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ABSTRACT: The multiobjective optimization (MOO) of industrial water networks through goal programming is studied using
a mixed-integer linear programming (MILP) formulation. First, the efficiency of goal programming for solving MOO problems is
demonstrated with an introductive mathematical example and then with industrial water and energy networks design problems,
formerly tackled in literature with other MOO methods. The first industrial water network case study is composed of
10 processes, 1 contaminant, and 1 water regeneration unit. The second, a more complex real industrial case study, is made of
12 processes, 1 contaminant, 4 water regeneration units, and the addition of temperature requirements for each process, which
implies the introduction of energy networks alongside water networks. For MOO purposes, several antagonist objective functions
are considered according to the case, such as total freshwater flow rate, number of connections, and total energy consumption.
The MOO methodology proposed is demonstrated to be very reliable as an a priori method, by providing Pareto-optimal
compromise solutions in significant less time compared to other traditional methods for MOO.

1. INTRODUCTION
The interactions between industry and environment were
practically nonexistent or considered as a secondary concern a
few years ago. During the last decades, industrialization has
contributed to rapid depletion of natural resources such as water
or natural gas. Consequently, there is a real need in industry
to ensure minimum natural resources consumption, while
maintaining good production levels. In particular, industrial
development is always linked to the use of high volumes of
freshwater.1,2 Moreover, a direct consequence of petroleum
refineries, as well as chemical and petrochemical industries inten-
sive usage of water, is that wastewater streams contain several
contaminants and create an environmental pollution problem.3

Twenty percent of the world total water consumption has
been recently attributed to industry.4 However, in a great portion
of industrialized countries, this water consumption widely
exceeds 50%. By developing cleaner and more economic
industrial water networks (IWN), freshwater consumption as
well as wastewater can be reduced dramatically. Nevertheless,
feasible networks must ensure reasonable costs and do not
weaken productivity. In addition, the great majority of involved
processes need water with a given quality at a fixed temperature.
Hence, huge amounts of energy are also used in order to cool
and/or heat water to reach operating temperatures by means of
cold and heat utilities. There is thus a critical need in reducing
both rejects of contaminants and the consumption of primary
resources such as water and energy.
In previous works, IWN allocation problems have been tackled

by three main approaches, including graphical (pinch) method-
ology,5−8 mathematical programming,9−12 and synthesis of mass
exchange networks.13−15 The main drawback of the former,
although easy to understand, is the difficulty of dealing with
several contaminants and complex water networks. On the other
hand, due to modern mathematical programming solving
algorithms, pinch-based techniques have been competed by
mixed-integer programming approaches either linear (MILP) or

nonlinear (MINLP). The linear model is generally restricted to
simple water networks involving only one contaminant, while the
nonlinear one can be applied to more complex networks.1

Besides the mathematical model, IWN allocation problems
entail several objective functions which are often antagonist
between themselves, for example, as discussed above, minimizing
resources consumption while maximizing productivity. In fact,
very few studies take into account several objectives simulta-
neously. It is more common to choose a cost objective function
to minimize. However, it does not guarantee a simple topology
for the network, and it proposes only suitable solutions according
to one criteria.
The solution ofmultiobjective optimization (MOO) problems

differs from single objective optimization problems because there
is no global optimal solution in a mathematical sense, due to the
contradictory nature of the set of objectives involved; that is, a
solution that minimizes all objectives at the same time does not
exist. On the contrary, there is a virtually infinite number of
equally significant solutions (i.e., the Pareto front) that are trade-
off solutions between the objectives. In fact, the best solution
(without loss of generality) among the set of solutions should be
identified by a decision maker (DM), in accordance with its own
criteria.16,17

Indeed, the purpose of solving a MOO problem is, in most
cases, to find a trade-off solution (or a few of them), and there are
several means to achieve this goal. One way is to determine the
Pareto front in its totality and choose the trade-off solution a
posteriori, or offline. The other set of methods consists in finding
one trade-off solution a priori, or online, by solving one or a series
of single objective optimization problems. In the former, the
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advantage is that the totality of the Pareto front is found, with the
important drawback that solution times are often prohibitive,
since a very big number of sub problems have to be solved,
frequently in a stochastic way.18,19 This drawback is very limiting
in the context of large-scale MILP/MINLP (as IWN allocation
problemsmight be), since solution times for a single sub problem
is often prohibitive by itself. Moreover, as the number of
objective functions increases, so do complexity and solution
times. On the other hand, a priori methods do not provide the
entire Pareto front, although any solution found is inside it. The
essential advantage is that DM preferences are included before
the optimization, so the solution of theMOOproblem is reduced
to the solution of one or a few single objective optimization
problems.16,17 The latter is more than convenient in large-scale
optimization problems, for the reasons mentioned above in this
paragraph.
Only a few studies have dealt with the MOO of IWN

(Vamvakeridou-Lyroudia et al. 2005;20 Farmani et al. 2006;21

Mariano-Romero et al. 2007;22 Tanyimboh et al. 201023). Two
studies20,22 carry out the optimization of single-contaminant
distribution networks each one according to two different
objectives, such as total freshwater consumption and capital or/
and operating costs. While Vamvakeridou-Lyroudia et al.20

employed fuzzy MOO as the decision-making tool and used
stochastic algorithms to find the Pareto front, Mariano-Romero
et al.22 linked the principles of pinch technology with
mathematical programming to obtain Pareto-solutions with a
heuristic algorithm without using/proposing any decision-
making tool. Similarly, Farmani et al.21 minimized total cost,
reliability, and water quality by using a genetic algorithm to
construct the Pareto front, and likewise, Tanyimboh et al.23 by
using analytic hierarchy process as the DM.
More recently, Boix et al.1,2,24 proposed theMOOof industrial

water networks both single and multicontaminant by using the ε-
constraint method to identify the Pareto front, as well as the
simultaneous water-energy network allocation. Among the
objective functions, the authors employed, for example, total
freshwater consumption, number of connections between
processes, and total energy consumed by the network. Also,
the authors employed as DM process the TOPSIS25 (Technique
for Order of Preference by Similarity to Ideal Solution) method.
As noted above, none of the previous works have addressed the

MOO of IWN by employing a priori solution methods and, what
is more, by using goal programming. In fact, all the works are
based in the construction of the Pareto front by several means,
mostly by stochastic algorithms or mathematical programming
along with ε-constraint methodology. However, it is known that
these methods encounter some difficulties to deal with large
and complex networks and it is always a long task (with high
computational times) to build a Pareto front. Furthermore, the
problem of water and/or energy network design involve not
only continuous variables but also binary variables that make the
resolution very difficult in some cases. To overcome these
difficulties, we propose here an alternate methodology for solving
MOO of IWN in a very efficient way, by using a priori solution
methods (specifically goal programming) and specifying DM
priorities inside the optimization problem. Case studies include
networks tackled before by Boix et al.2,24 Moreover, we present
comparisons among the proposed methodology, other methods,
and the results obtained by the other authors, in order to demon-
strate its efficiency and reliability to solve MOO problems,
generally speaking.

In the subsequent sections, MOO solution methods employed
are introduced and explained and every case study is introduced
punctually.

2. SOLUTION METHODS FOR MULTIOBJECTIVE
OPTIMIZATION

MOOencompasses the solution of optimization problems with two
ormore objective functions. Generally speaking, aMOOproblem is
mathematically formulated, as it is illustrated in Problem 1.
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As shown above, the problem has nf objectives, n continuous
variables (i.e., x) and m discrete variables (i.e., y) as well as the
vectors of equality and inequality constraints (i.e., respectively,
h(x, y) and g(x, y)).
There are several methods for the solution of MOO problems,

where most of them imply the transformation of the original
problem in a series of single-objective optimization problems.

2.1. Methods Classification. Solution methods for the
solution of MOO problems are generally classified in accordance
to the number of solutions generated and the role of the DM
inside the problem solution. This classification, adopted by
Miettinen26 and Diwekar27 is shown in Figure 1.
Methods are initially classified into two groups (Figure 1):

generating methods and preference-based methods. The former,
as the name indicates, generate one or several Pareto-optimal
solutions without taking into consideration DM choices. It is only
after all solutions are generated that the DM comes into play. On
the other hand, preference-based methods use DM preferences
inside the different stages involved in the solution of the problem.
Generating methods are subsequently subdivided into three

categories:

• First, the nonpreference methods, as their name indicates,
do not consider preference-based solutions.

• Second and third, the a posteriori methods are based on
the solution of the original MOO problem by solving a
series of single-objective optimization problems in order
to find the Pareto front. These two a posteriori methods
differ only in the way they are solved, either by scalariza-
tion approaches (e.g., ε-constraint or weighting method)
or by stochastic algorithms (e.g., simulated annealing or
genetic algorithms). Afterward, obtained solutions are
evaluated by the DM, which picks the solution to
implement. It is important to highlight the significance
of the DM in these methods, since the solution method is
not capable by itself to provide a unique solution.

Contrariwise, preference-based methods are subdivided into
two groups.

• A priori preference methods: DM preferences are initially
included into the MOO problem, and then transformed
into one or several single-objective problems. Finally, a
unique trade-off solution is obtained according to DM
preferences included in first place. Reference point
method and goal programming are common examples of
these methods.



• Interactive methods: In this group, there is an active
interaction of the DM during the resolution process. After
each ith iteration (i.e., each single-objective problem
solution) the DM proposes changes to the Pareto-optimal
ith values of the objective functions and proposes further
changes (either improvement, trade-off, or none) for each
one of the objective functions. These preferences are then
included into the subsequent iteration. The process stops
when the DM is satisfied with the current solution. Themost
notorious interactive method is the NIMBUSmethod.26,28,29

2.2. A Priori PreferenceMethods. In the present work, two
a priori preference methods, namely, reference point method and
goal programming are going to be implemented in an
introductive mathematical example to show its usefulness, as
well as a posteriori methods coupled with decision-making tools.
Afterward, two IWN allocation problems are solved with goal
programming whose results are going to be compared against
solutions with a posteriori methods found in literature.
2.2.1. Reference Point Methods.These methods are based on

the specification by theDMof a reference vector z ̅= [z1̅,...,zn̅f], which
includes aspiration levels for each objective function, and then are
projected into the Pareto front. In other words, the nearest Pareto-
optimal solution to the reference vector is found.This distance can be
measured in several ways (cf. Colette and Siarry17). Indeed, the
distance is measured by an achievement or scalarizing function.16

Here, the advantage is that the method is able to generate Pareto-
optimal solutions nomatter how the reference point is specified (i.e.,
they are attainable or not).16 The method is illustrated in Figure 2.
There are several achievement functions: in this work, the

Tchebychev (ormin−max)17,30 function is implemented (Problem2).
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In Problem 2, zi, ∀i∈ F are the reference points, w = [w1,...,wnf]
is the weighting vector, wi ≥ 0, ∀i ∈ F and ρ is a positive scalar
sufficiently small. Note that the set F is the set containing the
objective functions and nf the number of objective functions.
One particularity of this method relies on the weighting vector
definition, which is defined in turn by vectors zr and zv such as
zi
v > zi

r, ∀i ∈ F according to
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The vector zr is the aspiration vector while zv is the nadir
vector. It is important to note that these vectors can or cannot be
attainable; that is, they can or not correspond to feasible
alternatives. It is possible to transform Problem 2 in an equivalent
minimization problem by adding one additional variable v and by
removing the max operator:
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According to Collette and Siarry,17 for this method to well
behave, it is necessary to be capable of choose wisely the
reference vector with the purpose of assuring the solution
obtained to be consistent with the original problem.
Moreover, this method only allows to find Pareto-optimal
solutions inside nonconvex regions under certain conditions
(see Messac et al.31).

2.2.2. Goal Programming. In contrast to reference point
method, goal programming does not constraint to work in a
convex region. This method consists in transforming the
MOO problem in a single-objective problem in the following
way:17 Let goal = [goal1,..., goalnf] be the vector that contains
the levels of aspiration (i.e., the goals) of each objective

Figure 1. Classification of multiobjective optimization methods.16



function, and d+ = [d1
+,..., dnf

+], d− = [d1
−,..., dnf

−] new variables
associated with each objective function that represents the
deviations of the objective function value relative to the goals.
With these new definitions, the resultant problem is described
by Problem 4.
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Similar to the reference point method,wi≥ 0,∀i∈ F,∑i∈Fwi = 1
is a necessary condition. Depending on how it is desired to achieve
the goal of each function, a different combinations of di

+, di
− could

be minimized, as it is shown in Table 1.

It is important to highlight that in the two first cases the ith
objective function value is allowed to go further in the opposite
direction, when di

+ ∨ di
− = 0, ∀i ∈ F. Goal programming basis is

then to be as close as possible to the minimum of each objective
function by allowing positive or negative deviations (Figure 3).
On the other hand, it is important to normalize both objective

function values and goals:

=
−
−

∀ ∈f x
f x f

f f
i F( )

( )
i
norm i i

i i

min

max min
(2)

=
−
−

∀ ∈goal
goal f

f f
i Fi

i i

i i

norm
min

max min
(3)

In eqs 2 and 3, f i
min, f i

max, ∀i ∈ F are respectively the minimum
and maximum value of each ith objective function attained in
individual single-objective optimizations.
Finally, it is important to notice that goal programm-

ing is the most employed method for multiobjective
optimization.33

2.3. A Posteriori PreferenceMethods. These methods are
based in the first place on the construction of the Pareto front and
then the implementation of multicriteria decision-making
(MCDM) tools.

2.3.1. Pareto Front Generation. The Pareto front can be
generated traditionally by scalarization approaches or stochastic
methods.
Indeed, it can be generated by any method in capacity to

produce Pareto-optimal solutions, so even a priori methods
are suitable for this task on conjunction with other
algorithms.34 By using these methods, this algorithm deals
with changing the weighting coefficients and/or the aspiration
levels.
On the other hand, the most common method to generate

Pareto-optimal solutions is the ε-constraint method.26 This
method consists in minimizing one of the objective functions
at a time and by transforming the others in bounds through
inequality constraints. This implies some kind of knowledge
of minimum and maximum values of objective functions,
and in consequence, the first step is to do single-objective
optimizations of each problem separately. The method is stated
in Problem 5.
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In Problem 5, the vector ε = [ε1,...,εnf] is the upper bound
of the objective functions f j, ∀j ∈ F, j ≠ i. The solution of
Problem 5 is always weak Pareto-optimal, and is Pareto-
optimal if and only if the solution is unique. Subsequently,
to guaranty Pareto-optimality, it is needed to solve nf
problems.16 The advantage of this method is that it is in
capacity to find every Pareto-optimal solution, even if the

Table 1. Different Combinations of Deviations17

case
deviation
value

combination of
variables to
minimize

The ith objective function value is allowed to
be greater than or equal to the goal i.

positive di
+

The ith objective function value is allowed to
be less than or equal to the goal i.

negative di
−

The ith objective function value desired has
to be equal to the goal i.

null di
+ + di

−

Figure 3. Objective deviations.32

Figure 2. Reference point method.17



problem is nonconvex. Therefore, the Pareto-front obtain-
ment is due to the solution of several single-objective
optimizations by changing functions bounds.
Practically, however, it is not always easy to find feasible

upper bounds for Problem 5. Also, it can be difficult to
determine which problem has to be optimized subsequently.
Finally, when the problem has several objective functions, the
number of single-objective optimizations that have to be
carried out increases substantially, which is not desirable in
most cases.
Beyond mathematical programming methods to generate

the Pareto-front, stochastic methods have become popular
in order to generate the Pareto front in MOO problems.
Among these, evolutionary algorithms are the most
commonly used since they are easy to implement and are
effective. Evolutionary algorithms are based on the
emulation of natural selection mechanisms35 and are
particularly appropriated in order to solve MOO problems
thanks to their capacity to handle several solutions
simultaneously and their ability to tackle different kinds
of problems without knowing important information about
the problem structure (e.g., derivatives). Nevertheless,
evolutionary algorithms require a very significant amount
of time to be solved to such an extent that the solution of
large-scale problems is prohibitive. The most widely spread
evolutionary algorithm is the genetic algorithm and its
variants (e.g., NSGA-II36).
2.3.2. Decision-Making Tools. A posteriori methods generate

several Pareto-optimal solutions, based in the dominance
relationship (see Rangaiah and Bonilla-Petriciolet16 and Collette
and Siarry17). This relationship allows to filter solutions and to
retain only comparable results. Yet, it remains the choice of “the
best” solutions according to DM preferences. There are several
decision-making tools, but in this study, the interest lies only with
TOPSIS based methods.
2.3.2.1. M-TOPSIS. The idea beyond M-TOPSIS is described

next.25 Let S = [1,...ns] be a set with ns alternative solutions of the
objective functions and Ans,nf a matrix with ns rows and nf
columns:

1. Normalize the decision matrix A, accordingly:
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2. Determine the ideal positive and negative solutions of
matrix A:
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3. Compute the distance between each solution and the ideal
positive and negative solution using n-dimensional
Euclidean distance:
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4. Calculate the distance of each solution to point O
(min(Di

+), max(Di
−)), ∀ i ∈ S:
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5. Class solutions in descendant order according to Ri.
Consequently, the solution with greater Ri is the best
trade-off solution.

2.3.2.2. LMS-TOPSIS. This modification we propose, is based
on a linear normalization rather than using the norm as
M-TOPSIS does. Indeed, this normalization is the same
employed when using goal programming in this study:
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The aforementioned modification is proposed due to poor
performance of traditional and M-TOPSIS procedures in
nontrivial cases, as it is going to be demonstrated in the
subsequent sections.

3. CASE STUDIES

As case studies, we propose an introductory mathematical
example to show the followed methodology and two IWA
problems, one traditional and one with simultaneous water and
energy allocation. For the introductory example, we imple-
mented the two a priori methods addressed above (i.e.,
reference point method and goal programming) and one a
posteriori method, that is, generation of the Pareto front by
stochastic methods and decision-making by TOPSIS methods.
On the other hand, for the IWA problems, we implemented
goal programming in order to compare a priori methods results
and the results obtained by Boix et al.2,24 by implementing a
posteriori methods. All a priori implementations were modeled
in GAMS.37 For the MINLP problem (i.e., the introductory
example), the outer-approximation solver DICOPT38 was used
coupled with CPLEX39 and IPOPT.40,41 For the MILP
problems (i.e., the IWA problems), CPLEX39 was used as the
solver. The Pareto front of the introductive example was
generated by the genetic algorithm, NSGA-II by using the
multipurpose solver MULTIGEN,42 whose interface is
available in Microsoft Excel and ran several times before the
construction of the Pareto front. In all cases, weight factors are
defined as wi = 1/nf, in order to obtain a trade-off solution
without any explicit preference to any objective in particular. In
addition, the goal vector in goal programming was defined
for all cases as goali = (( f i

max + 15 f i
min)/16), ∀i ∈ F, and con-

sequently, the normalized goal vector is always goali
norm =

0.062, ∀i∈ F in order to locate goals as close as possible to each
function minimum. With the latter in place, the objective in
goal programming is then to minimize positive deviation (i.e.,
di
+, ∀i ∈ F).
3.1. Introductive Mathematical Example. This biobjec-

tive MINLP problem has been proposed by Papalexandri and
Dimkou.43 The formulation is the following:



= − + + + +

= + − + − + −

− + − − ≥

− − − − + − − ≥

+ − − ≥

+ − ≥

− + + ≥

+ − ≥

− + + ≥

+ − ≥

− + + ≥

∈ −

∈

f x x x y y y

f x x x x y y y

s t
x x x y

x x x x y y

x x x y

x y

x y

x y

x y

x y

x y

x x x

y y y

min 3 2

min 2 3 2 2

. .
3 2 0

4 2 40 7 0

2 3 7 0

10 12 0

10 2 0

20 0

40 0

17 0

25 0

, , [ 100; 100]

, [0; 1]

1 1
2

2 3 1 2 3

2 1
2

3
2

1 2 1 2 3

1 2 3 1

1
2

1 2 3 1 2

1 2 3 3

1 1

1 1

2 2

2 2

3 3

3 3

1 2 3

1, 2 3

3.1.1. Results. The synthesis of results for different methods is
illustrated in Table 2 and in Figure 4 over the Pareto front
generated with MULTIGEN.
A first analysis of these results leads toward the conclusion that

all methods are capable of obtain trade-off solutions. Although,

important differences can be noted, possibly due to the
normalization method, notably between different TOPSIS
implementations. This observations are certainly noted in
Tables 3 and 4, which show the normalized gap between a

Table 2. Summary of Results for the Introductive Example

M-TOPSIS LMS-TOPSIS reference point method goal programming lower bound upper bound

f1 −41.26 −43.84 −43.50 −42.90 −57 −0.92
f 2 41.14 54.54 52.04 48.14 −0.59 329
x1 0.31 0.13 0.16 0.19 −100 100
x2 39.98 39.99 40 40 −100 100
x3 −1.38 −3.86 −3.53 −2.94 −100 100
y1 0 0 0 0 0 1
y2 0 0 0 0 0 1
y3 0 0 0 0 0 1

Figure 4. Comparison of obtained solutions with different methods.

Table 3. Gap between Solutions Relative to Reference Point
Method

percentage error (%) relative to reference point method

variable M-TOPSIS LMS-TOPSIS goal programming

f1 4.0 0.59 1.07
f 2 3.30 0.76 1.18
x1 0.07 0.02 0.01
x2 0.01 0.005 0
x3 1.07 0.16 0.30
mean error 1.69 0.31 0.51

Table 4. Gap between Solutions Relative to Goal
Programming

percentage error (%) relative to goal programming

variable M-TOPSIS LMS-TOPSIS reference point method

f1 2.92 1.67 1.07
f 2 2.12 1.94 1.18
x1 0.06 0.03 0.01
x2 0.01 0.005 0.0
x3 0.78 0.50 0.30
mean error 1.18 0.82 0.51



priori and a posteriori methods. Moreover, it must be high-
lighted that binary variables of the problem (i.e., y1, y2, y3) are
always equal to zero and also that x2 ≅ 40 in all cases. Due to
this, the differences between x1 and x3 are considerable, since the
objective functions are not sufficiently sensitive to these
variables.
On the other hand, the problem was exploited in order to

analyze the efficiency of the different methods. In fact, f1 was
modified by adding 1000. The objective was to verify if the
solutions were the same, since a scalar introduction in an
objective function does not change the nature of the optimization
problem. Results are shown in Table 5 and Figure 5.
Contrary to the first case, the solution is not the same as it was

expected with certain methods. Indeed, M-TOPSIS does not
manage to achieve the good solution, while LMS-TOPSIS does
achieve it, due to the objective functions normalization proposed.
On the other hand, goal programming is able to find the correct
solution while the reference point method is not, and is only
successful if the aspiration vector is changed. In fact, these results
highlight the essential relationship between the reference point
method and the aspiration vector. Relative to it, a sensitivity
analysis of the solution obtained in function of the chosen vectors
was carried out (see Figure 6). It is necessary to clarify that the
illustrated variation corresponds to ≈10% of the Pareto front.
The latter comports a considerable gap, mainly relative to other
methods.
3.2. Industrial Water Network. The formulation of the

IWN allocation problem is the same as in previous works.2,3,9

The way to model a IWN allocation problem is based on the

concept of superstructure.44,45 From a given number of
regeneration units and processes, all possible connections
between them may exist, except recycling to the same unit.
This constraint forbids self-recycles on process and regeneration
units, although the latter is often relevant in some chemical
processes. For each water-flow rate using process, input water
may be freshwater, output water from other process and/or
regenerated water. Indeed, output water from a process may be
directly discharged, distributed to another process and/or to
regeneration units. Similarly, a regeneration unit may receive
water from another regeneration unit. For the sake of simplicity
and generalization, the problem is built as a set of black boxes.

Table 5. Summary of Results with f1 + 1000

M-TOPSIS LMS-TOPSIS reference point method goal programming lower bound upper bound

f1 998.52 956.16 977.20 957.10 943.0 999.0
f 2 −0.39 54.54 20.79 48.14 −0.59 329
x1 0.30 0.13 0.50 0.19 −100 100
x2 2.28 39.99 23.54 40.0 −100 100
x3 −0.79 −3.86 −0.50 −2.94 −100 100
y1 0 0 0 0 0 1
y2 0 0 0 0 0 1
y3 1 0 0 0 0 1

Figure 5. Comparison of results with f1 + 1000.

Figure 6. Sensitivity analysis of the results of reference point method in
function to the aspiration vector.



In this kind of approach, physical or chemical phenomena
occurring inside each process is not taken into account. In
addition, each process has a contaminant load over the input flow
rate of water. A general view of the superstructure is given in
Figure 7.
3.2.1. Problem Statement. Given (inputs):

1. The number of processes np. Let P = {1,2,...,np} denotes
the index set of processes.

2. The number of regeneration units nr. Let R = {1,2,...,nr}
denotes the index set of regeneration units.

3. The number of components nc. Let C = {w,c1,..., nc}
denotes the index set of components (w corresponds to
water).

4. The contaminant load for each process (note that water is
not a contaminant) Mi

c, ∀i ∈ P, c ∈ C, c ≠ w.
5. Maximum concentration of a contaminant allowed in the

inlet of each process Cini,c
max, ∀i ∈ P, c ∈ C, c ≠ w.

6. Maximum concentration of a contaminant allowed in the
outlet of each process. Couti,c

max, ∀i ∈ P, c ∈ C, c ≠ w.
7. Output concentration of each contaminant in each

regeneration unit. Cr,c
out, ∀r ∈ R, c ∈ C, c ≠ w.

8. Minimum and maximum flow rate between any kind of
processes and/or regeneration units minf and maxf.

Determine (variables):

1. The existence of freshwater input to a process ywi, ∀i ∈ P.
2. The existence of flow between two processes ypi,j, ∀i, J∈ P,

I ≠ J.
3. The existence of flow between a process and a

regeneration unit ypri,r, ∀i ∈ P, r ∈ R.
4. The existence of flow between a regeneration process and

a process yrpr,i, ∀r ∈ R, i ∈ P.
5. The existence of flow between two regeneration units yrr,s,

∀r,s ∈ R.
6. The existence of flow between a process and the discharge

ydi, ∀i ∈ P.
7. The inlet and outlet of each process and regeneration unit

for each component Fini
c, Finr

c, Fouti
c, Foutr

c, ∀i ∈ P, r ∈ R,
c ∈ C.

In order to (objectives):

1. Minimize the number of connections.
2. Minimize freshwater consumption.
3. Minimize regenerated water consumption.

3.2.2. Optimization Problem Formulation. The IWN
allocation problem comports several objective functions. In
this work, number of connections, freshwater consumption,
and regenerated water consumption were chosen and are stated
in eq 9−11.

∑ ∑ ∑= + + +
∈ ≠ ∈ ∈ ∈

J yp yw yrp ypr( )
i j P i j

ij
i P

i
i P r R

r i i R1
, , ,

, ,
(9)

∑=
∈

J fw
i P

i2
(10)

∑=
∈ ∈

J frp
r R i P

r i3
,

,
(11)

The resulting optimization problem to solve is the following:

J J Jmin( , , )1 2 3

subject to eqs 14−33, 35−40 (described in the Appendix).
3.2.3. Results. The studied network is composed of ten

processes and one regeneration unit. The contaminant load
of each process is presented in Table 6. The regeneration

unit is capable of an outlet concentration of contaminant of
5 ppm, and the value of minf is chosen as 0 T/h. It must be
highlighted that the value of these parameters are the same as
in Boix et al.2

Single-objective optimization (i.e., minimizations) were
carried out for each objective function, revealing not significantly
different lower and upper bound for the latter related to the
results of Boix et al.2 Maximum attained values correspond to the

Figure 7. General view of the superstructure for IWN allocation problem.1

Table 6. Parameters of the Network

process Cini
max (ppm) Couti

max (ppm) Mi
c (g/h)

1 25 80 2000
2 25 90 2880
3 25 200 4000
4 50 100 3000
5 50 800 30000
6 400 800 5000
7 400 600 2000
8 0 100 1000
9 50 300 20000
10 150 300 6500



maximum attained among the minimizations of the other
objective functions.

objective function min. max. attained
no. of connections 10 120
total freshwater flow rate (T/h) 10 255.42
total regenerated water flow rate (T/h) 0 259.51

Subsequently, a multiobjective optimization by using goal
programming was accomplished following the same method-
ology as in the introductive mathematical example. Results are
compared with the results of Boix et al.2 in the Pareto front
obtained by the latter authors (Figure 8 and Table 7).

In Figure 8, the pareto fronts are built with the ε-constraint
methodology for each number of connections. Indeed, to deal
with MOO, the third objective (number of connections) is fixed
as a constraint while the two other objectives are minimized, for
more information the reader can referred to Boix et al.1 As it can
be seen from the aforementioned results, the results obtained are
indeed different from those of Boix et al.2 In fact, the former are
more suited as a trade-off solution, since all objective functions
are in the midst between bounds, while in Boix et al.2 it can
be noted that total freshwater flow rate is at its lower bound,
heavily punishing regenerated water consumption. The results
obtained are also in accordance to other works, which are also
related with the same network (see Bagajewicz and Savelski9 and
Feng et al.10).
3.3. Industrial Water and Energy Network. The case of

simultaneous water and energy network allocation is tackled in
the present section. The problem comports the same elements of
an IWN allocation problem, with the addition of energy require-
ments for each process and/or regeneration units. These energy
requirements can be fulfilled by several different means, that is,
heat exchangers and/or by warming freshwater in a boiler. In fact,
in the current work, we present four different cases by varying the
types of utilities and/or energy requirements. The cases are
stated as shown in Table 8.

The last case is added to emulate a situation where the
freshwater source is located in a cold area. Indeed, by adding duty
constraints to heat exchangers gives the problem an approach
closer to reality. Moreover, the case study is based on an existing
paper mill facility, as it will be discussed later.

3.3.1. Problem Statement. This type of problem, as said
earlier, shares almost all elements with the IWN allocation prob-
lem. In fact, all elements in Section 3.2.1 apply, and the following
are added or modified:
Given (inputs):

9. The operating temperature of a process Tpi, i ∈ P.
10. Freshwater temperature Tw, and discharge temperature

Td.
11. The operating temperature of a regeneration unit Trr,

r ∈ R.
12. The maximum inlet flow rate to a process fmaxpi, i ∈ P,

and to a regeneration unit fmaxrr, r ∈ R.
13. The minimum and maximum duty of the heat exchanger

associated with a process or regeneration unit minQ,
maxQ.

Determine (variables):

8. The existence of a heat exchanger (i.e., cooler or heater) in
a process, a regeneration unit or the discharge. yexpi

+,
yexpi

−, yexrr
+, yexrr

−, yexd+, yexd−, i ∈ P, r ∈ R

In order to (objectives):

4. Minimize total energy consumption
5. The number of heat exchangers in the network

It is important to note that in the present case study total
regenerated water consumption is not considered as an objective
function, in order to be in accordance with the case study of
Boix et al.24

3.3.2. Optimization Problem Formulation. The objective
functions related to this case study, according to the
aforementioned, are J1, J2 and in addition eqs 12 and 13.

Total energy consumption:
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Number of heat exchanges in the network:
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In accordance, the resulting optimization problem is the
following:

J J J Jmin( , , , )1 2 4 5

Figure 8. Obtained solution in the Pareto front of Boix et al.2

Table 7. Summary of Multiobjective Optimization Results

this work Boix et al.2

no. of connections 17 17
total freshwater flow rate (T/h) 52.14 10
total regenerated water flow rate (T/h) 120.0 177.24

Table 8. Case Description

case scenario

0 Same case constructed with the same conditions as in Boix et al.24

Freshwater temperature = 30 °C, only heat exchangers without duty
constraints.

1 Freshwater @ 30 °C, heat exchangers with minimum duty = 1000 kW and
warm water @ 85 °C.

2 Freshwater temperature @ 30 °C, heat exchangers with minimum duty =
1000 kW and warm water @ 85 and 60 °C.

3 Freshwater @ 10 °C, heat exchangers with minimum duty = 1000 kW and
warm water @ 85 and 60 °C.



subject to eqs 14−33, 35−40, 41−46 (described in the
Appendix).
3.3.3. Results. The case study is the same as the one treated

by Boix et al.,24 which is in turn an adaptation of a real-world
application of a paper mill plant8 (Figure 9).

The case study is made up of 12 processes, and four
regeneration units. For this case, minf is fixed to 2 T/h, since
lower flow rates would imply piping inferior to 1 inch in diameter.
These and other parameters value are the same as in Boix et al.24

Table 9 shows the results of each case. The minimum and
maximum attained values correspond to single-objective
optimizations.
From Table 9 several items should be pointed out: in the first

place, results between the base case and those from Boix et al.24

make evident significant gaps between the objective functions.
Relative to minimum and maximum attained values, results of
case 0 are evidently real trade-off solutions. In fact, as goal
programming is employed, the latter is assured in comparison to
a posteriori methods (i.e., Boix et al.24 best solution). It is also
important to notice that cases offering the option to feed
processes with warm water (cases 1, 2, and 3) propose optimal
solutions with a low number of heat exchangers (only 4).
However, the imposed lower bound for the number of heat

exchangers (3) contributes to the design of a more realistic
network. Indeed, the presence of heat exchangers could involve
higher operating, raw material and energy costs but lower
maintenance and capital costs for equipment. Nevertheless,
energy consumed by the network in these cases is not highly
penalized, and neither the number of connections. In order to
provide a deeper analysis on energy, the duty of each exchanger is
illustrated in Table 10, as well as cold/warm freshwater flow rate
for all cases (Table 11).

From Tables 10 and 11 it is evident that heat exchangers are
essential in active regeneration units, since warm freshwater
is not allowed to feed the latter. Indeed, the duty of the heat
exchanger relative to regeneration unit number 3 is the one that
consumer more than 50% of total energy consumption in all
cases. On the other hand, processes, regeneration units, or the
discharge that have low temperature requirements need
necessarily a cooler, as there is not available another source of
cooling utility. In the second place, it can be inferred that warm
freshwater @ 85 °C lowers significantly the need of exchangers in
case 1, and that freshwater @ 60 °C is preferred and sufficient for
the other cases. It is to be noted also that in the base case there are
exchangers with very low duties, thing that is traduced in very
little and less efficient heat exchanger equipment. In addition, it is
clear that source freshwater temperature has a very important
impact on the network performance. For instance, the total
energy consumed in case 3 is significantly higher than in other
cases. Moreover, it is important to note that all cases that involve
warm freshwater sources comport higher number of con-
nections, since it is evident the preference for the latter than
heat exchangers themselves.

Figure 9. Flowsheet of the paper mill case study.24

Table 9. Summary of Results for the Water and Energy Network

case 0 case 1 case 2 case 3
Boix et al.
(TOPSIS)

objective function min. max. optimal min. max. optimal min. max. optimal min. max. optimal optimal

no. of connections 20 41 25 26 49 36 26 54 36 26 53 36 35

freshwater consumption (T/h) 377.64 1519.02 452.3 391.55 1519.02 461.35 391.55 1519.02 461.35 388.39 1519.02 458.96 389.3

energy consumption (MW) 34.95 129.28 41.1 36.81 171.68 41.94 36.77 189.82 41.94 42.58 177.37 49.73 36.62

no. of heat exchangers 8 17 9 3 16 4 3 16 4 3 16 4 10

Table 10. Heat Exchanger Duties and Location for All Cases

heat exchanger duty (MW)

process case 0 case 1 case 2 case 3

1 1.25
2
3 2.91
4
5 −1.41 −1.41 −1.41 −1.41
6 0.15
7
8
9
10 1.64
11
12 1.55 2.01 2.01 1.13
R1
R2 −0.13
R3 26.27 26.40 26.38 26.08
R4
discharge −5.79 −5.90 −5.89 −5.86



4. CONCLUSIONS
In this work, it is addressed the IWN allocation problem by
multiobjective optimization using a priori methods, more specifically
speaking, goal programming. Thismethod has never been explored to
the case of water and/or energy networks design although it is
performing and particularly adapted to these problems containing
binary variables where very few integer solutions exist in the feasible
region. Indeed, usually with a branch-and-Bound methodology, the
resolution of an MINLP or MILP problem is very fastidious, and
especially with water network design, because the binary variables
control the solution. Consequently, the size of the treewith traditional
methods becomes very large and the program often returns an
infeasible error message before finding a solution. In this study, goal
programming methodology has been successfully applied to the
problem of water and/or energy network design. Its effectiveness has
been successfully demonstrated by comparing the results obtained
with other researchworkswhere differentmultiobjective optimization
methods are employed. On the two specific examples studied,
namely, a traditional IWN and an IWN with energy, trade-off
solutions are obtained and compared with other solutions. Moreover,
in the latter case, different temperature freshwater sources are studied
in order to study the influence of these in heat exchangers.
Since in Boix et al.24 the authors employed a lexicographic

methodology based on the ε-constraint method and subsequent
selection by TOPSIS procedures, treating four objective
functions could constraint the solution space to a few solutions
within the Pareto front for the sake of solution times and
practicality. On the other hand, solutions in this work are
obtained within seconds, and several modifications to the case
study can be studied with little difficulty. Nevertheless, the
usefulness of a posteriori methods is not questioned if the totality
of the Pareto front is desired. Additionally, several a priori
methods can be used in order to accomplish this task, for
example, goal programming coupled with stochastic algorithms.
Relative to the objective functions chosen in this study, it is

important to say that other type of objective functions could be
formulated to obtain other type of results. The inclusion of e.g.
piping, heat exchanger, freshwater and regenerated cost can be of
great utility.

■ APPENDIX

5.1. IWN Model Statement
From the aforementioned problem (section 3.2.1), a mathemat-
ical model can be formulated. In the majority of previous works,

the problem is generally stated in terms of concentrations and
total mass flows, giving birth to bilinear terms in model
equations,3 resulting in MINLP formulations. Nevertheless, an
IWN allocation problem can be stated as an MILP by complying
with (i) only one contaminant is present on the network; (ii)
total mass flows and concentrations are formulated in terms of
partial mass flows; and (iii) contaminant flow is neglected in
comparison to water flow in concentration calculations (see
Savelski and Bagajewicz46 and Bagajewicz and Savelski9). Also, it
is assumed that water losses at regeneration units are negligible.
The mathematical model is stated as follows (note that the index
c now denotes contaminant and w water).
Water mass balance around a process:
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Contaminant mass balance around a process:
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Water mass balance around a regeneration unit:
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Contaminant mass balance around a regeneration unit:

∑ ∑= + ∈
∈ ≠ ∈

Finr fr fpr r R,r
c

m R m r
m r
c

i P
i r
c

,
, ,

(23)

Table 11. Summary of Freshwater Sources Results for All Cases

freshwater flow rate (T/h)

case 0 case 1 case 2 case 3

process @ 30 °C @ 30 °C @ 85 °C @ 30 °C @ 85 °C @ 60 °C @ 10 °C @ 85 °C @ 60 °C

1 53.71 29.51 17.85 14.63 32.72 11.94 41.78
2 18.65 9.44 9.44 12.18 13.39
3 125.33 61.07 39.90 27.82 73.15 22.86 89.44
4 52.33 11.73 42.56 21.50 2.45 4.03
5
6 15.97 13.64 2.32 11.71 4.26 7.81 8.16
7 1.93
8 16.30 16.30 16.30 11.0
9
10 176.40 150.74 25.66 129.36 47.04 86.75 89.98
11 22.17 35.53
12 23.77 30.86 30.86 12.92
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Process splitter equations:
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Regeneration unit splitter equations:
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Operating constraints
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In the last group, eqs 31 and 32 stand for the maximum
concentration allowed at inlet and outlet of each process, while
eq 33 fixes the outlet concentration of contaminant at the outlet
of the regeneration units.
In order to model the decision whether it exists connections

between process units and/or regeneration units or not,
disjunctions are added to the model, such as for a freshwater
connection to a process:
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Disjunctions such as eq 34 are added to each decision involved
in the IWN allocation problem, relative to connections between
processes, regeneration units, processes, and regenerations units,
regeneration units and processes and processes and the
discharge. In order to solve this disjunctive programming
model, a simple Big-M reformulation is employed to transform
the latter into a solvable MILP model:

≤ ≤ ∈minf yw fw maxf yw i P( ) ( ),i i i (35)

≤ ≤ ∈minf yp fp maxf yp i j P( ) ( ), ,i j i j
w

i j, , , (36)

≤ ≤ ∈minf yd fd maxf yd i P( ) ( ),i i
w

i (37)

≤ ≤ ∈ ∈f ypr fpr f ypr i P r Rmin ( ) max ( ), ,i r i r
w

i r, , ,

(38)

≤ ≤ ∈ ∈f yrp frp f yrp i P r Rmin ( ) max ( ), ,r i r i
w

r i, , ,

(39)

≤ ≤ ∈ ∈f yr fr f yr r m R r mmin ( ) max ( ), , ,r r m
w

r m,m , ,

(40)

In eqs 35−40, ywi, ypi,j, ydi, ypri,r, yrpr,i, yrr,m, i, j∈ P, r,m∈ R, i≠
j, r ≠ m are indeed binary variables.
5.2. Industrial Water and Energy Network Model Statement
The model for the current problem is made of eq 14−40 and the
following, which represent the addition of energy balances in the
network.
Energy balance around a process unit:
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Energy balance around a regeneration unit:
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Global energy balance around the discharge:
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In addition, the following equations are added in order to
model the disjunction to actually place a heat exchanger in a
process or not:

≤ ≤ ∈+ + +Q yexp Qp Q yexp i Pmin ( ) max ( ),i i i (44)

≤ ≤ ∈− − −minQ yexp Qp maxQ yexp i P( ) ( ),i i i (45)

+ ≤ ∈+ −yexp yexp i P1,i i (46)

Equations 44−46 ensure that both positive and negative heats
are between stipulated bounds. In addition, eq 46 assure that only
cooling or heating is allowed, or neither. For regeneration units
and the discharge, the disjunctions are modeled analogously.
Finally, it is important to highlight that boilers/heaters are

modeled as processes without contaminant load and by
prohibiting inlet connections different than freshwater to these
processes.
Nomenclature

Latin Symbols
nf = number of objective functions
w = weighting vector
z ̅ = reference vector
zv = Nadir vector
zr = aspiration vector
v = dummy variable
d+ = positive deviation
d− = negative deviation
f norm = normalized objective function
fmin = minimum value of the objective function



fmax = maximum relative value of the objective function
goal = goal vector
goalnorm = normalized goal
A = decision matrix
R = ranking in TOPSIS methods
P = index set of processes
np = number of processes
R = index set of regeneration units
nr = number of regeneration units
C = index set of components
nc = number of components
Mc = contaminant load
Cinmax = maximum concentration allowed at inlet
Coutmax = maximum concentration allowed at outlet
Cout = outlet concentration
minf = minimum flow rate allowed
minf = maximum flow rate allowed
yw = existence of freshwater input
yp = existence of flow between processes
yprs = existence of flow between a process and a regeneration
unit
yr = existence of flow between regeneration units
yd = existence of flow to the discharge
Fin = inlet flow rate
Fout = outlet flow rate
Tp = operation temperature of a process
Tw = freshwater temperature
Td = discharge temperature
Tr = operating temperature of a regeneration unit
fmaxp = maximum allowed flow rate to a process
fmaxr = maximum allowed flow rate to a regeneration unit
minQ = minimum allowed duty of a heat exchanger
maxQ = maximum allowed duty of a heat exchanger
yexp = existence of a heat exchanger in a process
yexr = existence of a heat exchanger in a regeneration unit
yexd = Eexistence of a heat exchanger in the discharge
Qp = heat flow of a process
Qr = heat flow of a regeneration unit
Qd = heat flow of the discharge
fp = flow rate between processes
f rp = flow rate between a regeneration unit and a process
fd = flow rate from a process to the discharge
fpr = flow rate between a process and a regeneration unit
f r = flow rate between regeneration units
f rd = flow rate from a regeneration unit and the discharge

Greek Symbols
ρ = sufficiently small positive scalar
ε = upper bound of an objective function
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Papiers: La Technique Du Pincement À L’oeuvre. Pulp Pap. Can. 2002,
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(30) Jaszkiewicz, A.; Słowiński, R. The “Light Beam Search”
ApproachAn Overview of Methodology Applications. Eur. J. Oper.
Res. 1999, 113, 300−314.
(31) Messac, A.; Sundararaj, G.; Tappeta, R.; Renaud, J. The Ability of
Objective Functions to Generate Non-Convex Pareto Frontiers. In 40th
Structures, Structural Dynamics, and Materials Conference and Exhibit;
American Institute of Aeronautics and Astronautics.
(32) Chen, A.; Xu, X. Goal Programming Approach to Solving
Network Design Problem with Multiple Objectives and Demand
Uncertainty. Expert Syst. Appl. 2012, 39, 4160−4170.
(33) Chang, C.-T. Multi-Choice Goal Programming with Utility
Functions. Eur. J. Oper. Res. 2011, 215, 439−445.
(34) Moghaddam, K. S. Multi-Objective Preventive Maintenance and
Replacement Scheduling in a Manufacturing System Using Goal
Programming. Int. J. Prod. Econ. 2013, 146, 704−716.
(35) Zhou, A.; Qu, B.-Y.; Li, H.; Zhao, S.-Z.; Suganthan, P. N.; Zhang,
Q. Multiobjective Evolutionary Algorithms: A Survey of the State of the
Art. Swarm Evol. Comput. 2011, 1, 32−49.
(36) Srinivas, N.; Deb, K. Muiltiobjective Optimization Using
Nondominated Sorting in Genetic Algorithms. Evol. Comput. 1994, 2,
221−248.
(37) Brooke, A.; Kendrick, D.; Meeraus, A.; Raman, R. GAMS User’s
Guide; GAMS Development Coorporation: Washington, DC, 1998.
(38) Duran, M. A.; Grossmann, I. E. An Outer-Approximation
Algorithm for a Class of Mixed-Integer Nonlinear Programs. Math.
Program. 1986, 36, 307−339.
(39) IBM ILOGCPLEXOptimization Studio; IBM: Armonk, NY, 2013.
(40) Wac̈hter, A.; Biegler, L. T. An Interior Point Algorithm for Large-
Scale Nonlinear Optimization with Applications in Process Engineering;
Carnegie Mellon University, Pittsburgh, 2002.
(41) Wac̈hter, A.; Biegler, L. T. On the Implementation of an Interior-
Point Filter Line-Search Algorithm for Large-Scale Nonlinear
Programming. Math. Program. 2005, 106, 25−57.
(42) Gomez, A. Optimisation Technico-Économique Multi-Objectif
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