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Abstract

The availability of reduced order models can greatly decrease the computational costs

needed for modeling, identification and design of real-world structural systems. However,

since these systems are usually employed with some uncertain parameters, the approximant

must provide a good accuracy for a range of stochastic parameters variations. The derivation

of such reduced order models are addressed in this paper. The proposed method consists of

a polynomial chaos expansion (PCE)-based state-space model together with a PCE-based

modal dominancy analysis to reduce the model order. To solve the issue of spatial aliasing

during mode tracking step, a new correlation metric is utilized. The performance of the

presented method is validated through four illustrative benchmarks: a simple mass-spring

system with four Degrees Of Freedom (DOF), a 2-DOF system exhibiting a mode veering

phenomenon, a 6-DOF system with large parameter space and a cantilever Timoshenko beam

resembling large-scale systems.

1 Introduction

Modeling and simulation (M&S) play important roles in the analysis, design, and optimiza-

tion of engineering systems. M&S targets deriving models with enough accuracy for their

intended purpose. These models can be used to predict the systems’ response under different

loading and environmental conditions. Although the development of computational power

of modern computers has been very fast in recent years, more precise description of model

properties and more detailed representation of the system geometry still result in large-scale,

more complex models of dynamical systems with considerable execution time and memory

usage. Model reduction Antoulas et al. (2001), efficient simulation Yaghoubi et al. (2016);

Avitabile and O’Callahan (2009); Liu et al. (2012) and parallel simulation methods Yaghoubi

et al. (2015); Tak and Park (2013) are different strategies to address this issue.
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Nowadays, due to an ever increasing need for accurate and robust prediction of systems’

response, engineering models are almost always employed with some parameters to allow

variations in material properties, geometries, initial and boundary conditions. Consequently,

numerous model evaluations are normally required for the procedure of modeling, identifi-

cation and design of real-world applications in order to optimize the models’ performance.

This can be prohibitively expensive for computationally demanding models. In the literature,

several approaches address this issue by replacing such models with approximations that can

reproduce the essential features faster, e.g. surrogate modeling Frangos et al. (2010) and

parametric model order reduction (PMOR) Benner et al. (2013).

Surrogate models can be created intrusively or non-intrusively. In intrusive approaches,

the equations of a system are modified such that one explicit function relates the stochastic

properties of the system responses to the random inputs. The perturbation method Schuëller

and Pradlwarter (2009) is a classical tool used for this purpose but it is only accurate when the

random inputs have small coefficients of variation (COV). An alternative method is intrusive

Polynomial Chaos Expansion (PCE) Ghanem and Spanos (2003). It was first introduced

for Gaussian input random variables Wiener (1938) and then extended to the other types of

random variables leading to generalized polynomial chaos Xiu and Karniadakis (2002); Soize

and Ghanem (2004). In non-intrusive approaches, already existing deterministic codes are

evaluated at several sample points selected over the parameter space. This selection depends

on the methods employed to build the surrogate model, namely regression Blatman and

Sudret (2010); Berveiller et al. (2006) or projection methods Gilli et al. (2013); Knio et al.

(2001). Kriging Fricker et al. (2011); Jones et al. (1998) and non-intrusive PCE Blatman and

Sudret (2011) or combination thereof Kersaudy et al. (2015); Schöbi et al. (2015) are examples

of the non-intrusive approaches. The major drawback of PCE methods, both intrusive and

non-intrusive, is the large number of unknown coefficients in problems with large parameter

spaces, which is referred to as the curse of dimensionality Sudret (2007). Sparse Blatman and

Sudret (2008) and adaptive sparse Blatman and Sudret (2011) polynomial chaos expansions

have been developed to tackle this issue.

Parametric model order reduction (PMOR) methods are analogous to regression-based

non-intrusive surrogate modeling except that in PMOR, interpolations are performed not

only on system responses Baur et al. (2011), like surrogate modeling Yaghoubi et al. (2017),

but also on the reduced bases Amsallem and Farhat (2008) and reduced models Amsallem

and Farhat (2011); Panzer et al. (2010) evaluated over the parameter space. In this regard,

some attempts have been made recently to surrogate the models as well, e.g. the modal

models Manan and Cooper (2010); Dertimanis et al. (2017), NARX models Mai et al. (2016)

and time-varying ARMA models Bogoevska et al. (2017). However, they were only applied

to very small cases with single excitation and single sensor location, known as single-input,

single-output (SISO) systems. Since the extension of the modal models to nonlinear systems
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is not straightforward and NARX models become very complex for structures with Multi-

input, Multi-output (MIMO), they are not a suitable model for real life applications.

State-space (SS) is the most common model for dynamic systems due to the following

reasons: (i) it can represent MIMO systems as convenient as SISO systems, (ii) it can easily

be expanded to the more complex physical phenomena such as nonlinear systems, time-

varying systems, etc. Unlike PMOR methods which are mostly developed for SS models

Benner et al. (2013), there is a lack of literature in surrogating these models. Moreover,

complex dynamic systems have large model orders, therefore applying PCE directly on these

models may not be feasible. An appropriate approach could be to construct surrogate models

jointly with a proper model reduction method which is at the focus of this paper. It opens

up a new field which requires more investigation.

In Yang et al. (2015), Yang et al. combine intrusive PCE with a projection based model

reduction method and applied them to uncertain structures. In Kim (2015), Kim developed a

reduced order modeling technique for parametric linear systems. In this method, Karhunen-

Loeve approach is used in frequency domain to calculate optimal modes subject to the

simultaneous excitations. The method has been successfully applied to a structural systems

and later in Kim (2016), was extended to aeroelastic systems.

The main contribution of this paper is developing a reduced-order PCE-based surrogate

model for linear dynamic systems when they are presented in SS form. For this purpose,

the PCE-based surrogate model is developed in conjunction with modal dominancy analysis

Rahrovani et al. (2014) in order to reduce the model order, if required, while preserving

the model structure. Computational efficiency is another beneficial feature of the modal

dominancy analysis which is of our special interest in this work. The proposed method is

organized around two steps. In the first step, the modes are transformed to have similar

orientations to those of a reference model and in the second step, interpolation is performed

using PCE. The other novelties of the paper are: (i) new correlation metric to track system

modes when small number of sensors are available, (ii): QR-factorization is employed to

treat the well-known problem of non-unique eigenvectors of coalescent modes.

The outline of the paper is as follows. In Section 2, the problem is formulated and in

Section 4, after a short review of the pertinent materials from linear system theories and

polynomial chaos expansion, the proposed methodology is elaborated. In Section 5, the

method is applied to several academic case studies resembling challenges in the structures.

2 Problem formulation

Consider the spatially-discretized governing second-order equation of motion of a linear time-

invariant (LTI) system as
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M(x)q̈(t) + V (x)q̇(t) +K(x)q(t) = f(t)

y(t) = C ′(x)q(t)
(1)

in which for an N -DOF system with nu system inputs and ny system outputs, q(t) ∈ RN

is the displacement vector, y(t) ∈ Rny is the system output, f(t) is the external load vector

which is governed by a transformation of stimuli vector f(t) = Puu(t); with u(t) ∈ Rnu . x ∈
Rnx is the parameter vector and real positive-definite symmetric matrices M ,V ,K ∈ RN×N

are mass, damping and stiffness matrices, respectively. The output matrix C ′ ∈ Cny×N ,

maps the displacement vector to the output y(t).

The SS realization of the equation of motion in Eq. (1) can be written as

η̇(t) = A(x)η(t) +B(x)u(t)

y(t) = C(x)η(t) +D(x)u(t)
(2)

where A ∈ C2N×2N , B ∈ C2N×nu , C ∈ Cny×2N , and D ∈ Cny×nu . η(t) = [q(t)T , q̇T (t)]T ∈
R2N is the state vector. A and B are related to mass, damping and stiffness as follows

A =


 0 I

−M−1V −M−1K


 ,B =


 0

M−1P u


 . (3)

The output matrix C maps the states to the output y and D is the associated direct

throughput matrix. Such system with order of 2N is denoted by

Σ(x) = {A(x),B(x),C(x),D(x)} ∈ O(2N).

In cases with large model orders, one can use model reduction methods to reduce the model

order to 2n � 2N while retaining the main properties of the full model. For this purpose,

several methods have been proposed in the literature which have been comprehensively re-

viewed in Antoulas et al. (2001). One of these approaches is modal dominancy analysis

based on modal contributions Rahrovani et al. (2014) which is discussed more in Section

4.2. In this case, the reduced model {Σr} = {Ar(x),Br(x),Cr(x),Dr(x)} ∈ O(2n) can be

presented as

η̇r(t) = Ar(x)ηr(t) +Br(x)u(t)

y(t) = Cr(x)ηr(t) +Dr(x)u(t)
(4)

with ηr(t) ∈ R2n.

The problem is then as follows

Given {Σ(k)}NED

k=1 = {Σ(x(k))}NED

k=1 denoting systems evaluated at NED points sampled

from the parameter space x. The systems are assumed to be minimally realized linear time-

invariant(LTI) with equal number of states at all different realizations. Furthermore, let

x(0) 6= x(k), k = 1, 2, ..., NED be a new parameter set from the parameter space.

Find a method which can approximate Σr(x
(0)) by making PCEs over the already

evaluated systems {Σ(k)}NED

k=1 .
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3 Background

This section briefly reviews some features from linear system theories and polynomial chaos

expansions pertinent to the proposed method.

3.1 Linear system theories

In system theory, realization of an SS model is not unique. That is, given an input-output

relationship, a realization of an SS model is any quadruple of {A,B,C,D}1 such that

[u(t),y(t)] describes the input and output. Obviously, there are infinite number of realiza-

tions for an SS model which are called equivalent systems. They are defined as follows,

Definition 1. Let Σ ∈ O(2N) be a system in SS representation, T ∈ R2N×2N be a nonsin-

gular matrix and η = Tηe. Then, the model Σe = T (Σ) ∈ O(2N)

η̇e(t) = Aeηe(t) +Beu(t)

ye(t) = Ceηe(t) +Deu(t)
(5)

where

Ae = T−1AT ,Be = T−1B,Ce = CT ,De = D (6)

is said to be (algebraically) equivalent to Σ and T is called equivalence transformation.

A common SS realization is the modal realization which is discussed in the subsequent

section.

Modal realization

Assume that the dynamical system Σ ∈ O(2N) is diagonalizable and let A be a Hermitian

matrix with the eigenvalue set of λ = {λ1, λ2, ..., λ2N} and the corresponding eigenvector

matrix Φ = {φ1,φ2, ...,φ2N}. Using the transformation T = Φ the dynamical system Σ

can be projected onto modal coordinates in the form of the following quadruple,

Σ̄ = Φ(Σ) = {Ā, B̄, C̄,D} = {Φ−1AΦ,Φ−1B,CΦ,D} (7)

where Ā = Λ = diag(λ1, λ2, ..., λ2N ), B̄ = [b̄1, b̄2, ..., b̄2N ] is the modally projected input

matrix, and C̄=̄[c̄1, c̄2, ..., c̄2N ] is the modally projected output matrix. In particular, it

should be noted that the ith column of C̄ is the projection of the ith eigenvector of A to the

space spanned by the output y.

3.2 Polynomial chaos expansion

Let M be a computational model with nx random inputs X={X1, X2, ..., Xnx
}T and one

output Y . Assume that the random variables are independent and thus, their joint prob-

ability distribution function (PDF) defined in the probability space (Ω,F , P) is fX(x) =

1The dependency of the system matrices on parameters x has been dropped for simplicity
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∏nx

i=1 fXi
(xi). Further, the system response Y = M(X) is assumed to be a second-order

random variable, i.e. E
[
Y 2
]
< +∞ and belongs to the Hilbert space H = L 2

fX
(Rnx ,R) of

fX -square integrable functions of X with respect to the inner product:

E [ψ(X)φ(X)] =

∫

DX

ψ(x)φ(x)fX(x)dx (8)

where DX is the support of X. In order to make polynomial chaos expansion for Y , let us

define multi-index set α = (α1, α2, ..., αnx
) to which, any multivariate polynomials can be

constructed by

ψα(X) =

nx∏

i=1

ψ(i)
αi

(Xi)

where {ψ(i)
αi (Xi), αi ∈ N} is a univariate orthonormal polynomials defined with respect to

the marginal PDFs. For instance, if the inputs are standard normal or uniform variables,

the corresponding univariate polynomials are Hermite or Legendre polynomials, respectively.

The multivariate polynomials in the input vectorX are orthonormal with respect to the joint

PDF fX(x), i.e. :

E [ψα(X)ψβ(X)] =

∫

DX

ψα(x)ψβ(x)fX(x)dx = δαβ (9)

where δαβ is the Kronecker delta.

With these notations, the generalized polynomial chaos representation of Y reads Xiu

and Karniadakis (2002):

Y =
∑

α∈Nnx

ũαψα(X) (10)

in which ũα is a set of unknown deterministic coefficients which can be estimated non-

intrusively by projection Ghanem and Ghiocel (1998); Ghiocel and Ghanem (2002) or least

square regression methods Blatman and Sudret (2010); Berveiller et al. (2006). The latter

is of interest here and will be briefly explained later on.

Prior to that, the infinite series in Eq.(10) has to be truncated. One approach is the

Standard truncation scheme which include all polynomials corresponding to the set Anx,p =

{α ∈ Nnx : |α| ≤ p}, where p is a maximum polynomial degree and |α| =
∑nx

i=1 αi is the

total degree of polynomial ψα. The main drawback of this approach is rapid increase in the

cardinality of the set Anx,p =
(
nx+p
p

)
= P by increasing the number of parameters nx and

the order of polynomials p. However, in order to control it, suitable truncation strategies

such as q-norm hyperbolic truncation Blatman and Sudret (2010) have been developed that

drastically reduce the number of unknowns when nx is large.

In order to estimate ũα by least square regression, the truncation error ε is minimized

via least square as follows:

Y =M(X) =
∑

α∈Anx,p

ũα ψα(X) + ε ≡ ŨT
Ψ(X) + ε (11)
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To formulate this procedure, let X = {x(1),x(2), ...,x(NED)} be an experimental design with

NED space-filling samples of X and Y = {y(1) = M(x(1)), y(2) = M(x(2)), ..., y(NED) =

M(x(NED))} be their associated system responses. Then, the minimization problem is

ˆ̃U = arg minE
[(
Ũ

T
Ψ(X)−M(X)

)2]
. (12)

which admits a closed form solution as

ˆ̃U = (ΨTΨ)−1ΨTY . (13)

Here Ψ is the matrix containing the evaluations of the Hilbertian bases, that is Ψij =

ψαj (x(i)), i = 1, 2, ..., NED, j = 1, 2, ..., P .

The accuracy of PCE will be improved by reducing the effect of over-fitting in least square

regression. This can be carried out by using sparse adaptive regression algorithms proposed

in Hastie et al. (2007); Efron et al. (2004). In particular, the Least Angle Regression (LAR)

algorithm has been demonstrated to be effective in the context of PCE by Blatman and

Sudret Blatman and Sudret (2011). Readers interested to know more about calculating the

PCE are referred to Marelli and Sudret (2015).

Vector-valued response

In the case of vector-valued response, i.e. Y ∈ RNY , NY > 1, one can apply the presented

approach componentwise. For models with large number of random outputs, this can make

the algorithm computationally intractable. To avoid that, one can extract the main sta-

tistical features of the vectorial random response by principal component analysis (PCA).

The concept has been adapted to the context of PCE by Blatman and Sudret Blatman and

Sudret (2013).

Let us perform sample-based PCA by rewriting the Y as the combination of its mean Ȳ
and covariance matrix as follows:

Y = Ȳ +

NY∑

i=1

uiv
T
i (14)

where the vi’s are the eigenvectors of the covariance matrix:

COV (Y) = E
[
(Y − Ȳ)T(Y − Ȳ)

]
= [v1, ...,vNY

]




l1 . . . 0

. . .

0 . . . lNY







vT1
...

vTNY




T

(15)

and the ui’s are vectors such that

ui = (Y − Ȳ)vi. (16)

Then, Y can be approximated by the N̂Y -term truncation:
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Y = Ȳ +

N̂Y∑

i=1

uiv
T
i , N̂Y � NY . (17)

Since Ȳ and vTi are the mean and the eigenvectors of the system responses, respectively;

they are independent of the realization. Therefore, PC expansion can be applied directly on

the N̂Y � NY auxiliary variables ui. Besides, acknowledging the fact that the PCA is an

invertible transform, the original output can be retrieved directly from Eq. (17) for every

new prediction of u.

4 Methodology

This section elaborate the proposed methodology to develop the reduced order PCE-based

surrogate model for linear dynamic system. It consists of three major steps: (i) Tracking the

eigensolution of a system while its parameters are varying, (ii) Ranking the modes based on

their contribution to the input/output relation (iii) Making PCE-based surrogate model.

4.1 Correlation-based mode tracking

Mode tracking is an approach applicable to eigenvalue problems with variable parameters in

order to maintain correspondence between reference and perturbed eigensolutions. For this

purpose, one of the approaches is correlation-based methods, e.g. the method based on Modal

Assurance Criteria (MAC) Kim and Kim (2000). However, the MAC shows shortcomings

in some situations. In the next section, these problems are elaborated and an alternative

method to solve the issues is proposed.

4.1.1 Dealing with spatial aliasing

Historically, the MAC was developed to measure the consistency between different estimates

of a modal vector Allemang (2003). It works properly for systems with well-separated reso-

nance frequencies and with many response locations for the representation of modal vectors.

However, when few sensors are available to estimate the experimental modal vectors, high

MAC correlations may occur between modal vectors of the modes associated with different

resonance frequencies. This is the spatial aliasing phenomenon which is related to observabil-

ity of the system. Observability indicates the ability of the system to determine the internal

states by the knowledge of the selected system outputs. An LTI system, with A ∈ C2N×2N

is said to be observable if its observability matrix O(A,C) has full rank, i.e.

rank(O(A,C)) = rank




C

CA
...

CA2N−1




= 2N (18)
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The relationship between the system’s observability and modal properties is thus of spe-

cial interest and motivated the development of the Modal Observability Correlation (MOC)

metric, first proposed in Yaghoubi and Abrahamsson (2014). To this end, let O(Ā, C̄) be

the observability matrix of a linear system presented in the modal form,

O(Ā, C̄) =




CΦ

CΦΛ
...

CΦΛ2N−1




=




Cφ1 Cφ2 . . . Cφ2N

Cφ1λ1 Cφ2λ2 . . . Cφ2Nλ2N

...
...

. . .
...

Cφ1λ
2N−1
1 Cφ2λ

2N−1
2 . . . Cφ2Nλ

2N−1
2N




(19)

then, the modal observability vectors, oi, i = 1, 2, . . . , 2N , are defined as the columns of the

modal observability matrix, i.e.

O(x) = O(Ā(x), C̄(x)) =
[
o1(x) o2(x) . . . o2N (x)

]
(20)

Each modal observability vector has the following important properties: (i) it contains infor-

mation related to only one single vibrational mode, (ii) it includes the information of both

eigenvector and eigenvalue, (iii) it relates the modal parameters to the observability of the

modes given by a used sensor configuration. These properties suggest replacing eigenvectors

in MAC by the modal observability vectors. Hence, for the correlation between two modal

observability matrices O(xi) and O(xj), we have

MOC(O(xi),O(xj)) =
|O(xi)

∗O(xj)|2
|O(xi)∗O(xi)||O(xj)∗O(xj)|

, (21)

We call this metric the Modal Observability Correlation (MOC)2. Due to the property (ii)

of the vectors oi, i = 1, 2, . . . , 2N , this metric discriminates between two highly correlated

modal vectors with non-coinciding eigenvalues. This thus, makes MOC more powerful than

MAC in dealing with the problem of spatial aliasing. It should be mentioned that raising

the exponent of Λ, see Eq.(19), may cause numerical problems. In order to avoid that, the

MOC is evaluated for the eigenvalues of the discrete-time system which are located in the

complex plane unit disc. This means, the eigenvalues of the continuous-time systems, λj , j =

1, 2, . . . , 2N are transformed to the discrete-time counterpart using λdiscj = exp(λjτ) with an

arbitrary time step τ . Here, τ = π/fmax in which fmax is the maximum eigenfrequency of

the system. This leads to a distribution of the discrete-time eigenvalues λdiscj over a large

domain of the unit disc and thus separates them well.

4.1.2 Dealing with coalescent eigenvalues

Due to the nonunique eigenvectors of coalescent or closely spaced eigenvalues, their presence

in one system become one of the major challenges in both mode tracking and modal domi-

2This is called bMOC in Yaghoubi and Abrahamsson (2014)
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nancy analysis. Therefore, it should be handled before any correlation analysis or dominancy

analysis takes place.

For this purpose, let Φj ∈ C2N×nc represent a matrix containing the linear independent

eigenvectors associated with a coalescent eigenvalue λj of multiplicity nc
3. Moreover, let V be

the nc-dimensional space spanned by the columns of Φj . Since this is an A-invariant subspace

of C2N , any vector that lies there can be considered as an eigenvector corresponding to λj .

Therefore, different variants of a linearly independent basis for V may appear in repeated

system realizations. To treat this issue, a fixed orthogonal basis for V is established by

applying the QR-decomposition method on the projection of the columns of the system

input matrix B onto V , i.e. PV (B). That is,

PV (B) = Φj(Φ
∗
jΦj)

−1Φ∗jB (22)

where PV (B) ∈ C2N×nu . The QR-decomposition of PV (B) gives

PV (B) = QR (23)

here, Q ∈ C2N×2N is an orthogonal matrix and R ∈ R2N×nu is an upper triangular matrix.

The fixed orthogonal basis for V can then be constructed by the first nc columns of Q, i.e. ,

V = Span(q1, q2, . . . , qnc
) (24)

The space spanned by the columns qi is also A-invariant and thus the unique vectors

qi, i = 1, 2, . . . , nc are eigenvectors associated with the coalescent eigenvalues, λj Laub (2005).

By that, the problem of nonunique eigenvector of coalescent eigenvalues is circumvented. This

decomposition will be employed throughout this study to fix the eigenvectors of coalescent

modes which may appear in the realization stage.

4.2 Modal dominancy analysis based on modal contribution into

system input/output relation

Given an SS model of a dynamical system Σ, by performing Laplace transformation, its

transfer function can be obtained as

G(s) = C(sI2N −A)−1B +D, s ∈ C (25)

Assume Σ̄ = Φ(Σ) as presented in Eq. (7) is its associated minimal modal realization, and

let

G(−i)(s) =
c̄ib̄i
s− λi

(26)

3Due to the controllability reasons, the dimension nc cannot exceed the number of actuators, nu.

10



be the transfer function of the error system resulting from deflation of the ith modal co-

ordinate from Σ̄. Then, the contribution of the ith modal coordinate to the input-output

relation of the system in the H2 sense can be defined as Rahrovani et al. (2014),

MCH2
= ‖G(−i)(jω)‖H2

=
1

π
tr{b̄∗i c̄∗i c̄ib̄i}[

1

Re(λi)
arctan(

ω

Re(λi)
)]∞−|Im(λi)| (27)

Here (•)∗ stands for Hermitian operation, Re and Im respectively, denote real and imaginary

parts of a complex number. H2 norm indicates the average error over frequency range of

interest induced by removing the ith modal coordinate Antoulas (2005). In general, it can

be assumed that the more important a mode is, the larger will be its contribution to the

input-output relation. Therefore, this measure can be a useful indication of dominancy for

the modes. By using it, a system can be partitioned into two subsystems: a dominant and

a weak one. The dominant one can be thus chosen as the reduced model. Let the system Σ̄

in Eq. (7) be partitioned as,


 ˙̄η1(t)

˙̄η2(t)


 =


Ā11 Ā12

Ā21 Ā22




η̄1(t)

η̄2(t)


+


B̄1

B̄2


u(t)

ȳ(t) =
[
C̄1 C̄2

]

η̄1(t)

η̄2(t)


+ D̄u(t)

(28)

then, a reduced-order model can be obtained by truncating η̄2,

˙̄η1(t) = Ā11η̄1(t) + B̄1u(t)

ȳ(t) = C̄1η̄1(t) + D̄u(t)
(29)

or residualizing η̄2, i.e. ˙̄η2 = 0,

˙̄η1(t) = Ā11η̄1(t) + B̄1u(t)

ȳ(t) = C̄1η̄1(t) + (C̄2Ā
−1
22 B̄2 + D̄)u(t)

(30)

Readers interested in detailed discussions about this method are referred to Antoulas (2005).

4.3 PCE-based reduced order model

As mentioned in Def. 1, one system can have numerous equivalent systems, therefore after re-

alizations and before interpolation, one should transform the systems such that they all have

the same orientation. Therefore, the proposed method is presented as a two-step method.

Step I is to perform isometric transformations and step II is to calculate the corresponding

polynomial chaos expansion.

4.3.1 Step I: Isometric transformation

In this section, a proper isometric transformation is presented. In order to keep the diagonal

form of the models, transformations are applied to each individual state separately. For
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this purpose, first, one system is chosen as the reference model Σ̄
ref

and the others are

transformed such that their modes have the same order and orientation as the reference

ones. These transformations, illustrated in Fig. 1 for a 2-DOF system, are:

1. Permutation transformation P: This transformation is devised to track the modes and

treat the mode crossing phenomenon which is frequently occurred when parameters

are varying in a system. For this purpose, each system is compared to the reference

by using MOC and then its associated observability columns are permuted to obtain a

diagonal MOC matrix, i.e. for j = 1, 2, .., NED

P(Σ̄
(j)

) = {P(j)|diag(MOC(O(j),Oref )P(j)) = diag(√1,√2, . . . ,√2N )}, (31)

in which

√i = max(MOC(o(j)i ,Oref )), i = 1, 2, . . . , 2N (32)

The transformed system is thus,

Σ̂
(j)

= P(Σ̄
(j)

) = P{Ā, B̄, C̄,D} = {Â, B̂, Ĉ,D} (33)

Fig. 1a and Fig. 1b, respectively, illustrate eigenvectors of a 2-DOF system as are

realized and after applying the permutation P. The influence of this transformation

can be simply observed.

2. Rotation transformation R: This transformation could be obtained by minimizing the

distance between the ĉi and c̄refi in a suitable norm. This can translate as the following

minimization problem,

min
∇i∈C

‖ĉi∇i − c̄refi ‖2F , i = 1, 2, . . . , 2N (34)

in which ‖•‖F stands for the Frobenius norm. The solution to this minimization prob-

lem is simply the projection of ĉi into the direction of c̄refi , i.e. for i = 1, 2, . . . , 2N

∇i =
ĉTi c̄

ref
i

‖ĉTi c̄refi ‖
, (35)

and therefore, the associated state is transformed as

{λ̃i, b̃i, c̃i} = ∇i({λ̂i, b̂i, ĉi}) = {∇−1i λ̂i∇i,∇−1i b̂i, ĉi∇i}, (36)

and the rotated system can be thus written as

Σ̃
(j)

= R(Σ̂
(j)

) = R{Â, B̂, Ĉ,D} = {Ã, B̃, C̃,D}, j = 1, 2, .., NED (37)

here R = diag(∇1,∇2, . . . ,∇2N ), Ã = diag(λ̃1, λ̃2, . . . , λ̃2N ), B̃ = [b̃1, b̃2, . . . , b̃2N ] and

C̃ = [c̃1, c̃2, . . . , c̃2N ]. Fig. 1c shows the effect of the transformation R on the direction

of the eigenvectors.
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As can be observed, applying these two transformations to each individual realized system

resulted in the systems as similar to the reference system as possible and they are thus ready

for interpolation.
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1st mode, Sys.
2nd mode, Sys.

(a) Realized system
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(b) After permutation P
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(c) After rotation R

Figure 1: Illustration of isometric transformations for a 2-DOF system

4.3.2 Step II: Regression by PCE

The proposed approach is based on model reduction by utilizing the modal dominancy anal-

ysis. That is, the modal contribution as the mean of the modal dominancy is one of the

important system properties which should be accurately predicted by the use of PCE. There-

fore, two sets of PCE are requried: one for the modal contributions and one for the system

matrices.

After applying the transformations to the systems, all the systems have the same mode

order and mode orientations and thus, are ready to make PCE. For this purpose, systems

matrices are collected in S and their associated modal contributions are grouped in MCH2

as follows,
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S = {Σ̃(1)
, Σ̃

(2)
, . . . , Σ̃

(NED)} =




{diag(Ã
(1)

), vect(B̃
(1)

), vect(C̃
(1)

), vect(D(1))})
{diag(Ã

(2)
), vect(B̃

(2)
), vect(C̃

(2)
), vect(D(2))}

...

{diag(Ã
(NED)

), vect(B̃
(NED)

), vect(C̃
(NED)

), vect(D(NED))}




(38)

MCH2 = [MC1,H2 ,MC2,H2 , . . . ,MCN,H2 ] (39)

in which diag(·) stands for diagonal elements of the matrix (·), vect(·) denotes vectorizing

operation,

MCi,H2
= [MC

(1)
i,H2

,MC
(2)
i,H2

, . . . ,MC
(NED)
i,H2

]T i = 1, 2, . . . , N,

here (·)T denotes transpose operation.

In order to make PCE, since system’s matrices are normally complex-valued whereas,

the PCE which is selected as the regression method here, is only defined for real-valued

functions4, separate PCEs need to be performed for real and imaginary parts of the S. Note

that, PCE could also be made for amplitude and phase of the S however, based on the

authors’ experience, expansions on real and imaginary parts are more robust. Therefore, the

matrices SRe = real(S) and SIm = imag(S) are the matrices for which the PCE should

be made. Besides that, a system’s matrices normally occur in complex conjugate pairs. It

means that PCE can be made only for one of each pair and the other will be constructed

afterward, i.e. S ∈ CNED×(N(1+nu+ny)+nu×ny).

The number of random outputs for this set, NY = 2×NED× (N(1+nu+ny)+nu×ny),

can be extremely large. As discussed in Section 3.2, the PCEs are therefore applied directly

to the principal components of S, yielding:

ŜRe
= E

[
SRe

]
+

N̂Y∑

j=1

∑

α∈AM,p

(uRe
α ψα(x))jv

ReT

j , (40)

ŜIm
= E

[
SIm

]
+

N̂Y∑

j=1

∑

α∈AM,p

(uImα ψα(x))jv
ImT

j , (41)

where uRe
α and uImα are respectively the vectors of coefficients of the PCEs made for the real

and imaginary parts of the S̃.

The next set of PCE will be made for the modal contributions collected in the matrix

MCH2
. Since the number of random outputs for this set is not very large, PCE can be

applied directly to them i.e. for i = 1, 2, · · · , N

M̂Ci,H2
=

∑

α∈AM,p

mcH2
α (i)ψα(x). (42)

4Limited literature is available on the use of PCE for complex-valued functions, see e.g. Soize and Ghanem

(2004).
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where mcH2 is the vector of coefficients of the PCEs. The proposed approach is formulated

in Algorithm 1.

4.3.3 PCE-based model reduction and response prediction

In order to obtain a reduced model at new sample point x(0), one can evaluate the whole

PCE-based SS model to make a full-order system and then reduce it using any truncation

scheme, or alternatively, select the dominant modes and evaluate PCEs only at those modes

to make a reduced-order SS model. Latter has been selected in this paper due to its efficiency

in time and memory usage.

For this purpose, two steps should be taken: (i) PCE-based model reduction, and (ii)

PCE-based model prediction. For the first step, one should evaluate Eq. (42) to obtain

contribution of the modes M̂Ci,H2
i = 1, 2, · · · , N and then, sort them in right order to

determine the first n modes to construct the dominant subsystem, see Eq. (28).

As the second step, Eqs. (40) and (41) are evaluated for the n selected modes to obtain

ŜRe

r (x(0)) and ŜIm

r (x(0)), respectively. Then the matrix Ŝr(x(0)) ∈ C1×(n(1+nu+ny)+nu×ny)

can be constructed by ŜRe

r (x(0)) + jŜIm

r (x(0)), j =
√
−1 and in turn, the system matrices

can be constructed by an inverse vectorization operation. The algorithm for predicting the

response of the reduced model at a new sample point is briefly presented in Algorithm 2.
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Algorithm 1 Proposed PCE-based surrogate modeling for SS models

1: Input: X = {x(1),x(2), ...,x(NED)}
Step I: Isometric transformations

2: Σ̄
ref

={Σ̄(x(r))}={Ā(x(r)), B̄(x(r)), C̄(x(r)),D(x(r))}, for a random r ∈ [1, ..., NED]

3: for k = 1 to NED do

4: Σ̄
k
={Σ̄(x(k))}={Ā(x(k)), B̄(x(k)), C̄(x(k)),D(x(k))} using Eq. (7)

5: Compute permutation transformation P using Eq.(31)

6: Evaluate Σ̂
k

= P(Σ̄
k
) = P{Ā, B̄, C̄,D} = {Â, B̂, Ĉ,D}

7: for i = 1 to N do

8: Compute ∇i =
ĉTi c̄

ref
i

‖ĉTi c̄refi ‖
9: end for

10: R = diag(∇1,∇2, . . . ,∇N )

11: Evaluate Σ̃
(k)

= R(Σ̂
(k)

) = R{Â, B̂, Ĉ,D} = {Ã, B̃, C̃,D}
12: Evaluate MC

(k)
H2

= [MC
(k)
1,H2

,MC
(k)
2,H2

, . . . ,MC
(k)
N,H2

] using Eq. (27)

13: end for

Step II: Interpolation by PCE

14: S = {Σ̃(1)
, Σ̃

(2)
, . . . , Σ̃

(NED)} ∈ CNED×(N(1+nu+ny)+nu×ny),

SRe=real(S), SIm=imag(S)

15: MCi,H2 = [MC
(1)
i,H2

,MC
(2)
i,H2

, . . . ,MC
(NED)
i,H2

]T i = 1, 2, . . . , N,

16: Polynomial chaos expansion,

ŜRe
: PCE of SRe using Eq. (40)

ŜIm
: PCE of SIm using Eq. (41)

M̂Ci,H2 : PCE of MCi,H2 using Eq. (42), i = 1, 2, . . . , N

17: M̂CH2 = [M̂C1,H2 ,M̂C2,H2 , . . . ,M̂CN,H2 ]

18: Output: ŜRe
, ŜIm

, M̂CH2
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Algorithm 2 Predicting reduced system’s responses

1: Input: x(0) 6= x(l), l = 1, 2, ..., NED

Step I: Model reduction:

2: for i = 1 to N do

3: Evaluate M̂Ci,H2(x(0)) using Eq. (42)

4: end for

5: M̂CH2 = [M̂C1,H2 ,M̂C2,H2 , . . . ,M̂CN,H2 ]

6: Sort M̂CH2 in right order and select first n dominant modes

Step II: Model construction:

7: Evaluate ŜRe
r = ŜRe

(x(0)) using Eq. (40) for the n selected modes.

8: Evaluate ŜIm
r = ŜIm

(x(0)) using Eq. (41) for the n selected modes.

9: Ŝr=ŜRe
r + jŜIm

r ∈ C1×(n(1+nu+ny)+nu×ny), j =
√
−1

10: Construct ˆ̃Σ
(0)
r from Ŝr by inverse vectorization and diagonalization operations

11: Output: ˆ̃Σ
(0)
r = ˆ̃Σr(x

(0))

5 Case studies

5.1 Introduction

In this section, the proposed method will be applied to four case studies, (i) a simple 4-DOF

system to illustrate how the method works, (ii) a 2-DOF system representing the complex

phenomenon of mode veering, (iii) a 6-DOF system with a relatively large (16-dimensional)

parameter space. (iv) a 3D Timoshenko cantilever beam representing a large-scale model.

For the sake of readability, for the last two cases with 6 outputs, only results for one of the

outputs are shown.

To assess the accuracy of the proposed PCE-based model reduction approach quantita-

tively, the following measure based on the root mean square (rms) error of the vectors is

defined.

Error(·) =
rms((·)ex − (·)approx))

rms((·)ex)
× 100%, (43)

in which (·) is a vector of interest which could be the frequency response of a system in a

specific frequency band. (·)ex and (·)approx represent results obtained by the exact and the

approximate model, respectively. The definition of exact and approximate model will be

mentioned in the context.
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Before analyzing the examples, following models should be described: (i) Full model: the

true model with the order of 2N , (ii) Direct reduced order model (ROM): the true model

reduced to order of 2n by the method of dominancy analysis (iii) PCE-based ROM: the

PCE-based model with the order of 2n. It should be emphasized that, in all examples, the

dominancy analysis has been carried out with state residualization technique, Eq. (30).

5.2 4-DOF system

As the first example, the simple 4-DOF system shown in Fig. 2 is selected to highlight the

steps of the proposed method. This example is taken from Amsallem and Farhat Amsallem

and Farhat (2011) and has been previously studied in Lohmann and Eid (2007). The system

with one input at mass 4 and one output at mass 1 is shown in Fig. 2. It consists of 6 springs,

4 dampers and 4 masses which are specified as constant or as functions of a parameter µ in

Table 1. The parameter µ is assumed to be uniformely distributed in [0, 1]. In this example

the full model has the order of 8, i.e. N = 4, and the reduced models are chosen to have

order 4, n = 2.

Since this system has one output, it can reveal the shortcoming of the MAC-based mode

tracking in the cases with few number of sensors. The result of correlation analysis between

the modes of a randomly selected system and the reference system is shown in Fig. 3. The

numbers indicate the amount of correlation between the modes. They are between [0, 1],

ranging from no correlation to full correlation. The results show that MAC, Fig. 3a, cannot

distinguish between the modes, whereas MOC can, Fig. 3b.

m1 m2 m3 m4

k1

c1

k2

c2

k3

c3

k4

c4

k5 u

k6

q1 q2 q3 q4

Figure 2: Simple 4-DOF system with parameters presented in Table 1
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Table 1: The 4-DOF system’s variables

Masses Dampers Stiffnesses

(Kg) (Ns/m) (N/m)

m1 125 c1 µ k1 2+2µ

m2 25 c2 1.6 k2 1

m3 5 c3 0.4 k3 3

m4 1 c4 0.1 k4 9

k5 27

k6 1+2µ

Table 2: Error analysis based on Eq. (43) to construct a proper Experimental Design (ED)

# ED points 4 5 10

max(error) % 10.4 1.11 0.06
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(b) MOC analysis

Figure 3: Correlation analysis between the modes of a realized system with the reference system.

In order to show the feasibility of the method and form a suitable Experimental Design

(ED), maximum 1% error (Eq. (43)) between the PCE-based ROMs and Direct ROMs has

been targeted. For this purpose, PCE-based ROMs were made by using different number of

ED points and their accuracies have been assessed by comparing with their corresponding

Direct ROMs over 10,000 Monte-Carlo samples extracted from the parameter space. The

accuracy analysis was performed for each individual frequency response by using Eq. (43)

in which (·)ex was the Direct ROM and (·)approx was the PCE-based ROM. The maximum

error is reported in Table 2. It indicates that 5 points at [0, 0.25, 0.5, 0.75, 1] are sufficient.
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Their associated models and modal contributions are obtained to construct S and MCH2

to be prepared for making PCE.

The next step is to find a suitable basis and the associated coefficients for the polynomial

chaos expansion. In this case, since the random variable µ is uniformly distributed, the basis

of the polynomial chaos consists of Legendre polynomials. The LAR algorithm Blatman

and Sudret (2011) is employed here to calculate a sparse PCE with adaptive degree. The

efficient implementation of the LAR is available in the Matlab-based toolbox UQLab Marelli

and Sudret (2014).

To validate the approach, 10,000 Monte-Carlo samples are extracted from the parameter

space and both the true and PCE-based models are evaluated. Their accuracies are then

assessed by comparing their associated properties as follows. Fig. 4a illustrates the contri-

butions of each mode calculated from the true model and obtained by its associated PCE,

Eq. (42). It indicates the PCE predicts the modal contributions accurately. Since reducing

the model order will be carried out based on these contributions, this is a crucial result.

Eigenvalues of the systems has been compared in Fig. 4b. High accuracy of the PCE-based

model in prediting the eigenvalues can be simply observed.
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Figure 4: System property comparison between the PCE-based model (in black) and the true

model (in red) obtained over 10,000 points sampled from the parameter space

Frequency response functions (FRF) offer another means for assessing the overall accuracy

of the PCE-based model by its comparison with that of the true model using Eq. (43). The

FRF has been evaluated in the frequency band of [0, 10] (rad/s). The error metric defined

at Eq. (43) is used for comparison with the full model as (·)ex and the reduced models

as (·)approx. The results of this analysis, shown in Fig. 5, indicate that the maximum

error, about 1.15%, occurs for µ = 0.154. One can reduce this error by increasing the

ED, as suggested by Table. 2. The model associated with this parameter value is thus
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selected for detailed investigation, see Fig. 6. Comparison between the eigenvalues, Fig.

6a, and FRFs of the full model and the reduced models, Fig. 6b, reveal that the proposed

method accurately predicts the reduced model. Moreover, Fig. 6c illustrates the error at

each frequency defined in Eq. (43) when (·)ex was the full true model and (·)approx was the

reduced models obtained by the modal dominancy analysis and the proposed PCE-based

method. It indicates the accuracy of the proposed method. Large error at the end of the

frequency range is due to the truncation of the last two modes. Moreover, the maximum

difference between the Direct ROM and the PCE-based model, about 1%, has been occurred

at the first resonant frequency. Since amplitudes at resonant frequencies are highly sensitive

to the damping values, the main reason for this error could be the under(over) estimation of

damping values obtained from the imaginary part of the eigenfrequencies collected in matrix

A. As mentioned, the accuracy could increase by increasing the ED size.
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Figure 5: Error of the evaluated FRFs by changing the parameter µ
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Figure 6: Detailed accuracy analysis for the least accurate predicted FRF among 10,000 Monte-

Carlo samples which according to Fig. 5 occurs at µ = 0.154

5.3 2-DOF system: mode veering

In this section, a 2-DOF system will be studied. This simple mechanical system, shown in

Fig. 7, presents the complex mode veering phenomenon Morand and Ohayon (1995). This

system is similar to the one studied in Amsallem and Farhat (2011); Stephen (2009). It is pa-

rameterized by the stiffness k1 = µ which follows the lognormal distribution, LN (−0.02, 0.2),

in which E [k1] = 1 and E
[
k21
]

= 0.2. The other properties of the system are listed in Ta-

ble 3. Variation of the system’s eigenvalues, shown in Fig. 8, together with changing the

eigenvectors’s directions indicate the mode veering phenomenon.

Fig. 1 illustrates the eigenvectors of the randomly selected system together with their

associated reference ones. Fig. 1a shows the eigenvectors as they are realized for a value of

µ. As expected, they are required to transform to be similar to their corresponding reference

ones. Fig. 1b and 1c show the eigenvectors after permutation P and rotation R, respectively.

As the first step of making PCE, a proper number of samples should be chosen for the
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ED. For this purpose, prediction accuracy of the PCE-based model has been checked over

the frequency range of [0.5, 1.8] rad/s on a large reference validation set. This set consists of

10,000 points sampled from the parameter space using the Monte-Carlo approach at which

the response of the true model has been evaluated to estimate the reference mean and

standard deviation. Then, the error (Eq.(43)) associated with the first two moments of the

PCE-based models’ responses made on experimental designs of increasing size are obtained

by comparing with the corresponding reference results. The resulting convergence curves are

given in Fig. 9. It implies that 300 points are necessary for the ED in this example, because

for larger sizes the accuracy does not improve significantly.

Therefore, since this example presents a complex problem with large COV of the parame-

ter, 300 sample points are extracted from the parameter space using the Sobol pseudorandom

sampling Sobol (1990) and the associated models are obtained to design the experiment. To

select the basis, note that X ∼ LN (λ, ξ)⇔ ln(X) ∼ N (λ, ξ), thus, the Hermite polynomial

is used as basis for ln(X).

m m

k1

c

k2
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q2q1

Figure 7: 2-DOF system presenting mode-veering phenomenon

Table 3: 2-DOF system’s characteristic

Characteristics m[kg] k2[N/m] k3[N/m] c[Ns/m]

value 1 0.05 1 0.001
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Figure 8: Mode veering phenomenon, (a) µ = 0.65, (b) µ = 1, (c) µ = 1.5
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Figure 9: Convergence analysis of the first two moments of the FRF to find a proper number of

points for the experimental design.

The main objective of studying this example is to show the adequacy of the method in

dealing with the complex case of mode veering phenomenon. Therefore, the 10,000 model

evaluations used to produce the convergence curves in Fig. 9 are also used to provide a

detailed validation of the performance of the PCE-based model. The results are presented as

follows. Fig. 10a shows the eigenvalues of the true model on top of those of the PCE-based

model. Their relative difference measured by

|λexi − λapproxi |
|λexi |

× 100% i = 1, 2

is shown in Fig. 10b. They indicate the competence of the method in predicting the variation

of the eigenvalues when µ is varied. Moreover, using both the PCE-based model and the

true model, FRFs are evaluated and compared using Eq. (43). The results of this accuracy

analysis are shown in Fig. 11.
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Figure 10: Predicted eigenvalues evaluated by the true model and the PCE-based model
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Figure 11: Accuracy analysis of the method by comparing the frequency response of the PCE-

based model with that of the true model evaluated by Eq. (43).

In order to visualize the accuracy of method, two realizations were considered, namely

one with a typical error, about 25% in total5, and the one with the maximum error, about

65% in total6. They are presented in Figures 12 and 13, respectively. They indicate that

even for the worst-case, the presented approach results in prediction of the system matrices

and in turn, FRFs with excellent accuracy.

5Sum of average errors at the outputs, 12%+13%=25%
6Sum of maximum errors at the outputs, 22%+43%=65%

25



0.6 0.8 1 1.2 1.4 1.6 1.8
10

−1

10
0

10
1

10
2

Frequency (rad/s)

G
(j
ω
)

 

 

True model
PCE−based model

(a) First system output

0.6 0.8 1 1.2 1.4 1.6 1.8
10

−2

10
−1

10
0

10
1

10
2

Frequency (rad/s)

G
(j
ω
)

 

 

True model
PCE−based model

(b) Second system output

Figure 12: Typical FRF prediction, true (solid line) and predicted (dashed line) FRF of the

system
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Figure 13: Worst case FRF prediction among 10,000 sample points, true (solid line) and pre-

dicted (dashed line) FRF of the system.

5.4 6-DOF system: large parameter space

The third example is chosen to illustrate the application of the proposed method to a problem

with a relatively large parameter space. The system, shown in Fig. 14, has been studied

before by Yaghoubi et al. in Yaghoubi et al. (2017). It consists of 10 springs and 6 masses

which are modeled by random variables with lognormal distributions. Their mean values and

Coefficient of Variations (COV) are listed in Table 4. The damping matrix is V = 0.01M̂ ,

where M̂ is the matrix of the mean value of the system masses.

The system with one input force at mass 6 and 6 system outputs, one for each mass,

has order 2N = 12 and we want to reduce it to 2n = 8. In order to perform the accuracy
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analysis, FRF of the system is evaluated at a frequency range from 0.1 to 4 Hz with the step

of 0.01 Hz.

In this example, the ED consists of 1000 points sampled from the parameter space using

Sobol sampling method. The marginal distributions of the input vectors X consists of

lognormal distributions. Therefore, the chosen PCE basis consists of Hermite polynomials

on the reduced variable Z = ln(X). Eq. (10) thus, can be written as

Y =M(X) =
∑

α∈AM,p

ũα ψα(ln(X)).
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Figure 14: The 6-DOF system
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Table 4: The 6-DOF system’s variables

Variables mean Coeff. of variation (%)

Masses [kg]

m1 50 10

m2 35 10

m3 12 10

m4 33 10

m5 100 10

m6 45 10

Stiffnesses [N/m]

k1 3000 10

k2 1725 10

k3 1200 10

k4 2200 10

k5 1320 10

k6 1330 10

k7 1500 10

k8 2625 10

k9 1800 10

k10 850 10

The LAR algorithm has been employed to build sparse PCEs with adaptive degree. Since

the dimension of the input parameter space is large, to reduce the unknown coefficients of the

PCEs and avoid the curse of dimensionality, a hyperbolic truncation with q-norm of 0.7 was

used before the LAR algorithm. Besides, only polynomials up to rank 2 were selected here

(i.e. polynomials that depend at most on 2 of the 16 parameters). It should be mentioned

that all the PCEs used for the surrogate model have eventually maximum degrees less than

10.

In order to assess the accuracy of the PCE-based model in estimating various quantities of

interests, 10,000 points sampled from the parameter space by using Monte-Carlo sampling at

which both the true and the PCE-based models are evaluated and their associated properties

have been compared in Fig. 15. Fig. 15a illustrates the contributions of each mode calculated

from the true model and obtained by its associated PCE, Eq. (42). Eigenvalues of the systems

have been compared in Fig. 15b.
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(c) Error analysis of the FRFs

Figure 15: System property comparison between the PCE-based model and the true model

obtained over 10,000 points sampled from the parameter space

Moreover, in order to assess the error quantitatively, FRFs of the PCE-based models have

been calculated and compared with the corresponding true model in the root-mean-square

sense. This error is evaluated using Eq. (43), its average over the outputs is presented in

Fig. 15c. Since this result could be misleading, two cases are chosen to further elaborate:

one case with an average error, about 40%, and one with the maximum error, about 110%

, which are shown respectively in Figs. 16 and 17 for the first output. In each figure, two

plots are shown: one for the case that PCE is used for predicting the full model, Figs. 16a

and 17a , and one for the reduced model, Figs. 16b and 17b.

In both cases, in spite of the large error values, one can observe that the proposed method

predicted the full model and the reduced model with excellent accuracy. By scrutinizing the

responses around the last two peaks, the source of these large errors is found to be the error

in the amplitude of the FRFs close to the eigenfrequencies. Absolute difference between the

responses shown by dotted lines in Figs. 16 and 17 confirm this reasoning.
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Figure 16: Typical FRF prediction at first system output, FRF of the true (in red) and PCE-

based (in black) system and their differences (in dotted line).

1 2 3 4
−160

−140

−120

−100

−80

−60

−40

−20

Frequency (Hz)

G
(j
ω
)
[d
B
]

 

 

True model
PCE−based model
Absolute error

(a) FRF of the full system

1 2 3 4
−140

−120

−100

−80

−60

−40

−20

Frequency (Hz)

G
(j
ω
)
[d
B
]

 

 

Full model
Direct ROM
PCE−based ROM
Absolute error

(b) FRF of the reduced system

Figure 17: Worst case FRF prediction among 10,000 sample points at first system output, FRF

of the true (in red) and PCE-based (in black) system and their differences (in dotted line).

At the end, it should be mentioned that the results indicate excellent accuracy of the

proposed method in (i) predicting the modal contribution and therefore, right selection of

the dominant modes, (ii) predicting the full model as well as the reduced model for a case

with high-dimensional parameter space.

5.5 3D Timoshenko beam: large-scale problem

The last example is selected to demonstrate the application of the proposed method to a

large-scale system. The system, shown in Fig. 18, is a 3D cantilever Timoshenko beam which
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is generated in Matlab according to Panzer et al. (2009). This system is similar to the one

studied in Panzer et al. (2010). It consists of 100 nodes along the beam, each with 6 degrees of

freedom. This results in an LTI system with an order of N = 1200 that we want to reduce the

system order to n = 20. The parameters of the beam are modeled by lognormally distributed

random variables with mean values listed in Table 5 and uncertainty of COV = 10%. The

damping matrix is V = CMM +CKK with CM = 8 s−1 and CK = 8× 10−6 s. The system

has one input force at the free end of the beam and 6 system outputs equidistantly located

along the beam, shown by the black circles. In order to perform the accuracy analysis, FRF

of the system is evaluated at a frequency range from 1 to 5000 Hz.

f

Figure 18: 3D cantilever Timoshenko beam

Table 5: The variables of the 3D Timoshenko beam

Variables Length Thickness Height Density Young’s modulus Poisson’s ratio

(l) (t) (h) (ρ) (E) (ν)

Unit [m] [m] [m] [kg/m3] [GPa]

Mean 1 0.01 0.01 7850 210 0.3

COV (%) 10 10 10 10 10 10

50 points sampled from the parameter space using Sobol sampling method constitute the

ED. In this case, since the order of the full model is so large, making PCE for all the system

matrices is not feasible, therefore the model order should be reduced to a smaller order, e.g.

ntemp = 40, before calculating the PCE. Through this example, in order to distinguish the

reduction step before and after making PCE, they will be denoted by pre- and post-PCE

reduction, respectively. The LAR algorithm has been employed to build sparse PCEs with
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adaptive degree. PCA has been performed over the C matrix and the dominant components

are selected such that
∑N̂Y

i=1 λ
COV
i = 0.99

∑NY

i=1 λ
COV
i here λCOV are the eigenvalues of the

covariance matrix, see Eq. (15). This truncation reduced the number of random outputs

from 240 × 2 to 6 components.

10,000 points sampled from the parameter space by using Monte-Carlo sampling as the

validation points and both the true and the PCE-based models are evaluated at these points.

Their associated FRFs are calculated and compared by using Eq. (43). The mean value of

the obtained errors over the outputs, shown in Fig. 19, demonstrates the accuracy of the

method in predicting the FRFs.
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Figure 19: Error analysis of the FRFs of the post-PCE reduced order model in comparison with

the true model evaluated by Eq. (43), averaged over the outputs.

As an individual system comparison, a case with the maximum error, about 7% , is

considered. Fig. 20. illustrates the comparison between the FRFs of the PCE-based model

and the true model in pre- and post-PCE reduction. Spectrum of the eigenvalues for the

models with different orders are also shown in Fig. 21. Accuracy of the method in predicting

the PCE-based ROM for large-scale systems can be simply inferred.
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Figure 20: Worst case FRF prediction among 10,000 sample points at first system output,

evaluated by true model (in red) and PCE-based model (in black).
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Figure 21: Eigenvalue spectrum of the systems realized at the parameter set with the maximum

average error.

6 Concluding remarks

In this paper, a PCE-based parametric model reduction method for dynamic systems has

been developed. This method consists of a PCE-based surrogate model for state-space models

together with a PCE-based modal dominancy method to reduce the model order, if required.

For this purpose, a method has been proposed based on QR factorization to fix the eigenvec-

tors of the modes with coalescent eigenvalues. Moreover, a new correlation metric has been

introduced for mode tracking, which was shown to be effective to resolve the spatial aliasing

phenomenon in cases with few number of sensors. The problem of the curse of dimensionality
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of PCEs in cases with large parameter spaces was alleviated by employing the LAR algo-

rithm to build sparse PCEs together with an adaptive degree strategies. In order to reduce

the number of random outputs in large-scale systems with high model orders two solutions

were proposed: first, reduce the model order to an intermediate level before making PCE

and second, use of PCA while making PCE. Successful application of the proposed method

to four case studies indicate its capability in accurately predicting the modal contributions,

eigenvalues, and more importantly, full and reduced order systems. The case studies are se-

lected such that each of them resembles a frequently occurred challenge in complex systems,

such as mode veering, large parameter space and large-scale systems.
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