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Reduced order surrogate modeling technique for linear dynamic systems

The availability of reduced order models can greatly decrease the computational costs needed for modeling, identification and design of real-world structural systems. However, since these systems are usually employed with some uncertain parameters, the approximant must provide a good accuracy for a range of stochastic parameters variations. The derivation of such reduced order models are addressed in this paper. The proposed method consists of a polynomial chaos expansion (PCE)-based state-space model together with a PCE-based modal dominancy analysis to reduce the model order. To solve the issue of spatial aliasing during mode tracking step, a new correlation metric is utilized. The performance of the presented method is validated through four illustrative benchmarks: a simple mass-spring system with four Degrees Of Freedom (DOF), a 2-DOF system exhibiting a mode veering phenomenon, a 6-DOF system with large parameter space and a cantilever Timoshenko beam resembling large-scale systems.

Introduction

Modeling and simulation (M&S) play important roles in the analysis, design, and optimization of engineering systems. M&S targets deriving models with enough accuracy for their intended purpose. These models can be used to predict the systems' response under different loading and environmental conditions. Although the development of computational power of modern computers has been very fast in recent years, more precise description of model properties and more detailed representation of the system geometry still result in large-scale, more complex models of dynamical systems with considerable execution time and memory usage. Model reduction [START_REF] Antoulas | A survey of model reduction methods for large-scale systems[END_REF], efficient simulation [START_REF] Yaghoubi | An efficient exponential predictorcorrector time integration method for structures with local nonlinearity[END_REF]; [START_REF] Avitabile | Efficient techniques for forced response involving linear modal components interconnected by discrete nonlinear connection elements[END_REF]; [START_REF] Liu | An efficient backward Euler time-integration method for nonlinear dynamic analysis of structures[END_REF] and parallel simulation methods [START_REF] Yaghoubi | A parallel solution method for structural dynamic response analysis[END_REF]; [START_REF] Tak | High scalable non-overlapping domain decomposition method using a direct method for finite element analysis[END_REF] are different strategies to address this issue. 1 Nowadays, due to an ever increasing need for accurate and robust prediction of systems' response, engineering models are almost always employed with some parameters to allow variations in material properties, geometries, initial and boundary conditions. Consequently, numerous model evaluations are normally required for the procedure of modeling, identification and design of real-world applications in order to optimize the models' performance.

This can be prohibitively expensive for computationally demanding models. In the literature, several approaches address this issue by replacing such models with approximations that can reproduce the essential features faster, e.g. surrogate modeling [START_REF] Frangos | Surrogate and reduced-order modeling: A comparison of approaches for large-scale statistical inverse problems. Large-Scale Inverse Problems and Quantification of Uncertainty[END_REF] and parametric model order reduction (PMOR) [START_REF] Benner | Stochastic finite element: a non intrusive approach by regression[END_REF].

Surrogate models can be created intrusively or non-intrusively. In intrusive approaches, the equations of a system are modified such that one explicit function relates the stochastic properties of the system responses to the random inputs. The perturbation method Schuëller and Pradlwarter ( 2009) is a classical tool used for this purpose but it is only accurate when the random inputs have small coefficients of variation (COV). An alternative method is intrusive Polynomial Chaos Expansion (PCE) [START_REF] Ghanem | Stochastic finite elements: a spectral approach[END_REF]. It was first introduced for Gaussian input random variables [START_REF] Wiener | The homogeneous chaos[END_REF] and then extended to the other types of random variables leading to generalized polynomial chaos [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF]; [START_REF] Soize | Physical systems with random uncertainties: chaos representations with arbitrary probability measure[END_REF]. In non-intrusive approaches, already existing deterministic codes are evaluated at several sample points selected over the parameter space. This selection depends on the methods employed to build the surrogate model, namely regression [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF]; [START_REF] Benner | Stochastic finite element: a non intrusive approach by regression[END_REF] or projection methods [START_REF] Gilli | Uncertainty quantification for criticality problems using non-intrusive and adaptive polynomial chaos techniques[END_REF]; [START_REF] Knio | A stochastic projection method for fluid flow: I. basic formulation[END_REF]. Kriging Fricker et al. (2011); [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF] and non-intrusive PCE [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF] or combination thereof [START_REF] Kersaudy | A new surrogate modeling technique combining Kriging and polynomial chaos expansions-application to uncertainty analysis in computational dosimetry[END_REF]; [START_REF] Schöbi | Polynomial-chaos-based Kriging[END_REF] are examples of the non-intrusive approaches. The major drawback of PCE methods, both intrusive and non-intrusive, is the large number of unknown coefficients in problems with large parameter spaces, which is referred to as the curse of dimensionality [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical modelscontributions to structural reliability and stochastic spectral methods[END_REF]. Sparse [START_REF] Blatman | Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach[END_REF] and adaptive sparse [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF] polynomial chaos expansions have been developed to tackle this issue.

Parametric model order reduction (PMOR) methods are analogous to regression-based non-intrusive surrogate modeling except that in PMOR, interpolations are performed not only on system responses [START_REF] Baur | Parameter preserving model order reduction for MEMS applications[END_REF], like surrogate modeling [START_REF] Yaghoubi | Sparse polynomial chaos expansions of frequency response functions using stochastic frequency transformation[END_REF], but also on the reduced bases [START_REF] Amsallem | Interpolation method for adapting reduced-order models and application to aeroelasticity[END_REF] and reduced models [START_REF] Amsallem | An online method for interpolating linear parametric reduced-order models[END_REF]; [START_REF] Panzer | Parametric model order reduction by matrix interpolation[END_REF] evaluated over the parameter space. In this regard, some attempts have been made recently to surrogate the models as well, e.g. the modal models [START_REF] Manan | Prediction of uncertain frequency response function bounds using polynomial chaos expansion[END_REF]; [START_REF] Dertimanis | Data-driven uncertainty quantification of structural systems via b-spline expansion[END_REF], NARX models [START_REF] Mai | Surrogate modelling for stochastic dynamical systems by combining nonlinear autoregressive with exogenous input models and polynomial chaos expansions[END_REF] and time-varying ARMA models [START_REF] Bogoevska | A data-driven diagnostic framework for wind turbine structures: A holistic approach[END_REF]. However, they were only applied to very small cases with single excitation and single sensor location, known as single-input, single-output (SISO) systems. Since the extension of the modal models to nonlinear systems is not straightforward and NARX models become very complex for structures with Multiinput, Multi-output (MIMO), they are not a suitable model for real life applications.

State-space (SS) is the most common model for dynamic systems due to the following reasons: (i) it can represent MIMO systems as convenient as SISO systems, (ii) it can easily be expanded to the more complex physical phenomena such as nonlinear systems, timevarying systems, etc. Unlike PMOR methods which are mostly developed for SS models [START_REF] Benner | Stochastic finite element: a non intrusive approach by regression[END_REF], there is a lack of literature in surrogating these models. Moreover, complex dynamic systems have large model orders, therefore applying PCE directly on these models may not be feasible. An appropriate approach could be to construct surrogate models jointly with a proper model reduction method which is at the focus of this paper. It opens up a new field which requires more investigation.

In [START_REF] Yang | Application of polynomial chaos expansion and model order reduction for dynamic analysis of structures with uncertainties[END_REF], Yang et al. combine intrusive PCE with a projection based model reduction method and applied them to uncertain structures. In [START_REF] Kim | Surrogate model reduction for linear dynamic systems based on a frequency domain modal analysis[END_REF], Kim developed a reduced order modeling technique for parametric linear systems. In this method, Karhunen-Loeve approach is used in frequency domain to calculate optimal modes subject to the simultaneous excitations. The method has been successfully applied to a structural systems and later in [START_REF] Kim | Parametric model reduction for aeroelastic systems: Invariant aeroelastic modes[END_REF], was extended to aeroelastic systems.

The main contribution of this paper is developing a reduced-order PCE-based surrogate model for linear dynamic systems when they are presented in SS form. For this purpose, the PCE-based surrogate model is developed in conjunction with modal dominancy analysis [START_REF] Rahrovani | Modal dominancy analysis based on modal contribution to frequency response function H2-norm[END_REF] in order to reduce the model order, if required, while preserving the model structure. Computational efficiency is another beneficial feature of the modal dominancy analysis which is of our special interest in this work. The proposed method is organized around two steps. In the first step, the modes are transformed to have similar orientations to those of a reference model and in the second step, interpolation is performed using PCE. The other novelties of the paper are: (i) new correlation metric to track system modes when small number of sensors are available, (ii): QR-factorization is employed to treat the well-known problem of non-unique eigenvectors of coalescent modes.

The outline of the paper is as follows. In Section 2, the problem is formulated and in Section 4, after a short review of the pertinent materials from linear system theories and polynomial chaos expansion, the proposed methodology is elaborated. In Section 5, the method is applied to several academic case studies resembling challenges in the structures.

Problem formulation

Consider the spatially-discretized governing second-order equation of motion of a linear timeinvariant (LTI) system as

M (x)q(t) + V (x) q(t) + K(x)q(t) = f (t) y(t) = C (x)q(t) (1)
in which for an N -DOF system with n u system inputs and n y system outputs, q(t) ∈ R N is the displacement vector, y(t) ∈ R ny is the system output, f (t) is the external load vector which is governed by a transformation of stimuli vector f (t) = P u u(t); with u(t) ∈ R nu . x ∈ R nx is the parameter vector and real positive-definite symmetric matrices M , V , K ∈ R N ×N are mass, damping and stiffness matrices, respectively. The output matrix C ∈ C ny×N , maps the displacement vector to the output y(t).

The SS realization of the equation of motion in Eq. ( 1) can be written as

η(t) = A(x)η(t) + B(x)u(t) y(t) = C(x)η(t) + D(x)u(t) (2) where A ∈ C 2N ×2N , B ∈ C 2N ×nu , C ∈ C ny×2N , and D ∈ C ny×nu . η(t) = [q(t) T , qT (t)] T ∈ R 2N
is the state vector. A and B are related to mass, damping and stiffness as follows

A =   0 I -M -1 V -M -1 K   , B =   0 M -1 P u   . (3) 
The output matrix C maps the states to the output y and D is the associated direct throughput matrix. Such system with order of 2N is denoted by

Σ(x) = {A(x), B(x), C(x), D(x)} ∈ O(2N ).
In cases with large model orders, one can use model reduction methods to reduce the model order to 2n 2N while retaining the main properties of the full model. For this purpose, several methods have been proposed in the literature which have been comprehensively reviewed in [START_REF] Antoulas | A survey of model reduction methods for large-scale systems[END_REF]. One of these approaches is modal dominancy analysis based on modal contributions [START_REF] Rahrovani | Modal dominancy analysis based on modal contribution to frequency response function H2-norm[END_REF] which is discussed more in Section 4.2. In this case, the reduced model

{Σ r } = {A r (x), B r (x), C r (x), D r (x)} ∈ O(2n) can be presented as ηr (t) = A r (x)η r (t) + B r (x)u(t) y(t) = C r (x)η r (t) + D r (x)u(t) (4) with η r (t) ∈ R 2n .
The problem is then as follows

Given {Σ (k) } N ED k=1 = {Σ(x (k) )} N ED k=1
denoting systems evaluated at N ED points sampled from the parameter space x. The systems are assumed to be minimally realized linear timeinvariant(LTI) with equal number of states at all different realizations. Furthermore, let k) , k = 1, 2, ..., N ED be a new parameter set from the parameter space.

x (0) = x (
Find a method which can approximate Σ r (x (0) ) by making PCEs over the already evaluated systems {Σ (k) } N ED k=1 .

Background

This section briefly reviews some features from linear system theories and polynomial chaos expansions pertinent to the proposed method.

Linear system theories

In system theory, realization of an SS model is not unique. 

where

A e = T -1 AT , B e = T -1 B, C e = CT , D e = D (6) 
is said to be (algebraically) equivalent to Σ and T is called equivalence transformation.

A common SS realization is the modal realization which is discussed in the subsequent section.

Modal realization

Assume that the dynamical system Σ ∈ O(2N ) is diagonalizable and let A be a Hermitian matrix with the eigenvalue set of λ = {λ 1 , λ 2 , ..., λ 2N } and the corresponding eigenvector matrix Φ = {φ 1 , φ 2 , ..., φ 2N }. Using the transformation T = Φ the dynamical system Σ can be projected onto modal coordinates in the form of the following quadruple,

Σ = Φ(Σ) = { Ā, B, C, D} = {Φ -1 AΦ, Φ -1 B, CΦ, D} (7) 
where Ā = Λ = diag(λ 1 , λ 2 , ..., λ 2N ), B = [ b1 , b2 , ..., b2N ] is the modally projected input matrix, and C =[c 1 , c2 , ..., c2N ] is the modally projected output matrix. In particular, it should be noted that the i th column of C is the projection of the i th eigenvector of A to the space spanned by the output y.

Polynomial chaos expansion

Let M be a computational model with n x random inputs X={X 1 , X 2 , ..., X nx } T and one output Y . Assume that the random variables are independent and thus, their joint probability distribution function (PDF) defined in the probability space (Ω,F , P) is f X (x) =

1 The dependency of the system matrices on parameters x has been dropped for simplicity nx i=1 f Xi (x i ). Further, the system response Y = M(X) is assumed to be a second-order random variable, i.e. E Y 2 < +∞ and belongs to the Hilbert space H = L 2 f X (R nx , R) of f X -square integrable functions of X with respect to the inner product:

E [ψ(X)φ(X)] = D X ψ(x)φ(x)f X (x)dx (8)
where D X is the support of X. In order to make polynomial chaos expansion for Y , let us define multi-index set α = (α 1 , α 2 , ..., α nx ) to which, any multivariate polynomials can be constructed by

ψ α (X) = nx i=1 ψ (i) αi (X i )
where

{ψ (i)
αi (X i ), α i ∈ N } is a univariate orthonormal polynomials defined with respect to the marginal PDFs. For instance, if the inputs are standard normal or uniform variables, the corresponding univariate polynomials are Hermite or Legendre polynomials, respectively.

The multivariate polynomials in the input vector X are orthonormal with respect to the joint PDF f X (x), i.e. :

E [ψ α (X)ψ β (X)] = D X ψ α (x)ψ β (x)f X (x)dx = δ αβ (9)
where δ αβ is the Kronecker delta.

With these notations, the generalized polynomial chaos representation of Y reads [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF]:

Y = α∈N nx ũα ψ α (X) (10)
in which ũα is a set of unknown deterministic coefficients which can be estimated nonintrusively by projection [START_REF] Ghanem | Stochastic seismic soil-structure interaction using the homogeneous chaos expansion[END_REF]; [START_REF] Ghiocel | Stochastic finite element analysis of seismic soil-structure interaction[END_REF] or least square regression methods [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF][START_REF] Benner | Stochastic finite element: a non intrusive approach by regression[END_REF]. The latter is of interest here and will be briefly explained later on.

Prior to that, the infinite series in Eq.(10) has to be truncated. One approach is the Standard truncation scheme which include all polynomials corresponding to the set A nx,p = {α ∈ N nx : |α| ≤ p}, where p is a maximum polynomial degree and |α| = nx i=1 α i is the total degree of polynomial ψ α . The main drawback of this approach is rapid increase in the cardinality of the set A nx,p = nx+p p = P by increasing the number of parameters n x and the order of polynomials p. However, in order to control it, suitable truncation strategies such as q-norm hyperbolic truncation [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF] have been developed that drastically reduce the number of unknowns when n x is large.

In order to estimate ũα by least square regression, the truncation error is minimized via least square as follows:

Y = M(X) = α∈A nx ,p ũα ψ α (X) + ≡ Ũ T Ψ(X) + (11)
To formulate this procedure, let X = {x (1) , x (2) , ..., x (N ED ) } be an experimental design with N ED space-filling samples of X and Y = {y (1) = M(x (1) ), y (2) = M(x (2) ), ..., y (N ED ) = M(x (N ED ) )} be their associated system responses. Then, the minimization problem is

Û = arg min E Ũ T Ψ(X) -M(X) 2 . ( 12 
)
which admits a closed form solution as

Û = (Ψ T Ψ) -1 Ψ T Y. ( 13 
)
Here Ψ is the matrix containing the evaluations of the Hilbertian bases, that is

Ψ ij = ψ αj (x (i) ), i = 1, 2, ..., N ED , j = 1, 2, ..., P .
The accuracy of PCE will be improved by reducing the effect of over-fitting in least square regression. This can be carried out by using sparse adaptive regression algorithms proposed in [START_REF] Hastie | Forward stagewise regression and the monotone lasso[END_REF]; [START_REF] Efron | Least angle regression[END_REF]. In particular, the Least Angle Regression (LAR) algorithm has been demonstrated to be effective in the context of PCE by [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF]. Readers interested to know more about calculating the PCE are referred to [START_REF] Marelli | UQLab user manual-polynomial chaos expansions[END_REF].

Vector-valued response

In the case of vector-valued response, i.e. Y ∈ R N Y , N Y > 1, one can apply the presented approach componentwise. For models with large number of random outputs, this can make the algorithm computationally intractable. To avoid that, one can extract the main statistical features of the vectorial random response by principal component analysis (PCA).

The concept has been adapted to the context of PCE by [START_REF] Blatman | Sparse polynomial chaos expansions of vector-valued response quantities[END_REF].

Let us perform sample-based PCA by rewriting the Y as the combination of its mean Ȳ and covariance matrix as follows:

Y = Ȳ + N Y i=1 u i v T i ( 14 
)
where the v i 's are the eigenvectors of the covariance matrix:

COV (Y) = E (Y -Ȳ) T (Y -Ȳ) = [v 1 , ..., v N Y ]      l 1 . . . 0 . . . 0 . . . l N Y           v T 1 . . . v T N Y      T (15)
and the u i 's are vectors such that

u i = (Y -Ȳ)v i . (16) 
Then, Y can be approximated by the NY -term truncation:

Y = Ȳ + NY i=1 u i v T i , NY N Y . (17) 
Since Ȳ and v T i are the mean and the eigenvectors of the system responses, respectively; they are independent of the realization. Therefore, PC expansion can be applied directly on the NY N Y auxiliary variables u i . Besides, acknowledging the fact that the PCA is an invertible transform, the original output can be retrieved directly from Eq. ( 17) for every new prediction of u.

Methodology

This section elaborate the proposed methodology to develop the reduced order PCE-based surrogate model for linear dynamic system. It consists of three major steps: (i) Tracking the eigensolution of a system while its parameters are varying, (ii) Ranking the modes based on their contribution to the input/output relation (iii) Making PCE-based surrogate model.

Correlation-based mode tracking

Mode tracking is an approach applicable to eigenvalue problems with variable parameters in order to maintain correspondence between reference and perturbed eigensolutions. For this purpose, one of the approaches is correlation-based methods, e.g. the method based on Modal Assurance Criteria (MAC) [START_REF] Kim | MAC-based mode-tracking in structural topology optimization[END_REF]. However, the MAC shows shortcomings in some situations. In the next section, these problems are elaborated and an alternative method to solve the issues is proposed.

Dealing with spatial aliasing

Historically, the MAC was developed to measure the consistency between different estimates of a modal vector [START_REF] Allemang | The modal assurance criterion-twenty years of use and abuse[END_REF]. It works properly for systems with well-separated resonance frequencies and with many response locations for the representation of modal vectors.

However, when few sensors are available to estimate the experimental modal vectors, high MAC correlations may occur between modal vectors of the modes associated with different resonance frequencies. This is the spatial aliasing phenomenon which is related to observability of the system. Observability indicates the ability of the system to determine the internal states by the knowledge of the selected system outputs. An LTI system, with

A ∈ C 2N ×2N
is said to be observable if its observability matrix O(A, C) has full rank, i.e.

rank(O(

A, C)) = rank         C CA . . . CA 2N -1         = 2N (18) 
The relationship between the system's observability and modal properties is thus of special interest and motivated the development of the Modal Observability Correlation (MOC) metric, first proposed in [START_REF] Yaghoubi | The modal observability correlation as a modal correlation metric[END_REF]. To this end, let O( Ā, C) be the observability matrix of a linear system presented in the modal form,

O( Ā, C) =         CΦ CΦΛ . . . CΦΛ 2N -1         =         Cφ 1 Cφ 2 . . . Cφ 2N Cφ 1 λ 1 Cφ 2 λ 2 . . . Cφ 2N λ 2N . . . . . . . . . . . . Cφ 1 λ 2N -1 1 Cφ 2 λ 2N -1 2 . . . Cφ 2N λ 2N -1 2N         (19)
then, the modal observability vectors, i , i = 1, 2, . . . , 2N , are defined as the columns of the modal observability matrix, i.e.

O(x) = O( Ā(x), C(x)) = 1 (x) 2 (x) . . . 2N (x) (20) 
Each modal observability vector has the following important properties: (i) it contains information related to only one single vibrational mode, (ii) it includes the information of both eigenvector and eigenvalue, (iii) it relates the modal parameters to the observability of the modes given by a used sensor configuration. These properties suggest replacing eigenvectors in MAC by the modal observability vectors. Hence, for the correlation between two modal observability matrices O(x i ) and O(x j ), we have

MOC(O(x i ), O(x j )) = |O(x i ) * O(x j )| 2 |O(x i ) * O(x i )||O(x j ) * O(x j )| , (21) 
We call this metric the Modal Observability Correlation (MOC)2 . Due to the property (ii) of the vectors i , i = 1, 2, . . . , 2N , this metric discriminates between two highly correlated modal vectors with non-coinciding eigenvalues. This thus, makes MOC more powerful than MAC in dealing with the problem of spatial aliasing. It should be mentioned that raising the exponent of Λ, see Eq.( 19), may cause numerical problems. In order to avoid that, the MOC is evaluated for the eigenvalues of the discrete-time system which are located in the complex plane unit disc. This means, the eigenvalues of the continuous-time systems, λ j , j = 1, 2, . . . , 2N are transformed to the discrete-time counterpart using λ disc j = exp(λ j τ ) with an arbitrary time step τ . Here, τ = π/f max in which f max is the maximum eigenfrequency of the system. This leads to a distribution of the discrete-time eigenvalues λ disc j over a large domain of the unit disc and thus separates them well.

Dealing with coalescent eigenvalues

Due to the nonunique eigenvectors of coalescent or closely spaced eigenvalues, their presence in one system become one of the major challenges in both mode tracking and modal domi-nancy analysis. Therefore, it should be handled before any correlation analysis or dominancy analysis takes place.

For this purpose, let Φ j ∈ C 2N ×nc represent a matrix containing the linear independent eigenvectors associated with a coalescent eigenvalue λ j of multiplicity n c3 . Moreover, let V be the n c -dimensional space spanned by the columns of Φ j . Since this is an A-invariant subspace of C 2N , any vector that lies there can be considered as an eigenvector corresponding to λ j .

Therefore, different variants of a linearly independent basis for V may appear in repeated system realizations. To treat this issue, a fixed orthogonal basis for V is established by applying the QR-decomposition method on the projection of the columns of the system input matrix B onto V , i.e. P V (B). That is,

P V (B) = Φ j (Φ * j Φ j ) -1 Φ * j B ( 22 
)
where P V (B) ∈ C 2N ×nu . The QR-decomposition of P V (B) gives

P V (B) = QR (23)
here, Q ∈ C 2N ×2N is an orthogonal matrix and R ∈ R 2N ×nu is an upper triangular matrix.

The fixed orthogonal basis for V can then be constructed by the first n c columns of Q, i.e. , V = Span(q 1 , q 2 , . . . , q nc ) (

The space spanned by the columns q i is also A-invariant and thus the unique vectors q i , i = 1, 2, . . . , n c are eigenvectors associated with the coalescent eigenvalues, λ j [START_REF] Laub | Matrix analysis for scientists and engineers[END_REF].

By that, the problem of nonunique eigenvector of coalescent eigenvalues is circumvented. This decomposition will be employed throughout this study to fix the eigenvectors of coalescent modes which may appear in the realization stage.

Modal dominancy analysis based on modal contribution into system input/output relation

Given an SS model of a dynamical system Σ, by performing Laplace transformation, its transfer function can be obtained as

G(s) = C(sI 2N -A) -1 B + D, s ∈ C (25)
Assume Σ = Φ(Σ) as presented in Eq. ( 7) is its associated minimal modal realization, and let

G (-i) (s) = ci bi s -λ i (26)
be the transfer function of the error system resulting from deflation of the i th modal coordinate from Σ. Then, the contribution of the i th modal coordinate to the input-output relation of the system in the H 2 sense can be defined as [START_REF] Rahrovani | Modal dominancy analysis based on modal contribution to frequency response function H2-norm[END_REF],

M C H2 = G (-i) (jω) H2 = 1 π tr{ b * i c * i ci bi }[ 1 Re(λ i ) arctan( ω Re(λ i ) )] ∞ -|Im(λi)| (27) 
Here (•) * stands for Hermitian operation, Re and Im respectively, denote real and imaginary parts of a complex number. H 2 norm indicates the average error over frequency range of interest induced by removing the i th modal coordinate [START_REF] Antoulas | Approximation of large-scale dynamical systems[END_REF]. In general, it can be assumed that the more important a mode is, the larger will be its contribution to the input-output relation. Therefore, this measure can be a useful indication of dominancy for the modes. By using it, a system can be partitioned into two subsystems: a dominant and a weak one. The dominant one can be thus chosen as the reduced model. Let the system Σ in Eq. ( 7) be partitioned as,

  η1 (t) η2 (t)   =   Ā11 Ā12 Ā21 Ā22     η1 (t) η2 (t)   +   B1 B2   u(t) ȳ(t) = C1 C2   η1 (t) η2 (t)   + Du(t) (28) 
then, a reduced-order model can be obtained by truncating η2 ,

η1 (t) = Ā11 η1 (t) + B1 u(t) ȳ(t) = C1 η1 (t) + Du(t) (29) 
or residualizing η2 , i.e. η2 = 0,

η1 (t) = Ā11 η1 (t) + B1 u(t) ȳ(t) = C1 η1 (t) + ( C2 Ā-1 22 B2 + D)u(t) (30) 
Readers interested in detailed discussions about this method are referred to [START_REF] Antoulas | Approximation of large-scale dynamical systems[END_REF].

PCE-based reduced order model

As mentioned in Def. 1, one system can have numerous equivalent systems, therefore after realizations and before interpolation, one should transform the systems such that they all have the same orientation. Therefore, the proposed method is presented as a two-step method.

Step I is to perform isometric transformations and step II is to calculate the corresponding polynomial chaos expansion.

Step I: Isometric transformation

In this section, a proper isometric transformation is presented. In order to keep the diagonal form of the models, transformations are applied to each individual state separately. For this purpose, first, one system is chosen as the reference model

Σref and the others are transformed such that their modes have the same order and orientation as the reference ones. These transformations, illustrated in Fig. 1 for a 2-DOF system, are:

1. Permutation transformation P: This transformation is devised to track the modes and treat the mode crossing phenomenon which is frequently occurred when parameters are varying in a system. For this purpose, each system is compared to the reference by using MOC and then its associated observability columns are permuted to obtain a diagonal MOC matrix, i.e. for j = 1, 2, ..,

N ED P( Σ(j) ) = {P (j) |diag(MOC(O (j) , O ref )P (j) ) = diag(√ 1 , √ 2 , . . . , √ 2N )}, (31) 
in which

√ i = max(MOC( (j) i , O ref )), i = 1, 2, . . . , 2N (32) 
The transformed system is thus,

Σ(j) = P( Σ(j) ) = P{ Ā, B, C, D} = { Â, B, Ĉ, D} (33) 
Fig. 1a and Fig. 1b, respectively, illustrate eigenvectors of a 2-DOF system as are realized and after applying the permutation P. The influence of this transformation can be simply observed.

2. Rotation transformation R: This transformation could be obtained by minimizing the distance between the ĉi and cref i in a suitable norm. This can translate as the following minimization problem,

min ∇i∈C ĉi ∇ i -cref i 2 F , i = 1, 2, . . . , 2N (34) 
in which • F stands for the Frobenius norm. The solution to this minimization problem is simply the projection of ĉi into the direction of cref i , i.e. for i = 1, 2, . . . , 2N

∇ i = ĉT i cref i ĉT i cref i , (35) 
and therefore, the associated state is transformed as

{ λi , bi , ci } = ∇ i ({ λi , bi , ĉi }) = {∇ -1 i λi ∇ i , ∇ -1 i bi , ĉi ∇ i }, (36) 
and the rotated system can be thus written as As can be observed, applying these two transformations to each individual realized system resulted in the systems as similar to the reference system as possible and they are thus ready for interpolation.

Σ(j) = R( Σ(j) ) = R{ Â, B, Ĉ, D} = { Ã, B, C, D}, j = 1, 2, .., N ED (37) here R = diag(∇ 1 , ∇ 2 , . . . , ∇ 2N ), Ã = diag( λ1 , λ2 , . . . , λ2N 
-1 -0. 

Step II: Regression by PCE

The proposed approach is based on model reduction by utilizing the modal dominancy analysis. That is, the modal contribution as the mean of the modal dominancy is one of the important system properties which should be accurately predicted by the use of PCE. Therefore, two sets of PCE are requried: one for the modal contributions and one for the system matrices.

After applying the transformations to the systems, all the systems have the same mode order and mode orientations and thus, are ready to make PCE. For this purpose, systems matrices are collected in S and their associated modal contributions are grouped in MC H2 as follows,

S = { Σ(1) , Σ(2) , . . . , Σ(N ED ) } =         {diag( Ã(1) ), vect( B(1) ), vect( C(1) ), vect(D (1) )}) {diag( Ã(2) ), vect( B(2) ), vect( C(2) ), vect(D (2) )} . . . {diag( Ã(N ED ) ), vect( B(N ED ) ), vect( C(N ED ) ), vect(D (N ED ) )}         (38) 
MC H2 = [MC 1,H2 , MC 2,H2 , . . . , MC N,H2 ] (39) 
in which diag(•) stands for diagonal elements of the matrix (•), vect(•) denotes vectorizing operation,

MC i,H2 = [M C (1) i,H2 , M C (2) i,H2 , . . . , M C (N ED ) i,H2 ] T i = 1, 2, . . . , N,
here (•) T denotes transpose operation.

In order to make PCE, since system's matrices are normally complex-valued whereas, the PCE which is selected as the regression method here, is only defined for real-valued functions4 , separate PCEs need to be performed for real and imaginary parts of the S. Note that, PCE could also be made for amplitude and phase of the S however, based on the authors' experience, expansions on real and imaginary parts are more robust. Therefore, the matrices S Re = real(S) and S Im = imag(S) are the matrices for which the PCE should be made. Besides that, a system's matrices normally occur in complex conjugate pairs. It means that PCE can be made only for one of each pair and the other will be constructed afterward, i.e. S ∈ C N ED ×(N (1+nu+ny)+nu×ny) .

The number of random outputs for this set,

N Y = 2 × N ED × (N (1 + n u + n y ) + n u × n y ),
can be extremely large. As discussed in Section 3.2, the PCEs are therefore applied directly to the principal components of S, yielding:

ŜRe = E S Re + NY j=1 α∈A M,p (u Re α ψ α (x)) j v Re T j , (40) 
ŜIm = E S Im + NY j=1 α∈A M,p (u Im α ψ α (x)) j v Im T j , (41) 
where u Re α and u Im α are respectively the vectors of coefficients of the PCEs made for the real and imaginary parts of the S.

The next set of PCE will be made for the modal contributions collected in the matrix MC H2 . Since the number of random outputs for this set is not very large, PCE can be applied directly to them i.e.

for i = 1, 2, • • • , N MC i,H2 = α∈A M,p mc H2 α (i)ψ α (x). ( 42 
)
where mc H2 is the vector of coefficients of the PCEs. The proposed approach is formulated in Algorithm 1.

PCE-based model reduction and response prediction

In order to obtain a reduced model at new sample point x (0) , one can evaluate the whole PCE-based SS model to make a full-order system and then reduce it using any truncation scheme, or alternatively, select the dominant modes and evaluate PCEs only at those modes to make a reduced-order SS model. Latter has been selected in this paper due to its efficiency in time and memory usage.

For this purpose, two steps should be taken: (i) PCE-based model reduction, and (ii) PCE-based model prediction. For the first step, one should evaluate Eq. ( 42) to obtain contribution of the modes MC i,H2 i = 1, 2, • • • , N and then, sort them in right order to determine the first n modes to construct the dominant subsystem, see Eq. ( 28).

As the second step, Eqs. ( 40) and ( 41) are evaluated for the n selected modes to obtain ŜRe r (x (0) ) and ŜIm r (x (0) ), respectively. Then the matrix Ŝr (x (0) ) ∈ C 1×(n(1+nu+ny)+nu×ny) can be constructed by ŜRe r (x (0) ) + j ŜIm r (x (0) ), j = √ -1 and in turn, the system matrices can be constructed by an inverse vectorization operation. The algorithm for predicting the response of the reduced model at a new sample point is briefly presented in Algorithm 2.

Algorithm 1 Proposed PCE-based surrogate modeling for SS models 1: Input: X = {x (1) , x (2) , ..., x (N ED ) }

Step I: Isometric transformations 2:

Σref ={ Σ(x (r) )}={ Ā(x (r) ), B(x (r) ), C(x (r) ), D(x (r) )}, for a random r ∈ [1, ..., N ED ]

3: for k = 1 to N ED do 4: Σk ={ Σ(x (k) )}={ Ā(x (k) ), B(x (k) ), C(x (k)
), D(x (k) )} using Eq. ( 7)

5:

Compute permutation transformation P using Eq.( 31)

6: Evaluate Σk = P( Σk ) = P{ Ā, B, C, D} = { Â, B, Ĉ, D} 7:
for i = 1 to N do 8:

Compute ∇ i = ĉT i cref i ĉT i cref i 9:
end for 10:

R = diag(∇ 1 , ∇ 2 , . . . , ∇ N ) 11: Evaluate Σ(k) = R( Σ(k) ) = R{ Â, B, Ĉ, D} = { Ã, B, C, D} 12: Evaluate M C (k) H 2 = [M C (k) 1,H 2 , M C (k) 2,H 2 , . . . , M C (k) 
N,H 2 ] using Eq. ( 27) 13: end for

Step II: Interpolation by PCE 14: S = { Σ(1) , Σ(2) , . . . , Σ(N ED ) } ∈ C N ED ×(N (1+nu+ny)+nu×ny) , S Re =real(S), S Im =imag(S)

15: MC i,H 2 = [M C (1) i,H 2 , M C (2) 
i,H 2 , . . . , M C

(N ED )

i,H 2 ] T i = 1, 2, . . . , N, 16: Polynomial chaos expansion, ŜRe : PCE of S Re using Eq. ( 40)

ŜIm : PCE of S Im using Eq. ( 41)

MC i,H 2 : PCE of MC i,H 2 using Eq. ( 42), i = 1, 2, . . . , N 17:

MC H 2 = [ MC 1,H 2 , MC 2,H 2 , . . . , MC N,H 2 ] 18: Output: ŜRe , ŜIm , MC H 2
Algorithm 2 Predicting reduced system's responses 1: Input: x (0) = x (l) , l = 1, 2, ..., N ED

Step I: Model reduction:

2: for i = 1 to N do 3:
Evaluate MC i,H 2 (x (0) ) using Eq. ( 42)

4: end for 5:

MC H 2 = [ MC 1,H 2 , MC 2,H 2 , . . . , MC N,H 2 ]
6: Sort MC H 2 in right order and select first n dominant modes

Step II: Model construction:

7: Evaluate ŜRe r = ŜRe (x (0) ) using Eq. ( 40) for the n selected modes.

8: Evaluate ŜIm r = ŜIm (x (0) ) using Eq. ( 41) for the n selected modes.

9: Ŝr = ŜRe r + j ŜIm r ∈ C 1×(n(1+nu+ny)+nu×ny) , j = √ -1

10: Construct Σ(0) r from Ŝr by inverse vectorization and diagonalization operations

11: Output: Σ(0) r = Σr (x (0) )
5 Case studies

Introduction

In this section, the proposed method will be applied to four case studies, (i) a simple 4-DOF system to illustrate how the method works, (ii) a 2-DOF system representing the complex phenomenon of mode veering, (iii) a 6-DOF system with a relatively large (16-dimensional) parameter space. (iv) a 3D Timoshenko cantilever beam representing a large-scale model.

For the sake of readability, for the last two cases with 6 outputs, only results for one of the outputs are shown.

To assess the accuracy of the proposed PCE-based model reduction approach quantitatively, the following measure based on the root mean square (rms) error of the vectors is defined. 

Error(•) = rms((•) ex -(•) approx )) rms((•) ex ) × 100%, ( 43 

4-DOF system

As the first example, the simple 4-DOF system shown in Fig. 2 is selected to highlight the steps of the proposed method. This example is taken from Amsallem and Farhat Amsallem and Farhat ( 2011) and has been previously studied in [START_REF] Lohmann | Efficient order reduction of parametric and nonlinear models by superposition of locally reduced models[END_REF]. The system with one input at mass 4 and one output at mass 1 is shown in Fig. 2. It consists of 6 springs, 4 dampers and 4 masses which are specified as constant or as functions of a parameter µ in Table 1. The parameter µ is assumed to be uniformely distributed in [0, 1]. In this example the full model has the order of 8, i.e. N = 4, and the reduced models are chosen to have order 4, n = 2.

Since this system has one output, it can reveal the shortcoming of the MAC-based mode tracking in the cases with few number of sensors. The result of correlation analysis between the modes of a randomly selected system and the reference system is shown in Fig. 3. The numbers indicate the amount of correlation between the modes. They are between [0, 1],

ranging from no correlation to full correlation. The results show that MAC, Fig. 3a, cannot distinguish between the modes, whereas MOC can, Fig. 3b.

m 1 m 2 m 3 m 4 k 1 c 1 k 2 c 2 k 3 c 3 k 4 c 4 k 5 u k 6 q 1 q 2 q 3 q 4
Figure 2: Simple 4-DOF system with parameters presented in Table 1 Figure 3: Correlation analysis between the modes of a realized system with the reference system.

m 1 125 c 1 µ k 1 2+2µ m 2 25 c 2 1.6 k 2 1 m 3 5 c 3 0.4 k 3 3 m 4 1 c 4 0.1 k 4 9 k 5 27 k 6 1+2µ
In order to show the feasibility of the method and form a suitable Experimental Design (ED), maximum 1% error (Eq. ( 43)) between the PCE-based ROMs and Direct ROMs has been targeted. For this purpose, PCE-based ROMs were made by using different number of ED points and their accuracies have been assessed by comparing with their corresponding Direct ROMs over 10,000 Monte-Carlo samples extracted from the parameter space. The accuracy analysis was performed for each individual frequency response by using Eq. ( 43) in which (•) ex was the Direct ROM and (•) approx was the PCE-based ROM. The maximum error is reported in Table 2. It indicates that 5 points at [0, 0.25, 0.5, 0.75, 1] are sufficient.

Their associated models and modal contributions are obtained to construct S and MC H2 to be prepared for making PCE.

The next step is to find a suitable basis and the associated coefficients for the polynomial chaos expansion. In this case, since the random variable µ is uniformly distributed, the basis of the polynomial chaos consists of Legendre polynomials. The LAR algorithm [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF] is employed here to calculate a sparse PCE with adaptive degree. The efficient implementation of the LAR is available in the Matlab-based toolbox UQLab [START_REF] Marelli | UQLab: a framework for uncertainty quantification in matlab[END_REF].

To validate the approach, 10,000 Monte-Carlo samples are extracted from the parameter space and both the true and PCE-based models are evaluated. Their accuracies are then assessed by comparing their associated properties as follows. Fig. 4a illustrates the contributions of each mode calculated from the true model and obtained by its associated PCE, Eq. ( 42). It indicates the PCE predicts the modal contributions accurately. Since reducing the model order will be carried out based on these contributions, this is a crucial result.

Eigenvalues of the systems has been compared in Fig. 4b. High accuracy of the PCE-based model in prediting the eigenvalues can be simply observed. Frequency response functions (FRF) offer another means for assessing the overall accuracy of the PCE-based model by its comparison with that of the true model using Eq. ( 43). The FRF has been evaluated in the frequency band of [0, 10] (rad/s). The error metric defined at Eq. ( 43) is used for comparison with the full model as (•) ex and the reduced models as (•) approx . The results of this analysis, shown in Fig. 5, indicate that the maximum error, about 1.15%, occurs for µ = 0.154. One can reduce this error by increasing the ED, as suggested by Table . 2. The model associated with this parameter value is thus selected for detailed investigation, see Fig. 6. Comparison between the eigenvalues, Fig. 6a, and FRFs of the full model and the reduced models, Fig. 6b, reveal that the proposed method accurately predicts the reduced model. Moreover, Fig. 6c illustrates the error at each frequency defined in Eq. ( 43) when (•) ex was the full true model and (•) approx was the reduced models obtained by the modal dominancy analysis and the proposed PCE-based method. It indicates the accuracy of the proposed method. Large error at the end of the frequency range is due to the truncation of the last two modes. Moreover, the maximum difference between the Direct ROM and the PCE-based model, about 1%, has been occurred at the first resonant frequency. Since amplitudes at resonant frequencies are highly sensitive to the damping values, the main reason for this error could be the under(over) estimation of damping values obtained from the imaginary part of the eigenfrequencies collected in matrix A. As mentioned, the accuracy could increase by increasing the ED size. 

2-DOF system: mode veering

In this section, a 2-DOF system will be studied. This simple mechanical system, shown in Fig. 7, presents the complex mode veering phenomenon [START_REF] Morand | Fluid structure interaction[END_REF]. This system is similar to the one studied in [START_REF] Amsallem | An online method for interpolating linear parametric reduced-order models[END_REF][START_REF] Stephen | On veering of eigenvalue loci[END_REF]. It is parameterized by the stiffness k 1 = µ which follows the lognormal distribution, LN (-0.02, 0.2), in which E [k 1 ] = 1 and E k 2 1 = 0.2. The other properties of the system are listed in Table 3. Variation of the system's eigenvalues, shown in Fig. 8, together with changing the eigenvectors's directions indicate the mode veering phenomenon.

Fig. 1 illustrates the eigenvectors of the randomly selected system together with their associated reference ones. Fig. 1a shows the eigenvectors as they are realized for a value of µ. As expected, they are required to transform to be similar to their corresponding reference ones. Fig. 1b and1c show the eigenvectors after permutation P and rotation R, respectively.

As the first step of making PCE, a proper number of samples should be chosen for the ED. For this purpose, prediction accuracy of the PCE-based model has been checked over the frequency range of [0.5, 1.8] rad/s on a large reference validation set. This set consists of 10,000 points sampled from the parameter space using the Monte-Carlo approach at which the response of the true model has been evaluated to estimate the reference mean and standard deviation. Then, the error (Eq.( 43)) associated with the first two moments of the PCE-based models' responses made on experimental designs of increasing size are obtained by comparing with the corresponding reference results. The resulting convergence curves are given in Fig. 9. It implies that 300 points are necessary for the ED in this example, because for larger sizes the accuracy does not improve significantly. Therefore, since this example presents a complex problem with large COV of the parameter, 300 sample points are extracted from the parameter space using the Sobol pseudorandom sampling [START_REF] Sobol | Quasi-monte carlo methods[END_REF] and the associated models are obtained to design the experiment. To select the basis, note that X ∼ LN (λ, ξ) ⇔ ln(X) ∼ N (λ, ξ), thus, the Hermite polynomial is used as basis for ln(X). The main objective of studying this example is to show the adequacy of the method in dealing with the complex case of mode veering phenomenon. Therefore, the 10,000 model evaluations used to produce the convergence curves in Fig. 9 In order to visualize the accuracy of method, two realizations were considered, namely one with a typical error, about 25% in total5 , and the one with the maximum error, about 65% in total6 . They are presented in Figures 12 and13, respectively. They indicate that even for the worst-case, the presented approach results in prediction of the system matrices and in turn, FRFs with excellent accuracy. 

6-DOF system: large parameter space

The third example is chosen to illustrate the application of the proposed method to a problem with a relatively large parameter space. The system, shown in Fig. 14, has been studied before by [START_REF] Yaghoubi | Sparse polynomial chaos expansions of frequency response functions using stochastic frequency transformation[END_REF]. It consists of 10 springs and 6 masses which are modeled by random variables with lognormal distributions. Their mean values and Coefficient of Variations (COV) are listed in Table 4. The damping matrix is V = 0.01 M , where M is the matrix of the mean value of the system masses.

The system with one input force at mass 6 and 6 system outputs, one for each mass, has order 2N = 12 and we want to reduce it to 2n = 8. In order to perform the accuracy analysis, FRF of the system is evaluated at a frequency range from 0.1 to 4 Hz with the step of 0.01 Hz.

In this example, the ED consists of 1000 points sampled from the parameter space using Sobol sampling method. The marginal distributions of the input vectors X consists of lognormal distributions. Therefore, the chosen PCE basis consists of Hermite polynomials on the reduced variable Z = ln(X). Eq. ( 10) thus, can be written as The LAR algorithm has been employed to build sparse PCEs with adaptive degree. Since the dimension of the input parameter space is large, to reduce the unknown coefficients of the PCEs and avoid the curse of dimensionality, a hyperbolic truncation with q-norm of 0.7 was used before the LAR algorithm. Besides, only polynomials up to rank 2 were selected here (i.e. polynomials that depend at most on 2 of the 16 parameters). It should be mentioned that all the PCEs used for the surrogate model have eventually maximum degrees less than 10.

Y = M(X) = α∈A M,p ũα ψ α (ln(X)). m 1 m 2 m 3 m 6 m 5 m 4 k 1 c 1 k 2 c 2 k 3 c 3 k 4 c 4 k 5 c 5 k 6 c 6 k 7 c 7
In order to assess the accuracy of the PCE-based model in estimating various quantities of interests, 10,000 points sampled from the parameter space by using Monte-Carlo sampling at which both the true and the PCE-based models are evaluated and their associated properties Moreover, in order to assess the error quantitatively, FRFs of the PCE-based models have been calculated and compared with the corresponding true model in the root-mean-square sense. This error is evaluated using Eq. ( 43), its average over the outputs is presented in is generated in Matlab according to [START_REF] Panzer | Generating a parametric finite element model of a 3d cantilever timoshenko beam using matlab[END_REF]. This system is similar to the one studied in [START_REF] Panzer | Parametric model order reduction by matrix interpolation[END_REF]. It consists of 100 nodes along the beam, each with 6 degrees of freedom. This results in an LTI system with an order of N = 1200 that we want to reduce the system order to n = 20. The parameters of the beam are modeled by lognormally distributed random variables with mean values listed in Table 5 and uncertainty of COV = 10%. The damping matrix is V = C M M + C K K with C M = 8 s -1 and C K = 8 × 10 -6 s. The system has one input force at the free end of the beam and 6 system outputs equidistantly located along the beam, shown by the black circles. In order to perform the accuracy analysis, FRF of the system is evaluated at a frequency range from 1 to 5000 Hz. 50 points sampled from the parameter space using Sobol sampling method constitute the ED. In this case, since the order of the full model is so large, making PCE for all the system matrices is not feasible, therefore the model order should be reduced to a smaller order, e.g. 15). This truncation reduced the number of random outputs from 240 × 2 to 6 components.

10,000 points sampled from the parameter space by using Monte-Carlo sampling as the validation points and both the true and the PCE-based models are evaluated at these points.

Their associated FRFs are calculated and compared by using Eq. ( 43). The mean value of the obtained errors over the outputs, shown in Fig. 19, demonstrates the accuracy of the method in predicting the FRFs. 

Concluding remarks

In this paper, a PCE-based parametric model reduction method for dynamic systems has been developed. This method consists of a PCE-based surrogate model for state-space models together with a PCE-based modal dominancy method to reduce the model order, if required.

For this purpose, a method has been proposed based on QR factorization to fix the eigenvectors of the modes with coalescent eigenvalues. Moreover, a new correlation metric has been introduced for mode tracking, which was shown to be effective to resolve the spatial aliasing phenomenon in cases with few number of sensors. The problem of the curse of dimensionality of PCEs in cases with large parameter spaces was alleviated by employing the LAR algorithm to build sparse PCEs together with an adaptive degree strategies. In order to reduce the number of random outputs in large-scale systems with high model orders two solutions were proposed: first, reduce the model order to an intermediate level before making PCE and second, use of PCA while making PCE. Successful application of the proposed method to four case studies indicate its capability in accurately predicting the modal contributions, eigenvalues, and more importantly, full and reduced order systems. The case studies are selected such that each of them resembles a frequently occurred challenge in complex systems, such as mode veering, large parameter space and large-scale systems.

  ), B = [ b1 , b2 , . . . , b2N ] and C = [c 1 , c2 , . . . , c2N ]. Fig. 1c shows the effect of the transformation R on the direction of the eigenvectors.

  Figure 1: Illustration of isometric transformations for a 2-DOF system

  ) in which (•) is a vector of interest which could be the frequency response of a system in a specific frequency band. (•) ex and (•) approx represent results obtained by the exact and the approximate model, respectively. The definition of exact and approximate model will be mentioned in the context. Before analyzing the examples, following models should be described: (i) Full model: the true model with the order of 2N , (ii) Direct reduced order model (ROM): the true model reduced to order of 2n by the method of dominancy analysis (iii) PCE-based ROM: the PCE-based model with the order of 2n. It should be emphasized that, in all examples, the dominancy analysis has been carried out with state residualization technique, Eq. (30).
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 4 Figure 4: System property comparison between the PCE-based model (in black) and the true model (in red) obtained over 10,000 points sampled from the parameter space
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 56 Figure 5: Error of the evaluated FRFs by changing the parameter µ
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 78 Figure 7: 2-DOF system presenting mode-veering phenomenon
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 1011 Figure 10: Predicted eigenvalues evaluated by the true model and the PCE-based model
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 13 Figure 12: Typical FRF prediction, true (solid line) and predicted (dashed line) FRF of the system

  Figure 14: The 6-DOF system
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 15 Figure 15: System property comparison between the PCE-based model and the true model obtained over 10,000 points sampled from the parameter space
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 15c Fig. 15c. Since this result could be misleading, two cases are chosen to further elaborate: one case with an average error, about 40%, and one with the maximum error, about 110% , which are shown respectively in Figs. 16 and 17 for the first output. In each figure, two plots are shown: one for the case that PCE is used for predicting the full model, Figs. 16a and 17a , and one for the reduced model, Figs. 16b and 17b. In both cases, in spite of the large error values, one can observe that the proposed method predicted the full model and the reduced model with excellent accuracy. By scrutinizing the responses around the last two peaks, the source of these large errors is found to be the error in the amplitude of the FRFs close to the eigenfrequencies. Absolute difference between the responses shown by dotted lines in Figs. 16 and 17 confirm this reasoning.
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 18 Figure 18: 3D cantilever Timoshenko beam
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  temp = 40, before calculating the PCE. Through this example, in order to distinguish the reduction step before and after making PCE, they will be denoted by pre-and post-PCE reduction, respectively. The LAR algorithm has been employed to build sparse PCEs with adaptive degree. PCA has been performed over the C matrix and the dominant are the eigenvalues of the covariance matrix, see Eq. (
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 19 Figure 19: Error analysis of the FRFs of the post-PCE reduced order model in comparison with the true model evaluated by Eq. (43), averaged over the outputs.

Figure 20 :

 20 Figure 20: Worst case FRF prediction among 10,000 sample points at first system output, evaluated by true model (in red) and PCE-based model (in black).

Figure 21 :

 21 Figure 21: Eigenvalue spectrum of the systems realized at the parameter set with the maximum average error.

  

Table 1 :

 1 The 4-DOF system's variables

	Masses	Dampers	Stiffnesses
	(Kg)	(Ns/m)	(N/m)

Table 2 :

 2 Error analysis based on Eq. (43) to construct a proper Experimental Design (ED)

	# ED points	4	5	10
	max(error) % 10.4 1.11 0.06

Table 4 :

 4 The 6-DOF system's variables

	Variables mean Coeff. of variation (%)
		m 1	50	10
		m 2	35	10
	Masses [kg]	m 3 m 4	12 33	10 10
		m 5	100	10
		m 6	45	10
		k 1	3000	10
		k 2	1725	10
		k 3	1200	10
		k 4	2200	10
	Stiffnesses [N/m]	k 5 k 6	1320 1330	10 10
		k 7	1500	10
		k 8	2625	10
		k 9	1800	10
		k 10	850	10

Table 5 :

 5 The variables of the 3D Timoshenko beam Variables Length Thickness Height Density Young's modulus Poisson's ratio

		(l)	(t)	(h)	(ρ)	(E)	(ν)
	Unit	[m]	[m]	[m]	[kg/m 3 ]	[GP a]	
	Mean	1	0.01	0.01	7850	210	0.3
	COV (%)	10	10	10	10	10	10

This is called bMOC in[START_REF] Yaghoubi | The modal observability correlation as a modal correlation metric[END_REF] 

Due to the controllability reasons, the dimension nc cannot exceed the number of actuators, nu.

Limited literature is available on the use of PCE for complex-valued functions, see e.g.[START_REF] Soize | Physical systems with random uncertainties: chaos representations with arbitrary probability measure[END_REF].

Sum of average errors at the outputs, 12%+13%=25%

Sum of maximum errors at the outputs, 22%+43%=65%
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At the end, it should be mentioned that the results indicate excellent accuracy of the proposed method in (i) predicting the modal contribution and therefore, right selection of the dominant modes, (ii) predicting the full model as well as the reduced model for a case with high-dimensional parameter space.

3D Timoshenko beam: large-scale problem

The last example is selected to demonstrate the application of the proposed method to a large-scale system. The system, shown in Fig. 18, is a 3D cantilever Timoshenko beam which