
HAL Id: hal-01893177
https://hal.science/hal-01893177v1

Preprint submitted on 11 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-driven polynomial chaos expansions for machine
learning regression

E Torre, S. Marelli, P Embrechts, B. Sudret

To cite this version:
E Torre, S. Marelli, P Embrechts, B. Sudret. Data-driven polynomial chaos expansions for machine
learning regression. 2018. �hal-01893177�

https://hal.science/hal-01893177v1
https://hal.archives-ouvertes.fr

DATA-DRIVEN POLYNOMIAL CHAOS EXPANSION FOR

MACHINE LEARNING REGRESSION

E. Torre, S. Marelli, P. Embrechts, B. Sudret

CHAIR OF RISK, SAFETY AND UNCERTAINTY QUANTIFICATION

STEFANO-FRANSCINI-PLATZ 5
CH-8093 ZÜRICH

Risk, Safety &
Uncertainty Quantification

Data Sheet

Journal:

Report Ref.: RSUQ-2018-005

Arxiv Ref.: http://arxiv.org/abs/1808.03216 - [stat.CO] [stat.ML]

DOI:

Date submitted: 11 June 2018

Date accepted: -

Data-driven polynomial chaos expansion for machine learning

regression

E. Torre, S. Marelli, P. Embrechts, B. Sudret

Abstract

We present a regression technique for data driven problems based on polynomial chaos

expansion (PCE). PCE is a popular technique in the field of uncertainty quantification (UQ),

where it is typically used to replace a runnable but expensive computational model subject

to random inputs with an inexpensive-to-evaluate polynomial function. The metamodel

obtained enables a reliable estimation of the statistics of the output, provided that a suitable

probabilistic model of the input is available.

In classical machine learning (ML) regression settings, however, the system is only known

through observations of its inputs and output, and the interest lies in obtaining accurate

pointwise predictions of the latter. Here, we show that a PCE metamodel purely trained

on data can yield pointwise predictions whose accuracy is comparable to that of other ML

regression models, such as neural networks and support vector machines. The comparisons

are performed on benchmark datasets available from the literature. The methodology also

enables the quantification of the output uncertainties and is robust to noise. Furthermore,

it enjoys additional desirable properties, such as good performance for small training sets

and simplicity of construction, with only little parameter tuning required. In the presence of

statistically dependent inputs, we investigate two ways to build the PCE, and show through

simulations that one approach is superior to the other in the stated settings.

Keywords: sparse polynomial chaos expansions, machine learning, regression, uncer-

tainty quantification, copulas.

1 Introduction

Machine learning (ML) is increasingly used today to make predictions of system responses

and to aid or guide decision making. Given a d-dimensional input vector X to a system

and the corresponding q-dimensional output vector Y , data-driven ML algorithms establish

a map M : X 7→ Y on the basis of an available sample set X =
{
x(1), . . . ,x(n)

}
of input

observations and of the corresponding output values Y =
{
y(1), . . . ,y(n)

}
, where y(i) =

1

M(x(i)). In classification tasks, the output Y is discrete, that is, it can take at most a

countable number of different values (the class labels). In regression tasks, which this paper

is concerned with, the output Y takes continuous values. Regression techniques include

linear regression, neural networks (NN), kernel methods (such as Gaussian processes, GP),

sparse kernel machines (such as support vector machines, SVM), graphical models (such as

Bayesian networks and Markov random fields), and others. A comprehensive overview of

these methods can be found in Bishop (2009) and in Witten et al. (2016).

Current research on ML algorithms focuses on various open issues. First, there is an

increasing interest towards problems where the inputs to the system, and as a consequence the

system’s response, are uncertain (see, e.g., Chan and Elsheikh (2018); Kasiviswanathan et al.

(2016); Mentch and Hooker (2016)). Properly accounting for both aleatory and epistemic

input uncertainties allows one to estimate the response statistics. Second, novel methods are

sought to better automatize the tuning of hyperparameters, which several ML methods are

highly sensitive to (Snoek et al., 2012). Third, the paucity of data in specific problems calls

for models that can be effectively trained on few observations only (Forman and Cohen, 2004).

Finally, complex models, while possibly yielding accurate predictions, are often difficult if

not impossible to interpret.

This manuscript revisits polynomial chaos expansions (PCE), a well established meta-

modelling technique in uncertainty quantification (UQ), as a statistical ML regression algo-

rithm (Vapnik, 1995) that can deal with these challenges (Sudret et al., 2015). UQ classically

deals with problems where X is uncertain, and is therefore modelled as a random vector.

As a consequence, Y = M(X) is also uncertain, but its statistics are unknown and have

to be estimated. Differently from ML, in UQ the model M is typically available (e.g.,

as a finite element code), and can be computed pointwise. However, M is often a com-

putationally expensive black-box model, so that a Monte Carlo approach to estimate the

statistics of Y (generate a large input sample set X to obtain a large output sample set

Y = {M(x), x ∈ X}) is not feasible. PCE is a UQ spectral technique that is used in these

settings to express Y as a polynomial function of X. PCE thereby allows one to replace

the original computational model M with an inexpensive-to-run but accurate metamodel.

The metamodel can be used to derive, for instance, estimates of various statistics of Y , such

as its moments or its sensitivity to different components of X (Saltelli et al., 2000), in a

computationally efficient way. Recently, we established a general framework to perform UQ

(including PCE metamodelling) in the presence of complex input dependencies modelled

through copulas (Torre et al., 2017).

Here, we re-establish PCE in a purely data-driven ML setup, where the goal is to obtain

a model that can predict the response Y of a system given its inputs X. For simplicity, we

consider the case where Y is a scalar random variable Y . The generalisation to multivariate

outputs is straightforward. In the setup of interest here, no computational model M is

2

available, but only a set (X , Y) of input values and corresponding responses. X and Y are

considered to be (possibly noisy) realisations of X and Y , the true relationship between

which is deterministic but unknown.

After recalling the underlying theory (Section 2), we first show by means of simulation

that data-driven PCE delivers accurate pointwise predictions (Section 3). In addition, PCE

also enables a reliable estimation of the statistics of the response (such as its moments and

PDF), thus enabling uncertainty quantification of the predictions being made. Dependencies

among the input variables are effectively modelled by copula functions, purely inferred from

the data as well. The approach is shown to be robust to noise in the data, and to work well

also in the presence of small training sets. In Section 4, we further apply PCE to real data

previously analyzed by other authors with different NN and/or SVM algorithms, where it

achieves a comparable performance. Importantly, the construction of the PCE metamodel

does not rely on fine tuning of critical hyper-parameters. This and other desirable features

of the PCE modelling framework are discussed in Section 5.

2 Methods

2.1 Measures of accuracy

Before introducing PCE, which is a popular metamodelling technique in UQ, as an ML tech-

nique used to make pointwise predictions, it is important to clarify the distinction between

the error types that UQ and ML typically aim at minimizing.

ML algorithms are generally used to predict, for any given input, the corresponding

output of the system. Their performance is assessed in terms of the distance of the prediction

from the actual system response, calculated for each input and averaged over a large number

of (ideally, all) possible inputs. A common error measure in this sense is the mean absolute

error (MAE). For a regression model M trained on a training data set (X ′, Y ′), the MAE

is typically evaluated over a validation data set (X ′′, Y ′′) of size n′′ by

MAE =
1

n′′
∑

(x,y)∈(X ′′,Y′′)
|y −M(x)| . (1)

The associated relative error considers point by point the ratio between the absolute error

and the actual response, i.e.,

rMAE =
1

n

∑

(x̂,ŷ)∈(X ,Y)

∣∣∣∣
ŷ −M(x̂)

ŷ

∣∣∣∣ =
1

n

∑

(x̂,ŷ)∈(X ,Y)

∣∣∣∣1−
M(x̂)

ŷ

∣∣∣∣ , (2)

which is well defined if ŷ 6= 0 for all ŷ ∈ Y.

PCE is instead typically used to draw accurate estimates of various statistics of the output

– such as its moments, its PDF, confidence intervals – given a probabilistic model fX of an

uncertain input. The relative error associated to the estimates µ̂Y of µY and σ̂Y of σY is

3

often quantified by ∣∣∣∣1−
µ̂Y
µY

∣∣∣∣ ,
∣∣∣∣1−

σ̂Y
σY

∣∣∣∣ , (3)

provided that µY 6= 0 and σY 6= 0.

A popular measure of the error made on the full response PDF fY is the Kullback-Leibler

divergence

∆KL(f̂Y |fY) =

∫

y

log

(
f̂Y (y)

fY (y)

)
fY (y)dy, (4)

which quantifies the average difference between the logarithms of the predicted and of the

true PDFs.

Provided a suitable model fX of the joint PDF of the input, PCE is known to converge

(in the sense that the error on the mentioned output statistics decreases) very rapidly as the

size of the training set increases, compared for instance to Monte-Carlo sampling (Puig et al.,

2002; Todor and Schwab, 2007; Ernst et al., 2012). This happens because PCE, which is a

spectral method, efficiently propagates the probabilistic information delivered by the input

model fX to the output. Nevertheless, this does not necessarily imply a similarly rapid

pointwise convergence of the error, which remains to be demonstrated. For a discussion of

various types of convergence, see Ernst et al. (2012) and references therein.

2.2 Data-driven settings

PCE is designed to build an inexpensive-to-evaluate analytical model YPC = MPC(X)

mapping an input random vectorX onto an output random variable Y (Ghanem and Spanos,

1990; Xiu and Karniadakis, 2002). PCE assumes that an unknown deterministic map M :

Rd → R exists, such that Y = M(X). Y is additionally assumed to have finite variance:

V(Y) =
∫
RdM2(x)fX(x)dx < +∞. Under the further assumption that each Xi has finite

moments of all orders (Ernst et al., 2012), the space of square integrable functions with

respect to fX(·) admits a basis {Ψα(·),α ∈ Nd} of polynomials orthonormal to each other

with respect to the probability measure fX , i.e., such that

∫

Rd
Ψα(x)Ψβ(x)fX(x)dx = δαβ. (5)

Here, δαβ is the Kroenecker delta symbol. The element αi of the multi-index α ∈ Nd

indicates the degree of Ψα in the i-th variable, i = 1, . . . , d. Ψα has a total degree given by

|α| = ∑i αi.

Thus, Y admits the spectral representation

Y (X) =
∑

α∈Nd
yαΨα(X). (6)

The goal of PCE is to determine the coefficients yα of the expansion, truncated at some

polynomial order, given an initial set (X , Y) of observations (the training set or experimental

design). In some engineering applications the model M(·) is directly available (e.g., as a

4

finite element model) but computationally expensive to evaluate: in these cases, PCE is

used as a surrogate to replace the true model with an inexpensive-to-evaluate metamodel.

In the standard ML settings considered here, conversely, M(·) is unknown and has to be

modelled solely on the basis of available observations (X , Y). The primary goal of this paper

is to show that the accuracy of a PCE metamodel built purely on (X , Y) can compete with

that of state-of-the-art machine learning regression models, while requiring little parameter

tuning and in some cases offering additional advantages.

2.3 PCE for independent inputs

In this section, we assume that the input random vector X has statistically independent

components. The PCE basis is built from the tensor product of univariate orthogonal poly-

nomials. The case of inputs with dependent components is discussed later in Section 2.4.

2.3.1 Orthogonalization for independent inputs

When X has independent components, the Ψα can be obtained as the tensor product of d

univariate polynomials,

Ψα(x) =
d∏

i=1

φ(i)
αi (xi), (7)

where each φ
(i)
αi (xi) is the element of degree α of a basis of univariate polynomials orthonormal

with respect to the marginals fi of X, that is, such that

∫

R
φ(i)
αi (ω)φ

(i)
βi

(ω)fi(ω)dω = δαiβi . (8)

The problem of building a basis of mutually orthonormal multivariate polynomials with

respect to fX hence becomes the problem of building d bases of mutually orthonormal

univariate polynomials, each with respect to a marginal fi. The d bases can be built inde-

pendently.

2.3.2 Specification of the marginals and arbitrary PCE

The construction of the polynomial basis requires a model of the marginal input distributions.

Families of univariate orthonormal polynomials associated to classical continuous distribu-

tions are described in Xiu and Karniadakis (2002). An input variable Xi with a different

distribution Fi (continuous, strictly increasing) may be transformed to a random variable

X̃i with distribution Φ belonging to one of the classical families by the transformation

X̃i = Φ−1(Fi(Xi)). (9)

This relation offers a first possible approach to build the PCE of Y for inputs X with generic

continuous marginals Fi: transform X into X̃ through (9), and then build a PCE of Y in

terms of X̃. The PCE has to be trained on (X̃ ,Y), where X̃ is obtained from X using (9).

5

Alternatively, it is possible to directly construct a basis of orthonormal polynomials with

respect to Fi by Stiltjes or Gram-Schmidt orthogonalization (Soize and Ghanem, 2004; Wan

and Karniadakis, 2006). The polynomial chaos representation for arbitrary distributions is

known as arbitrary PCE. In practice, performing arbitrary PCE on the original input X is

preferable to building the PCE on inputs transformed via (9). Indeed, the latter is usually a

highly non-linear transformation, making the map from X̃ to Y more difficult to approximate

by polynomials (Oladyshkin and Nowak, 2012).

In the applications presented in this paper, we opt for a non-parametric approach to infer

the input marginals, and specify fi by kernel density estimation (KDE) (Rosenblatt, 1956;

Parzen, 1962). Given a set Xi = {x(1)
i , . . . , x

(n)
i } of observations of Xi, the kernel density

estimate f̂i of fi reads

f̂i(x) =
1

nh

n∑

j=1

k

(
x− x(j)

i

h

)
, (10)

where k(·) is the kernel function and h is the appropriate kernel bandwidth that is learned

from the data. Different kernels are used in practice, such as the Epanechnikov or Gaussian

kernels. In this paper we use the latter, that is, k(·) is selected as the standard normal PDF.

After estimating the input marginals by KDE, we resort to arbitrary PCE to build a

basis of orthonormal polynomials. The PCE metamodel is then trained on (X , Y).

2.3.3 Truncation schemes

The sum in (6) involves an infinite number of terms. For practical purposes, it is truncated

to a finite sum, according to one of various possible truncation schemes. The standard basis

truncation (Xiu and Karniadakis, 2002) retains the subset of terms defined by

Ad,p = {α∈ Nd : |α| ≤ p},

where p ∈ N+ is the chosen maximum polynomial degree and |α| =
∑d
i=1 αi is the total

degree of Ψα. Thus, only polynomials of degree up to p are considered. Ad,p contains
(
d+p
p

)

elements. To further reduce the basis size, several additional truncation schemes have been

proposed. Hyperbolic truncation (Blatman and Sudret, 2011) retains the polynomials with

indices in

Ad,p,q = {α ∈ Ad,p : ‖α‖q ≤ p},

where q ∈ (0, 1] and ‖·‖q is the q-norm defined by ‖α‖q =
(∑d

i=1 α
q
i

)1/q

.

A complementary strategy is to set a limit to the number of non-zero elements in α, that

is, to the number of interactions among the components Xi of X in the expansion. This

maximum interaction truncation scheme retains the polynomials with indices in

Ad,p,r = {α ∈ Ad,p : ‖α‖0 ≤ r},

where ‖α‖0 =
∑d
i=1 1{αi>0}.

6

In our case studies below we combined hyperbolic and maximum truncation, thus retain-

ing the expansion’s polynomials with coefficients in

Ad,p,q,r = Ad,p,q ∩ Ad,p,r, (11)

where the triplet (p, q, r) will be selected later on. This choice is motivated by the sparsity

of effect principle, which assumes that only few meaningful interactions influence system

responses and which holds in most engineering applications.

2.3.4 Calculation of the coefficients

Selected a truncation scheme and the corresponding set A = {α1, . . . ,α|A|} of multi-indices,

the coefficients yk in

YPC(X) =

|A|∑

k=1

ykΨαk(X) (12)

need to be determined on the basis of a set (X , Y) = {(x(j), y(j)), j = 1, . . . , n} of observed

data. In these settings, the vector y = (yα1 , . . . , yα|A|) of expansion coefficients can be

determined by regression.

When the number |A| of regressors is smaller than the number n of observations, y can

be determined by solving the ordinary least squares (OLS) problem

y = arg min
ỹ

n∑

j=1

(
y(j) − YPC(x(j))

)
= arg min

ỹ

n∑

j=1

y(j) −

|A|∑

k=1

ykΨαk(x(j))

 . (13)

The solution reads

y =
(
ATA

)−1
AT

y(1)

...
y(n)

 , (14)

where Ajk = Ψαk(x(j)), j = 1, . . . , n, k = 1, . . . , |A|.
The OLS problem cannot be solved when n < |A|, because in this case the matrix ATA

in (14) is not invertible. Also, OLS tends to overfit the data when |A| is large. Simpler

models with fewer coefficients can be constructed by sparse regression.

Least angle regression (LAR), proposed in Efron et al. (2004), is an algorithm that

achieves sparse regression by solving the regularized regression problem

y = arg min
ỹ

n∑

j=1

y(j) −

|A|∑

k=1

ykΨαk(x(j))

+ λ||ỹ||1

 . (15)

The last addendum in the expression is the regularization term, which forces the minimisation

to favour sparse solutions. The use of LAR in the context of PCE was initially proposed

in Blatman and Sudret (2011), which the reader is referred to for more details. In the

applications illustrated in Sections 3 and 4, we adopt LAR to determine the PCE coefficients.

7

2.3.5 Estimation of the output statistics

Given the statistical model FZ of the input and the PCE metamodel (12) of the input-output

map, the model response YPC is not only known pointwise, but can also be characterized

statistically. For instance, the orthonormality of the polynomial basis ensures that the mean

and the variance of YPC read, respectively,

E[YPC] = y0, V[YPC] =
∑

α∈A\{0}
y2
α. (16)

This property provides a useful interpretation of the expansion coefficients in terms of the

first two moments of the output. Other output statistics, such as the Sobol partial sensitivity

indices (Sobol’, 1993), can be obtained from the expansion coefficients analytically (Sudret,

2008).

Higher-order moments of the output, as well as other statistics (such as the full PDF FY),

can be efficiently estimated through Monte-Carlo simulation, by sampling sufficiently many

realisations of X and evaluating the corresponding PCE responses. Polynomial evaluation

is computationally cheap and can be trivially vectorized, making estimation by resampling

extremely efficient.

2.4 PCE for mutually dependent inputs

If the input vector X has statistically dependent components, its joint PDF fX is not the

product of the marginals and the orthogonality property (5) does not hold. As a consequence,

one cannot construct multivariate orthogonal polynomials by tensor product of univariate

ones, as done in (7). Constructing a basis of orthogonal polynomials in this general case is

still possible, but computationally demanding. For this reason, we investigate two alternative

strategies.

The first strategy consists in ignoring the input dependencies and in building a basis

of polynomials orthonormal with respect to
∏
i fi(xi) by arbitrary PCE. This approach is

labelled from here on as aPCEonX. While not forming a basis of the space of square integrable

functions with respect to fX , the considered set of polynomials may still yield a similarly

good pointwise approximation.

Accurate estimates of the output statistics may be obtained a posteriori by modelling the

input dependencies through copula functions, as detailed in Appendix A. The joint CDF of

a random vector X with copula distribution CX and marginals Fi (here, obtained by KDE)

is given by (A.1). Resampling from such a probabilistic input model yields more accurate

estimates of the output statistics than resampling from the distribution
∏
i Fi(xi), that is,

than ignoring dependencies.

The second possible approach, presented in more details in Appendix B, consists in

modelling directly the input dependencies by copulas, and then in transforming the input

vector X into a set of independent random variables Z with prescribed marginals (e.g.,

8

standard uniform) through the associated Rosenblatt transform T (Π) (Rosenblatt, 1952),

defined in (A.18). The PCE metamodel is then built between the transformed input vector

Z and the output Y . When the input marginals are standard uniform distributions, the

corresponding class of orthonormal polynomials is the Legendre family, and the resulting

PCE is here indicated by lPCEonZ. The asymptotic properties of an orthonormal PCE, such

as the relations (16), hold. The expression of Y in terms of X is given by the relation (B.1).

At first, the second approach seems advantageous over the first one. It involves, in a

different order, the same steps: modelling the input marginals and copula, and building the

PCE metamodel. By capturing dependencies earlier on, it enables the construction of a basis

of mutually orthonormal polynomials with respect to the joint PDF of the (transformed)

inputs. It thereby provides a model with spectral properties (except for unavoidable errors

due to truncation and parameter fitting). The experiments run in Section 3, however, show

that the first approach yields typically more accurate pointwise predictions (although not

necessarily better statistical estimates). This is due to the fact that it avoids mapping the

input X into independent variables Z via the (typically strongly non-linear) Rosenblatt

transform. For a more detailed discussion, see Section 3.4.

3 Validation on synthetic data

3.1 Validation scheme

We first investigate data-driven regression by PCE on two different simulated data sets.

The first data set is obtained through an analytical, highly non-linear function of three

variables, subject to three uncertain inputs. The second data set is a finite element model

of a horizontal truss structure, subject to 10 uncertain inputs. In both cases, the inputs are

statistically dependent, and their dependence is modelled through a canonical vine (C-vine)

copula (see Appendix A).

We study the performance of the two alternative approaches described in Section 2.4:

aPCEonX and lPCEonZ . In both cases we model the input copula as a C-vine, fully inferred

from the data. For the aPCEonX the choice of the copula only plays a role in the estimation

of the output statistics, while for the lPCEonZ it affects also the pointwise predictions. We

additionally tested the performance obtained by using the true input copula (known here

because it was used to generate the synthetic data) and a Gaussian copula inferred from

data. We also investigated the performance obtained by using the true marginals instead

of the ones fitted by KDE. Using the true copula and marginals yielded better statistical

estimates, but is of little practical interest, as it would not be known in real applications.

The Gaussian copula yielded generally similar or slightly worse accuracy. For brevity, we do

not show these results.

To assess the pointwise accuracy, we generate a training set (X ′, Y ′) of increasing size n′,

9

build the PCE metamodels both by aPCEonX and by lPCEonZ , and evaluate their rMAE

on a validation set (X ′′, Y ′′) of fixed size n′′ = 10,000 points. The statistical accuracy

is quantified instead in terms of error on the mean, standard deviation, and full PDF of

the true models by (2)-(4). The statistical estimates obtained by the two PCE approaches

are furthermore compared to the corresponding sample estimates obtained from the same

training data (sample mean, sample standard deviation, and KDE of the PDF)

For each value of n′ and each error type, error bands are obtained as the minimum to

maximum error obtained across 10 different realisations of (X ′, Y ′) and (X ′′, Y ′′). The

minimum error is often taken in machine learning studies as an indication of the best per-

formance that can be delivered by a given algorithm in a given task. The maximum error

represent analogously the worst-case scenario.

Finally, we assess the robustness to noise by adding a random perturbation ε to each

output observations in Y ′ used to train the PCE model. The noise is drawn independently

for each observation from a univariate Gaussian distribution with mean µε = 0 and prescribed

standard deviation σε.

3.2 Ishigami function

The first model we consider is

Y = 1 +
ish(X1, X2, X3) + 1 + π4/10

9 + π4/5
, (17)

where

ish(x1, x2, x3) = sin(x1) + 7 sin2(x2) + 0.1x4
3 sin(x1) (18)

is the Ishigami function (Ishigami and Homma, 1990), defined for inputs xi ∈ [−π, π] and

taking values in [−1 − π4

10 , 8 + π4

10]. The Ishigami function is often used as a test case in

global sensitivity analysis due to its strong non-linearity and non-monotonicity. Model (17) is

rescaled here to take values in the interval [1, 2]. Rescaling does not affect the approximation

accuracy of the PCE, but enables a meaningful evaluation of the rMAE (2) by avoiding values

of Y close to 0.

We model the input X as a random vector with marginals Xi ∼ U([−π, π]), i = 1, 2, 3,

and C-vine copula with density

cX(u1, u2, u3) = c
(G)
12 (u1, u2; 2) · c(t)13 (u1, u3; 0.5, 3).

Here, c
(G)
12 (·, ·; θ) and c

(t)
13 (·, ·; θ) are the densities of the pairwise Gumbel and t- copula families

defined in rows 11 and 19 of Table A.4. Thus, X1 correlates positively with both X2 and

X3. X2 and X3 are also positively correlated, but conditionally independent given X1. The

joint CDF of X can be obtained from its marginals and copula through (A.1). The PDF

of Y in response to input X, its mean µY and its standard deviation σY , obtained on 107

sample points, are shown in the left panel of Figure 1.

10

1 1.5 2

y

0

1

2

3

4
f Y

(y
)

7Y = 1:500
<Y = 0:123

1 1.5 2

y

0

1

2

3

4

f Y
(y

)

data
true
aPCEonX
lPCEonZ

1 1.5 2

y

0

1

2

3

4

f Y
(y

)

noisy data
true+noise
true
aPCEonX

Figure 1: Response PDFs of the Ishigami function. Left panel: true PDF fY of the
Ishigami model’s response, obtained on 107 sample points by KDE. Central panel: histogram
obtained from n′ = 1,000 output observations used for training (gray bars), true response PDF as
in the left panel (black), PDFs obtained from the aPCEonX (red) and the lPCEonZ (green) by
resampling. Right panel: as in the central panel, but for training data perturbed with Gaussian
noise (σε = 0.15 = 1.22σY). The blue line indicates the true PDF of the perturbed model.

10 1 10 2 10 3 10 4

size of training set (n0)

10 -3

10 -2

10 -1

10 0

10 1

K
-L

d
iv

er
ge

n
ce

10 1 10 2 10 3 10 4

size of training set (n0)

10 -4

10 -3

10 -2

10 -1

j7̂
Y
=
7

Y
!

1
j

10 1 10 2 10 3 10 4

size of training set (n0)

10 -4

10 -3

10 -2

10 -1

10 0

j<̂
Y
=
<

Y
!

1
j

10 1 10 2 10 3 10 4

size of training set (n0)

10 -8

10 -6

10 -4

10 -2

10 0

rM
A

E

aPCEonX lPCEonZ sample

Figure 2: PCE of Ishigami model: performance. From left to right: rMAE, error on the
mean, error on the standard deviation, and Kullback-Leibler divergence of aPCEonX (red) and
lPCEonZ (green), for a size n′ of the training set increasing from 10 to 10,000. The dash-dotted
lines and the bands indicate, respectively, the average and the minimum to maximum errors
over 10 simulations. In the second to fourth panels, the blue lines correspond to the empirical
estimates obtained from the training data (error bands not shown).

Next, we build the aPCEonX and the lPCEonZ on training data (X ′, Y ′), and as-

sess their performance as described in Section 3.1. The errors are shown in Figure 2 (red:

aPCEonX ; green: lPCEonZ), as a function of the training set size n′. The dotted line in-

dicates the average error over the 10 repetitions, while the shaded area around it spans the

range from the minimum to the maximum error across 10 repetitions. The aPCEonX yields

a considerably lower rMAE. This is due to the strong non-linearity of the Rosenblatt trans-

form used by the lPCEonZ to de-couple the components of the input data. Importantly, the

methodology works well already in the presence of relatively few data points: the pointwise

error and the Kullback-Leibler divergence both drop below 1% when using as few as n′ = 100

data points. The central panel of Figure 1 shows the histogram obtained from n′ = 1,000

output observations of one training set, the true PDF (black), and the PDFs obtained by

resampling from the aPCEonX and the lPCEonZ built on that training set. The statistics

11

10 1 10 2 10 3 10 4

size of training set (n0)

10 -3

10 -2

10 -1

10 0

10 1

K
-L

d
iv

er
ge

n
ce

10 1 10 2 10 3 10 4

size of training set (n0)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

j7̂
Y
=
7

Y
!

1
j

10 1 10 2 10 3 10 4

size of training set (n0)

10 -3

10 -2

10 -1

10 0

10 1

j<̂
Y
=
<

Y
!

1
j

10 1 10 2 10 3 10 4

size of training set (n0)

10 -3

10 -2

10 -1

10 0

rM
A

E
<" = 0 <" = 0:015 <" = 0:150 <" = 0:450

Figure 3: aPCEonX of Ishigami model: robustness to noise (for multiple noise levels).
From left to right: rMAE, error on the mean, error on the standard deviation, and Kullback-
Leibler divergence of the aPCEonX for an increasing amount of noise: σε = 0.015 (dark gray),
σε = 0.15 (mid-light gray), and σε = 0.45 (light gray). The dash-dotted lines and the bands
indicate, respectively, the average and the minimum to maximum error over 10 simulations.
The red lines, reported from Figure 2 for reference, indicate the mean error obtained for the
noise-free data.

10 1 10 2 10 3 10 4

size of training set (n0)

10 -3

10 -2

10 -1

10 0

10 1

K
-L

d
iv

er
ge

n
ce

10 1 10 2 10 3 10 4

size of training set (n0)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

j7̂
Y
=
7

Y
!

1
j

10 1 10 2 10 3 10 4

size of training set (n0)

10 -3

10 -2

10 -1

10 0

10 1

j<̂
Y
=
<

Y
!

1
j

10 1 10 2 10 3 10 4

size of training set (n0)

10 -3

10 -2

10 -1

10 0

rM
A

E

aPCEonX (<" = 0) aPCEonX (<" = 0:150) sample (<" = 0:150)

Figure 4: aPCEonX of Ishigami model: robustness to noise (w.r.t. sample esti-
mation). From left to right: rMAE, error on the mean, error on the standard deviation,
and Kullback-Leibler divergence obtained by aPCEonX (gray) and by direct sample estimation
(blue), for noise σε = 0.15 = 1.22σY . The dash-dotted lines and the bands indicate, respectively,
the average and the minimum to maximum error over 10 simulations. The red lines, reported
from Figure 2 for reference, indicate the mean error obtained for the noise-free data.

of the true response are better approximated by the aPCEonX than by the lPCEonZ or by

sample estimation (blue solid lines in Figure 2).

Finally, we examine the robustness of aPCEonX to noise. We perturb each observation in

Y ′ by adding noise drawn from a Gaussian distribution with mean 0 and standard deviation

σε. σε is assigned as a fixed proportion of the model’s true mean µY : 1%, 10%, and 30%

of µY (corresponding to 12%, 122%, and 367% of σY , respectively). The results, shown

in Figures 3-4, indicate that the methodology is robust to noise. Indeed, the errors of all

types are significantly smaller than the magnitude of the added noise, and decrease with

increasing sample size (see Figure 3). For instance, the rMAE for σε = 0.15 = 1.22σY drops

to 10−2 if 100 or more training points are used. The error on µY is minorly affected, which

is expected since the noise is unbiased. More importantly, σY and fY can be recovered with

high precision even in the presence of strong noise (see also Figure 1, fourth panel). In this

case, the PCE predictor for the standard deviation works significantly better than the sample

12

estimates, as illustrated in Figure 4.

3.3 23-bar horizontal truss

We further replicate the analysis carried out in the previous section on a more complex finite

element model of a horizontal truss (Blatman and Sudret, 2011). The structure consists of 23

bars connected at 6 upper nodes, and is 24 meters long and 2 meters high (see Figure 5). The

bars belong to two different groups (horizontal and diagonal bars), both having uncertain

Young modulus Ei and uncertain cross-sectional area Ai, i = 1, 2:

E1, E2 ∼LN
(
2.1 · 1011, 2.1 · 1010

)
Pa,

A1 ∼LN
(
2.0 · 10−3, 2.0 · 10−4

)
m2,

A2 ∼LN
(
1.0 · 10−3, 1.0 · 10−4

)
m2,

where LN (µ, σ) is the univariate lognormal distribution with mean µ and standard deviation

σ.

Figure 5: Scheme of the horizontal truss model. 23-bar horizontal truss with bar cross-
section Ai and Young modulus Ei (i = 1, 2: horizontal and vertical bars, respectively), subject
to loads P1, . . . , P6. Modified from Blatman and Sudret (2011).

The four variables can be considered statistically independent, and their values influence

the structural response to loading. An additional source of uncertainty comes from six

random loads P1, P2, . . . , P6 the truss is subject to, one on each upper node. The loads

have Gumbel marginal distribution with mean µ = 5 × 104 N and standard deviation σ =

0.15µ = 7.5× 103 N:

Fi(x;α, β) = e−e
−(x−α)/β

, x ∈ R, i = 1, 2, . . . , 6, (19)

where β =
√

6σ/π, α = µ − γβ, and γ ≈ 0.5772 is the Euler-Mascharoni constant. In

addition, the loads are made mutually dependent through the C-vine copula with density

c
(G)
X (u1, . . . , u6) =

6∏

j=2

c
(GH)
1j;θ=1.1(u1, uj), (20)

where each c
(GH)
1j;θ is the density of the pair-copula between P1 and Pj , j = 2, . . . , d, and

belongs to the Gumbel-Hougaard family defined in Table A.4, row 11.

The presence of the loads causes a downward vertical displacement ∆ at the mid span

of the structure. ∆ is taken to be the system’s uncertain response to the 10-dimensional

13

random input X = (E1, E2, A1, A2, P1, . . . , P6) consisting of the 4 structural variables and

the 6 loads. The true statistics (mean, standard deviation, PDF) of ∆ are obtained by MCS

over 107 sample points, and are shown in the left panel of Figure 6.

-20 -15 -10 -5

/ (cm)

0

0.1

0.2

0.3

0.4

f "
(/

)

7" = !7:9 cm
<" = +1:1 cm

-20 -15 -10 -5

/ (cm)

0

0.1

0.2

0.3

0.4

f "
(/

)

data
true
aPCEonX
lPCEonZ

-20 -15 -10 -5

/ (cm)

0

0.1

0.2

0.3

0.4

f "
(/

)

noisy data
true+noise
true
aPCEonX

Figure 6: Response PDFs of the horizontal truss. Left panel: true PDF fY of the truss
response, obtained on 107 sample points by KDE. Central panel: probability histogram obtained
from n′ = 1,000 output observations used for training (gray bars), true response PDF as in
the left panel (black), PDFs obtained from the aPCEonX (red) and the lPCEonZ (green) by
resampling. Right panel: as in the central panel, but for training data perturbed with Gaussian
noise (σε = 0.79 cm = 0.70σ∆). The blue line indicates the true PDF of the perturbed model.

10 1 10 2 10 3

size of training set (n0)

10 -2

10 -1

10 0

10 1
K

-L
d
iv

er
ge

n
ce

10 1 10 2 10 3

size of training set (n0)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

j7̂
Y
=
7

Y
!

1
j

10 1 10 2 10 3

size of training set (n0)

10 -3

10 -2

10 -1

10 0

j<̂
Y
=
<

Y
!

1
j

10 1 10 2 10 3

size of training set (n0)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

rM
A

E

aPCEonX lPCEonZ sample

Figure 7: PCE performance for the horizontal truss. From left to right: rMAE, error on
the mean, error on the standard deviation, and Kullback-Leibler divergence of aPCEonX (red)
and lPCEonZ (green), for a size n′ of the training set increasing from 10 to 1,000. The dash-
dotted lines and the bands indicate, respectively, the average and the minimum to maximum
errors over 10 simulations. In the second to fourth panels, the blue lines correspond to the
empirical estimates obtained from the training data (error bands not shown).

We analyse the system with the same procedure undertaken for the Ishigami model: we

build aPCEonX and lPCEonZ on each of 10 training sets (X ′, Y ′) of increasing size n′, and

validate their performance. The pointwise error is evaluated on 10 validation sets (X ′′, Y ′′)
of fixed size n′′ = 10,000, while the statistical errors are determined by large resampling.

The results are shown in Figure 7. Both PCEs exhibit high performance, yet the

aPCEonX yields a significantly smaller pointwise error (first panel). The lPCEonZ yields

a better estimate of the standard deviation, yet the empirical estimates obtained from the

training data are the most accurate ones in this case.

Having selected the aPCEonX as the better of the two metamodels, we further assess

14

its performance in the presence of noise. We perturb the response values used to train the

model by adding Gaussian noise with increasing standard deviation σε, set to 1%, 10%, and

30% of |µ∆| (equivalent to 7%, 70%, and 210% of σ∆, respectively). The results are shown

in Figures 8-9. The errors of all types are significantly smaller than the magnitude of the

added noise, and decrease with increasing sample size for all noise levels (Figure 8). Also,

the PCE estimates are significantly better than the sample estimates (Figure 9; see also

Figure 6, fourth panel).

10 1 10 2 10 3

size of training set (n0)

10 -2

10 -1

10 0

10 1

K
-L

d
iv
er
ge
n
ce

10 1 10 2 10 3

size of training set (n0)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

j7̂
Y
=
7

Y
!

1
j

10 1 10 2 10 3

size of training set (n0)

10 -4

10 -3

10 -2

10 -1

10 0

j<̂
Y
=
<

Y
!

1
j

10 1 10 2 10 3

size of training set (n0)

10 -3

10 -2

10 -1

10 0

rM
A
E

<" = 0 cm <" = 0:08 cm <" = 0:79 cm <" = 2:38 cm

Figure 8: aPCEonX of horizontal truss: robustness to noise (for multiple noise
levels). From left to right: rMAE, error on the mean, error on the standard deviation, and
Kullback-Leibler divergence of aPCEonX for an increasing amount of noise: σε = 0.079 cm
(dark gray), σε = 0.79 cm (mid-light gray), and σε = 2.38 cm (light gray). The dash-dotted
lines and the bands indicate, respectively, the average and the minimum to maximum error over
10 simulations. The red lines, reported from Figure 7 for reference, indicate the error for the
noise-free data.

10 1 10 2 10 3

size of training set (n0)

10 -2

10 -1

10 0

10 1

K
-L

d
iv

er
ge

n
ce

10 1 10 2 10 3

size of training set (n0)

10 -4

10 -3

10 -2

10 -1

j7̂
Y
=
7

Y
!

1
j

10 1 10 2 10 3

size of training set (n0)

10 -3

10 -2

10 -1

10 0

10 1

j<̂
Y
=
<

Y
!

1
j

10 1 10 2 10 3

size of training set (n0)

10 -2

10 -1

10 0

rM
A

E

aPCEonX (<" = 0) aPCEonX (<" = 0:79 cm) sample (<" = 0:79 cm)

Figure 9: aPCEonX of horizontal truss: robustness to noise (w.r.t. sample esti-
mation). From left to right: rMAE, error on the mean, error on the standard deviation,
and Kullback-Leibler divergence obtained by aPCEonX (gray) and by direct sample estimation
(blue), for noise σε = 0.79 cm = 0.7σY . The dash-dotted lines and the bands indicate, respec-
tively, the average and the minimum to maximum error over 10 simulations. The red lines,
reported from Figure 2 for reference, indicate the mean error obtained for the noise-free data.

3.4 Preliminary conclusion

The results obtained in the previous section allow us to draw some important preliminary

conclusions on data-driven PCE. The methodology:

• delivers reliable predictions of the system response to multivariate inputs;

15

• produces reliable estimates of the response statistics if the input dependencies are

properly modelled, as done here through copulas (for aPCEonX : a-posteriori);

• works well already when trained on few observations;

• deals effectively with noise, thus providing a tool for denoising;

• involves only few hyperparameters: the range of degrees allowed for the PCE and the

truncation parameters. All have a clear meaning and require little tuning.

In order to build the expansion when the inputs are mutually dependent, we investigated

two alternative approaches, labelled as lPCEonZ and aPCEonX . Of the two strategies,

aPCEonX appears to be the most effective one in purely data-driven problems. It is worth

mentioning, though, that lPCEonZ may provide superior statistical estimates if the joint

distribution of the input is known with greater accuracy than in the examples shown here.

This was the case, for instance, when we replaced the inferred marginals and copula used

to build the lPCEonZ with the true ones (not shown here): in both examples above, we

obtained more accurate estimates of µY , σY , and FY (but not better pointwise predictions)

than using aPCEonX .

4 Results on real data sets

We now demonstrate the use of aPCEonX on three different real data sets. The selected data

sets were previously analysed by other authors with different machine learning algorithms,

which establish here the performance benchmark.

4.1 Analysis workflow

4.1.1 Statistical input model

The considered data sets comprise samples made of multiple input quantities and one scalar

output. Adopting the methodology outlined in Section 2, we characterize the multivariate

input X statistically by modelling its marginals f̂i through KDE, and we then resort to

arbitrary PCE to express the output Y as a polynomial of X. The basis of the expansion

thus consists of mutually orthonormal polynomials with respect to
∏
i f̂i(xi), where f̂i is the

marginal PDF inferred for Xi.

4.1.2 Estimation of pointwise accuracy

Following the pointwise error assessment procedure carried out in the original publications,

for the case studies considered here we assess the method’s performance by cross-validation.

Standard k-fold cross-validation partitions the data (X , Y) into k subsets, trains the model

on k − 1 of those (the training set (X ′, Y ′)), and assesses the pointwise error between the

model’s predictions and the observations on the k-th one (the validation set (X ′′, Y ′′)). The

16

procedure is then iterated over all k possible combinations of training and validation sets.

The final error is computed as the average error over all validation sets. The number k of

data subsets is chosen as in the reference studies. Differently from the synthetic models

considered in the previous section, the true statistics of the system response are not known

here, and the error on their estimates cannot be assessed.

A variation on standard cross-validation consists in performing a k-fold cross validation

on each of multiple random shuffles of the data. The error is then typically reported as the

average error obtained across all randomisations, ensuring that the final results are robust to

the specific partitioning of the data in its k subsets. In the following, we refer to a k-fold cross

validation performed on r random permutations of the data (i.e. r random k-fold partitions)

as an r × k-fold randomised cross-validation.

4.1.3 Statistical estimation

Finally, we estimate for all cases studies the response PDF a-posteriori (AP) by resampling.

To this end, we first model their dependencies through a C-vine copula Ĉ(V). The vine is

inferred from the data as detailed in Appendix A.3. Afterwards, resampling involves the

following steps:

• sample nAP points ZAP = {z(l), l = 1, . . . , nAP} from Z ∼ U([0, 1])d. We opt for

Sobol’ quasi-random low-discrepancy sequences (Sobol’, 1967), and set nAP = 106;

• map ZAP 7→ UAP ⊂ [0, 1]d by the inverse Rosenblatt transform of Ĉ(V);

• map UAP 7→ XAP by the inverse probability integral transform of each marginal CDF

F̂i. XAP is a sample set of input observations with copula Ĉ(V) and marginals F̂i;

• evaluate the set YAP = {y(l)
PC =MPC(x), x ∈ XAP} of responses to the inputs in XAP.

The PDF of Y is estimated on YAP by kernel density estimation.

4.2 Combined-cycle power plant

The first real data set we consider consists of 9,568 data points collected from a combined-

cycle power plant (CCPP) over 6 years (2006-2011). The CCPP generates electricity by gas

and steam turbines, combined in one cycle. The data comprise 4 ambient variables and the

energy production E, measured over time. The four ambient variables are the temperature

T , the pressure P and the relative humidity H measured in the gas turbine, and the exhaust

vacuum V measured in the steam turbine. All five quantities are hourly averages. The data

are available online (Lichman, 2013).

The data were analysed in Tüfekci (2014) with neural network- (NN-) based ML methods

to predict the energy output based on the measured ambient variables. The authors assessed

the performance of various learners by 5×2-fold randomised cross-validation, yielding a total

of 10 pairs of training and validation sets. Each set contained 4,784 observations. The best

17

MAE min. MAE mean-min rMAE (%)

aPCEonX 3.11 ± 0.03 3.05 0.06 0.68 ± 0.007

BREP-NN (Tüfekci, 2014) 3.22 ± n.a. 2.82 0.40 n.a.

Table 1: Errors on CCPP data. MAE yielded by the aPCEonX (first row) and by the
BREP-NN model in Tüfekci (2014) (second row). From left to right: average MAE ± its
standard deviation over all 10 validation sets (in MWh), its minimum (error on the “best set”),
difference between the average and the minimum MAEs, and rMAE.

learner among those tested by the authors was a bagging reduced error pruning (BREP) NN,

which yielded a mean MAE of 3.22 MWh (see their Table 10, row 4). The lowest MAE of this

model over the 10 validation sets, corresponding to the “best” validation set, was indicated

to be 2.82 MWh. Besides providing an indicative lower bound to the errors, the minimum

gives, when compared to the means, an indication of the variability of the performance over

different partitions of the data. The actual error variance over the 10 validation sets was not

provided in the mentioned study.

We analyze the very same 10 training sets by PCE. The results are reported in Table 1.

The average MAE yielded by the aPCEonX is slightly smaller than that of the BREP

NN model. More importantly, the difference between the average and the minimum error,

calculated over the 10 validation sets, is significantly lower with our approach, indicating a

lower sensitivity of the results to the partition of the data, and therefore a higher reliability

in the presence of random observations. The average error of the PCE predictions relative

to the observed values is below 1%.

Finally, we estimate the PDF of the hourly energy produced by the CCPP following the

procedure described in Section 4.1.3. The results are shown in Figure 10. Reliable estimates

of the energy PDF aid for instance energy production planning and management.

4.3 Boston Housing

The second real data set used to validate the PCE-based ML method concerns housing values

in the suburbs of Boston, collected in 1970. The data set, downloaded from Lichman (2013),

was first published in Harrison and Rubinfeld (1978), and is a known reference in the machine

learning and data mining communities.

The data comprise 506 instances, each having 14 attributes. One attribute (the proximity

of the neighborhood to the Charles river) is binary-valued and is therefore disregarded in our

analysis. Of the remaining 13 attributes, one is the median housing value of owner-occupied

homes in the neighbourhood, in thousands of $ (MEDV). The remaining 12 attributes are, in

order: the per capita crime rate by town (CRIM), the proportion of residential land zones for

lots over 25,000 sq.ft. (ZN), the proportion of non-retail business acres per town (INDUS),

18

420 440 460 480 500

e (MWh)

0

0.01

0.02

0.03

f E
(e

)

Figure 10: Estimated PDF of the energy produced by the CCPP. The bars indicate
the histogram obtained from the observed CCPP energy output. The coloured lines show the
PDFs of the PCE metamodels built on the 10 training sets, for input dependencies modelled by
C-vines.

the nitric oxides concentration, in parts per 10 million (NOX), the average number of rooms

per dwelling (RM), the proportion of owner-occupied units built prior to 1940 (AGE), the

weighted distances to five Boston employment centres (DIS), the index of accessibility to

radial highways (RAD), the full-value property-tax rate per $10,000 (TAX), the pupil-teacher

ratio by town (PTRATIO), the index 1,000(Bk−0.63)2, where Bk is the proportion of black

residents by town, and the lower status of the population (LSTAT).

The data were analysed in previous studies with different regression methods to predict

the median house values MEDV on the basis of the other attributes (Can, 1992; Gilley and

Pace, 1995; Quinlan, 1993; R Kelley Pace, 1997). The original publication itself (Harrison

and Rubinfeld, 1978) was concerned with determining whether the demand for clean air

affected housing prices. The data were analysed with different supervised learning methods

in Quinlan (1993). Among them, the best predictor was shown to be an NN model combined

with instance-based learning, yielding MAE = 2,230$ (rMAE: 12.9%) on a 10-fold cross-

validation.

We model the data by PCE and quantify the performance by 10× 10 randomised cross-

validation. The results are summarized in Table 2. The errors are comparable to the NN

model with instance based learning in Quinlan (1993). While the latter yields the lowest

absolute error, the aPCEonX achieves a smaller relative error. In addition, it does not

require the fine parameter tuning that affects most NN models. Finally, we estimate the

PDF of the median house value as described in Section 4.1.3. The results are shown in

Figure 11.

19

MAE ($) rMAE (%)

aPCEonX 2483 ± 337 12.6 ± 2.0

NN (Quinlan, 1993) 2230 ± n.a. 12.9 ± n.a.

Table 2: Errors on Boston Housing data. MAE and rMAE yielded by the aPCEonX (first
row) and by the NN model with instance based learning from Quinlan (1993) (second row).

0 10 20 30 40 50 60
x (#1000$)

0

0.02

0.04

0.06

0.08

0.1

f M
E
D

V
(x

)

Figure 11: Estimated PDF of the variable MEDV. The bars indicate the sample PDF, as
an histogram obtained using 50 bins from $0 to $50k (the maximum house value in the data
set). The coloured lines show the PDFs of the PCE metamodels built on 10 of the 100 training
sets (one per randomization of the data), for input dependencies modelled by C-vines. The dots
indicate the integrals of the estimated PDFs for house values above $49k.

4.4 Wine quality

The third real data set we consider concerns the quality of wines from the vinho verde

region in Portugal. The data set consists of 1,599 red samples and 4,898 white samples, col-

lected between 2004 and 2007. The data are available online at http://www3.dsi.uminho.

pt/pcortez/wine/. Each wine sample was analysed in laboratory for 11 physico-chemical

parameters: fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur

dioxide, total sulfur dioxide, density, pH, sulphates, alcohol. In addition, each sample was

given a quality score Q based on blinded sensory tests from three or more sensory assessors.

The score is the median of the grades (integers between 0 and 10) assigned by each assessor.

The data were previously analysed in Cortez et al. (2009) to predict the wine quality

score on the basis of the 11 physico-chemical parameters. The study compared various ML

algorithms, namely multiple regression, different types of NN, and support vector machine

(SVM, see Schölkopf and Smola (2002)) regression. SVM regression outperformed the other

methods, yielding the lowest MAE, as assessed by means of 20× 5-fold randomised cross-

validation.

20

We model the data by aPCEonX , and round the predicted wine ratings, which take con-

tinuous predicted values, to their closest integer. The performance is then assessed through

the same cross-validation procedure used in Cortez et al. (2009). The results are reported

in Table 3. The MAE of aPCEonX is comparable to that of the SVM regressor, and always

lower than the best NN.

red wine: white wine:

MAE rMAE (%) MAE rMAE (%)

aPCEonX 0.44 ± 0.03 8.0 ± 0.6 0.50 ± 0.02 8.8 ± 0.3

SVM in Cortez et al. (2009) 0.46 ± 0.00 n.a. 0.45 ± 0.00 n.a.

Best NN in Cortez et al. (2009) 0.51 ± 0.00 n.a. 0.58 ± 0.00 n.a.

Table 3: Errors on wine data. MAE and rMAE yielded on red and white wine data by the
aPCEonX , by the SVM in Cortez et al. (2009), and by the best NN model in Cortez et al.
(2009).

Finally, our framework enables the estimation of the PDF of the wine rating as predicted

by the PCE metamodels. The resulting PDFs are shown in Figure 12. One could analogously

compute the conditional PDFs given by fixing any subset of inputs to given values (e.g.,

the residual sugar or alcohol content, which can be easily controlled in the wine making

process). This may help, for instance, predicting the wine quality for fixed physico-chemical

parameters, or choosing the latter so as to optimize the wine quality or to minimize its

uncertainty. This analysis goes beyond the scope of the present work.

2 3 4 5 6 7 8 9
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f R
(r

)

red wine

2 3 4 5 6 7 8 9
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
white wine

Figure 12: Estimated PDF of the wine rating. For each panel (left: red wine; right: white
wine), the grey bars indicate the sample PDF of the median wine quality score assigned by
the assessors. The coloured bars show the predicted PDFs obtained by resampling from the
PCE metamodels built on 10 of the 100 total training sets, for input dependencies modelled by
C-vines.

21

5 Discussion and conclusions

We proposed an approach to machine learning (ML) that capitalises on polynomial chaos

expansion (PCE), an advanced regression technique from uncertainty quantification. PCE is

a popular spectral method in engineering applications, where it is often used to replace

expensive-to-run computational models subject to uncertain inputs with an inexpensive

metamodel that retains the statistics of the output (e.g., moments, PDF). Our paper shows

that PCE can also be used as an effective regression model in purely data driven problems,

where only input observations and corresponding system responses - but no computational

model of the system - are available.

We tested the performance of PCE on simulated data first, and then on real data by

cross-validation. The reference performance measure was the average point-wise error of the

PCE metamodel over all test data. The simulations also allowed us to assess the ability of

PCE to estimate the statistics of the response (its mean, standard deviation, and PDF) in

the considered data-driven scenario. Both the point-wise and the statistical errors of the

methodology were low, even when relatively few observations were used to train the model

and in the presence of strong noise. The applications to real data showed a performance

comparable, and sometimes slightly superior, to that of other ML methods used in previous

studies, such as different types of neural networks and support vector machines.

PCE, however, offers several advantages. First, the framework performs well on very

different tasks, with only little parameter tuning needed to adapt the methodology to the

specific data considered. In fact, only the total degree p, the q-norm parameter and the

interaction degree r are to be specified. As a single analysis takes only a few seconds to

a minute to be completed on a standard laptop (depending on the size of the data), is is

straightforward to loop it on an array of (p, q, r) values, and to retain the PCE with minimum

error in the end. This feature distinguishes PCE from the above mentioned ML methods,

which instead are known to be highly sensitive to their hyperparameters and require an

appropriate and typically time consuming calibration (Claesen and Moor, 2015). Indeed,

it is worth noting that, in the comparisons we made, all PCE metamodels were built by

using the very same procedure and hyperparameters (p, q, r). When compared to the best

NNs or SVM found in other studies, which differed significantly among each other in their

construction and structure, the PCE metamodels exhibited a comparable performance.

Second, PCE delivers not only accurate pointwise predictions of the output for any given

input, but also statistics thereof in the presence of input uncertainties. This is made possible

by combining the PCE metamodel with a proper probabilistic characterization of the input

uncertainties through marginal distributions and copulas. The methodology works well also

in the presence of several inputs (as tested on problems of dimension up to 10) and of sample

sets of comparably small size.

Third, the analytical expression of the output yielded by PCE in terms of a simple

22

polynomial of the input makes the model easy to interpret. For instance, its coefficients

are directly related to the first and second moments of the output. For independent inputs,

Sobol sensitivity indices are also directly encoded in the polynomial coefficients (Sudret,

2008). Sensitivity indices for dependent inputs (e.g., Kucherenko et al. (2012)) may be

computed numerically. Other statistics of the output, e.g., its full PDF, can be efficiently

estimated by resampling.

Fourth, the polynomial form makes the calibrated metamodel portable to embedded

devices (e.g., drones). For this kind of applications, the demonstrated robustness to noise in

the data is a particularly beneficial feature.

Fifth and last, PCE needs relatively few data points to attain acceptable performance

levels, as shown here on various test cases. This feature demonstrates the validity of PCE

metamodelling for problems affected by data scarcity, also when combined with complex vine

copula representations of the input dependencies.

One limitation of PCE-based regression as presented here is its difficulty in dealing with

data of large size or consisting of a large number of inputs. Both features lead to a sub-

stantially increased computational cost needed to fit the PCE parameters and (if statistical

estimation is wanted and the inputs are dependent) to infer the copula. Various solutions

are possible. As for the PCE construction, in the presence of very large training sets the

PCE may be initially trained on a subset of the available observations, and subsequently

refined by enriching the training set with points in the region where the observed error is

larger. Regarding copula inference, which is only needed for an accurate quantification of

the prediction’s uncertainty, a possible solution is to employ a Gaussian copula. The latter

involves a considerably faster fitting than the more complex vine copulas, and still yielded in

our simulations acceptable performance. Alternatively, one may reduce the computational

time needed for parameter estimation by parallel computing, as done in Wei et al. (2016).

Finally, the proposed methodology has been shown here on data characterized by con-

tinuous input variables only. PCE construction in the presence of discrete data is equally

possible, and the Stiltjes orthogonalization procedure is known to be quite stable in that

case (Gautschi, 1982). The a-posteriori quantification of the output uncertainty, however,

generally poses a challenge. Indeed, it involves the inference of a copula among discrete

random variables, which requires a different construction Genest and Nešlehová (2007). Re-

cently, however, methods have been proposed to this end, including inference for R-vines

(Panagiotelis et al., 2012, 2017). Further work is foreseen to integrate these advances with

PCE metamodelling.

Acknowledgments

Emiliano Torre gratefully acknowledges financial support from RiskLab, Department of

Mathematics, ETH Zurich and from the Risk Center of the ETH Zurich.

23

References

Aas, K. (2016). Pair-copula constructions for financial applications: A review. Economet-

rics 4 (4), 43.

Aas, K., C. Czado, A. Frigessi, and H. Bakkend (2009). Pair-copula constructions of multiple

dependence. Insurance: Mathematics and Economics 44 (2), 182–198.

Applegate, D. L., R. E. Bixby, V. Chvátal, and W. J. Cook (2006). The Traveling Salesman

Problem: A Computational Study. NewJersey: Princeton University Press.

Bedford, T. and R. M. Cooke (2002). Vines – a new graphical model for dependent random

variables. The Annals of Statistics 30 (4), 1031–1068.

Bishop, C. (2009). Pattern recognition and machine learning. Springer.

Blatman, G. and B. Sudret (2011). Adaptive sparse polynomial chaos expansion based on

Least Angle Regression. J. Comput. Phys 230, 2345–2367.

Can, A. (1992). Specification and estimation of hedonic housing price models. Regional

Science and Urban Economics 22 (3), 453–474.

Chan, S. and A. H. Elsheikh (2018). A machine learning approach for efficient uncertainty

quantification using multiscale methods. Journal of Computational Physics 354, 493–511.

Claesen, M. and B. D. Moor (2015). Hyperparameter search in machine learning.

arXiv 1502.02127.

Cortez, P., A. Cerdeira, F. Almeida, T. Matos, and J. Reis (2009). Modeling wine preferences

by data mining from physicochemical properties. Decision Support Systems 47, 547–553.

Czado, C. (2010). Pair-Copula Constructions of Multivariate Copulas, pp. 93–109. Berlin,

Heidelberg: Springer Berlin Heidelberg.

Dißmann, J., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating

regular vine copulae and application to financial returns. Computational Statistics and

Data Analysis 59, 52–69.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004). Least angle regression. Annals

of Statistics 32, 407–499.

Ernst, O. G., A. Mugler, H.-J. Starkloff, and E. Ullmann (2012). On the convergence of

generalized polynomial chaos expansions. ESAIM: M2AN 46 (2), 317–339.

24

Forman, G. and I. Cohen (2004). Learning from little: Comparison of classifiers given little

training. In J.-F. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi (Eds.), Knowledge

Discovery in Databases: PKDD 2004, Berlin, Heidelberg, pp. 161–172. Springer Berlin

Heidelberg.

Gautschi, W. (1982). On generating orthogonal polynomials. SIAM J. Sci. Stat. Com-

put. 3 (3), 289–317.

Genest, C. and J. Nešlehová (2007). A primer on copulas for count data. The Astin Bul-

letin 37, 475–515.

Ghanem, R. and P.-D. Spanos (1990). Polynomial chaos in stochastic finite elements. J.

Applied Mech. 57, 197–202.

Gilley, O. W. and R. K. Pace (1995). Improving hedonic estimation with an inequality

restricted estimator. The Review of Economics and Statistics 77 (4), 609–621.

Haff, I. H., K. Aas, and A. Frigessi (2010). On the simplified pair-copula construction –

simply useful or too simplistic? Journal of Multivariate Analysis 101, 1296–1310.

Harrison, D. and D. L. Rubinfeld (1978). Hedonic housing prices and the demand for clean

air. Journal of Environmental Economics and Management 5, 81–102.

Ishigami, T. and T. Homma (1990). An importance quantification technique in uncertainty

analysis for computer models. In Proc. ISUMA’90, First Int. Symp. Unc. Mod. An, pp.

398–403. University of Maryland.

Joe, H. (1996). Families of m-variate distributions with given margins and m(m − 1)/2

bivariate dependence parameters. In L. Rüschendorf, B. Schweizer, and M. D. Taylor

(Eds.), Distributions with fixed marginals and related topics, Volume 28 of Lecture Notes–

Monograph Series, pp. 120–141. Institute of Mathematical Statistics.

Joe, H. (Ed.) (2015). Dependence modeling with copulas. CRC Press.

Kasiviswanathan, K. S., K. P. Sudheer, and J. He (2016). Quantification of Prediction Un-

certainty in Artificial Neural Network Models, pp. 145–159. Cham: Springer International

Publishing.

Kirk, J. (2014). Traveling salesman problem – genetic algorithm.

https://ch.mathworks.com/matlabcentral/fileexchange/

13680-traveling-salesman-problem-genetic-algorithm.

Kucherenko, S., A. Tarantola, and P. Annoni (2012). Estimation of global sensitivity indices

for models with dependent variables. Comput. Phys. Comm. 183, 937–946.

25

Kurowicka, D. and R. M. Cooke (2005). Distribution-free continuous Bayesian belief nets. In

A. Wilson, N. Limnios, S. Keller-McNulty, and Y. Armijo (Eds.), Modern Statistical and

Mathematical Methods in Reliability, Chapter 10, pp. 309–322. World Scientific Publishing.

Kurz, M. (2015). Vine copulas with matlab.

https://ch.mathworks.com/matlabcentral/fileexchange/

46412-vine-copulas-with-matlab.

Lebrun, R. and A. Dutfoy (2009). Do Rosenblatt and Nataf isoprobabilistic transformations

really differ? Prob. Eng. Mech. 24, 577–584.

Lichman, M. (2013). UCI machine learning repository.

Mentch, L. and G. Hooker (2016). Quantifying uncertainty in random forests via confidence

intervals and hypothesis tests. Journal of Machine Learning Research 17, 1–41.

Morales-Nápoles, O. (2011). Counting vines. In D. Kurowicka and H. Joe (Eds.), Dependence

Modeling: Vine Copula Handbook, Chapter 9, pp. 189–218. World Scientific Publisher Co.

Nelsen, R. (2006). An introduction to copulas (Second ed.). Springer Series in Statistics.

Springer-Verlag New York.

Oladyshkin, S. and W. Nowak (2012). Data-driven uncertainty quantification using the

arbitrary polynomial chaos expansion. Reliability Engineering and System Safety 106,

179–190.

Panagiotelis, A., C. Czado, and H. Joe (2012). Pair copula constructions for multivariate

discrete data. J. Amer. Statist. Assoc. 107, 1063–1072.

Panagiotelis, A., C. Czado, H. Joe, and J. Stöber (2017). Model selection for discrete regular

vine copulas. Computational Statistics & Data Analysis 106, 138–152.

Parzen, E. (1962). On estimation of a probability density function and mode. The Annals

of Mathematical Statistics 33 (3), 1065–1076.

Puig, B., F. Poirion, and C. Soize (2002). Non-Gaussian simulation using Hermite polynomial

expansion: convergences. Prob. Eng. Mech. 17, 253–264.

Quinlan, J. R. (1993). Combining instance-based and model-based learning. In Proceedings

on the Tenth International Conference of Machine Learning, pp. 236–243.

R Kelley Pace, O. W. G. (1997). Using the spatial configuration of the data to improve

estimation. Journal of Real Estate Finance and Economics 14 (3), 333–340.

Rosenblatt, M. (1952). Remarks on a multivariate transformation. The Annals of Mathe-

matical Statistics 23, 470–472.

26

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. The

Annals of Mathematical Statistics 27 (3), 832–837.

Saltelli, A., K. Chan, and E. Scott (Eds.) (2000). Sensitivity analysis. J. Wiley & Sons.

Schepsmeier, U. (2015). Efficient information based goodness-of-fit tests for vine copula

models with fixed margins. Journal of Multivariate Analysis 138 (C), 34–52.

Schölkopf, B. and A. Smola (2002). Learning with kernels. MIT Press.

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de

l’Institut de Statistique de L’Université de Paris 8, 229–231.

Snoek, J., H. Larochelle, and R. P. Adams (2012). Practical Bayesian optimization of ma-

chine learning algorithms. In Proceedings of the 25th International Conference on Neural

Information Processing Systems - Volume 2, NIPS’12, USA, pp. 2951–2959. Curran Asso-

ciates Inc.

Sobol’, I. (1993). Sensitivity estimates for nonlinear mathematical models. Mathematical

Modeling & Computational Experiment 1, 407–414.

Sobol’, I. M. (1967). On the distribution of points in a cube and the approximate evaluation

of integrals. USSR Computational Mathematics and Mathematical Physics 7 (4), 86–112.

Soize, C. and R. Ghanem (2004). Physical systems with random uncertainties: chaos repre-

sentations with arbitrary probability measure. SIAM J. Sci. Comput. 26 (2), 395–410.

Stöber, J., H. Joe, and C. Czado (2013). Simplified pair copula constructions — limitations

and extensions. Journal of Multivariate Analysis 119, 101–118.

Stuart, A. and K. Ord (1994). Kendall’s advanced theory of statistics Vol. 1 – Distribution

theory. Arnold.

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliab.

Eng. Sys. Safety 93, 964–979.

Sudret, B., S. Marelli, and C. Lataniotis (2015). Sparse polynomial chaos expansions as a ma-

chine learning regression technique. International Symposium on Big Data and Predictive

Computational Modeling, invited lecture.

Todor, R.-A. and C. Schwab (2007). Convergence rates for sparse chaos approximations of

elliptic problems with stochastic coefficients. IMA J. Numer. Anal 27, 232–261.

Torre, E., S. Marelli, P. Embrechts, and B. Sudret (2017). A general framework for data-

driven uncertainty quantification under complex input dependencies using vine copulas.

arXiv 1709.08626. Under revision in Probabilistic Engineering Mechanics.

27

Tüfekci, P. (2014). Prediction of full load electrical power output of a base load operated

combined cycle power plant using machine learning methods. International Journal of

Electrical Power & Energy Systems 60, 126–140.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag, New York.

Wan, X. and G. E. Karniadakis (2006). Beyond Wiener-Askey expansions: handling arbitrary

PDFs. J. Sci. Comput. 27, 455–464.

Wei, Z., D. Kim, and E. M. Conlon (2016). Parallel computing for copula parameter esti-

mation with big data: A simulation study. arXiv 1609.05530.

Witten, I. H., E. Frank, M. A. Hall, and C. J. Pal (2016). Data Mining, Fourth Edition:

Practical Machine Learning Tools and Techniques (4th ed.). San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc.

Xiu, D. and G. Karniadakis (2002). The Wiener-Askey polynomial chaos for stochastic

differential equations. SIAM J. Sci. Comput. 24 (2), 619–644.

A Mutually dependent inputs modelled through copu-

las

In Section 2.3 we illustrated PCE for an input Z with independent components being uni-

formly distributed in [0, 1]. Z was obtained from the true input X by assuming either that

the latter had independent components as well, and thus defining Zi = Fi(Xi), or that a

transformation T to perform this mapping was available.

This section recalls known results in probability theory allowing one to specify FX in

terms of its marginal distributions and a dependence function called the copula of X. We

focus in particular on regular vine copulas (R-vines), for which the transformation T can be

computed numerically. R-vines provide a flexible class of dependence models for fX . This

will prove beneficial to the ability of the PCE models to predict statistics of the output accu-

rately, compared to simpler dependence models. However, and perhaps counter-intuitively,

the pointwise error may not decrease accordingly (see Section 2.1 for details), especially

when T is highly non-linear. Examples on simulated data and a discussion are provided in

Section 3.

A.1 Copulas and Sklar’s theorem

A d-copula is defined as a d-variate joint CDF C : [0, 1]d → [0, 1] with uniform marginals in

the unit interval, that is,

C(1, . . . , 1, ui, 1, . . . , 1) = ui ∀ui ∈ [0, 1], ∀i = 1, . . . , d.

28

Sklar’s theorem (Sklar, 1959) guarantees that any d-variate joint CDF can be expressed

in terms of d marginals and a copula, specified separately.

Theorem (Sklar). For any d-variate CDF FX with marginals F1, . . . , Fd, a d-copula CX

exists, such that

FX(x) = CX(F1(x1), F2(x2), . . . , Fd(xd)). (A.1)

Besides, CX is unique on Ran(F1) × . . . × Ran(Fd), where Ran is the range operator. In

particular, CX is unique on [0, 1]d if all Fi are continuous, and it is given by

CX(u1, u2, . . . , ud) = FX(F−1
1 (u1), F−1

2 (u2), . . . , F−1
d (ud)). (A.2)

Conversely, for any d-copula C and any set of d univariate CDFs Fi, i = 1, . . . , d, the

function F : Rd → [0, 1] defined by

F (x1, x2, . . . , xd) := C(F1(x1), F2(x2), . . . , Fd(xd)) (A.3)

is a d-variate CDF with marginals F1, . . . , Fd.

Throughout this study it is assumed that FX has continuous marginals Fi. The relation

(A.3) allows one to model any multivariate CDF F by modelling separately d univariate

CDFs Fi and a copula function C. One first models the marginals Fi, then transforms

each Xi into a uniform random variable Ui = Fi(Xi) by the so-called probability integral

transform (PIT)

T PIT : X 7→ U = (F1(X1), . . . , FM (XM))
T

. (A.4)

Finally, the copula C of X is obtained as the joint CDF of U . The copula models the

dependence properties of the random vector. For instance, mutual independence is achieved

by using the independence copula

C(u) =
d∏

i=1

ui. (A.5)

Table A.4 provides a list of 19 different parametric families of pair copulas implemented in

the VineCopulaMatlab toolbox (Kurz, 2015), which was also used in this study. Details

on copula theory and on various copula families can be found in Nelsen (2006) and in Joe

(2015).

Sklar’s theorem can be re-stated in terms of probability densities. If X admits joint PDF

fX(x) :=
∂dFX(x)

∂x1 . . . ∂xM
and copula density cX(u) :=

∂dCX(u)

∂u1 . . . ∂uM
, u ∈ [0, 1]d, then

fX(x) = c(F1(x1), F2(x2), . . . , Fd(xd)) ·
d∏

i=1

fi(xi). (A.6)

Once all marginal PDFs fi and the corresponding CDFs Fi have been determined (see

Section 2.3.2), each data point x(j) ∈ X is mapped onto the unit hypercube by the PIT

(A.4), obtaining a transformed data set U of pseudo-observations of U . The copula of X

can then be inferred on U .

29

A.2 Vine copulas

In high dimension d, specifying a d-copula which properly describes all pairwise and higher-

order input dependencies may be challenging. Multivariate extensions of pair-copula families

(e.g. Gaussian or Archimedean copulas) are often inadequate when d is large. In Joe (1996)

and later in Bedford and Cooke (2002) and Aas et al. (2009), an alternative construction by

multiplication of 2-copulas was introduced. Copula models built in this way are called vine

copulas. Here we briefly introduce the vine copula formalism, referring to the references for

details.

Let ui be the vector obtained from the vector u by removing its i-th component, i.e.,

ui = (u1, . . . , ui−1, ui+1, . . . , ud)
T

. Similarly, let u{i,j} be the vector obtained by removing

the i-th and j-th component, and so on. For a general subset A ⊂ {1, . . . , d}, uA is defined

analogously. Also, FA|A and fA|A indicate in the following the joint CDF and PDF of

the random vector XA conditioned on XA. In the following, A = {i1, . . . , ik} and A =

{j1, . . . , jl} form a partition of {1, . . . , d}, i.e., A ∪A = {1, . . . , d} and A ∩A = ∅.
Using (A.6), fA|A can be expressed as

fA|A(xA|xA) =cA|A(Fj1|A(xj1 |xA), Fj2|A(xj2 |xA), . . . , Fjl|A(xjl |xA))×

×
∏

j∈A
fj|A(xj |xA),

(A.7)

where cA|A is an l-copula density – that of the conditional random variables (Xj1|A, Xj2|A, . . . , Xjl|A)
T

– and fj|A is the conditional PDF of Xj given XA, j ∈ A. Following Joe (1996), the uni-

variate conditional distributions Fj|A can be further expressed in terms of any conditional

pair copula Cji|A\{i} between Xj|A\{i} and Xi|A\{i}, i ∈ A:

Fj|A(xj |xA) =
∂Cji|A\{i}(uj , ui)

∂ui

∣∣
(Fj|A\{i}(xj |xA\{i}), Fi|A\{i}(xi|xA\{i})). (A.8)

An analogous relation readily follows for conditional densities:

fj|A(xj |xA) =
∂Fj|A(xj |xA)

∂xj

=cji|A\{i}(Fj|A\{i}(xj |xA\{i}), Fi|A\{i}(xi|xA\{i}))×

× fj|A\{i}(xj |xA\{i}).

(A.9)

Substituting iteratively (A.8)-(A.9) into (A.7), Bedford and Cooke (2002) expressed fX

as a product of pair copula densities multiplied by
∏
i fi. Recalling (A.6), it readily follows

that the associated joint copula density c can be factorised into pair copula densities. Copulas

expressed in this way are called vine copulas.

The factorisation is not unique: the pair copulas involved in the construction depend on

the variables chosen in the conditioning equations (A.8)-(A.9) at each iteration. To organise

them, Bedford and Cooke (2002) introduced a graphical model called the regular vine (R-

vine). An R-vine among d random variables is represented by a graph consisting of d − 1

30

trees T1, T2, . . . , Td−1, where each tree Ti consists of a set Ni of nodes and a set Ei of edges

e = (j, k) between nodes j and k. The trees Ti satisfy the following three conditions:

1. Tree T1 has nodes N1 = {1, . . ., d} and d− 1 edges E1

2. for i = 2, . . . , d− 1, the nodes of Ti are the edges of Ti−1 : Ni = Ei−1

3. Two edges in tree Ti can be joined as nodes of tree Ti+1 by an edge only if they share

a common node in Ti (proximity condition)

To build an R-vine with nodes N = {N1, . . . , Nd−1} and edges E = {E1, . . . , Ed−1}, one

defines for each edge e linking nodes j = j(e) and k = k(e) in tree Ti, the sets I(e) and D(e)

as follows:

• If e ∈ E1 (edge of tree T1), then I(e) = {j, k} and D(e) = ∅,

• If e ∈ Ei, i ≥ 2, then D(e) = D(j)∪D(k)∪ (I(j)∩I(k)) and I(e) = (I(j)∪I(k))\D(e).

I(e) contains always two indices je and ke, while D(e) contains i− 1 indices for e ∈ Ei. One

then associates each edge e with the conditional pair copula Cje,ke|D(e) between Xje and Xke

conditioned on the variables with indices in D(e). An R-vine copula density with d nodes

can thus be expressed as Aas (2016)

c(u) =
d−1∏

i=1

∏

e∈Ei
cje,ke|D(e)(uje|D(e), uke|D(e)). (A.10)

Two special classes of R-vines are the drawable vine (D-vine; (Kurowicka and Cooke,

2005)) and the canonical vine (C-vine; Aas et al. (2009)). Denoting F (xi) = ui and

Fi|A(xi|xA) = ui|A, i /∈ A, a C-vine density is given by the expression

c(u) =

d−1∏

j=1

d−j∏

i=1

cj,j+i|{1,...,j−1}(uj|{1,...,j−1}, uj+i|{1,...,j−1}), (A.11)

while a D-vine density is expressed by

c(u) =
d−1∏

j=1

d−j∏

i=1

ci,i+j|{i+1,...,i+j−1}(ui|{i+1,...,i+j−1}, ui+j|{i+1,...,i+j−1}). (A.12)

The graphs associated to a 5-dimensional C-vine and to a 5-dimensional D-vine are shown

in Figure 13. Note that this simplified illustration differs from the standard one introduced

in Aas et al. (2009) and commonly used in the literature.

A.3 Vine copula inference in practice

We consider the purely data-driven case, typical in machine learning applications, where X

is only known through a set X of independent observations. As remarked in Section 2.3.2,

inference on CX can be performed on U , obtained from X by probability integral transform

of each component after the marginals fi have been assigned. In this setup, building a vine

copula model on U involves the following steps:

31

c
1,2

c
1,3

c 1,
4

c 1,5

1

2

34

5

T1

c 2,
3

|1

c 2,4
|1

c2,5 |1

1

2

34

5

T2

c3,4 |1,2

c
3,5 |1,2

1

2

34

5

T3

c
4,5

|1,2,3

1

2

34

5

T4

c1,2 c2,3 c3,4 c4,5

1 2 3 4 5

c1,3 |2

c2,4 |3

c3,5 |4

1 2 3 4 5

c1,4 |2,3

c2,5 |3,4

1 2 3 4 5

c1,5 |2,3,4

1 2 3 4 5

Figure 13: Graphical representation of C- and D-vines. The pair copulas in each tree of
a 5-dimensional C-vine (left; conditioning variables are shown in grey) and of a 5-dimensional
D-vine (right; conditioning variables are those between the connected nodes).

1. Selecting a vine structure (for C- and D-vines: selecting the order of the nodes);

2. Selecting the parametric family of each pair copula;

3. Fitting the pair copula parameters to U .

Steps 1-2 form the representation problem. Concerning step 3, algorithms to compute the

likelihood of C- and D-vines (Aas et al., 2009) and of R-vines (Joe, 2015) given a data set U
exist, enabling parameter fitting based on maximum likelihood. In principle, the vine copula

that best fits the data may be determined by iterating the maximum fitting approach over

all possible vine structures and all possible parametric families of comprising pair copulas.

In practice however, this approach is computationally infeasible in even moderate dimension

d due to the large number of possible structures (Morales-Nápoles, 2011) and of pair copulas

comprising the vine.

Taking a different approach first suggested in Aas et al. (2009) and common to many

applied studies, we first solve step 1 separately. The optimal vine structure is selected

heuristically so as to capture first the pairs (Xi, Xj) with the strongest dependence (which

then fall in the upper trees of the vine). The Kendall’s tau (Stuart and Ord, 1994) is selected

as such a measure of dependence, defined by

τij = P((Xi − X̃i)(Xj − X̃j) > 0)− P((Xi − X̃i)(Xj − X̃j) < 0), (A.13)

where (X̃i, X̃j) is an independent copy of (Xi, Xj). If the copula of (Xi, Xj) is Cij , then

τK(Xi, Xj) = 4

∫ ∫

[0,1]2
Cij(u, v)dCij(u, v)− 1. (A.14)

For a C-vine, ordering the variables X1, . . . , XM in decreasing order of dependence

strength corresponds to select the central node in tree T1 as the variable Xi1 which maximises

32

∑
j 6=i1 τi1j , then the node of tree T2 as the variable Xi2 which maximises

∑
j /∈{i1,i2} τi2j , and

so on. For a D-vine, this means ordering the variables Xi1 , Xi2 , . . . , Xid in the first tree so as

to maximise
∑d−1
k=1 τikik+1

, which we solve as an open travelling salesman problem (OTSP)

(Applegate et al., 2006). An open source Matlab implementation of a genetic algorithm to

solve the OTSP is provided in Kirk (2014). An algorithm to find the optimal structure for

R-vines has been proposed in Dißmann et al. (2013).

For a selected vine structure, the vine copula with that structure that best fits the data

is inferred by iterating, for each pair copula forming the vine, steps 2 and 3 over a list of pre-

defined parametric families and their rotated versions. The families considered for inference

in this paper are listed in Table A.4. The rotations of a pair copula C by 90, 180 and 270

degrees are defined, respectively, by

C(90)(u, v) = v − C(1− u, v),

C(180)(u, v) = u+ v − 1 + C(1− u, 1− v), (A.15)

C(270)(u, v) = u− C(u, 1− v).

(Note that C(90) and C(270) are obtained by flipping the copula density c around the horizon-

tal and vertical axis, respectively; some references provide the formulas for actual rotations:

C(90)(u, v) = v − C(v, 1− u), C(270)(u, v) = u− C(1− v, u)). Including the rotated copulas,

62 families were considered in total for inference in our study.

To facilitate inference, we rely on the so-called simplifying assumption commonly adopted

for vine copulas, namely that the pair copulas Cj(e),k(e)|D(e) in (A.10) only depend on the

variables with indices in D(e) through the arguments Fi(e)|D(e) and Fj(e)|D(e) (Czado, 2010).

While being exact only in particular cases, this assumption is usually not severe (Haff et al.,

2010). Estimation techniques for non-simplified vine models have also been proposed (Stöber

et al., 2013).

For each pair copula composing the vine, its parametric family is selected as the family

that minimises the Akaike information criterion (AIC)

AIC = 2× (k − logL), (A.16)

where k is the number of parameters of the pair copula and logL is its log-likelihood. The

process is iterated over all pair copulas forming the vine, starting from the unconditional

copulas in the top tree (sequential inference). Finally (and optionally), one keeps the vine

structure and the copula families obtained in this way (that is, the parametric form of the

vine), and performs global likelihood maximisation.

A.4 Rosenblatt transform of R-vines

Suppose that the probabilistic input model FX is specified in terms of marginals Fi and a

copula CX , the polynomial chaos representation can be more conveniently achieved by first

mapping X onto a vector Z = T (X) with independent components.

33

ID Name CDF Parameter range

1 AMH
uv

1− θ(1− u)(1− v)
θ ∈ [−1, 1]

2 AsymFGM uv
(
1 + θ(1− u)2v(1− v)

)
θ ∈ [0, 1]

3 BB1

(
1 +

(
(u−θ2 − 1)θ1 + (v−θ2 − 1)θ1

)1/θ1
)−1/θ2

θ1 ≥ 1, θ2 > 0

4 BB6 1−
(

1− exp

{
−
[
(− log(1− (1− u)θ2))θ1 + (− log(1− (1− v)θ2))θ1

]1/θ1
})1/θ2

θ1 ≥ 1, θ2 ≥ 1

5 BB7 ϕ(ϕ−1(u) + ϕ−1(v)), where ϕ(w) = ϕ(w; θ1, θ2) = 1−
(
1− (1 + w)−1/θ1

)1/θ2
θ1 ≥ 1, θ2 > 0

6 BB8
1

θ1

(
1−

(
1− (1− (1− θ1u)θ2)(1− (1− θ1v)θ2)

1− (1− θ1)θ2

)1/θ2
)

θ1 ≥ 1, θ2 ∈ (0, 1]

7 Clayton (u−θ + v−θ − 1)−1/θ θ > 0

8 FGM uv(1 + θ(1− u)(1− v)) θ ∈ (−1, 1)

9 Frank −1

θ
log

(
1− e−θ − (1− e−θu)(1− e−θv)

1− e−θ
)

θ ∈ R\{0}

10 Gaussian Φ2;θ

(
Φ−1(u),Φ−1(v)

)
(a) θ ∈ (−1, 1)

11 Gumbel exp
(
−((− log u)θ + (− log v)θ)1/θ

)
θ ∈ [1,+ inf)

12 Iterated FGM uv(1 + θ1(1− u)(1− v) + θ2uv(1− u)(1− v)) θ1, θ2 ∈ (−1, 1)

13 Joe/B5 1−
(
(1− u)θ + (1− v)θ + (1− u)θ(1− v)θ

)1/θ
θ ≥ 1

14 Partial Frank
uv

θ(u+ v − uv)
(log(1 + (e−θ − 1)(1 + uv − u− v)) + θ) θ > 0

15 Plackett
1 + (θ − 1)(u+ v)−

√
(1 + (θ − 1)(u+ v))2 − 4θ(θ − 1)uv

2(θ − 1)
θ ≥ 0

16 Tawn-1 (uv)
A
(

log v
log(uv)

;θ1,θ3
)
, where A(w; θ1, θ3) = (1− θ3)w +

[
wθ1 + (θ3(1− w))θ1

]1/θ1
θ1 ≥ 1, θ3 ∈ [0, 1]

17 Tawn-2 (uv)
A
(

log v
log(uv)

;θ1,θ2
)
, where A(w; θ1, θ2) = (1− θ2)(1− w) +

[
(θ2w)θ1 + ((1− w))θ1

]1/θ1
θ1 ≥ 1, θ2 ∈ [0, 1]

18 Tawn (uv)A(w;θ1,θ2,θ3), where w =
log v

log(uv)
and

A(w; θ1, θ2, θ3) = (1− θ2)(1− w) + (1− θ3)w +
[
(θ2w)θ1 + (θ3(1− w))θ1

]1/θ1
θ1 ≥ 1, θ2, θ3 ∈ [0, 1]

19 t- t2;ν,θ

(
t−1
ν (u), t−1

ν (v)
)

(b) ν > 1, θ ∈ (−1, 1)

Table A.4: Distributions of bivariate copula families used in vine inference. Copula IDs
(reported as assigned in the VineCopulaMatlab toolbox), distributions, and parameter ranges.
(a) Φ is the univariate standard normal distribution, and Φ2;θ is the bivariate normal distribution
with zero means, unit variances and correlation parameter θ. (b) tν is the univariate t distribution
with ν degrees of freedom, and tν,θ is the bivariate t distribution with ν degrees of freedom and
correlation parameter θ.

34

The most general map T of a random vector X with dependent components onto a ran-

dom vector Z with mutually independent components is the Rosenblatt transform (Rosen-

blatt, 1952)

T : X 7→W , where

Z1 = F1(X1)

Z2 = F2|1(X2|X1)

...

Zd = Fd|1,...,d−1(Xd|X1, . . . , Xd−1)

. (A.17)

One can rewrite (see also Lebrun and Dutfoy (2009)) T = T (Π) ◦ T PIT : X 7→ U 7→ Z,

where T PIT, given by (A.4), is known once the marginals have been computed, while T (Π)

is given by

T (Π) : U 7→ Z, with Zi = Ci|1,...,i−1(Ui|U1, . . . , Ui−1). (A.18)

Here, Ci|1,...,i−1 are conditional copulas of X (and therefore of U), obtained from CX by

differentiation. The variables Zi are mutually independent and have marginal uniform dis-

tributions in [0, 1]. The problem of obtaining an isoprobabilistic transform of X is hence

reduced to the problem of computing derivatives of CX .

Representing CX as an R-vine solves this problem. Indeed, algorithms to compute (A.18)

have been established (see Schepsmeier (2015), and Aas et al. (2009) for algorithms specific to

C- and D-vines). Given the pair-copulas Cij in the first tree of the vine, the algorithms first

compute their derivatives Ci|j . Higher-order derivatives Ci|ijk, Ci|ijkh, . . . are obtained from

the lower-order ones by inversion and differentiation. Derivatives and inverses of continuous

pair copulas are generally computationally cheap to compute numerically, when analytical

solutions are not available. The algorithms can be trivially implemented such that n sample

points are processed in parallel.

B PCE with R-vine input models

If the inputs X to the system are assumed to be mutually dependent, a possible approach

to build a basis of orthogonal polynomials by tensor product is to transform X into a

random vector Z with mutually independent components. The PCE metamodel can be

built afterwards from Z to Y . This approach, indicated by lPCEonZ in the text, comprises

the following steps:

1. Model the joint CDF FX of the input by inferring its marginals and copula. Specifically:

(a) infer the marginal CDFs Fi, i = 1, . . . , d, from the input observations X (e.g., by

KDE);

(b) map X onto U = {T PIT(x̂(j)), j = 1, . . . , n} ⊂ [0, 1]d by (A.4);

(c) model the copula CX ≡ CU of the input by inference on U ; R-vine copulas are

compatible with this framework;

35

(d) define FX from the Fi and CX using (A.1).

2. Map U onto Z = {T (Π)(û(j)) j = 1, . . . , n} by the Rosenblatt transform (A.18). If

the inferred marginals and copula are accurate, the underlying random vector Z has

approximately independent components, uniformly distributed in [0, 1].

3. Build a PCE metamodel on the training set (Z,Y). Specifically, obtain the basis of

d-variate orthogonal polynomials by tensor product of univariate ones. The procedure

used to build each i-th univariate basis depends on the distribution assigned to Zi (if

Zi ∼ U([0, 1]), use Legendre polynomials; if Zi ∼ F̂i obtained by KDE, use arbitrary

PCE).

The PCE metamodel obtained on the transformed input Z = T (X) can be seen as a

transformation of X,

YPC(Z) = (YPC ◦ T)(X). (B.1)

36

