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Abstract

Performing hydrodynamic model testing of ultra-deep water floating systems at a rea-

sonable scale is challenging, due to the limited space available in existing laboratories and

to the large spatial extent of the slender marine structures that connect the floater to the

seabed. In this paper, we consider a method based on real-time hybrid model testing, namely

the active truncation of the slender marine structures: while their upper part is modelled

physically in an ocean basin, their lower part is simulated by an adequate numerical model.

The control system connecting the two substructures inevitably introduces artefacts, such

as noise, biases and time delays, whose probabilistic description is assumed to be known.

We investigate specifically how these artefacts influence the fidelity of the active truncation

setup, that is its capability to reproduce correctly the dynamic behaviour of the system under

study. We propose a systematic numerical method to rank the artefacts according to their

influence on the fidelity of the test. The method is demonstrated on the active truncation of

a taut polyester mooring line.

1 Introduction

Floating structures used in the oil&gas, offshore wind or aquaculture industries require signif-

icant investments and must operate according to high safety and environmental standards.

Therefore, the design of such structures is in general verified by means of hydrodynamic

model testing prior to their construction. When performing such laboratory testing, the

floating structure under study is constructed at reduced scale, and exposed to selected en-

vironmental conditions (wave, wind and current) that may be experienced during its design

life. It is verified that the motions of the platform, the loads in the mooring and riser sys-

tems, or other quantities of interest (QoI) are acceptable under these conditions. The test

campaign is in general also a final risk mitigation campaign, during which events not yet
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Figure 1: Model testing of an offshore structure with taut mooring and a flexible riser system

in water depth d. Illustration of active truncation with truncation ratio α = 0.8.

fully described by engineering numerical tools, such as green water and wave impact, could

be detected and analyzed Pakozdi et al. (2017).

Floating structures are, however, installed at locations with increasingly large water

depths. Oil exploitation takes nowadays place down to nearly 3000 m water depth Bow-

ers (2016), and deep-sea mining of minerals is considered in water depths reaching 6000 m

Sharma (2017). Modelling such systems with a reasonably large scale factor in existing hy-

drodynamic laboratories is challenging, due to both the vertical extent of the mooring system,

but also due to its horizontal footprint, that ranges from two to four times the water depth

Randolph and Gouvernec (2017). This challenge has been identified two decades ago, and

has been addressed in details in Stansberg et al. (2002). The state-of-the-art approach, up to

now, consists in performing passive truncation of the slender marine structures, as described

briefly in the following. In a first stage, a truncated version of the mooring/riser system is

designed such that it is statically equivalent to the full-depth system, and fits in the ocean

basin Fylling and Stansberg (2005). It should be emphasized that the dynamic properties of

the truncated system, such as the level of drag-induced damping of the horizontal motions

of the floater, are generally not representative of the full-depth system, except possibly on

a narrow range of sea-states. Model testing is then performed using the truncated system,

and the experimental results are used to calibrate a numerical hydrodynamic model of the

floater connected to the truncated system. The truncated system is finally replaced by the

full-depth one in the numerical analysis, and the QoI, such as extreme motions and mooring

line tensions, are evaluated numerically. In spite of recent improvements in the truncation

procedures, which have been reviewed for example in Sauder et al. (2017); Cao and Tahchiev

(2013), passive truncation still requires to calibrate a numerical model of the floater, which

is time consuming and induces additional uncertainties. Furthermore, since the truncated
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system used in the model tests is only statically equivalent to the full-depth system, it can

be argued that some highly nonlinear effects driven by the floater’s dynamics (such as the

occurrence of negative air gap or green water on deck) could remain undetected.

In the present paper, we consider an alternative solution denoted active truncation. It is

based on the ReaTHM R© testing1 paradigm, already applied to solve issues related to model

testing of floating wind turbines Sauder et al. (2016), and with applications beyond the field of

marine technology Edrington et al. (2015); McCrum and Williams (2016). When performing

active truncation, the floating structure and the upper part of the slender structure system

are modelled physically in the ocean basin, while its lower part, which does not fit in the

basin, is simulated on a computer. This is illustrated in Fig. 1. At the truncation point,

the numerical and the physical substructures interact through a control system, including

sensors and actuators. Therefore, active truncation intrinsically represents the full-scale

system, and allows to obtain the QoI directly after the test, without the need for numerical

extrapolation. Note that a strict pre-requisite to perform active truncation is the validity

of the numerical model describing the truncated portion of the slender marine structure. In

most cases, state-of-the-art programs based on the nonlinear Finite Element (FE) method

can describe the low-frequency and wave-frequency dynamics of slender marine structures in

a satisfactory manner, as for example illustrated in Figure 2 in Aksnes et al. (2015). However,

some phenomena, such as complex soil-structure interaction or Vortex-Induced Vibrations

(VIV) can still not be simulated with a sufficiently high level of confidence, at least not

in real-time. This means that, as of today, if these phenomena are very subject or play a

significant role in the empirical study, ReaTHM testing can not be applied.

The uncertainties that affect purely empirical and numerical approaches have been exten-

sively studied in the past Qiu et al. (2014); ASME (ed.) (2016). However, when performing

active truncation (and ReaTHM testing in general), a new source of uncertainty should be

considered, namely the one originating from an imperfect coupling between the substruc-

tures. Indeed, various types of artefacts, such as noise, biases and time delays, are inevitably

introduced by the presence of the control system Vilsen et al. (2017). Such artefacts, could

jeopardize the fidelity of the setup, in the sense that they could make the system’s dynamical

properties deviate significantly from those of the real system under study. In the worst case,

this could happen without the operator of the test, or the final user of the empirical data,

being aware of it. In this paper, we will neglect the uncertainties related to the physical and

numerical substructures, to isolate and focus on those related to the control system.

This paper proposes a quantitative definition of fidelity, and presents a method to evalu-

ate it for an active truncation setup. We then show how to systematically identify the control

system-induced artefacts that jeopardize the most the fidelity (sensitivity study). This lat-

1ReaTHMR© testing stands for ”Real-Time Hybrid Model testing“, and is a registered trademark of SINTEF

Ocean AS.
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Figure 2: The various steps, and associated terminology, in the design and analysis of real-time

hybrid model testing in general, and active truncation in particular.

ter aspect is believed to be a significant scientific contribution, in addition to be of great

operational relevance when such testing methods are to be applied in practice.

The paper is organized as follows. In Section 2, a general method for the analysis of

fidelity is outlined, and we show how it can be applied to the active truncation of slender

marine structures. This method requires the capability of simulating an active truncated

setup, including artefacts, which is the object of Section 3. In Section 4, the method is

demonstrated on the truncation of a taut polyester mooring line, which is a widely used

component for the positioning of offshore structures in deep water.

2 Fidelity analysis and its application to active trunca-

tion

In this Section, we first introduce some concepts and terminology which will be used through-

out the paper. We then define a quantitative measure of fidelity, and outline a general method

to evaluate it and study its sensitivity to artefacts. We finally show how it can be applied

to address the active truncation problem.

2.1 Background and terminology

The real system (Fig. 2a) is the subject of the study, whose performance under given load

conditions should be documented. It is for example the marine system (floater, mooring
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and riser) represented in Figure 1. For analysis purposes, it is assumed that the real system

can be fully represented by an emulated system (Fig. 2b). The emulated system consists of

a numerical model capable of simulating the behaviour of the real system in a wide range

of operational conditions, including extreme environmental conditions. For slender marine

structures, the requirements and nature of this model strongly depends on the considered

problem. Indeed, when VIV are neglected, top tensioned risers or taut polyester mooring

lines in deep water can be satisfactorily simulated with linear time-domain (FE) methods,

based on bar elements, and including nonlinear drag loads Rustad et al. (2008). Other

types of structures, such as flexible risers or steel catenary risers, require the modelling of

geometric nonlinearities, bending stiffness, and possibly nonlinear material properties and

soil-structure interaction Fergestad and Løtveit (2015).

Performing active truncation consists in splitting the slender marine structure into two

substructures located on either side of a truncation point (Fig. 1). The truncation ratio α

is defined as the ratio between the height of the water column occupied by the numerical

substructure, and the total water depth d. At the truncation point, kinematic compatibility

(equality of translational and rotational velocities) and dynamic equilibrium between the

two substructures must be ensured at each instant. In more generic terms, the compatibility

of flow and effort should be ensured at the interface between the substructure (Fig. 2c). To

realize this in practice, a control strategy is chosen. As depicted in Fig. 2d, it can for instance

be decided to measure the effort from the physical substructure (and prescribe it to the

numerical substructure), and prescribe the flow (evaluated from the numerical substructure)

to the physical substructure. In this way, the two substructures interact in real-time through

a control system that includes sensors, actuators, as well as related software components

such as force controllers and observers Vilsen et al. (2017) (Fig. 2e).

In reality, however, the control system inevitably introduces artefacts, such as measure-

ment noise, time-delays due to communication, or imperfect actuation due to the actuators’

own dynamics (Fig. 2f). The effects of some selected artefacts on a reference signal are

illustrated in Fig. 3. Few authors have investigated the influence of such artefacts on the

dynamics of substructured slender structures. The effect of interface time delays on sub-

structured cables and beams have been studied analytically by Terkovics et al. (2016) and

Zhang and Stepan (2016), respectively. However, in both cases, the authors focus on the

stability of the substructured system only. While stability is indeed a necessary condition

for the execution of active truncation, it does not guarantee that the active truncation setup

represents the real system in a satisfactory way. In a recent study, Drazin et al. (2015)

compared the displacement field of a substructured beam to the one of the original beam

(the emulated system) by using an L2-based error measure. In this work, the beams were

described by Bernoulli-Euler equations and subjected to harmonic loading. The artefacts

introduced at the interface were constant amplitude and phase mismatches, which modelled
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Figure 3: Various types of artefacts affecting a non-dimensional ramp signal, with their describ-

ing parameter in parentheses.

imperfect actuators.

Studying fidelity of the active truncation problem with similar analytical approaches is

challenging when marine structures are involved. The first and main reason is that such struc-

tures must in most cases be described by purely numerical methods, such as the nonlinear FE

method, which are difficult to exploit in analytical derivations. Analytical formulations could

admittedly be obtained by making strong assumptions on the behaviour of the structure,

but this would lead to an emulated system that does not necessarily reflect the real system

anymore, and would make the resulting analysis questionable. The second reason is related

to the fact that a control system introduces not only one, but several types of artefacts at

the same time. Suitable frameworks exist for studying the individual effect of each of these

artefacts: stochastic differential equations, delayed differential equations, networked control

systems theories allow for example to study the effect of noise, delays, and jitter, respec-

tively. However, combining these frameworks leads to formulations that are intractable in

practice. Also, making simplifying assumptions in this regard, by for example considering

only one selected type of artefact, is questionable, since it is unclear a priori which artefact

jeopardizes the fidelity, and which one can be neglected, if any. In the following subsection,

we will outline a method to address these two issues.

2.2 Fidelity analysis method

Proposed definition of fidelity The fidelity ϕ is calculated by comparing selected

QoI, evaluated on the one hand from the emulated system (Fig. 2b), and on the other

hand from the substructured system including artefacts (Fig 2f), when these two systems

are subjected to the same external excitation. The comparison function is chosen so that
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the value of ϕ tends to infinity when the QoI for the two systems are identical, and takes

low values when the artefacts make the substructured and the emulated systems differ sig-

nificantly. The selection of the external excitation, QoI, and comparison function is problem

dependent, and we will propose a definition applicable to our active truncation problem in

the next subsection.

Modelling of artefacts As indicated in the legend of Fig. 3, each artefact is charac-

terized by one or several parameters. For instance, white noise is described by its variance,

and signal loss is described by both its probability of occurrence and its duration parameter.

By gathering these parameters, the heterogeneous set of artefacts affecting the substructured

system can be parametrized by a single M -components vector θ. In practice, the amount of

noise or time delays present in an active truncation setup cannot be perfectly known until the

setup has been realized. It is therefore considered that θ is the realization of a random vector

Θ, with joint probability density function fΘ(θ). In the scope of this paper, the components

of Θ are assumed to be statistically independent.

For a given realization θ of the artefacts’ parameter, the fidelity ϕ(θ) can then be evaluated

from co-simulations of the substructured system. The term co-simulation is used, since in the

analysis, the physical and the numerical substructures are represented by separate numerical

models, which are coupled at the truncation point in a dynamic simulation that includes the

effect of the artefact. In Section 3, we will detail how this co-simulation is performed for

slender marine structures.

Polynomial chaos expansions Due to the random nature of the artefacts’ parameter

Θ, the fidelity ϕ(Θ) will also be a random variable, whose variance is assumed to be finite. It

can then be approximated by the following (truncated) polynomial chaos expansion (PCE)

Xiu and Karniadakis (2003):

ϕ̂(Θ) :=
∑

α∈A
aαψα(Θ) (1)

where A a finite subset of NM , (aα)α∈A is a family of real numbers, (ψα)α∈NM a family of

orthonormal polynomials with respect to the input variable Θ, i.e.

E[ψα(Θ)ψβ(Θ)] =

∫

D
ψα(θ)ψβ(θ)fΘ(θ)dθ := δαβ (2)

where δαβ is the Kronecker delta. Note that since the orthogonality condition in (2) depends

on fΘ(θ), so does the chosen family of polynomials (ψα) in (1). We will demonstrate by an

example in Section 4 how ϕ̂ is determined in practice.

Uncertainty propagation Thanks to the orthogonality property (2), estimates of

E[ϕ(Θ)] and of Var[ϕ(Θ)] can be obtained from the aα coefficients by:

E[ϕ̂(Θ)] = a0 (3)
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Var[ϕ̂(Θ)] =
∑

α∈A\{0}
a2
α (4)

These estimates can then be related to a minimum admissible fidelity ϕadm, defined by the

experimentalist, or the final user of the test results. Note that the value of ϕadm will depend

on the exact definition of the fidelity, and will differ depending on the purpose of the test.

For instance, if the active truncation tests aim at the final verification of a concept, one will

aim at a “high” fidelity, and therefore a high value of ϕadm. If, on the contrary, they are

related to a preliminary feasibility study, lower values of ϕadm could be accepted.

Sensitivity analysis If E[ϕ(Θ)] is deemed too low, or the uncertainty Var[ϕ(Θ)] too

large, the natural course of action is to determine which artefacts influence the most the

variations of the fidelity. To do so, we will use the variance decomposition method (ANOVA),

based on the Sobol’ decomposition Sobol (1993). Under the assumption of finite variance,

which we assume to be fulfilled for our physical problem, the following decomposition exists

and is unique:

ϕ(θ) = ϕ0 +
M∑

i=1

ϕi(θi) +
∑

1≤i<j≤M
ϕi,j(θi, θj) + ...+ ϕ1,2,...,M (θ1, θ2, ..., θM ) (5)

where ϕ0 is constant, and the integral of each summand over any of its independent variables

is zero. In this setting, Var[ϕ(Θ)] =
∑M
i=1 Vi +

∑
1≤i<j≤M Vi,j + ... + V1,2,...,M , where each

term corresponds to the variance of the corresponding term in (5). Normalizing the above

decomposition by Var[ϕ(Θ)], the Sobol’ indices are defined, which satisfy

M∑

i=1

Si +
∑

1≤i<j≤M
Si,j + ...+ S1,2,...,M = 1 (6)

The Si are called first-order Sobol’ indices, Si,j second order Sobol’ indices, etc... The

total Sobol’ indices ST,i are defined as the sum of all Sobol’ indices involving the ith parameter

θi. By ranking the ST,i, the θi having the greatest impact on the variations of the fidelity

can be identified. Also, by comparing each ST,i to Si, it is possible to evaluate whether

parameter θi influences ϕ alone (in the case Si ≈ ST,i), or jointly with other parameters of

Θ.

The evaluation of Sobol’ indices used to be computationally expensive, in the sense that

numerous evaluations of ϕ(θ), and therefore numerous co-simulations of the substructured

system, were required. However, it was recently shown in Sudret (2008) how Sobol’ indices

could be computed analytically from the expansion (1). This result, associated with the

significant advances on adaptive sparse PCEs Blatman and Sudret (2011), makes PCE a

tool of choice for for uncertainty propagation and sensitivity analyses.

2.3 Fidelity indicators for the active truncation problem

Let us now show how this framework applies to our problem. We consider the active trun-

cation of a mooring line connecting the floating structure to the sea bottom, as shown in
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Figure 1. Without loss of generality, we assume that the problem is two dimensional, and

we define a direct x-z coordinate system, whose z axis is vertical and pointing upwards.

The fidelity will be evaluated by studying the response of the slender structure to a

characteristic external load vector τ(t), with a duration T , in seconds. This load is meant to

be representative, in terms of amplitude, frequency content and direction, of a severe load

that can be encountered during the testing of a truncated mooring line. The dynamic part

of this load represents wave loads transferred from the floater to the slender structure, and

is therefore applied to the top of the slender marine structure. It has two components. The

first low-frequency component acts mainly axially, has an amplitude of 1MN, and a frequency

content sweeping [0, 0.02] Hz. It mimics the effect of second-order difference-frequency wave

loads. The wave-frequency component has an amplitude of 250kN, and a frequency content

sweeping [0,0.2] Hz, and a direction with constant rate of change. This dynamic load comes

in addition to the static top tension applied to the slender structure, and to the drag load

associated to a shear current, whose velocity varies linearly throughout the water column for

0m/s at the seabed to 0.5m/s at the free surface. Time series of the top load can be seen in

Fig. 5.

We will now focus on the definition of the fidelity indicator ϕ for the active truncation

problem. In hydrodynamic model test campaigns, the focus is generally on the behaviour of

the floater, and on extreme tensions in the slender marine structures, but not on their local

deflection or curvature. The objective is therefore to make the interaction between the trun-

cated slender marine structure, the (physical) floater and the (numerical) sea bottom reflect

the corresponding interactions in a fully physical setup. In other words, the exact behaviour

of the slender structure throughout the water column is assumed of minor importance, as

long as its interactions with the floater and the sea bottom are modelled properly.

Based on this reasoning, two fidelity indicators are suggested. Let Vx,top and Vz,top be

the components of the top velocity of the slender structure, and Fx,bottom and Fz,bottom the

components of the force vector at its lower end. These values are calculated by co-simulation

of the substructured system, that includes the artefacts parametrized by θ. Let V̄top and

F̄bottom be their ideal counterparts, obtained by simulation of the emulated system. Then,

the first indicator

ϕ1(θ) = −1

2
log10

(∫ T
0

(
Vx,top(t|θ)− V̄x,top(t)

)2
dt

∫ T
0
V̄x,top(t)2dt

+

∫ T
0

(
Vz,top(t|θ)− V̄z,top(t)

)2
dt

∫ T
0
V̄z,top(t)2dt

)
(7)

quantifies how well the top end of the structure responds to the prescribed external load τ ,

and thus how well the substructured system manages to replicate the mechanical impedance

of the slender structure. ϕ1 is therefore important when motions of the floater are investi-

gated. The second indicator

ϕ2(θ) = −1

2
log10

(∫ T
0

(
Fx,bottom(t|θ)− F̄x,bottom(t)

)2
dt

∫ T
0
F̄x,bottom(t)2dt

+

∫ T
0

(
Fz,bottom(t|θ)− F̄z,bottom(t)

)2
dt

∫ T
0
F̄z,bottom(t)2dt

)

(8)
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Table 1: Properties of the polyester mooring line used in the case studies.

Parameter Unit Value

Length m 1934

Diameter mm 264

Mass per unit length kg/m 44.7

Young modulus GPa 8.513

Submerged weight per unit length N/m 93.2

Rayleigh damping coefficient α2 s 4.77.10−2

Top tension module kN 2500

Top tension angle o 50

Normal added mass coefficient - 1.0

Tangential added mass coefficient - 0.0

Normal drag coefficient - 1.6

Tangential drag coefficient - 0.0

quantifies how well the external load is transferred to the sea bottom, and is then more

relevant when the focus is on loads on e.g. anchors or blow-out preventers. If both aspects

are important, ϕ1 and ϕ2 could easily be combined into a single indicator.

To summarize, in this Section, we have (1) suggested two possible expressions of the

fidelity ϕ for the active truncation problem. (2) We discussed how ϕ could be jeopardized

by heterogeneous and random artefacts, described by a random vector Θ. (3) We showed

how E[ϕ(Θ)] and Var[ϕ(Θ)] could be evaluated (uncertainty propagation) from the PCE of

ϕ, and (4) we introduced the Sobol’ indices characterizing the sensitivity of ϕ to the various

components of Θ. This analysis method will be demonstrated by a practical case study in

Section 4. This case study requires the ability to co-simulate an active truncation setup

including artefacts. This will be the object of the next section.

3 Co-simulation of slender marine structures including

artefacts

The first part of this section describes a method to co-simulate the system presented in

Fig. 2f, when the substructures are slender marine structure. As an example, the taut

polyester mooring line, whose properties are given in Table 1, will be substructured, and

a co-simulation will be performed, corresponding to a deterministic value of θ, to put in

evidence the effect of selected artefacts on the dynamics of the system.
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3.1 The fixedFreeCableSegment model

The FE method is used to simulate the slender marine structure. The analysis is two-

dimensional, and the structure is represented by a bar element model (2 degrees of freedom

per node) as shown in Fig. 4a. The boundary condition of the structure is fixed-free which

means that the velocity of lower end of the structure, and the force on the upper end, are

prescribed. Inertia, added-mass, drag and effective weight loads are included in a similar

way as in Rustad et al. (2008). The stiffness matrix has both an elastic and a geometric

component. Since the geometric component strongly depends on the configuration of the

structure, the static equilibrium is found by Newton-Raphson iterations.

The dynamic analysis is linear, in the sense that it uses the mass matrix M and the

stiffness matrix K determined by the static analysis, throughout the time domain simulation.

Nonlinearities due to drag loads are modelled exactly. These modelling choices are adequate

to simulate structures with minimal changes of configuration, such as top tensioned risers

or taut mooring lines in deep water, for which lateral deflections are about two orders of

magnitude smaller than the structure’s length. The structural damping matrix is of the

form C = α1M + α2K (Rayleigh damping) where α1 is chosen to be null. In that case, the

damping ratio associated to a vibration mode with circular frequency ωi is λi = ωiα2/2.

The model is implemented as a MATLAB R© class named fixedFreeCableSegment. The

verification of this class is presented in A. It is also shown how the eigenmodes of the taut

polyester mooring differs from those of a string, due to the combined effects of elasticity,

varying tension, and oblique configuration, which would be inconvenient to represent in a

purely analytical model.

In the following, we will show how an active truncation setup can be modelled by coupling

two such fixedFreeCableSegment objects.

3.2 Co-simulation without artefacts

The active truncation setup is represented in Fig. 4b. The water depth is d =1200 m, and the

truncation ratio is α =0.8. The physical substructure (in red) and the numerical substructure

(in blue), denoted p and n, respectively, are each modelled by a fixedFreeCableStructure

object. The top velocity Vtop in (7) will hence be evaluated from p, and the bottom force

Fbottom in (8) from n. Focusing now on the truncation point, the selected boundary conditions

in fixedFreeCableSegment are such that the bottom velocity of p and the top force acting

on n can be prescribed. Their dual values, that is the bottom force on p, and the top

velocity of n, can be evaluated by time integration. The dynamic equilibrium and kinematic

compatibility at the truncation point is satisfied by the iterative procedure described in

Algorithm 1.

There are three important parameters in this algorithm. The synchronization time step

δt is the duration between two time instants at which equilibrium and compatibility at the
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(b) Substructuring in the active truncation problem

Figure 4: Subfigure (a): bar element model as implemented in the fixedFreeCableSegment

class. Element numbers are circled. Nodal forces are represented by arrows: effective weight

force (grey), current forces (blue), prescribed external top force (red) and prescribed bottom

displacement (green). Subfigure (b): overview of active truncation problem on the top left, with

the physical substructure in red and the numerical substructure in blue. Main plot: snapshots of

the upper part of the polyester line at t = 30s and t = 70s, when subjected to the characteristic

excitation τ . The dashed lines correspond to the envelope of the line’s displacement during the

analysis.

12



Algorithm 1 Co-simulation of two coupled fixedFreeCableSegment objects, denoted n and p.

1: for t ∈ {0, δt, ..., T − δt} do
2: v ← top velocity of n at time instant t

3: v next ←∞
4: f ← bottom force of p at time instant t

5: f next ←∞
6: while true do

7: Perform time-integration of p from t to t + δt with varying external excitation and bottom velocity varying

linearly to v

8: f next ← bottom force of p at t+ δt

9: Perform time-integration of n from t to t+ δt with varying external excitation and top force varying linearly

to f next

10: v next ← top velocity of n at t+ δt

11: if ||v next− v||∞ > εv OR ||f next− f||∞ > εF then: v ← v next ; f ← f next

12: else: Jump to next synchronization time step

13: end if

14: end while

15: end for

truncation point are enforced. In practice, δt will be chosen equal to the minimum loop

time of the control system orchestrating the active truncation. During the iterations (lines

6-14), εf and εv are force and velocity tolerances, below which dynamic equilibrium and

kinematic compatibility at the truncation point are assumed to be achieved, respectively.

These parameters influence both the results and the computational time of a co-simulation,

in the same way as the number of elements nel, so their value must be chosen carefully. To

this end, a convergence study is performed and reported in B. The selected values are nel=80

elements, δt=10 ms, εv=10−6 m/s and εf=0.1 N.

We have outlined how a co-simulation could be performed that satisfies equilibrium and

compatibility criteria at the truncation point. Performing the fidelity analysis described in

Section 2 requires now artefacts to be introduced in this coupling, which will be the object

of the next subsection.

3.3 Co-simulation including artefacts

An artefact class was developed, which allows simulating calibration errors (multiplicative

errors), bias (additive errors), white noise, delay, zero-order hold and signal loss. The class

has a signalIn method to get an input, a signalOut method to retrieve an output, and

in the particular case when no artefact should affect the signal, it works simply as a First-

In-First-Out (FIFO) queue. When artefacts are present, the input is modified before being

returned. As an example, in Fig. 3, successive calls to signalOut were made on artefact

objects with different properties, which received identical samples of the reference signal via
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the signalIn method.

As shown in Fig. 2f, two artefacts objects are needed, one acting on the effort (here,

force) obtained from the experimental substructure, and the other one acting on the flow

(here, velocity) obtained from the numerical substructure. Because they act on signals which

are obtained from sensors, or used as reference to actuators, they will be denoted aS and

aA, respectively. In this setting, performing a co-simulation that includes the effect of these

artefacts requires only minor modifications to Alg. 1. (1) At line 8, f next should be input

to aS.signalIn, and the output of aS.signalOut should be used instead of f next in line

9. (2) Similarly, v next should be passed through aA after line 10 before being used. (3) At

line 11, the convergence criterion should be evaluated on the values affected by the artefacts.

3.4 Example: effect of signal loss in active truncation

We will now illustrate the capabilities of this algorithm, and of the artefact and fixedFreeCableSegment

classes with an example. We will consider a co-simulation in which signal loss affects both

the measured force and the applied velocity. Signal loss may for example be due to sensor

and communication issues, or to unfinished calculations in the numerical substructure Vilsen

et al. (2017). It is parametrized by a probability of occurrence ζ1 ∈ [0, 1) and a charac-

teristic duration parameter ζ2 > 0. The duration D of the signal loss (during which the

signal is “frozen” to the last received value) is modelled as a random variable distributed

as fD(d) = e−ζ2d/ζ2. With this model, longer signal loss durations are expected for smaller

values of ζ2. In the present case, ζ1 is set to 1%, and ζ2 to 0.1. So in this case, the artefacts

can be parametrized by M = 4 components, and θ = (1%, 0.1, 1%, 0.1)>.

The mooring line is subjected to the characteristic excitation τ described in Section 2. The

results of the co-simulation are presented in Fig. 5. The dynamic excitation at the top node

(first row) is identical for the emulated structure (black) and the physical substructure (red).

This disturbance travels along the physical substructure (p), and reaches the truncation point

where a force is measured (second row, red line). This force is possibly subjected to signal

loss (aS) before being transferred, as a top force, to the numerical substructure (second row,

blue line). The numerical substructure (n) responds to this top force (third row, blue line),

and this response, which may also be affected by some signal loss (aA), is used to command

the bottom velocity of the physical substructure (third row, red line). The effect of these

signal loss on the QoI, which are the top velocity and the bottom force, are shown in the

fourth and fifth rows, respectively. The fidelity is evaluated by comparing these signals to

the ones obtained with the emulated system (black lines). By applying (7) and (8), it is

found that ϕ1 = 1.30 and ϕ2 = 1.99.

The right column in Fig. 5 shows a selected time window during which signal losses

happen on the measured force and on the applied velocity. On the second row, we can for

instance observe that the signal of the force sensor freezes for about half a second shortly
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Figure 5: Active truncation setup subjected to the characteristic load τ . The red curves are

obtained from the physical substructure, and the blue curves from the numerical substructure.

The black curves represent the emulated system. Signal loss occurs at the force sensors level (as

visible on the second row) and at the velocity actuation level (third row). The right column is

a zoom on the time series at a location of interest.

Figure 6: Stylized version of the active truncation problem, used to illustrate the effect of signal

loss on the response of the substructures. The red mass-spring-damper (MSD) system represents

the physical substructure, and the blue MSD system represents the numerical substructure. The

flag-shaped box represents the truncation point, where signal loss occurs. F0 represents the top

excitation. f and v represent the force and velocity at the truncation point, respectively: fn

and vn are seen from the numerical substructure, and fp and vp from the physical substructure.
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after t = 174 s, since the red and blue lines differ from each other. On the third row, it can

be seen that the velocity command signal freezes twice, first at t = 176 s for half a second,

then for about 300ms.

An important remark is that the substructure from which the signal comes has no direct

information of the occurrence of a signal loss, but is anyway affected indirectly by the feed-

back it receives from the other substructure. Let us illustrate this by constructing a stylized

version of our setup, represented in Fig. 6. We assume that signal loss occurs on the force

measurement only, and that the velocity actuation is perfect, that is vp = vn at all times,

while fn 6= fp when signal loss occurs. Starting from static equilibrium, when F0 increases,

all other variables fp, fn, vp and vn will increase. If signal loss occurs in the force mea-

surement, fn keeps a constant value (instead of increasing), and vn will eventually decrease

due to the stiffness and damping of the numerical substructure. Since vn directly steers the

actuator command, vp will decrease immediately, causing the stretching of the physical sub-

structure, and an in increase in fp. When the signal on the force senors is recovered, fn will

jump to to the (larger) fp value, causing a sudden increase of vn, and thus vp. This simplified

example describes well the mechanism causing the significant decrease and increase of the

velocity of the truncation point (on the physical substructure side) observed in Fig. 5 for

t ∈ [174, 176] s. This perturbation propagates according to the nonlinear dynamics of the

slender structure, to the top and bottom ends of the line, and is clearly observed both on

the top velocity and bottom force time series. It will thus affect both ϕ1 and ϕ2.

We have, in this Section, shown how the active truncation problem could be modelled,

and with this last example, illustrated qualitatively the - possibly complex - interaction

mechanisms resulting from e.g. signal losses at the truncation point. We will now extend the

analysis to a larger set of random and heterogeneous artefacts, representing a more realistic

case.

4 Fidelity analysis for a truncated taut mooring line

We will in this section show how the method presented in Section 2 can be applied to

study the active truncation problem when multiple, heterogeneous and random artefacts are

present. We consider the same polyester mooring line as in the previous example (see Table

1), installed in a water depth of d = 1200 m. Active truncation is performed with α =0.8.

We assume that the model tests are performed at a scale λ = 1/60. This means that the

depth of the ocean basin laboratory, where sensors and actuators are installed, is (1− α)dλ

= 4 m. The two force components fx and fz at the truncation point are measured by two

independent force sensors, and an actuator prescribes the velocity (vx, vz) of the truncation

point. The mooring line is subjected to the characteristic load introduced in Section 2, and

the fidelity indicators based on top velocity (ϕ1) and bottom force (ϕ2), defined in (7) and

(8) are considered.
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Figure 7: Structure of the system, modelled artefacts, and their describing parameters. τn

represents the current loads acting on the numerical substructure, and τp represents the current

loads and varying wave loads acting on the physical substructure.

As shown in Figure 7 and Table 2, ten individual artefacts, described by M = 12 param-

eters, are assumed to affect the setup. The choice of including these artefacts, and neglecting

others, is based on insight gained from the experimental work reported in Vilsen et al. (2017),

but note that the core method would apply also if other artefacts were selected. Each com-

ponent of the force measurement is assumed to be contaminated by calibration error, bias,

and noise. In the acquisition process, the force signals can be delayed, or lost, before entering

the numerical substructure. Signal loss at the output of the numerical substructure models

the fact that the calculations in the numerical substructure may not complete on time. An

additional delay on the actuation side models computation and communication processes.

The probabilistic description of these artefacts is summarized in the last column of Table 2.

Since only estimates of upper bounds, lower bounds, mean values, or standard deviations of

the θi parameters were available, the maximum entropy principle Jaynes (1957) was used to

define fΘ(θ), which could be improved by dedicated surveys.

4.1 LHS sampling and uncertainty propagation

As outlined in Section 2, the first objective is to estimate E[ϕ(Θ)], that is the expected

fidelity for the active truncation setup, when it is affected by the set of artefacts described in

Table 2. Var[ϕ(Θ)] is also estimated, indicating how much the fidelity may vary due to the

uncertainties on Θ. As explained in Section 2, this is done by establishing a PCE surrogate

model of ϕ (in the following, ϕ may designate either ϕ1 or ϕ2), denoted ϕ̂, whose structure

allows to evaluate efficiently E[ϕ(Θ)] and Var[ϕ(Θ)]. Such a surrogate model is a function

of the twelve-dimensional variable θ, and must mimic the behaviour of ϕ over its whole

domain of definition. To establish ϕ̂, ϕ(θ) must therefore be evaluated for a space-filling set

of samples of Θ denoted E . This set is generated with the Latin Hypercube Sampling method

(LHS), and ϕ is evaluated by co-simulation, as explained in Section 3, for each sample in

E . In Figure 8, the markers show 208 points generated by LHS in the twelve-dimensional

space, with the associated value of ϕ1 plotted against each component of θ. Note that these
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Table 2: Description of the artefacts affecting the setup, including their probabilistic description.

U(a, b) refers to the uniform distribution with support [a, b]. N (µ, σ) refers to the normal

distribution with mean µ and variance σ2. Here λ=1/60 and δt=10 ms.

Type of artefact Affected signal Describing parameter(s) Unit Probabilistic description

Calibration error fx Θ1 (scaling factor) - N (1, 0.015)

Calibration error fz Θ2 (scaling factor) - N (1, 0.015)

Bias fx Θ3 (bias value) N N (0, 0.05λ−3)

Bias fz Θ4 (bias value) N N (0, 0.05λ−3)

Noise fx Θ5 (noise variance) N2 U((0.025λ−3)2, (0.05λ−3)2)

Noise fz Θ6 (noise variance) N2 U((0.025λ−3)2, (0.05λ−3)2)

Delay fx,fz Θ7 (duration) s U(0, 5δt)

Signal loss fx,fz Θ8 (probability of occurrence) - U(1%, 10%)

Θ9 (duration parameter) s−1 U(0.1, 0.5)

Delay vx,vz Θ10 (duration) s U(0, 5δt)

Signal loss vx,vz Θ11 (probability of occurrence) - U(1%, 10%)

Θ12 (duration parameter) s−1 U(0.1, 0.5)

co-simulations are independent from each other and can therefore be performed in parallel.

Also, nested LHS can be used Blatman and Sudret (2010), to sequentially add samples to E ,

while ensuring that the updated set E contain samples still distributed according to fΘ(θ).

The distribution of ϕ can be estimated from E (see Figure 9), and in Figure 10, the realization

of Θ leading to the median value of ϕ1 is shown for illustration.

Based on this initial set E and on the associated values of ϕ, the PCE model ϕ̂ in (1) is

established by using a degree-adaptive sparse PCE, based on least-angle regression (LARS,

Blatman and Sudret (2011)), implemented in the UQLab software Marelli and Sudret (2014,

2017). These two references may be consulted by the interested reader for more details on the

theoretical and practical aspects of PCE identification. The values of E[ϕ(Θ)] and Var[ϕ(Θ)]

can then be evaluated from (3) and (4):

E[ϕ̂1(Θ)] = 1.32 and Var[ϕ̂1(Θ)] = 0.132

E[ϕ̂2(Θ)] = 1.77 and Var[ϕ̂2(Θ)] = 0.172

This means that the active truncation scenario selected in Figure 10, where ϕ1=1.33 and

ϕ2=1.62, corresponds to an average fidelity for the top velocity of the slender structure (when

compared to E[ϕ1]), and to a quite poor fidelity for the bottom force (when compared to

E[ϕ2]).

As this will be used in the following, let us mention that we can quantify how well ϕ̂

reproduces the behaviour of ϕ by using the Leave-One-Out cross validation (LOO) error.

It is established as follows. For each sample θ∗ ∈ E , a PCE model is established based on
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Figure 8: Scatter diagrams showing the value of ϕ1 (fidelity indicator based on the top velocity

of the line), as a function of the twelve parameters describing the artefacts. The dots correspond

to 208 samples of Θ obtained by Latin Hypercube Sampling (set denoted E in the text).
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Figure 9: Cumulative distribution functions of ϕ1 and ϕ2 obtained from sets E of different sizes.
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Figure 10: Co-simulation of active truncation with a set of the artefacts leading to the median

value of ϕ1. For this realization, the measurement of fx (resp. fz) is affected by a -0.3% (resp.

-3%) calibration error, a -0.012 N (resp. 0.28 N) bias, and noise with a standard deviation of

0.040 N (resp. 0.037N), in model scale. The force measurement is delayed by 2.6ms, and has

a probability of signal loss of 7.5%, with a duration parameter of 0.47, which corresponds to

frequent and short periods of signal loss. On the actuation side, the delay is 1.3ms, and the

probability of occurrence and duration parameter of signal loss are 6.8 % and 0.17, respectively.

The resulting fidelity indicators are ϕ1=1.33 and ϕ2=1.62.
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Figure 11: Upper plot: normalized Leave-One-Out cross-validation error for the PCE metamodel

of ϕi. Middle plot: expected value and variance of ϕi estimated from initial empirical designs

of five different sizes. Lower plot: first-order Sobol’ indices of ϕi estimated from these initial

experimental designs. The corresponding total Sobol’ index of each θi is plotted in grey in the

background.

the set E \ θ∗, and the values of ϕ(θ∗) and ϕ̂(θ∗) are compared. Even if this means that, in

principle, as many PCE models should be established as elements in E , the LOO error can

under some circumstances be estimated directly from the single PCE model established from

the whole set E Marelli and Sudret (2017). The LOO error (normalized by the variance of

ϕ̂) is usually deemed satisfactory for uncertainty propagation and sensitivity analyses, when

it does not exceed 10−1 Le Gratiet et al. (2015). This will be commented on later on.

4.2 Sensitivity analysis

In some cases, visual inspection of scatter diagrams such as Figure 8, allows one to determine

directly which artefact component(s) affects the most the fidelity. This becomes however

more difficult for increasing values of M (the dimension of θ), and particular for the present

case with M = 12. As introduced in Section 2, Sobol’ sensitivity indices can instead be

used, which are directly deduced from ϕ̂. Before looking at the Sobol’ indices, let us recall
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that the absolute values of the total Sobol’ indices ST,i are of secondary importance: the

ST,i should be compared to each other to identify the most influencing artefacts’ parameters.

Furthermore, ST,i can be compared to the first order Sobol’ index Si, to understand whether

the artefact parameter θi influences the variance of ϕ alone, or in an interaction with another

parameter θj , or several others.

With these interpretation keys in mind, let us consider the bottom plots in Figure 11,

showing the ST,i and Si, estimated from various sizes (or cardinality) card(E) of E . It is

seen that for the present problem, reliable insight into the main mechanisms of sensitivity

can be obtained for card(E)=208. If card(E)=416, finer conclusions can be made regarding

the sensitivity to less important parameters, which do not change when card(E)=832. For

both card(E)=208 and 416, the estimated statistical moments are within 1% of the value

obtained with for card(E)=832 samples. Note that the recommended values of the LOO

error in Le Gratiet et al. (2015) are rather conservative for the present situation, since good

convergence of the statistical moments and meaningful sensitivity information are obtained,

in spite of an LOO error exceeding 0.1.

Let us first outline the main conclusions that can be drawn from the total Sobol’ indices

ST,i, represented by grey bars in Figure 11b (consider for example card(E)=416). The fidelity

indicator based on the top velocity response, ϕ1, is very sensitive to θ9 (the duration of the

signal loss on the force signal) and to the calibration errors of the fx and fz measurement (θ1

and θ2). ϕ1 is much less sensitive to the other θi, and clearly insensitive to noise (described

by θ5 and θ6). Focusing now on the bottom force, we see that ϕ2 is mostly sensitive to θ1, then

θ2 (calibration errors), and then to a much less extent to the biases θ3 and θ4, which have

both comparable total Sobol’ indices. ϕ2 is slightly sensitive to θ9, the duration parameter

for signal loss on the force measurement, and insensitive to the other θi parameters. We will

now relate these results, obtained by a systematic approach, to their physical causes.

The effect of white noise It is clear from Figure 10 that the noise affecting force

measurements (parametrized by θ5 and θ6) induces a significant velocity response at the

truncation point. This response is however filtered mechanically by drag and, to a less extent,

structural damping, before reaching the top and bottom of the mooring line. Therefore

noise does not significantly affect the fidelity indicators ϕ1 and ϕ2. The fact that the ST,i

associated to this artefact are negligible, means that the corresponding parameters θ5 and θ6

(noise variances) could have been set to deterministic values (here, zero), without affecting

the variance of ϕ.

Signal loss A natural question when looking at Fig. 11a, is why the top velocity (or

ϕ1) is more sensitive to signal loss, when it acts on the force sensor (duration parameter

θ9) rather than when it acts on the velocity actuation (parameter θ12). Indeed, the force

sensors feeds the numerical substructure, while the actuator controls the bottom part of the
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physical substructure, whose response directly enters in the definition (7) of ϕ1. The reason

is the following. When signal loss on the velocity command happens, the velocity of the

truncation point keeps a constant value. On the other hand, signal loss on the force sensor

may cause large variations of the truncation point’s velocity, due to the interaction with

the numerical substructure that was commented in detail in Section 3 and seen in Figure 5.

Both the amplitude of these perturbations and their duration increase when the signal loss

characteristic duration increases, which enhances their propagation to the top of the mooring

line.

Effect of the anisotropic properties of the mooring The fact that ϕ2 is more

sensitive to θ1 (calibration error for fx measurement) than to its counterpart θ2 (acting on

fz) can be explained as follows. Transverse motions of the mooring line are subjected to

drag damping forces, while axial motions are only damped by structural damping, which

means that, with the present choice of α2 and the present frequency range of motions,

transverse motions will be subjected to a significantly higher level of damping than axial

motions. Consequently, an axial dynamic force error will be less damped than its transverse

counterpart. Since the mooring line forms an angle of γ = 39.2 o with respect to the x-axis at

the truncation point, the axial forces have an x-component larger than their z− component,

and a calibration error on fx (parametrized by θ1) will play a greater role for ϕ2 than a

calibration error on fz (parametrized by θ2).

Also, as explained earlier, Total Sobol’ indices and first-order indices differ when there is

an interaction between two (or more) θi. The nature of this interaction can be determined

by considering higher-order Sobol’ indices (not shown here). Note that in principle, a finer

PCE model (with lower LOO error) would be needed to obtain accurate estimates of the

higher-order Sobol’ indices, so only trends will be commented here. We found for example

that the interaction between θ1 and θ2 explains ≈ 20% of the variance of ϕ1, and ≈ 15%

of the variance of ϕ2. This is due to the fact that if θ1 and θ2 differ significantly from each

other, the direction of the force at the truncation point will be affected. Since the stiffness

and damping properties of the line are not isotropic, as explained earlier, this change in

direction will have a significant effect on the fidelity.

Effect of the bias From Figure 11, we see that biases have a significant influence on ϕ1

and ϕ2 (total Sobol indices), and that this influence is due to interactions (S5 � ST,5 and

S6 � ST,6 in both cases). Here, the mechanisms in play are slightly different for ϕ1 and ϕ2.

By again studying higher-order Sobol indices, it can be shown that the interaction be-

tween θ1 and θ3 (resp. θ2 and θ4) explain ≈ 10% of the variance of ϕ2. This interaction is

induced by the pretension at the truncation point, denoted T ∗0 . Indeed, for example, when

a scaling error θ1 affects fx only, it is equivalent to a bias of (θ1 − 1)T ∗0 cos γ being added to

θ3, and transferred to the anchor point. Coupling terms between θ1 and θ3 will therefore be
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generated in the Sobol’ decomposition (5) of ϕ2, due to the logarithm in (8).

Biases should, in principle have little influence on ϕ1, since constant force will simply lead

to a constant offset, and not change the (linear) dynamical properties of our substructures.

However, about ≈ 10% of the variance of ϕ1 is due to one-to-one interactions between θ1,

θ2, θ3, and θ4. This is due to the following effect. In the horizontal direction, for t < 0,

the component of the pretension is T ∗0 cos γ at the truncation point. For t ≥ 0, it suddenly

changes to θ3 +(θ1−1)T ∗0 cos γ, when artefacts are applied to the force signal. This impulsive

load causes a transient response, visible in Figure 10, which has a minor, but noticeable,

influence on ϕ1.

5 Conclusion

In the present paper, we considered active truncation as an alternative technique to per-

form model testing of ultra-deep water floating systems in existing ocean laboratories. We

assessed the performance of an active truncation setup through its associated fidelity. We

showed how the fidelity could be jeopardized by multiple, heterogeneous and random arte-

facts, originating from the control system (including sensors, actuators and controllers) that

connects the numerical and physical parts of the setup. We outlined a method to evaluate

the expected fidelity of the setup, and its variability due to the uncertainties on the artefacts.

Finally, a systematic analysis method based on Sobol’ indices allowed us to determine the

sensitivity of the fidelity to each of the involved artefacts. This latter result provides valuable

and objective indications to improve fidelity in an operational context. Using the polyno-

mial chaos expansions of the fidelity made this sensitivity analysis possible at a reasonable

computational cost.

A case study addressing a taut polyester mooring line allowed to gain insight in the

complex mechanisms taking place in active truncation, combining the dynamics of the slender

structures and the imperfect coupling at the truncation point. A total of ten artefacts were

included in the analysis, and the importance of calibration errors and signal loss at the force

sensors level was put in evidence. It must be emphasized that, since the fidelity is a nonlinear

function of the artefacts parameters, these conclusions are valid for the present system and

set of artefacts only.

The present method is currently extended to a complete framework, which also allows

to (1) determine the feasibility of an active truncation test, by evaluating its probability of

failure due to too low fidelity, and (2) determine the corresponding admissible bounds on the

artefact parameters.

24



Acknowledgment

This work was supported by the Research Council of Norway through the Centres of Excel-

lence funding scheme, Project number 223254 - AMOS, and through the project 254845/O80

“Real-Time Hybrid Model Testing for Extreme Marine Environments”.

References

Aksnes, V., P. A. Berthelsen, and N. M. M. D. Da Fonseca (2015). On the need for calibration

of numerical models of large floating units against experimental data. In The Twenty-Fifth

International Ocean and Polar Engineering Conference. International Society of Offshore

and Polar Engineers.

ASME (ed.) (2016). Guide for Verification and Validation in Computational Solid Mechanics.

Technical Report ASME V&V 10-2006 (R2016).

Blatman, G. and B. Sudret (2010, April). An adaptive algorithm to build up sparse poly-

nomial chaos expansions for stochastic finite element analysis. Probabilistic Engineering

Mechanics 25 (2), 183–197.

Blatman, G. and B. Sudret (2011, March). Adaptive sparse polynomial chaos expansion

based on least angle regression. Journal of Computational Physics 230 (6), 2345–2367.

Bowers, S. (2016, November). Shell begins production at world’s deepest underwater oilfield.

The Guardian, September 11th, 2016 .

Cao, Y. and G. Tahchiev (2013). A Study on an Active Hybrid Decomposed Mooring

System for Model Testing in Ocean Basin for Offshore Platforms. In ASME 2013 32nd

International Conference on Ocean, Offshore and Arctic Engineering. American Society

of Mechanical Engineers.

Drazin, P. L., S. Govindjee, and K. M. Mosalam (2015, July). Hybrid Simulation Theory for

Continuous Beams. Journal of Engineering Mechanics 141 (7), 04015005.

Edrington, C. S., M. Steurer, J. Langston, T. El-Mezyani, and K. Schoder (2015, December).

Role of Power Hardware in the Loop in Modeling and Simulation for Experimentation in

Power and Energy Systems. Proceedings of the IEEE 103 (12), 2401–2409.

Fergestad, D. and S. A. Løtveit (2015). Handbook on Design and Operations of Flexible Pipes

(Joint Industry Project “Safe and Cost Effective Operations of Flexible Pipes” ed.).

Fylling, I. and C. T. Stansberg (2005). Model Testing of Deepwater Floating Production

Systems: Strategy for Truncation of Moorings and Risers. In DOT Brazil.

25



Jaynes, E. T. (1957). Information Theory and Statistical Mechanics. The Physical Re-

view 106 (4), 620–630.

Le Gratiet, L., S. Marelli, and B. Sudret (2015). Metamodel-Based Sensitivity Analysis:

Polynomial Chaos Expansions and Gaussian Processes. In R. Ghanem, D. Higdon, and

H. Owhadi (Eds.), Handbook of Uncertainty Quantification, pp. 1–37. Cham: Springer

International Publishing.

Marelli, S. and B. Sudret (2014). UQLAB : A framework for Uncertainty Quantification in

MATLAB. SIAM Conference on Uncertainty Quantification (ICVRAM), USA, 2014.

Marelli, S. and B. Sudret (2017). UQLab user manual – Polynomial chaos expansions.

Technical Report UQLab-V1.0-104, Chair of Risk, Safety & Uncertainty Quantification,

ETH Zürich.
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A Verification of fixedFreeCableSegment

As verification of the FE implementation, the eigenvalues and associated modeshapes com-

puted from fixedFreeCableStructure are compared to a known analytical solution. We

consider a polyester line, commonly used in mooring systems, whose nominal properties are

given in Table 1. Its length is L = 1934 m and it is subjected to a vertical top tension of T0

= 2.5 MN. Under the assumptions of infinite axial stiffness and zero submerged weight, its

eigenfrequencies ωi and associated modeshapes φi are given by:

∀i ∈ N∗, ωi =
(2i− 1)π

2L

√
T0

m
and φi(z) = (−1)i+1 sin

(
(2i− 1)πz

2L

)
(9)

where m is the mass and added mass per unit of length, and φi is normalized so that

φi(L) = 1. The six first modeshapes obtained from this analytical solution are represented

with solid lines in Fig. 12, and the values of the 15 first eigenperiods are tabulated in the

second column of Table 3. These eigenmodes are compared to the results obtained for a

fixedFreeCableSegment object with nel=500 elements, whose axial stiffness has been in-

creased by one order of magnitude (to mimic the infinite stiffness assumption used in the

analytical model), and whose submerged weight has been set to zero. The eigenmodes of

a fixedFreeCableSegment object are obtained numerically from the eigenvalue analysis of

M−1K, where M and K are obtained from the nonlinear static analysis. The corresponding

eigenperiods are tabulated in the third column of Table 3, and the difference with the an-

alytical solution is found to be insignificant. When nel is decreased to 80 elements (fourth

column of Table 3), the error is less than 1% for the 13 first modes, and the first modeshapes,

compared in Fig. 12a, also show excellent agreement. For higher modes, with eigenperiods

less than 1.80 s, the model with nel=80 becomes too coarse, with less than 12 elements per

wavelength 4L/(2i−1), and the estimated eigenperiods become erroneous. So provided that

nel is chosen adequately, the dynamic system modelled by fixedFreeCableSegment can be

considered as verified against the corresponding analytical solution.

In reality, several physical effects will make the eigenmodes of a a polyester line deviate

from the ideal solution (9). (1) First, the elasticity of the polyester somewhat influences the

dynamics of long lines. This is shown in the fifth column of Table 3, in which eigenperiods

are evaluated from a vertical fixedFreeCableSegment, now featuring its nominal stiffness.

While the elasticity of the line does not influence significantly the ten first transverse modes,

it must be accounted for when higher modes (with associated eigenperiods lower than 2.41s,

in the present case) need to be modelled. (2) The submerged weight of the slender structure

causes tension variations throughout the water column, which also affects the eigenmodes.

By considering the the sixth column of Table 3, it is seen that this effect has an impact on

all modes, including the the lower modes, making the corresponding eigenperiods deviate

by 2 to 3% from the previous solution. (3) Then, since such a polyester line is in general

installed in an oblique way, it will exhibit static lateral deflections (of the order of 1% of the
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structure’s length in the present case), due to its submerged weight. As shown in the sixth

column of Table 3, this change of static configuration has some effect on all eigenmodes.

(4) Finally, the oblique line is subjected to the shear current introduced in the previous

section. It is found to have an insignificant additional effect on the eigenmodes (last column

in Table 3). Note however that current has an important effect on the drag-induced damping

of transverse motions.
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Figure 12: Modeshapes corresponding to the six first eigenmodes of the fixed-free cable structure.

Corresponding eigenperiods can be found in Table 3. In both figures, the analytical solutions for

an ideal (weightless and infinitely stiff) cable are plotted with solid lines, and numerical results

using the fixedFreeCableSegment class with 80 elements are plotted with circle markers.
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Table 3: Eigenperiods in seconds corresponding to the 15 first modes of a 1934m long cable subjected to a top tension of 2.5MN. In italic:

deviation in percents between the analytical solution (transverse vibrations of a weightless and infinitely stiff string) and various numerical

solutions computed with the fixedFreeCableSegment class.

Analytical solution Numerical solution using the fixedFreeCableSegment class

Axial stiffness Infinite 10*nominal 10*nominal Nominal Nominal Nominal Nominal

Weight in water Weightless Weightless Weightless Weightless Nominal Nominal Nominal

Top force direction - Vertical Vertical Vertical Vertical Nominal Nominal

Current - None None None None None Nominal

Number of elements - 500 % 80 % 80 % 80 % 80 % 80 %

Mode 1 49.15 49.15 0.00 49.15 0.00 49.39 0.48 50.68 3.12 50.17 2.08 50.17 2.07

Mode 2 16.38 16.38 0.00 16.38 -0.01 16.46 0.47 16.78 2.42 16.66 1.71 16.66 1.71

Mode 3 9.83 9.83 0.00 9.83 -0.04 9.87 0.44 10.06 2.33 9.99 1.62 9.99 1.62

Mode 4 7.02 7.02 0.00 7.02 -0.08 7.05 0.41 7.18 2.28 7.13 1.57 7.13 1.57

Mode 5 5.46 5.46 0.00 5.45 -0.13 5.48 0.35 5.58 2.22 5.54 1.51 5.54 1.51

Mode 6 4.47 4.47 0.00 4.46 -0.19 4.48 0.29 4.56 2.15 4.53 1.45 4.53 1.44

Mode 7 3.78 3.78 -0.01 3.77 -0.27 3.79 0.21 3.86 2.07 3.83 1.37 3.83 1.36

Mode 8 3.28 3.28 -0.01 3.26 -0.36 3.28 0.12 3.34 1.98 3.32 1.27 3.32 1.27

Mode 9 2.89 2.89 -0.01 2.88 -0.46 2.89 0.02 2.95 1.87 2.92 1.17 2.92 1.16

Mode 10 2.59 2.59 -0.01 2.57 -0.58 2.58 -0.10 2.63 1.76 2.61 1.05 2.61 1.05

Mode 11 2.34 2.34 -0.02 2.32 -0.70 2.41 2.92 2.41 2.90 2.41 2.88 2.41 2.87

Mode 12 2.14 2.14 -0.02 2.12 -0.84 2.34 9.28 2.38 11.30 2.36 10.53 2.36 10.53

Mode 13 1.97 1.97 -0.02 1.95 -0.99 2.13 8.30 2.17 10.31 2.15 9.54 2.15 9.54

Mode 14 1.82 1.82 -0.03 1.80 -1.16 1.96 7.44 1.99 9.43 1.98 8.67 1.98 8.67

Mode 15 1.69 1.69 -0.03 1.67 -1.34 1.81 6.67 1.84 8.65 1.83 7.90 1.83 7.89
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B Convergence and parameter study for the co-simulation

We consider and the taut polyester mooring line, truncated with α=0.8, and exposed to the

current and wave-induced loads described in Section 2. The response of the substructured

system is evaluated by the co-simulation procedure outlined previously. Each of the four

parameters is varied, keeping the other ones constant and equal to the following nominal

values: nel=80 elements, δt=10 ms, εv=10−6 m/s and εf=0.1 N. As discussed in the previous

section, the QoI for our problem are the top velocity of p and the bottom force of n. The

following indicators are therefore used to study convergence:

ε1 =

(∫ T
0

(
Vx,top(t)− V∞x,top(t)

)2
dt

∫ T
0
V∞x,top(t)2dt

+

∫ T
0

(
Vz,top(t)− V∞z,top(t)

)2
dt

∫ T
0
V∞z,top(t)2dt

)1/2

(10)

ε2 =




∫ T
0

(
Fx,bottom(t)− F∞x,bottom(t)

)2

dt
∫ T

0
F∞x,bottom(t)2dt

+

∫ T
0

(
Fz,bottom(t)− F∞z,bottom(t)

)2

dt
∫ T

0
F∞z,bottom(t)2dt




1/2

(11)

where the ∞ superscript refers to the time series obtained with the finest mesh, smallest

synchronization time step or tolerance value, depending on which parameter is varied. Fig.

13a to 13d show the variations of ε1 and ε2 as a function of each parameter, and Fig. 13e

shows the effect of the parameters on the computational time.

As expected, ε1 and ε2 decrease when refining the mesh (Fig. 13a), while the computa-

tional time increases proportionally to n2
el (Fig. 13e). As seen in Section 4, the present study

requires a possibly large number of co-simulations, nel=80 is selected, which allows keeping

computational costs to an acceptable level, with an ε1 error of the order of 2%.

Convergence is also clearly observed when the synchronization time step is reduced (Fig.

13b). It can be observed (Fig. 13e) that the computational time is minimum for δt=10

ms, and increases significantly when δt=100ms. Indeed, even if reducing total number of

synchronizations during the given simulation time, increasing δt leads to a larger required

number of iterations (lines 6-14 in Alg. 1) at each synchronization step. On the other hand,

it can be observed that the computational time is larger for δt=5ms than for δt=10ms. In

that case, even if very few iterations are required to achieve compatibility and equilibrium,

the total computational burden increases due to some expensive operations (such as writing

data), which are performed at the end of each synchronization step.

Finally, as expected when considering line 11 in Alg. 1, εv and εf play a symmetric role.

For a given εf for example, decreasing εv will only have an influence on the outcome of the

co-simulation (and thus on ε1 and ε2) if it is εv, and not εf , that forces the iteration process

to continue. Indeed, when εv is chosen to be very large, the dynamic equilibrium condition

will be the limiting constraint, and the value of εf will thus steer the number of iterations.

When εv is decreased and reaches a certain threshold, which depends on the mechanical

impedance of the structure, it may be either the equilibrium or the compatibility condition
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(e) Computational time: number of seconds required per simulated second. The

dashed lines correspond to the mean value ± one standard deviation of the duration

of the simulation using the nominal set of parameters.

Figure 13: Convergence study. Effect of varying the number of elements, the synchronization

time step and synchronization tolerances on the error indicators ε1 and ε2 (four top figures),

and on the computational time (lower figure).
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that steers the number of iterations, at a given synchronization step. Finally, decreasing

further εv will enforce an increased accuracy on the compatibility condition, which decreases

the error, and increases the number of iterations and the computational time. This shift is

clearly happening for εv=10−7 m/s in Fig. 13c. It should however be noted, that within the

range of investigated εv and εf , the errors ε1 and ε2 are extremely small.

34


