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Abstract

The Widom-Rowlinson model (or the Area-interaction model) is a
Gibbs point process in R? with the formal Hamiltonian define as the vol-
ume of Uge,, B1(x), where w is a locally finite configuration of points and
Bi(x) denotes the unit closed ball centred at z. The model is also tuned
by two other parameters: the activity z > 0 related to the intensity of the
process and the inverse temperature 8 > 0 related to the strength of the
interaction. In the present paper we investigate the phase transition of the
model in the point of view of percolation theory and the liquid-gas transi-
tion. First, considering the graph connecting points with distance smaller
than 2r > 0, we show that for any 5 > 0, there exists 0 < z%(83,7) < +00
such that an exponential decay of connectivity at distance n occurs in
the subcritical phase (i.e. z < z%(8,7)) and a linear lower bound of the
connection at infinity holds in the supercritical case (i.e. z > Z%(8,r)).
These results are in the spirit of recent works using the theory of ran-
domised tree algorithms [7,[8,[@]. Secondly we study a standard liquid-gas
phase transition related to the uniqueness/non-uniqueness of Gibbs states
depending on the parameters z, 5. Old results [22] 24] claim that a non-
uniqueness regime occurs for z = § large enough and it is conjectured that
the uniqueness should hold outside such an half line (z = g > . > 0).
We solve partially this conjecture in any dimension by showing that for
B large enough the non-uniqueness holds if and only if z = 5. We show
also that this critical value z = 8 corresponds to the percolation threshold
zZ8(B,r) = B for B large enough, providing a straight connection between
these two notions of phase transition.

Key words: Gibbs point process, DLR equations, Boolean model, contin-
uum percolation, random cluster model, Fortuin-Kasteleyn representation,
randomised tree algorithm, OSSS inequality.

1 Introduction

The Widom-Rowlinson model (or the Area-interaction model) is a Gibbs point
process in R? with the formal Hamiltonian given by the volume of the union of



balls with radii 1 and centred at the points of the process;

H(w) = Volume(Uzew B (2)).

By changing the scale, any other value of the radius can be considered as
well. Two other parameters, the activity z > 0, related to the intensity of
the process, and the inverse temperature 8 > 0, related to the strength of the
interaction, parametrize the distribution of the process following the standard
Boltzmann-Gibbs formalism. In the finite volume regime, the Gibbs measure
is absolutely continuous with respect to the Poisson point process with the
unnormalized density

Fw) ~ e,
where #w denotes the number of points in w.

The popularity of this model is due to old results [2, 22], 24] which prove
that the Gibbs measures are not unique in the infinite volume regime for z = g
large enough. This beautiful result is a consequence of a representation of the
model via the bi-color Widom-Rowlinson model which identifies the parameters
z and [ as the activities of a two-species model of particles. The non-uniqueness
of the bi-color Widom-Rowlinson model is proved using Peierls argument, and
by symmetry the phase transition is obtained for z = § [22]. An alternative
proof via the random cluster model and a Fortuin-Kasteleyn representation
has been obtain later in [2]. A generalization is proved recently in the case
of random unbounded radii [I6]. As far as we know, this model and another
model with a particular Kac type potential treated in [I7] are the only models,
in the continuum setting without spin, for which a non-uniqueness result is
proved. Note also that the Area-interaction have been abundantly studied by
researchers from different communities in statistical physics, probability theory
or spatial statistics [1I, [5l 13} [19].

In the present paper we investigate percolation and liquid-gas transition
questions for this Area-interaction model. These two notions are different but
are related and relevant to each other. Our first result claims that the Area-
interaction model exhibits a sharp phase transition of percolation for the graph
connecting points with distance smaller than 2r > 0. Precisely, for any 8 > 0,
there exists a non-trivial threshold 0 < z¢(5, ) < 400 such that an exponential
decay of connectivity at distance n occurs in the subcritical phase. It means that
for z < zZ%(B, r) the probability (for any Area-interaction model with parameters
z and () that the point 0 is connected to the boundary of the sphere of radius
n centred at 0 (i.e. 9B,(0)), decreases exponentially to zero when n goes to
infinity. By standard Palm theory arguments, that provides the exponential
decay of the size of the clusters in the process itself. Moreover a local linear
lower bound of the connection at infinity holds in the supercritical case. It
means that z > z%(3,r) not too large, the probability (for any Area-interaction
model with parameters z and ) that the point 0 is connected to infinity is larger
than ¢(z — z%(B,r)) for a fixed positive constant ¢ > 0. Again, by standard
Palm theory arguments, that provides a sub-linear bound for the density of the
infinite cluster in the process itself. The proofs of these results are in the spirit



of recent works using the theory of randomised tree algorithms [7, [8, ©]. Our
main contribution is to proof an OSSS inequality for the Widom-Rowlinson
model and to adapt the general strategy of randomised tree algorithms to the
setting of interacting continuum particle systems. Complementary results show
that the function § — zZ(/3,r) is an non-decreasing Lipschitz map.

Let us now discuss the sharp liquid-gas phase transition. As recall above,
the Area-interaction model exhibits a non-uniqueness regime for z = [ large
enough. This result is called in the literature a liquid-gas phase transition
since the pressure is continuous and non-differentiable at the critical point.
The derivatives before and after the critical points gives the abrupt difference
between the densities of particles in the liquid and gas phases. Since these
results in the seventies, it was conjectured that the phase transition is sharp
which means that the non-uniqueness occurs if and only if z = 3 larger than
a threshold 8* > 0. The results mentioned above do not give any information
when z # 3, except the standard case where z or 8 are small enough and for
which the uniqueness of Gibbs measures is known since long time. In the present
paper, we solve partially the conjecture by showing that for 5 large enough (but
it is not a threshold) the non-uniqueness holds if and only if z = 3. For moderate
values of 8 (not too small and not too large) we obtain uniqueness for z outside
the interval [2%(B,1) ; 22(.,1)7Y(B)] . See Figure 1 for a precise description
of the phase diagram we obtain. Our main tool here is an extension of the
disagreement percolation argument introduced in [I5] for continuum models.
Actually we show that the Gibbs measures are unique provided that the wired
Area-interaction model does not percolate for r = 1. It means that the Gibbs
measures are unique as soon as z < z2(f3,1) and also for z > z2(.,1)71(3) by
duality. A last result claims that 2¢(3,1) = z%(.,1)"*(8) = S for 3 large enough
reducing the interval to the single point {53}.

Let us mention a similar sharp liquid-gas phase transition obtained for the
2D Widom-Rowlinson model on Z? (Theorem 1.1 [I4]). The proof is based on
large circuit arguments and depends strongly on the lattice structure. It can not
be adapted to the continuum setting developed here and moreover it involves
only the dimension d = 2.

The paper is organized as follows. In Section [2] we introduce the Area-
intercation model and the main required tools (stochastic domination, bicolor
Widom-Rowlinson representation, duality). In Section [3| the results are pre-
sented and the proofs related to the sharp phase transition of percolation (re-
spectively the liquid-gas phase transition) are given in Section || (respectively
in Section . An annex Section contains some technical lemmas.

2 Preliminaries

2.1 Space

Let us consider the state space S := R? with d > 2 being the dimension. Let £
be the set of locally finite configurations w on S. This means that #(w N A) <
oo for every bounded Borel set A of R? with #w being the cardinal of the
configuration w. We write wy as a shorthand for wNA. The configuration space



is embedded with the usual o-algebra F generated by the counting variables.
To a configuration w € {2 we associate the germ-grain structure

By(w) := | JB(2),

TEW

where B, (x) is the closed ball centred at x with radius r > 0.

2.2 Poisson point processes

Let 7% be the distribution on §2 of the homogeneous Poisson point process with
intensity z > 0. Recall that it means

e for every bounded Borel set A, the distribution of the number of points
in A under 7% is a Poisson distribution of mean z£%(A), where £? stands
for the usual d-dimensional Lebesgue measure;

e given the number of points in a bounded A, the points are independent
and uniformly distributed in A.

We refer to [3] for details on Poisson point processes.

For A C R bounded, we denote by 73 the restriction of 7* on A. For
simplicity the special case of the Poisson point process of unit intensity (i.e.
z = 1) is denoted by 7, and its restriction by mx.

2.3 Area-interaction measures

The area-interaction measures (or the one-color Widom-Rowlinson models) are
defined through the standard Gibbs Dobrushin-Lanford-Ruelle formalism pre-
scribing the conditional probabilities. For a bounded A C R%, we define the
A-Hamiltonian

Hp(w) := LY Bi(wa) \ Bi(wae) ). (2.1)

The area specification on a bounded A C R? with boundary condition wae
is defined by

Z#w;\ efﬁHA(wj\UwAc)
Ta(
ZaTea(ZMBaAawAC) A

28 (dw'y) :=

A,wAc

dw'y) (2.2)
with the standard partition function

ZYY 2, B, A, wpce) := / 2N e BHAWRYA) 1 () (2.3)
Q

which is always non-degenerate (i.e. 0 < Z9(z, B, A, wpc) < +00).

Definition 2.1. A probability measure P on ) is an area-interaction measure

of activity z and inverse temperature 3, written P € ‘Z“"Bea, if for every bounded

Borel set A C R? and every bounded measurable function f,

= ! NP W w). )
/Q fdp = /Q /Q F(wh Uwne) 255 (duy) P(dw) (2.4)



The equations (2.4), for all bounded A, are called DLR equations, after Do-
brushin, Lanford and Ruelle. Those equations prescribe the conditional proba-
bilities of a Gibbs measure.

Remark 2.1. There are several possible forms for the Hamiltonian Hp, all of
which defining the same specification. The nice property about our definition
of Hy is the additivity, in the sense that Hy(w) can be seen as the sum of the
contribution of each points, with respect to the already considered ones.

2.4 Stochastic domination

Let us discuss stochastic domination, which is going to be a key element of
several proofs of the paper. Recall that an event F € F is said increasing if for
w' € F and w 2 ', we have w € E. Finally if P and P’ are two probability
measures on 2, the measure P is said to stochastically dominate the measure
P’  written P’ < P, if P/(F) < P(E) for every increasing event FE € F.

The following proposition is a direct application of the classical Georgii
and Kiineth stochastic domination result [12, Theorem 1.1] and gives standard
stochastic dominations.

Proposition 2.1. For every bounded A C RY,

e for every boundary condition wpe and every z, 3 we have

mie " P28 (dwh) <, (2.5)

WAC

where vq is the volume of the unit ball in dimension d.

rea

This implies in particular that every P € ggﬂ satisfies

72 7P <, (2.6)

e For every boundary conditions wi. C wic, every 21 < zo and every B >
B2 we have

PRI (dwly) 2 PR32 (dw)). (2.7)

SWAC

2.5 Free and wired measures

Two particular area-interaction measures are constructed as follows. Consider
the increasing sequence A,, :=] — n,n]? and consider the free and wired area-
interaction measures on the bounded box A,, denoted by P;:?Tee and Pz:gired
and defined as

#w), o=BLY( Bi(wh,) )
P (dwy ) =2 dwhy ); 2.8
n,free ( wAn) Z‘“”e“(z,ﬁ,n, free) ﬂ—An( wAn)’ ( )
o, =PE( B, )t )
p>P (dw), ) = z c A, (dw)y ) (2.9)

nwired zarea(z B, m, wired)




where Z97¢%(z, B, n, free) and Z*¢*(z, 3,n,wired) are the normalising con-
stants. The measure P;’?Tee is simply ,@f\’ﬁ@, whereas P;’fn.red is the limiting
case where the boundary condition would be filled with points on the boundary
of A,,.

From [12] Theorem 1.1] we get the following proposition.
Proposition 2.2. For every n and every z, 3 we have

° PZ7B _< Pz’ﬁ

n,free — n-l—l,free;

° PZ7ﬁ sz

n+1 7u)i7‘6d|An = Pn,wired’

where P;fl,wiredmn stands for the measure P;fl,wired restricted to Ay,.
From Proposition and using Carathéodory’s extension theorem we get

the existence of PZT’,f . and P;}’ﬁ .4~ Those probability measures are, thanks to [3|

Theorem 11.1.VII], weak limits of the sequences (Pz’ﬁ ) and (Pz’ﬁ ) )
n

n,free n,wired n

They are also stationary (see [2] for details).
Proposition 2.3. For every z1 < zo and 1 > Pa,

21,61 area 21,681 area .
i Pfree € 21,051 and Pwired S 21,817

o le”Bl = PZQ’BQ and PZI’BI = PZQ’BQ'

free — © free wired — ~ wired’

. P;{égl <P= pAh for all P € Goreg

wired 21,81"

As a consequence of the first item of Proposition [2.3] we know that the set of
area-interaction measures gg'ga is never empty. From the last item of Proposi-
tion the question of uniqueness of the area-interaction measure translates to
the question of the equality of measures Pﬁﬁl = Pﬁﬁb. The next Proposition

is stating that this equality happens for a lot of parameters (z, 3).

Proposition 2.4. For all B > 0, the set {z > 0, Pzﬁe + Pj’ged} is at most
countable.

The proof of this proposition is related to standard differentiability /convexity
arguments of the pressure function. See for instance Theorem 3.34 in [10] for a
proof in the case of Ising model or Theorem 4.2 in [14] for the lattice Widom-
Rowlinson model. A direct adaptation for the continuum area-interaction mea-
sure is achievable and omitted here for brevity.

2.6 Bicolor Widom-Rowlinson representation of area-interaction
measures

The bicolor Widom-Rowlinson model is simply defined as the reunion of two
Poisson Boolean models (with deterministic radii equal to 0.5) conditioned on a
hard-core non overlapping condition between the two Boolean models. A formal
definition using standard DLR formalism is given below.



Definition 2.2. Let w := (w',w?) denotes a couple of configurations. Let
A = {(whw?) € O, Byp(w') N Byjp(w?) = 0} be the event of authorised
(couple of ) configurations. Let w*1>*2 := %1 @ w2,

Then a probability measure P on Q% is a Widom-Rowlinson measure with
parameters z1, ze, written P € G, if P(A) = 1 and if for every bounded
A C R? and every bounded measurable function f,

ﬂA(wl UCIJAC)
dP = U wpe A 22 (dw'y ) P(d 2.10
[osap= [ [ h U gt EAZE) s Plaw). (210)

with ZY" (A, z1, z2,wae) being the standard partition function associated to the
Widom-Rowlinson interaction.

The following identifications between the bicolor and the one-color Widom-
Rowlinson models are standard; the proof is omitted and we refer to [2, 11}, 24]
for details.

Proposition 2.5.

o Let P € GY",,. Then the first marginal of P is an area-interaction mea-
sure of activity z = z1 and inverse temperature 3 = zo. The analogue is
true for the second marginal.

o Let P € GU§*. Then the measure P := Wﬂgd\Bl(wl)(de)P(dwl) is a
Widom-Rowlinson measure: P € GV (21 = 2,29 = f3).

As a consequence of these two points, the sets il and G¥"(z1 = z,29 = () are

in bijection. By symmetry of G*"(z1, z2) with respect to z1, za, the sets ggrga

and gg";a are in bijection as well; this property is called the duality property.

2.7 Percolation

The theory of percolation studies the connectivity in random structures. For-
mally the percolation is defined as follows.

Definition 2.3. Let r > 0;

o two sets A1, As C R? are said to be r-connected in w, written Ay +— Ao

Br(w

(or Ay <— Ay when there is no possible confusion) if B,(w)UA; UAs has

a connected component containing both A1 and Ao;

e a configuration w is said to r-percolate if the germ-grain structure By (w)
has at least one unbounded connected component;

e a probability measure P on §) is said to r-percolate (respectively do not
percolate) if P({w r-percolates}) =1 (respectively P({w r-percolates}) =

0).

In the next proposition we state the standard percolation phase transition
of the Poisson Boolean model. See for instance [9] for a modern proof.



Proposition 2.6. For every r > 0, there exists 0 < 2E(r) < oo, called r-

percolation threshold of the Poisson Boolean model, such that

o for every z < 2E(r), the measure 7 does not r-percolate, and we have the
existence of ¢ := c(r,z) > 0 such that

7rz (0 — 8An> < exp(—cn), (2.11)

where ON,, is the boundary of the set A, =] —n,n|%;

e For every z > 2E(r), the measure ™° r-percolates, and we have the exis-
tence of ¢ :=c/(r) > 0 such that for z in a neighbourhood of zF(r)

° (O — oo) > d(z = 2P(r)). (2.12)

Concerning area-interaction measures such a behaviour is not proven, and
is one of the questions investigated in this paper. But as a consequence of the
Propositions [2.] 2.3 2.4] and [2.6] we have the existence of a non degenerate
percolation threshold, common to all area-interaction measures. This is stated
in the following Proposition.

Proposition 2.7. For all 8 > 0 and r > 0, there exists 0 < Z&(B,1) < 00 such
that

o for all z < Z4(B,r), any area-interaction measure P € 2’5" almost never
b

r-percolates, i.e

P({w r-percolates}) = 0;

o forallz > Z%(B,r), any area-interaction measures P € Go's® almost surely
r-percolates, i.e

P({w r-percolates}) = 1.

Proof. The fact that both the free and wired measures have the same threshold

is a consequence of Proposition and Proposition [2.4] The non-degeneracy

of this threshold follows from the non-degeneracy of the Poisson Boolean model

percolation threshold, see Proposition [2.6] and from the dominations of Propo-
sition @ for all P € GI"5*

Y I (2.13)

O

Remark 2.2. Let us first notice that by a scaling argument, the percolation
thresholds of the Poisson Boolean model satisfies the well-known relation 2E(r) =
Tidzg(l). Then, from the stochastic dominations , we have the following
bound on the percolation threshold of the area-interaction measures: for allT > 0

and 8 >0,

z(r) < Z(B,r) < 2(r) exp(Bua).



3 Results

Let us now present our results related to the phase transition of the area-
interaction measures. The proofs are given in the following sections.

3.1 Sharp phase transition of percolation

The first result proves a sharp phase transition of percolation for the area-
interaction measures in the spirit of Proposition [2.6]for the Boolean model. That
means exponential decay of connectivity at distance n in the subcritical phase
and a local linear lower bound of the connection at infinity in the supercritical
case.

Theorem 1. Let 8 > 0.

1. For all z < Z%(B,r), there exists a1 = a(z, 8,d,r) > 0 such that for all
Pe g%ea and all n,

P (O — 8An> < exp(—ain). (3.1)

2. There exists ag = az(B,d,r) such that for all z > Z¢(B,r) small enough
and all P € ggfg“,

P (o _ oo) > ag(z — 2B, 7). (3.2)

The proof of this theorem relies on the theory of randomised algorithms
developed by Duminil-Copin, Raoufi and Tassion in a series of papers [7, [8,
9]. The main ingredient, and our main contribution with respect to what was
already done, is the proof of an OSSS-type inequality which gives a control of
the variance of a function f by a bound depending on the influence of each point
of the process. The proof of this inequality relies on a procedure, sampling an
area-interaction configuration using a dominating Poisson configuration. This
procedure is in some sense monotonic with respect to the dominating Poisson
configuration. The proof is given in Section [4

The next proposition gives some qualitative properties of the function g —
Z2(B,r) and exact values for 5 large enough. The proof is given in Section 4| as
well.

Proposition 3.1. For every r > 0, the function f — ZzZ%(B,r) is a non-
decreasing Lipschitz map from RT to [2E(r), +00). In particular, it is continu-

ous. Moreover for every r > 0, there exists 0 < 3, < oo such that for § > Br,
the equality zZ&(5,r) = B holds.

3.2 Sharp liquid-gas phase transition

The other question of interest is the Sharp liquid-gas phase transition for which
there are several definitions based either on the regularity of the pressure or
the uniqueness/non uniqueness of Gibbs measures. Here we say that a sharp



liquid-gas phase transition occurs at temperature 1/ if there exists only one
value z such that the Gibbs measures are not unique. This phenomenon is
conjectured for several models but there does no exist complete rigorous proof
in the continuum. Here we improve existing results for the area-interaction
measures.

3.2.1 Already known results

Several results are already known on this subject. First, it is well-known that the
set of gibbs measures is generally reduced to a singleton when the parameters z
or/and (3 are small enough (see for instance [21]). As a consequence of a recent
disagreement percolation result [I5], explicit bounds related to 1-percolation
threshold of the Poisson Boolean model are given.

Proposition 3.2. Recall that 22(r) is the percolation threshold of the Poisson
Boolean model of constant radii r. Then for every z < zE(1) and every 3 > 0,
there is an unique area-interaction measure. Moreover, by duality, for every
B < 2E(1) and every z > 0, the uniqueness occurs as well.

In addition, a Fortuin-Kasteleyn representation and percolation properties
of the Continuum Random Cluster Model allow to prove a non uniqueness result
for the symmetric bicolor Widom-Rowlinson model [2]. This result translates
directly, thanks to Proposition to a non uniqueness result of the area-
interaction measure.

Proposition 3.3. There exists 0 < Zgym < 00 such that for all z > Zeym

2,2
e the measure P .

does 1/2-percolate;

e the measure ij;'ze does not 1/2-percolate;

hence we have P72 # P27 . and therefore #G% %% (z,z) > 1.

free wired’

So in the symmetric case z = 3, a standard phase transition is already
known, where uniqueness is obtain at low activity z and non-uniqueness at
large activity. However it is not proved that there exists a threshold between
both regimes. As far as we know, this conjecture is still open today.

In the non-symmetric case z # (3, very few is known expect from Proposition
In particular, the sharp phase transition around the symmetric case z =
was unknown.

3.2.2 New results about uniqueness

It is conjectured that the non-uniqueness holds if and only if z = 3 larger than
a certain threshold 8* > 0. We do not solve this conjecture here but we show in
corollary that for 8 large enough the non-uniqueness holds only for z = f.
Actually we succeed to prove uniqueness in a larger domain drawn in Figure 1.

Our main Theorem, given below, ensures the uniqueness as soon as the
area-measures do not 1-percolate.

10



Theorem 2. For all § > 0 and z < Z2(B,1), we have P;;’ie = P;}’f:ed, and
therefore there is uniqueness of the area-interacton measure. By duality the

result holds also for all z > 0 and B < Z¢(z,1).

The proof of this theorem relies on a generalization of the disagreement per-
colation technique, relying on the construction of a coupling, called disagree-
ment coupling comparing the influence of the boundary condition to a domi-
nation Poisson point process. Using the monotonicity of the area interaction,
see Proposition [2.1] a better dominating measure is the wired area-interaction
measure. The dominating measure is not a Poisson point process and therefore
the construction of the disagreement coupling is more elaborate, even though
it still relies on the original idea of van den Berg and Maes [23]. The proof of
Theorem 2] is done in Section Bl

uniqueness
Th2 _

Non uniqueness

symmetric case

Prop [3.3]

Figure 1: Uniqueness/non-uniqueness regimes for the area-interaction measures
with parameters z, (.

Corollary 3.1. For 8 larger than 1, the area-interaction measures with param-
eters z, 8 are non-unique if and only if z = B. The sharp liquid-gas transition
oCCurs.

Proof. 1t is a direct consequence of Theorem [2] Proposition [3.1] and the duality
property given in Proposition 2.5 O

4 Proofs related to percolation results

In this section we give the proofs of Theorem [I] and Proposition [3.1] involving
the sharp phase transition of percolation.

4.1 Proof of Theorem [

First let us note that it is enough to prove Theorem [I] for the wired area-

interaction measure Pi’g oq- Indeed, recall that from Proposition m we have

11



the sandwich domination: for all P € GI"5%, P;;,g L3P = Pi)’g oq- Therefore

the equation ([3.1]), i.e. the exponential decay of connectivity when z < z%(5,r),
translates directly from P;’fo g toall P € GZ5%. For the equation (3.2), consider

z > 2’ > Z%3,r) such that P; " = p*f  From Propositionthe parameter

free wired”
2’ can be considered as close to z as we need. But once again from Proposition

2.3l we have

P<0<T>OO>ZPZ’5 <0<T>oo)

free

free

> pZih <0 — oo)
T

— p?f (0 — oo)

wired

> (2 — 22) — as(z — 22,
22—z

and Equation (3.2) is proved.
Through the remainder of this section the parameters 5 > 0 and r > 0 are
fixed and might be omitted from notations and we consider only the wired case.

Let pZ = P321f+2 wireq- Ve are considering the connection probability
(=) = (0 < OA,), (4.1)
where OA,, is the boundary of A,, =] —n, n]?.

Remark 4.1. The term 3n + 2 was chosen for several reasons. First the term
"+274s there to ensure that the wired measure 7, is well defined, even for n = 0.
Second the factor 3 is there to ensure a good inclusion of boxes in (4.15)).

Lemma 4.1. For each z, the sequence (6,,(z)) converges and we have

0(2) := lim 0,(z) < P>’ (o o oo) . (4.2)

n—soo wired

Proof. The event {0 «— 0A,,} depends only on the points inside A,4,, which

is included in Ag,42 as soon as n > r/2. Therefore, using Proposition we
have for such n:

9"(2) = P‘;ﬁrlwired(o <T> 8‘/\")

275
= P3(n+1)+2,wi7"ed(0 <T> 8An)

> P§(5+1)+2,wired(0 A ONny1) = Ony1(2).

Hence the sequence is decreasing for n large enough and the convergence follows.
For the inequality, just notice that for any k

0(z) = lim 0,(z) < lim P’ (04— OAy) = P=° (0 <— OAy).

n—00 n—ooo  M.wired wzred(

Letting k£ go to infinity yields the result. O
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Recall that z%(8,r) €]0, 0] is the percolation threshold of the wired (and
free as well) area-interaction measure, defined in Proposition

Theorem 3. Let 8 >0 and r > 0.

1. For all z < Z%(B,r), there exists oy = i (z, 5,d,r) > 0 such that, for all
n)

0n(2) < exp(—aqn). (4.3)

2. There exists aa = aa(B,d,r) such that for all z > Z2(5,r) small enough,
0(z) > as(z — 22). (4.4)

Before proving this theorem, let us see quickly how it leads to the proof of
Theorem (1} The equation together with Lemma implies the equation
, while is a consequence of and Proposition

The proof of Theorem [3| relies on the theory of randomised algorithms pop-
ularized in [7, [8, [9]. First we are going to prove in Section a generalized
version of the OSSS inequality satisfied by @/Z\”gAC for every cube A and every
boundary condition wpe.

This inequality, valid in particular for the wired measure P;T’fil wired> 15 then
applied in Section [4.3]in order to get the result.

4.2 OSSS inequality

4.2.1 Introduction of the formalism

In this section A is a fixed cube of side length ¢ > 0. Let € > 0 such that ¢/e
is a positive integer. We are dividing the box A into small cubes of size . Let
t := (c/e)? be the total number of such cubes. Therefore a configuration w in
A can be written as the collection (we)eer where E := ANe(Z + 1/2)¢ and
we = wpz, where AS = e ®e] —1/2,1/2]%. For an enumeration (eq, ..., e;) of
the cubes, we wrote ef;) = (e1,...,€;) and we, = (Wey, - - -, We,).

Consider a Boolean function f : £ — {0,1} and consider a decision tree
T determining the value f(w). A decision tree queries the configuration w one
cube after the other. Hence to a random configuration is associated a random
ordering of the cubes e = (ey,...,€;). It starts from a deterministic cube e;
and looks at the configuration we,. Then it chooses a second cube e2 depending
on e; and we, and carries out. At step ¢ > 1 the cubes ef;_;) have been visited
and the configuration Wey;_y, is known. The next cube e; to be explored is then
expressed as a deterministic function of what have been already explored, i.e.

€; = ¢i(e[i,1},we[i71]). (45)

We then define the (random) time 7 that the algorithm takes to determine the
function f, meaning

7(w) = min{i > I,Vw’,w'e[i] = we; = flw) = flW}. (4.6)

13



Theorem 4 (OSSS inequality). If the function f is increasing, then

: < , e d :
Var,en (f) < 2;5(@ T)Covyrs (f. fhwe) + O, (4.7)
where 6(e,T) := IZ\’gAC (i < 7,e; =€) is called the revealment of e and is the

probability that the cube e is needed to determine the value of the function f.

4.2.2 Proof of Theorem [

The original proof of the OSSS inequality, see [20] or [6] for more probabilis-
tic version, uses the product structure of the space considered (the Bernoulli
percolation model). But ,@X’EM is not a product measure and we need a more
elaborate method. For this we will generalize the idea from [8, Lemma 2.1]
which sampled a finite family of dependant random variables, one after the
other in a random order, using independent uniform variables.

In the continuum setting of point processes this simple idea is much harder
to implement. We will use ideas from the theory of stochastic domination.
Indeed the stochastic domination Q/Z\fa,\c = 7% from Proposition implies,
z,B

Adope
from a dominating Poisson configuration w®™ ~ 7% by a random thinning of the
dominating configuration, deciding for each = € w? if it belongs to the thinned
configuration w. We will use an explicit form of the thinning probability proved
in [15].

To formalize the thinning decision we are adding to each point of the con-
figuration w?
configuration is denoted by w”V and its law is simply a marked Poisson point
process.

Even if w is a marked configuration on A, the sampling procedure we
will construct below needs as many dominating configurations w?”-V as there is
cubes e; in A, meaning t. Let us write w?V® = (WP WPU) The law
of wP"¥® is a product of marked Poisson point processes.

using Strassen’s Theorem, that a configuration w ~ & can be obtained

D

an independent uniform mark between 0 and 1. The marked

D,U

DU DU DU

Definition 4.1. For two marked configurations w
is smaller than @2V, writing WPV < &GPV if for each (z,u) € w
(z,u) € &PV,

We write wPU® <GPV if for all i we have wP Vi < HPUi

, we say that w
DU we have

Proposition 4.1. Let e = (ey,...,e) be a random sequence such that for all
i, wPU is independent of ey (in particular the construction (4.5)) follows this
property). Then there exists an increasing function Fe such that

w = Fa(wPV®) ~ 227

Aope”

Proof. The configuration w is sampled in each cube e; one by one. At each step
i the configuration Wey;_y) 18 already sampled and we are sampling we;. The
sampling procedure is taken from [I5] Proposition 4.1] which gives explicitly
the thinning probability for sampling a Gibbs point process dominated by a
Poisson point process.

14



We are going to sample a configuration (which we wrote w’) on

A=A\ (AL, U---UAZ

ei_l)

z,p

according to the specification 27"
Ai,wAere[

and then only keep the points
i—1]
inside Ag. by setting we, = wp,.

To sample w’ we consider the dominating configuration w[?_’U’Z restricted to

the region where we sample the configuration. Consider on A; a lexicographic
order, which orders the points (z,u) € wf"U’Z. The marks play no role in
the ordering of the configuration. The configuration w’ is then constructed

inductively the following way:

e at the beginning of the induction we set w’ = ().

DU

e Then we consider each point (x,u) € wi one after the other with

respect to the lexicographic order, and if
i (m,w/ Uwe, 4 U d)Ac) <u

we add z to the configuration w’, i.e. w' < w’ U {z}. The function p;,
whose expression comes from [15, Proposition 4.1], is defined as

w Zarea(2757]\im]x7 oo[,w U '1:)

pi (z,w) = e BH ) (@) =
zarea(z, B, ANz, oof,w)

) (4.8)
where the interval |z, 00[ is defined with respect to the lexicographic or-
dering on A;, and where w is a configuration such that w N A;N]z, oo[= 0.

And finally at the end we set we, = W, .
From the DLR equations (2.4)), the assumption on e and the Proposition
4.1 from [15], the sampled configuration has the law of PP

Ai’ajACUWe[i—l] ’
In order to prove that Fg is increasing, It remains to prove that p; (z,w) is
increasing in w. Let us write A := A;N]x, oo[. The function p; can be rewritten

as

Ii e PHAE () —gH (xu'wa)ﬂ_[w (dv)
pi(z,w) = :

Zarea(z’ /B) AZJ’ w)
= /eﬂH{z}(vaUw)y/f\%@:w(dV)'

Now using the fact that the integrated function is increasing in w with the
stochastic domination from Proposition [2.1, we have that the function p; is
increasing in w. [

Remark 4.2. The Proposition is the main improvement from the theory
of randomized algorithm from Duminil-Copin, Raoufi and Tassion [7, [8, [9].
Considering the assumption on e, the Proposition[{.1] applies in particular when
e is independent of wPY® or when e is constructed from w? V€ as in .

The proof of Pmposition relies only on the fact that the function H,y(xU
w), often called local energy, is

15



o uniformly bounded from below;

e decreasing with respect to w.

So Proposition[{.1], and more generally Theorem[3 would trivially generalised to
every Gibbs measure whose interaction satisfies those two properties. While the
first property is a standard property satisfied by most interactions considered
in the literature, the second property, related to the monotony of the Gibbs
specification, is less common. To the best of our knowledge the area-interaction
is the only interaction considered in the literature which satisfies this property.

Now consider two independent configurations w?¥® and @”¥®. The ran-
dom ordering of cubes e = (e, ..., €;) consider starting now is constructed from
wP U@ with ([£5). We write w = Fo(w?V®) and & = Fo(@PY®). Thanks to
Proposition those are two realisations of ‘@/Z\f‘mc’ which are independent
even though they are constructed from the same e.

Now write for i <7 = 7(w)

i _ g ~DU1 ~DUsi  DU,i+1 DUy ~D,Ur+1 ~D,U,t
v = Fo(w e, W ,W e, W , W e, W ).

Then we have

Varges () <Bpes (17 =Epes (Al1=E[IFG") ~ Bl ]

A@pe Aope

where in the right hand side the expectation are with respect to the two inde-
pendent marked Poisson realisations w”"¥® and GP¥® from which the v are
constructed. Then

Var s [f] E[E[()”%®] ~E[f()”"]|]

<E[1f(Y°) = (3]
< E[f(v") = f(y" 1) Ti<r]

i

9227[3

Aopc

1...t
D EE[NF() = O PP igr Te,=e),
l..tecE

D,U1...i—1

where w D7U,17 o 7wD,U7z'—1).

is a short-hand for (w

Lemma 4.2. On the events {i < 7} and {e; = e} we have

E[lf(v) = FO DI &P <2000,,05  (f, #hwe) + O(™).

Aopc
Using the Lemma [£.2] we get
Var , < Y > (2Cov, - (f, #we) + O E[ Licr To,—c]
AWAC i=1l..teckE AC
=D _(2Cov,en (f,#we) + O() )o(e, T)
eck Tac
=2 <Z COngz g (f, #we)d(e, T)) + O(e?),
eck A

where the last equality uses that the cardinal of E is of order 1/¢¢.
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Proof of Lemma[{.3. Since f is a positive increasing function bounded by one,
we have

PO = PO (O = SO (Tpimn = Lpimin) + Lygiimityors

where we used the monotonicity of Fe claimed in Proposition [£.1] and the fact
that if #7971 = #4¢ = 0, then 471 = 4.
But using the stochastic domination we have the following easy bound

E [ﬂ#(véwé*l»l | ‘*’D’U’l'"i_l] < 7 (#we > 1) = O(e*).

Using Proposition [£.1] we have

E [f(,yi—1)]l#%7121 | wD,U,l...i—l} —E [f(’yi)]l#'yéZl | wD,U,1...¢—1]

= ELO?/Z\,,?JAC [f(w)]lwezﬂ .

Now since the functions f(7'~!) and 1,i>, are increasing, we are using the
second part of Proposition and the FKG inequality to obtain

E [f(’)/i_l)]l#fy;'ZI ‘ wD,U,l..,i—l] > E [f(,yi—l) ‘ wD,U,l...i—l] E []1#%21 ‘ wD,U,l.,.i—l}
= Ep;vﬁ [f(w)] Epfl’ﬁ [Lewe>1]-
The same is true for
E [f(’yi)]l#»yé—lzl ’ wg;,Ul]} > Ep;vﬁ [f(w)] Eprf*ﬁ []lwezl] )
and therefore

Elf(v) = FOH 0P < 200v 4es (f Tuez1) + O(*)

Adpe

S 2COV@z,B (fa #wE) + 0(62d)7

T Awpc
where the last inequality coming from the use of the FKG inequality applied to
f and #w, — 1, >1. The result is proved. O
4.3 Proof of Theorem [3

We are now going to prove Theorem 3| by applying Theorem [4l We need the
following classical lemma in the theory of randomised algorithms (see Lemma
3 in [7] for instance).

Lemma 4.3. Consider a converging sequence of increasing differentiable func-
tions gn )0, Zmaz| —]0, 1] satisfying for alln > 1

gh(z) = az#@gm), (4.9)

where ag > 0 is a positive constant and
n—1
Sn(2) =Y gi(2).
i=0
Then there exists Z € [0, Zmaz| such that:

17



e For every z < Z, there exists a1 := a1(z) > 0 such that for all n,

gn(2) < exp(—ain). (4.10)
o For every z > z,
g(z) = li_)m gn(2) > as(z —2). (4.11)

Therefore in order to prove Theorem [3]it is sufficient to prove that the func-
tions g, = 0, satisfies the assumptions of Lemma By construction, the
functions z +— 6,(z) are increasing. The following lemma proves the differen-
tiability of the functions 6,,.

Lemma 4.4. For all functions f and all z > 0,

d
T Prined() = fCOva s (f#w). (4.12)

n,wired

The proof of this result is done in the annex Section [6] Therefore the only
remaining task in order to prove Theorem [3|is to prove that the functions 6,
satisfy . This is done using the OSSS inequality to the wired measure
w7 for the Boolean function f(w) = Lo a4, (w) to the well chosen algorithms

from [7], 9].

Proposition 4.2. For 0 < s < n, there exists an algorithm Ty such that we
have §(e,T) =0 if e & Apiry1 and otherwise

5(e,Ty) < 12 (Ag @ B,(0) ¢ 8AS) : (4.13)

This proposition uses the now standard algorithms used in [6l [7, [8]. The
proof of Proposition [£.2]is done in the Annex Section [6]
Using Theorem [4| and summing over s between 0 and n — 1 we get

0, (2)(1 — 0n(2)) < Z Z (N ® B,(0) «— 8AS> Covy: (f, #hwe) + O(%)

eeEs 0

< 2SS (Brale) 2 OA.) Con ) + O

eEEs 0

where the last inequality is valid by considering € small enough. To see if
B, t1(e) is r-connected to JAg, it is enough to check if at least one point vy,
belonging to a finite collection of points Y,°, is r-connected to 0As. Actually
the set Y, contains points close to the boundary of B,;1(e) (inside and outside)
and also a point in B,y1(e) N dA; if the intersection is non empty. It is easy
to see also that the set Y,° can be chosen with cardinal «, depending only on r
and d.
Therefore

O () <230 Y S (y = OA,) Covs (£, #hwe) + O("),
eEE €Ye s=0
’ (4.14)
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But we have

n—1 n—1

> i (y — aAs) <> (y — 8Ats—llyllJ(?/)>
s=0 s=0
< ZnZIMfL (y — 8As(y))
s=0
n/2

<43 ui (v e 00))
s=0

where |s| stands for the floor function of the absolute value of s, and where
As(y) = y® As is the cube translated by the vector y. Now using the stochastic
domination between wired measures p7 =< p? from Proposition 2.2, we finally
obtain

nzl i (y = 0M(y)) < 4% pi (06 00) <am,(z). (415)
s=0 s=0

Remark 4.3. Fquation is the only step of the proof of Theorem@ where
we used the fact that p?, is a wired area-interaction measure.

The purpose of summing up to n/2 is to ensure that Assyo(y) C Aspt+o and
therefore p?, < pZ. This is why we considered Asnto in the definition on 7.

Hence from (4.14)), (4.15) and Lemma we obtain

0,(2)(1 — 0n(2)) < Sar Zn(2)

> Covyiz (f, #we) + O()

ecE

< 8a, Enrfz) Covyz (f, #w) + O(e?)

< Sa, E”TEZ) 20/,(2) + O(e%).

Now consider zpq; > z%. Then for z < z,4,; we have that 1 — 6,(z) > ¢ > 0,
where ¢ can be chosen uniformly in n. Therefore by letting e goes to 0 we obtain

0. (2) > 77)%(2) = Qo SNE)

~ 8Zmazir Zn(z
and equation (4.9) is fulfilled. From Lemma we get the existence of a
threshold Z but from the conclusion of Lemma (.3 this threshold has to be the
percolation threshold z¢. The proof of Theorem [3]is complete.

0,(2)

4.4 Proof of proposition 3.1

We are in this section proving proposition meaning the regularity of the
function 5 — z%(B,r) and that for all » > 0 and f large enough (depending on
r) we have z%(8,r) = f.
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4.4.1 Explicit value for the threshold

To prove that z2(5,r) = B for  large enough, we are going to use the well-
known Fortuin-Kasteleyn representation of bicolor Widom-Rowlinson measures
(and therefore area-interaction measures as well) by Continuum Random Clus-
ter measures, defined as follows.

Definition 4.2. A stationary measure P¢ on §2 is a Continuum Random Clus-
ter measure of activity z, if for all bounded A C R* and all bounded measurable
function f,

Ccrc (WAUUJAC) / Crc
/f dpP //f wh Uwpe) ZCTC(Z A wAL) 73 (dwy ) P (dw), (4.16)

where Ncﬁ(w) = lima_,ga Nec(wa) —Ncc(wA\A) with Nec(wa) counting the num-
ber of connected components of By jo(wa), and Z°(z, A,wpe) being the standard
non-degenerate partition function.

The existence of Random Cluster measures for every activity z was proved
in [4]. In [I6] the author proves that for any r > 0 there exists zj,,,, such that
for any 2z > z{,, every Continuum Random Cluster measures r-percolates,
which as a consequence gives the non uniqueness of area-interaction measures
in the symmetric case for z = 5 > E;é?n Indeed the standard Fortuin-Kasteleyn
representation claims that keeping each finite 1/2-connected component from
a Continuum Random Cluster measure with probability 1/2 and keeping as
you want the infinite 1/2-connected component, this construction produces an
area-interaction measure with parameters z, 8 = z (see [2, [16]). Therefore,
as recalled in Proposition one area-interaction measure 1/2-percolates and
another one does not 1/2-percolate. Consequently z%(3,1/2) = g for g > z;ﬁn
and the result is proved for r = 1/2.

For r < 1/2, we notice that for 8 > Zz[ . every Continuum Random
Cluster measure, with activity 8, r-percolates and therefore at least one area-
interaction measure with parameters z = 8 and 3, r-percolates. That implies
that z%(8,r) < 8 but by monotonicity z%(8,r) > z¢(5,1/2) =  which proves
the result for r < 1/2.

It remains the case r > 1/2 which is more delicate. From now let z > Z;ﬁn
and let P°¢ be a Continuum Random Cluster measure of activity z, which
is therefore 1/2-percolating by the choice of z. Consider the measure P™"
obtained from P¢¢ by removing all points # € w belonging to the (unique)
infinite component of By /5(w). Then as a consequence of the Fortuin-Kasteleyn
representation, we have the following domination:

P, < P, (4.17)
By construction P does not 1/2-percolates, since the 1/2-infinite connected
component was removed. We are proving in the following lemma that by con-
sidering z large enough, this removed infinite connected component prevents
r-percolation in P*",
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Lemma 4.5. There exists z, > E;ﬁn such that for all z > Zz,, Pthin does not
r-percolate.

This lemma implies that z%(8,7) > B for f > z, and by monotonicity
zZ8(B,r) <z%(B,1/2) = . That concludes the proof.

Proof of Lemma[{.5 We are divinding the space R? into squares Cy = yd] —
r,r]?, with y € 2rZ% We are going to prove that a lot of cubes are filled
by balls from Bj/s(w), where w ~ P By applying a well-known result
from Liggett,Schonmann and Stacey [I8], the infinite connected component
of Bj/(w) will be (for large activities) very thick. This will prevent Pthin to
r-percolate.

By stationarity of P“"¢ we are only considering the conditional probability

p=(wag) = P7(Co € Byja(w)lwag),

where Ag :=] —r — 1,7 + 1]% For Cj to be 1/2-covered, it is sufficent that w
has enough nicely placed points. Therefore we are once again diving Cy into
smaller cubes Cj, 1 < i < k, of side smaller than —~. If all those small cubes

2vd
contains a point then Cy will be 1/2-covered. Using the union bound we have

k
1 —pa(wag) < ZPCM(#M@ = 0fwag)-
=1
But

NG (W' Uw’ - Uwpc)
i 0\C;

2 - c fore ’ Z " cre /
N //]l#w’c’;i:(] zere S ﬂ'éz(dwéz)P (deo|w/\8)
2 Z’on\éz UWAS))
e_ZEd(éi) cre !
= / zere (Z Cf (.U/ Uw ))P (de0|wAc)’
» 1y Ao\@ A(C)

where we used (4.16)) and the fact t~hat NG ((Z) U wgo\@_ U wA(c)) = 0. But we
also have the following bound on N (w):
#w@(l —cq) < Ngi (w) < #w@’

where ¢4 is the kissing number in dimension d, which is always larger than 2.
This implies

d(ér. d(¢)(1—9l—c _ol—cg,rd(A
PCTC(#W@ _ 0|WA8) < e 7L (Cz)eZE (Co)(1—2t7ead) _ o2 2L (Cz)’

and therefore

Pa(wag) > 1 — ke 2 42£4(C0), (4.18)
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The bound is uniform in wye and goes to 1 as z goes to infinity. Therefore
by applying the result of Liggett Schonmann and Stacey [18], we have for z
large enough that the set of completely covered (by balls of radii 1/2) boxes
Cy stochastically dominates an independent and identically Bernoulli field with
parameter 0 < p < 1 as large as we want. Let C"/™€ be the set of sites
y € 2rZ? belonging to the infinite connected component.

Now consider the set CTite = 2r7.\ cfinite of sites 3y € 2rZ? not belonging
to the infinite cluster of this site percolation. By considering z large enough we
have that Cf™¢ only contains bounded connected components, with respect to
the site percolation.

Now consider the configuration wf™#¢ obtained from w by removing the
points = in the infinite connected component of By /2(w). By construction we
have that B; /Q(wf inite) s entirely contained in the cubes C, for y € C/inite
and the configuration w/™€ cannot r-percolates, since otherwise the infinite
connected component would have to crosses cubes y € C"f™ite  which is not
possible.

This implies that for z large enough the measure P does not r-percolate.
O

4.4.2 Regularity of the threshold

The regularity of the function 8 — z2(f,r) is a consequence of uniform proper-
ties of the Papangelou intensity of the area-interaction measure which is defined
for every x € R? and w € Q by

—BLY(B1(x)\B1(w))

—BH{zy (wlz) _ o ]

Ve 8(x,w) = ze
Roughly speaking, this quantity is the quotient of densities of the process with
and without the point x. We refer to [12] for rigorous definitions, interpretations
and results on the topic. Let z, 8 be in a compact set and let u be in [0, 1]. By
simple geometric considerations there exists a positive constant ¢ > 0 such that

Vz4u,B+cu (JJ, w,) > Yz, (.T), w)a

for any = and w C w’. Then we deduce by Theorem 1.1 in [I2] that the wired
area-interaction measure with parameter z +u, 8 + cu stochastically dominates
the free area-interaction measure with parameter z, f: P;ﬁ . = P;};Zf Feu,

Coming back now to the percolation threshold z¢(53,r), that implies that for
h > 0 small enough

0<ZHB+h,r)—22(B,1) <1/c.

That proves that the function 8 — Z2(5 + h, ) is locally a Lipschitz increasing
map. Given that z2%(0,7) = 22(r) and that for large 3, 22(3,r) = 3 it is enough
to claim that the function § +— z%(53,r) is a non-decreasing Lipschitz map from
RT to [2£(r), +00).
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5 Proof of Theorem [2

The proof relies on a disagreement coupling method. In this section we are

considering z < z%(f8, 1), and we want to prove pP e = P;j’g ed-

Definition 5.1. A disagreement coupling family ( dc£ 5 ) index by a bounded
A Wpc

A C R? and two configurations satisfying wie € wie, is a coupling of two
marginals, with canonical variables €% and &2 satisfying

vi<i<2: Py s (€ = dw') = ‘@Z’,ﬁgc(dw,) (5.1a)
Pty e (€S =1 (5.1)

def 2 1 2
P YV € Bi(z) +— Bi(wpe) | =1 5.1c
i (e \SIBW) o BR)) =1 (519
Remark 5.1. In the definition of a disagreement coupling family from [15],
there is a third marginal dominating the two first which is a Poisson point
process. But from the monotonicity property of area-interaction measures, see
Proposition one can only consider two marginals in the coupling.

Proposition 5.1. If there exists a disagreement coupling family, then pP e =
pp
wired”
Proof. Let E be an event, that without loss of generality, only depends on the
configurations inside a given bounded A. Then for A C A,, we have
|Pfree(E) = Pijloa(E)]

free wired

< [ 12300, )= 230 (DIPFLNP (a?)

AC
— [ [1230, B = 23 s (BAPH P, 0P)

where Pf;ﬁe eAns , (respectively szre dAns ,) is the restriction of Pz’ﬂ oe (TESpEC-

tively wa oq) O1 An+2 Now by the stochastlc domination P> < P*P e

ree —  wired’
have from Strassen’s theorem the existence of a thinning probability d%ﬂ such

that

P30 (B) - P (B)]

free wired

E:MWﬁ (B) = 23 (Blour@DP g, ()

AnywAc wzred|An+2
w Cw n
def s z,p 2
/ 122 P AC’ /2\%’ (A B1(£2) An—?) ¢w2( )PwZTedlAn+2 (dw )’
Cw

where the last inequality comes from the existence of the disagreement coupling
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family and the property (5.1c|). Therefore

76 ’/B ’/B 76
|P;ree(E) - Pizired(E” < / ‘@f\n,w/\% (A BT{) A"2> Pziired|An+2 (dw)

— p*B (A — An2> — 0,

wired Bi(€) N—s00
where the convergence is a consequence of z < zZ2(f,r). d

It remains to prove the existence of the disagreement coupling family.

Proposition 5.2. There exists a disagreement coupling family (chi L2 )
sWacH Wpce

The construction of the disagreement coupling family is a generalisation of
the one made in [15], where the dominating measure is a Poisson point process.
The coupling is sampled starting from the balls close to the boundary of A, and
going inductively inside A.

Proof. The coupling is constructed inductively. Recall that A € R? is bounded
and that w}\C C w%c. Define the disagreement zone

I ={zeA,|zwi] <2}

as the region where a point x of the point process would be directly 1—connected
to the boundary condition w3. (i.e. the ball Bj(z) would overlap Bj(y) for at
least one y € wi.).

The induction will be made with respect to the disagreement zone I' in the
following way.

o If T' # 0, let us first sample £2 ~ L@z’iz . We are then sampling ¢! ~
th AC
33;”81 as a thinning of £2.

7WAC

This procedure is possible, since the condition w}xc - w?\c implies, thanks
to Proposition the following domination:

Z,IB Z’ﬁ
‘@A,w}\c = ‘@A,w%c'
From ¢! and €2 we are only keeping the points inside I'. The induction
then goes on with A + ANT with the new boundary conditions W/l\cur =
w}xc U 511 and w%eur = w%e U flg

e If I' = (). This is the terminal step of the induction. In this case we have
Wzi 1= ﬂii 2, = @X'g Therefore we simply sample ¢! = £2 ~ f\'g

It is easy to see that the induction terminates almost surely. Indeed if at
one step the sampled configuration ¢2 is empty (which happens with positive
bounded from below probability) then at the following step we will have I' = ().
Therefore the number of steps is dominated by a geometric random variable,
which is almost surely finite.

Finally the construction ensures that all properties of (5.1)) are fullfilled. [
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6 Annex

6.1 Proof of Proposition

Let us define the algorithm T which explores the r-connected components of

OAs.

Definition 6.1 (Definition of the algorithm). During the first i steps, the con-
figuration inside the cubes ei1,...,e; have been explored, and we write Z; =
Br(wem) for the region know to be covered by r-balls. Remark that Z; might not
be entirely connected (in Z;) to O\, and wrote Z? for the subregion of Z; of
points connected (in Z;) to OAs.

At the step i+ 1 we take a cube e;11 € (Z+1/2)T N Apyrin \ ) such that

|AS 5 Z8UOA|| < 7.

e+17

If no such e; 11 exists, then the algorithm stops as the connected components of
OAs have been entirely explored. If there is several ;11 satisfying the condition,
we choose one using a deterministic (but not important) rule.

We then look at the configuration inside the chosen cube ;1 and set Z; 11 =
Z;iU By (wei+1) = BT<we[i+1])'

The bound (4.13) from Proposition follows directly from the definition
of the algorithms.
6.2 Proof of Lemma 4.4

B # h(w)
We have P; wwed f f Z‘”“E“Z (2,8, nwwzred) TAn (dw)’ where

h(w) = e AL Blwan DNAn_1)

Using a standard derivative theorem we obtain

d .5 4 52z, B,y wired) _, 3
— pPF = dz o .
dz n,wzred(f) n wzred(f #) Zarea(z’ 57 n, wired) n,wzred(f)

- (6.1)

Taking f =1 in (6.1]) yields

0= lpzyﬁ' (#) B %Zarea(z’ﬁjn,wiTed)
z n,wired ZGTBG(Z’ B, n, wired) )

which transforms (6.1]) into

d _, 1 2
@Pnf)ired(f) = ; ( nwzred(f x #) n wzred(#)Pnf)ired(f)) )

proving the result.
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