.2. Evaluation of RT design patterns based on CK metrics

Table 2 shows the values of CK metrics obtained for the differ-
ent applications reusing the proposed RT design patterns. For

each application, we measure the minimum value and the max-
imum value of each CK metric except LCOM metric (cohe-
sion) which is not measured since it can be calculated only at
code level and not on the design level. We present the result

of each metric as an interval [min, max] and we compare it
to the defined threshold (Chandra et al., 2010) presented in
Table 3.

We should caution that, in the software engineering field, in
general, there is not yet a precise guideline for how to fix
thresholds. The work proposed by Chandra et al. (2010) sug-

gest a threshold value of 6 for DIT and NOC, as shown in

Table 1 Results for reuse and reusability metrics calculated for RT design patterns.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Reuse metrics CRL 0.85 0.70 0.66 0.8 0.75 0.81 1 1 0.87 0.8

ARL 0.73 0.66 0.62 0.67 0.8 0.75 0.8 0.82 0.81 0.71

ORL 0.83 0.66 0.76 0.76 0.9 0.76 0.83 0.84 0.75 0.89

Reusability metrics CR 0.83 0.71 0.81 0.87 1 0.66 1 1 0.85 0.83

AR 0.72 0.75 0.68 0.71 0.75 0.71 0.75 0.71 0.72 0.60

OR 0.6 0.5 0.56 0.6 0.55 0.56 0.8 0.72 0.6 0.70

0

0,2

0,4

0,6

0,8

1

1,2

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

RT applications

R
eu

se
 m

et
ri

cs

CRL
ARL
ORL

Figure 8 Evaluation of RT design patterns based on reuse

metrics.

0

0,2

0,4

0,6

0,8

1

1,2

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

RT applications

R
eu

sa
b

il
it

y
m

et
ri

cs

CR
AR
OR

Figure 9 Evaluation of RT design patterns based on reusability

metrics.

Table 2 Results for CK metrics calculated for RT design

patterns.

Metrics

DIT NOC CBO RFC WMC NAtt

A1 [0,1] [0,4] [1,6] [0,8] [0,5] [0,4]

A2 0 0 [1,4] [0,6] [0,4] [0,6]

A3 [0,1] [0,2] [1,6] [0,9] [0,7] [0,5]

A4 [0,1] [0,2] [1,4] [0,6] [0,4] [0,5]

A5 0 0 [1,3] [0,5] [0,4] [0,4]

A6 [0,1] [0,3] [1,4] [0,8] [0,5] [0,6]

A7 0 0 [1,3] [0,6] [0,4] [0,5]

A8 [0,1] [0,2] [1,3] [0,6] [0,3] [0,5]

A9 [0,1] [0,2] [1,4] [0,9] [0,7] [0,6]

A10 [0,1] [0,3] [1,5] [0,7] [0,5] [0,5]

Table 3 Threshold values for the CK metric suite.

Metric Threshold

WMC 0–15

DIT 0–6

NOC 0–6

CBO 0–8

RFC 0–35

LCOM 0–1

340 S. Rekhis et al.
Table 3. The threshold limit for CBO metric is set to 8 per
class. For the RFC metric the threshold limit is set to 35 per
class, finally the threshold limit for the LCOM metric is set

to 1 per class.
Examining the evaluation results, we see that the obtained

metrics’ values for the RT design patterns are in perfect agree-

ment with the thresholds of Table 3. For example, we find that
the DIT values of all classes are low (in the interval [0,1]) in all
application models. This means that the maximum length from
the node to the root of the inheritance tree of a class is equal to

1. We find also that the NOC values are not very high in all
cases. That is the maximum number of immediate sub-classes
subordinated to a class in the class hierarchy does not exceed

4 classes (NOC value is in the interval [0,4] for the application
A1).

In addition, the values obtained for CBO metric are low in

some cases (in the interval [1,3] for the applications A5, A7
and A8) and slightly high in other cases (in the interval [1,6]
for the applications A1 and A3) but they do not exceed the
thresholds in all cases. Indeed, the CBO high values are
obtained in two case studies (A1 and A3) where the classes

playing the role of Measure in the sensor pattern are used by
many others classes (a maximum of six classes in the applica-
tions A1 and A3). Finally, the values obtained for WMC met-

rics are low compared to the defined thresholds. Thereby,
according to the different values obtained for CK metrics,
we can deduce that the applications models reusing RT pat-

terns have a good design quality.

6. Conclusion

In this paper, we have proposed a pattern development process
that integrates top-down and bottom-up approaches. This pro-
cess is based on a set of unification rules identifying the com-
monalities and differences between the applications models in

a specific domain and deriving the fundamental, optional and
extensible elements of patterns. The proposed unification rules
guide the development of domain-specific patterns, in general,

and it is particularly adapted to the design patterns specific to
real-time domain with intensive data. Moreover, we have pre-
sented a RT pattern instantiation process to provide assistance

Constructing and reusing domain specific design patterns 341
for an application designer when reusing a pattern. We have
implemented this process using an existing modeling frame-
work. We have provided a plug-in tool that supports the cre-

ation and validation of pattern instances and prevents the
application designer from the violation of pattern constraints.
Finally, we have proposed two kinds of metrics for evaluation

purpose. The first one aims to assess the reuse level of pattern
participants. The second category focuses on predicting the
reusability of domain specific design patterns. This kind of

metrics checks the presence of pattern elements in a system
designed without the usage of patterns.

Our approach was illustrated through the creation of the
Controller pattern. In addition, it was quantitatively evaluated

on ten case studies in the RT domain. The evaluation has
demonstrated the potential of the proposed approach, even
though further refinements are necessary. For instance, it is

essential that our pattern development tool keeps automati-
cally the consistency between the class and sequence diagrams
of the proposed patterns. It has to take into account the impact

of the selection of a variable element in the static view and
dynamic view when instantiating RT patterns.

Currently, we are examining how to experiment the

approach on other RT applications. Moreover, we are inter-
ested in defining an ontology specific to RT domain to fill
Figure A1 Class diagram
the gaps we encountered using WordNet and to reduce the
intervention of designers when generating RT patterns.

Appendix A. Illustration of the pattern development process

In order to illustrate our pattern development process, we pre-
sent, in the following, the construction of the RT controller

pattern. To illustrate the applications decomposition and the
unification of the applications fragments, three different RT
applications are briefly shown and explained: a freeway traffic

management system (Compass, 2010), an industrial control
system which allows the control of tanks water levels
(Reinhartz-Berger and Sturm, 2009) and a medical telesurveil-

lance system (Baldinger et al., 2004).
The first and last applications were designed by two differ-

ent UML experimented designers (not belonging to the

authors team) while the third application relative to the system
which controls water level in tanks is presented in Reinhartz-
Berger and Sturm (2009). The freeway traffic management sys-
tem and the medical telesurveillance system were designed

manually since the design diagrams of these systems are not
available; only their textual description is presented. In an
ideal case, the design of the applications could be obtained

by reverse engineering if source code is available.
of COMPASS system.

342 S. Rekhis et al.
On the other hand, the class diagram of the system that
controls tank water level presented in Fig. A2 is slightly mod-
ified from the original one presented by Reinhartz-Berger and

Sturm (2009) since we consider that the history of the mea-
sured water heights is out of our scope.

A.1. Description of RT applications

A.1.1. Freeway traffic management system

COMPASS system (Compass, 2010) is regarded as one of the
most important traffic management systems in North America.
It uses inductance loop detectors to measure speed of each

vehicle, number of vehicles in a road segment (i.e., traffic den-
sity) and road segment occupancy. As illustrated in Fig. A1,
these measures can be related to the Vehicle class or the
RoadSegment class. The Vehicle and the RoadSegment classes

represent the physical elements observed by the active sensors.
All the acquired measures are analyzed by the traffic controller
in order to detect incidents on the highway and to notify the

operators of any detected events.

A.1.2. Industrial control system

The purpose of the water level control of an industrial regula-

tion system is to monitor and control the water levels in tanks,
ensuring that the actual water level of tank i is always in the
closed range [Low-level, High-level] (Reinhartz-Berger and

Sturm, 2009).
Fig. A2 illustrates the design of a water level control sys-

tem. It indicates that this system controls one type of element

(a tank) and acquires one type of measure (the water height in
tank), through the boundary stick passive sensors. This system
uses a water controller to deal with both opening and closing
faucets if the water height in a tank reaches its low or high

limit.
Figure A2 Class diagram of wa
A.1.3. Medical telesurveillance system

The MEDIVILLE system (Baldinger et al., 2004) for

telesurveillance of patients at home continuously records
patient’s attitude, acquired from actimetry sensor, and its heart
rate, acquired from pulse sensor. The acquired data are trans-

mitted to the base station at regular intervals (every 30 s). In
case of patient’s falls and heart problems, the local system
communicates with the central server and transmits both the

alarm and the latest available data to notify the medical
surveillance team of any detected event. The surveillance oper-
ator reports the detected problems to the appropriate practi-
tioner. The class diagram of MEDIVILLE system is shown

in Fig. A3.

A.2. Class diagram construction of RT controller pattern

The objective of RT controller pattern is to model both the
control of data acquired from the environment and the initial-
ization of corrective action(s) in case of constraint violation.

The RT data control sub-problem is decomposed into six ele-
mentary functions (cf. Section 3.2). Table A1 shows the con-
cepts and domain constraints related to each identified

elementary function.
After the requirements identification phase, the classes

belonging to each application and playing the role of Con-
troller, Observed-Element and Surveillance Operator must be

identified in order to determine the applications fragments
related to RT data control functionality, as illustrated in
Table A2.

The application fragments obtained after decomposition
step are:

F12 = {TrafficController, Vehicle, RoadSegment, Surveil-
lanceOperator, RoadLink, Incident}.
ter level control application.

Figure A3 Medical telesurveillance application model.

Table A1 Requirement identification of RT data control

functionality.

Domain

functionality

Elementary function Concept and

constraint

RT data

control

functionality

A controller monitors

the state of each

observed element

Concepts: controller,

observed element

A controller calculates

derived data from

captured data

Concepts: controller

A controller checks if

an action misses its

deadline

Concepts: controller.

Constraint: The

completion time of RT

method must be

achieved before the

deadline

A controller checks if a

captured value does

not exceed the

predefined minimum

value and maximum

values

Concepts: controller.

Constraint: Measure’s

value must not exceed

the predefined

minimum value and

maximum value

A controller initiates

corrective actions

when it detects

abnormal situation

Concepts: controller

A controller notifies

the surveillance

operator of any

detected anomaly

Concepts: controller,

surveillance operator

Table A2 Relation between concepts related to RT data

control functionality and application classes.

Concepts Classes Applications examples

Controller TrafficController a1. Freeway traffic

management application

Observed

element

Vehicle, road segment

Surveillance

operator

SurveillanceOperator

Controller WaterController a2. Water level control

application

Observed

element

Tank

Surveillance

operator

Controller Patient_Controller a3. Medical

telesurveillance

application

Observed

element

Patient

Surveillance

operator

Surveillance_Operator

Constructing and reusing domain specific design patterns 343
F22 = {WaterController, Tank}.
F32 = {Patient_Controller, Patient, Surveillance_Operator,
Practitioner}.

The unification of these fragments allows the generation of
RT controller pattern class diagram presented in Fig. A4. This

Figure A4 Class diagram of RT controller pattern.

344 S. Rekhis et al.
pattern has been obtained by applying the unification rules (cf.

Section 3.4.1) as follows:

� N_Var (TrafficControllerA12, WaterControllerA22,
PatientControllerA32) and Op_int (TrafficControllerA12,

WaterControllerA22, PatientControllerA32): rule UR2 (case
2) is applied and a mandatory class Controller is added to
the pattern with the mandatory method verify() and the

optional method notify(). This class is stereotyped
hhextensibleii.

� N_dist (RoadSegmentA11, VehicleA11, TankA21,

PatientA31), Att_int (RoadSegmentA11, VehicleA11,
TankA21, PatientA31) and Op_equiv (RoadSegmentA11,
VehicleA11, TankA21, PatientA31): rule UR2 (case 3) is
Figure A5 Sequence diagram relative to data
applied and a fundamental class observedElement is added
to the pattern with two attributes (elementID and status)
and two methods (getStatus() and setStatus()).

� N_equiv (Surveillance_OperatorA12, Surveillance_Opera-
torA32) and Att_equiv (Surveillance_OperatorA12, Surveil-
lance_OperatorA32): rule UR3 is applied and an optional

class SurveillanceOperator is added to the pattern because
it is present in only two application examples.

� Rule UR6 is applied to transfer the relations between classes
in the pattern.

In the pattern validation step, hhrtFeatureii stereotype is
added to the Verify() method of Controller class since it is

essential to check that each measured value is in the closed
control functionality of COMPASS system.

Constructing and reusing domain specific design patterns 345
range [Minimum-Value, Maximum-value] before a deadline;
otherwise the initialization of corrective actions may have no
effect. For the same reason, the method notify() is stereotyped

hhrtFeatureii according to the rule VR2. Besides, the Controller
represents an active entity responsible for checking the system
state. Therefore, the rule VR4 is applied and the Controller

class is stereotyped hhrtUnitii.
Figure A6 Sequence diagram relative to data con

Figure A7 Sequence diagram relative to data c
In the resulting pattern, the calculateDerivedInfoTraffic()
method is not present because it belongs to one application
(COMPASS). However, in some cases it is essential to have

a method that calculates derived data, in order to fulfill RT
domain functional requirements (cf. Ef2 of RT data control
functionality). In this case, the CalculateDerivedValue()

method is added by the designer as an optional element. Sim-
trol functionality of industrial control system.

ontrol functionality of MEDIVILLE system.

346 S. Rekhis et al.
ilarly, the InitiateCorrection() method is added to the con-
troller pattern as an optional method.

A.3. Sequence diagram construction of RT controller pattern

In order to illustrate the generation of RT controller pattern
sequence diagram, we firstly present the sequence diagrams

relative to the RT data control functionality of RT applica-
tions described in the Figs. A5–A7.

The sequence diagram of RT controller pattern is obtained

through the application of the unification rules (cf. Sec-
tion 3.4.2) as follows:

� N_var (trafficControllerA12, waterControllerA22,
patientControllerA32): the rule UR9 case 1 is applied and
a fundamental object Controller is added to the pattern
sequence diagram since the objects trafficControllerA11,

waterControllerA21 and patientControllerA31 are instances
of one class named controller in the pattern class diagram.

� N_equiv (measureA12, measureA22, measureA32): the rule

UR7 is applied and a fundamental object measure is added
to the pattern sequence diagram.
Figure A8 Sequence diagram
� The rule UR12 case 1 is applied and the messages getMini-

mumValue(), getMaximumValue() and getMeasure() are
added to the pattern sequence diagram since these messages
have equivalent names and their sender objects represent a

variation of a concept and they are instances of a unique
class which is Controller. The messages getMinimumValue
() and getMaximumValue() are not common to all applica-
tions and they are placed in an optional combined fragment.

However, the message getMeasure() is added as fundamen-
tal element. These messages belong to parallel combined
fragment in order to fulfill the application requirements.

� The rule UR12 case 1 is also applied to add the message ver-
ify() as fundamental element and the message notify() as
optional element.

Note that the unification rules of actors are similar to those
of objects. Therefore, the actor surveillanceOperator is added
to the pattern as optional actor.

Similarly to the validation step of RT controller pattern
class diagram, the validation of sequence diagram allow to
add the message initiateCorrection() in an optional combined

fragment as shown in Fig. A8.
of RT controller pattern.

Constructing and reusing domain specific design patterns 347
A.4. RT controller pattern representation

Name: controller pattern.

Context: This pattern is applicable during the data control

phase of RT applications once RT data are acquired and
stored in the database.
Intention: The pattern aims to model RT data control and

to express temporal constraints.
Solution:
Static view: The class diagram of RT controller pattern is
presented in Fig. A4.

Participants:
– Controller: A controller has to monitor physical elements to
respond to conditions that might violate safety. It takes

periodically the value captured for each observed element
as well as the minimum value and the maximum value that
define the interval for which the controller does not detect

an anomaly. If a captured value does not verify the bound-
ary constraint, then the controller initiates some corrective
actions, such as a reboot, a reset and a shut-down, or noti-

fies an operator.
– On the other hand, the controller receives periodically a
signal to be notified about the data that must be updated
for each observed element. In this case, the controller is

waiting for a signal. If this signal does not arrive on
time, then the controller performs appropriate recovery
actions.

– ObservedElement: This class represents the description of a
physical element that is supervised by the controller. It can
be an aircraft, a car, a road segment, and so on. One or

more measure types (i.e., Temperature, Pressure, etc) of
each observed element could determinate its evolution.

– Operator: The operators supervise the alarm signals sent by
the controller. They provide decisions to validate reported

incidents in case the controller only reports errors and does
not have the responsibility of initiating corrective actions;
or in case the confirmation of an operator is needed to

achieve the correction.

Dynamic view: The sequence diagram of controller pattern

is presented in Fig. A8.

References

Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R., 2005. Software

reuse metrics for object-oriented systems. In: Proceedings of the

third ACIS International Conference on Software Engineering

Research, Management and Applications (SERA’05). IEEE com-

puter society, pp. 48–54.

Alnusair, A., Zhao, T., 2010. Using ontology reasoning for reverse

engineering design patterns. In: Models Software Eng.. LNCS

6002, 344–358.

Baldinger, J.L., Boudy, J., Dorizzi, B., Levrey, J.P., Andreao, R.,

Perpère, C., Delavault, F., Rocaries, F., Dietrich, C., Lacombe, A.,

2004. Tele-surveillance system for patient at home: the MEDI-

VILLE system. Book Chapter in Computers Helping People with

Special Needs. LNCS, 3118. Springer, Berlin.

Ben-Abdallah, H., Bouassida, N., Gargouri, F., Ben Hamadou, A.,

2004. A UML based framework design method. In: J. Object

Technol. 3 (8), 97–120.
Bouassida, N., Ben-Abdallah, H., Issaoui, I., 2013. Evaluation of an

automated multi-phase approach for patterns discovery. Int. J.

Software Eng. Knowl. Eng. 23 (10), 1367–1398.

Boukhelfa, K., Belala, F., 2015. Towards a formalization of RT

patterns based designs. In: Proc. Comput. Sci. Appl.. 624, 635.

Caeiro, M., Llamas, M., Anido, L., 2004. E-learning patterns: an

approach to facilitate the design of E-learning materials. In: 7th

IberoAmerican Congress on Computers in Education.

Chandra, E., Edith, Linda P., 2010. Class break point determination

using CK metrics thresholds. Global J. Comput. Sci. Technol. 10

(14), 73–77.

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object

oriented design. IEEE Trans. Software Eng. 20 (6), 476–493.

COMPASS Website, Available from: <http://www.mto.gov.on.ca/

english/traveller/compass/main.htm>, Last modified June 17,

2010.

Douglass, B., 2004. Real Time UML, Third Edition: Advances in The

UML for Real-Time Systems. Pearson Education Inc., 0-321-

16076-2.

Frakes, W.B., Anguswamy, R., Sarpotdar, S., 2009. Reuse ratio

metrics RL and RF. In: 11th International Conference on Software

Reuse, Falls Church, VA, USA.

Gamma, E., Helm, R., Johnson, R.E., Vlissides, J., 1994. Design

patterns: Elements of Reusable Object-Oriented Software. Addi-

son-Wesley Edition.

Gill, S.N., Sikka, S., 2011. Inheritance hierarchy based reuse &

reusability metrics in oosd. Int. J. Comput. Sci. Eng. (IJCSE) 3 (6),

2300–2309.

Graeme, S., 2000. The object-Z specification language. Advances in

Formal Methods Series. Kluwer Academic Publishers, ISBN 0-

7923-8684-1.

Hammouda, I., Ruokonen, A., Siikarla, M., Santos, A.L., Koskimies,

K., Systä, T., 2009. Design profiles: toward unified tool support for

design patterns and UML profiles. J. Software Pract. Exp. 39 (4),

331–354.

Kajsa, P., 2013. Semantics and model driven design patterns instan-

tiation. Inf. Sci. Technol. Bull. ACM Slovakia 5 (1), 44–52.

Kim, D.K., 2007. The role-based meta-modeling language for speci-

fying design patterns. In: Design Pattern Formalization Tech-

niques. Idea Group Inc., pp. 183–205.

Kim, S.K., Carrington, D., 2006. A tool for a formal pattern modeling

language. In: 8th International Conference on Formal Engineering

Methods (ICFEM 2006), LNCS 4260, Macao, China 1–3 Novem-

ber 2006, pp. 568–587.

Kim, D.K., France, R., Ghosh, S., 2004. A UML-based language for

specifying domain specific patterns. J. Visual Lang. Comput. 15,

265–289.

Koskinen, J., Kettunen, M., Systä, T., 2010. Behavioral profiles a way

tomodel and validate program behavior. J. Software Pract. Exp. 40

(8), 701–733.

Lanusse, A., Gérard, S., Terrier, F., 1999. Real-time modeling with

UML: the ACCORD approach. In: Bézivin, J., Muller, P.-A.

(Eds.), The Unified Modeling Language, UML’98- Beyond the

Notation, First International Workshop, LNCS 1618. Springer, pp.

319–335.

Liamwiset, C., Vatanawood, W., 2013. Detection of design patterns in

software design model using graph. In: Proceedings, The 2nd

International Conference on Information Technology and Man-

agement Innovation (ICITMI 2013), July 23–24, 2013.

OMG, A UML Profile for MARTE: Modeling and Analysis of Real-

Time Embedded Systems, OMG document number: ptc/2008-06-

09, 2008.

Port, D., 1998. Derivation of Domain Specific Design Patterns, USC-

CSE Annual Research Review and Technology Week Presentations

and Binder Materials.

http://refhub.elsevier.com/S1319-1578(16)30024-6/h0005
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0005
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0005
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0005
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0005
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0010
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0010
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0010
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0015
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0015
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0015
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0015
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0015
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0020
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0020
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0020
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0025
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0025
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0025
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0030
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0030
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0040
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0040
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0040
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0045
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0045
http://www.mto.gov.on.ca/english/traveller/compass/main.htm
http://www.mto.gov.on.ca/english/traveller/compass/main.htm
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0055
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0055
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0055
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0060
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0060
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0060
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0065
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0065
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0065
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0070
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0070
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0070
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0075
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0075
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0075
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0080
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0080
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0080
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0080
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0085
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0085
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0090
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0090
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0090
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0100
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0100
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0100
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0105
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0105
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0105
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0110
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0110
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0110
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0110
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0110

348 S. Rekhis et al.
Raminhos, R., Pantoquilho, M., Araújo, J., Moreira, A., 2006. A

systematic analysis patterns specification. In: Proceedings of ICEIS,

pp. 453–456.

Reinhartz-Berger, I., Sturm, A., 2009. Utilizing domain models for

application design and validation. Inf. Software Technol. 51, 1275–

1289.

Rekhis, S., Bouassida, N., Duvallet, C., Bouaziz, R., Sadeg, B., 2010.

A process to derive domain-specific patterns: application to the real

time domain. In: Proceedings of 14th International Conference on

Advances in Databases and Information Systems (ADBIS’2010).

LNCS 6295, September 2010, pp. 475–489.

Rekhis, S., Bouassida, N., Bouaziz, R., Duvallet, C., Sadeg, B., 2013.

Modeling real-time design patterns with UML-RTDP profile. Book

Entitled: Domain Engineering: Product Lines, Languages, and

Conceptual Models. Springer (2013 edition), May 31, 2013, pp. 59–

81. ISBN 978-3-642-36653-6.
Robles, K., Fraga, A., Morato, J., Liorens, J., 2012. Towards an

ontology-based retrieval of UML class diagrams. Inf. Software

Technol. 54, 72–86.

Satvinij, N., Vatanawood, W., 2011. Detection of behavioral design

patterns. In: Proceedings, The 15th International Annual Sympo-

sium on Computational Science and Engineering (ANSCSE15),

March 30–April 1.

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E., 2008. EMF:

Eclipse Modeling Framework, second ed. Addison-Wesley

Professional.

Subedha, V., Sridhar, S., 2012. Design of a conceptual reference

framework for reusable software components based on context

level. Int. J. Comput. Sci. Issues (IJCSI) 9 (3), 26–31.

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.,

2006. Design pattern detection using similarity scoring. IEEE

Trans. Software Eng. 32 (11), 896–909.

http://refhub.elsevier.com/S1319-1578(16)30024-6/h0135
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0135
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0135
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0145
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0145
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0145
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0145
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0145
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0150
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0150
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0150
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0160
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0160
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0160
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0165
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0165
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0165
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0170
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0170
http://refhub.elsevier.com/S1319-1578(16)30024-6/h0170

	A new method for constructing and reusing domain specific design patterns: Application to RT domain
	1 Introduction
	2 Related work
	2.1 Design patterns representation with UML-RTDP
	2.2 Overview of development processes
	2.3 Overview of patterns instantiation and validation works

	3 Development process for RT design patterns
	3.1 Identification of domain functionalities
	3.2 Identification of requirements
	3.3 Decomposition of applications
	3.4 Unification of application designs
	3.4.1 Unification of class diagram fragments
	3.4.2 Unification of sequence diagrams

	3.5 Pattern validation

	4 The instantiation process for RT design patterns
	4.1 Description and implementation of the mapping step
	4.1.1 Mapping step description
	4.1.2 Implementation of mapping step
	4.1.3 Validation of the mapping model

	4.2 Description and implementation of the transformation step

	5 Evaluation
	5.1 Evaluation metrics
	5.1.1 Reuse metrics
	5.1.1.1 Class Reuse Level (CRL)
	5.1.1.2 Attribute Reuse Level (ARL)
	5.1.1.3 Operation Reuse Level (ORL)

	5.1.2 Reusability metrics
	5.1.2.1 Class Reusability (CR)
	5.1.2.2 Attribute Reusability (AR)
	5.1.2.3 Operation Reusability (OR)

	5.1.3 CK metrics

	5.2 Evaluation results and interpretation
	5.2.1 Evaluation of RT design patterns based on reuse and reusability metrics
	5.2.2 Evaluation of RT design patterns based on CK metrics

	6 Conclusion
	Appendix A Illustration of the pattern development process
	A.1 Description of RT applications
	A.1.1 Freeway traffic management system
	A.1.2 Industrial control system
	A.1.3 Medical telesurveillance system

	A.2 Class diagram construction of RT controller pattern
	A.3 Sequence diagram construction of RT controller pattern
	A.4 RT controller pattern representation

	References

