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Multiobjective Optimization Using Goal Programming for Industrial Water Network Design

The multiobjective optimization (MOO) of industrial water networks through goal programming is studied using a mixed-integer linear programming (MILP) formulation. First, the efficiency of goal programming for solving MOO problems is demonstrated with an introductive mathematical example and then with industrial water and energy networks design problems, formerly tackled in literature with other MOO methods. The first industrial water network case study is composed of 10 processes, 1 contaminant, and 1 water regeneration unit. The second, a more complex real industrial case study, is made of 12 processes, 1 contaminant, 4 water regeneration units, and the addition of temperature requirements for each process, which implies the introduction of energy networks alongside water networks. For MOO purposes, several antagonist objective functions are considered according to the case, such as total freshwater flow rate, number of connections, and total energy consumption. The MOO methodology proposed is demonstrated to be very reliable as an a priori method, by providing Pareto-optimal compromise solutions in significant less time compared to other traditional methods for MOO.

INTRODUCTION

The interactions between industry and environment were practically nonexistent or considered as a secondary concern a few years ago. During the last decades, industrialization has contributed to rapid depletion of natural resources such as water or natural gas. Consequently, there is a real need in industry to ensure minimum natural resources consumption, while maintaining good production levels. In particular, industrial development is always linked to the use of high volumes of freshwater. [START_REF] Boix | A Multiobjective Optimization Framework for Multicontaminant Industrial Water Network Design[END_REF][START_REF] Boix | Multiobjective Optimization of Industrial Water Networks with Contaminants[END_REF] Moreover, a direct consequence of petroleum refineries, as well as chemical and petrochemical industries intensive usage of water, is that wastewater streams contain several contaminants and create an environmental pollution problem. [START_REF] Bagajewicz | On the Appropriate Architecture of the Water/Wastewater Allocation Problem in Process Plants[END_REF] Twenty percent of the world total water consumption has been recently attributed to industry. [START_REF]Water in a Changing World[END_REF] However, in a great portion of industrialized countries, this water consumption widely exceeds 50%. By developing cleaner and more economic industrial water networks (IWN), freshwater consumption as well as wastewater can be reduced dramatically. Nevertheless, feasible networks must ensure reasonable costs and do not weaken productivity. In addition, the great majority of involved processes need water with a given quality at a fixed temperature. Hence, huge amounts of energy are also used in order to cool and/or heat water to reach operating temperatures by means of cold and heat utilities. There is thus a critical need in reducing both rejects of contaminants and the consumption of primary resources such as water and energy.

In previous works, IWN allocation problems have been tackled by three main approaches, including graphical (pinch) methodology, [START_REF] Linnhoff | Pinch Technology Has Come of Age[END_REF][START_REF] Dunn | Process Integration Technology Review: Background and Applications in the Chemical Process Industry[END_REF][START_REF] Jacob | Analyse Et Optimisation Des Reśeaux D'eau Dans Les Procedeś De Fabrication Des Pates Et Papiers: La Technique Du Pincement A ̀L'oeuvre[END_REF][START_REF] Manan | Water Pinch Analysis for an Urban System: A Case Study on the Sultan Ismail Mosque at the Universiti Teknologi Malaysia (utm)[END_REF] mathematical programming, [START_REF] Bagajewicz | On the Use of Linear Models for the Design of Water Utilization Systems in Process Plants with a Single Contaminant[END_REF][START_REF] Feng | Grass-Roots Design of Regeneration Recycling Water Networks[END_REF][START_REF] Huang | A Mathematical Programming Model for Water Usage and Treatment Network Design[END_REF][START_REF] Bagajewicz | A Review of Recent Design Procedures for Water Networks in Refineries and Process Plants[END_REF] and synthesis of mass exchange networks. [START_REF] El-Halwagi | Pollution Prevention Through Process Integration: Systematic Design Tools[END_REF][START_REF] Hallale | Supertargeting for Mass Exchange Networks: Part I: Targeting and Design Techniques[END_REF][START_REF] Shafiei | System Closure in Pulp and Paper Mills: Network Analysis by Genetic Algorithm[END_REF] The main drawback of the former, although easy to understand, is the difficulty of dealing with several contaminants and complex water networks. On the other hand, due to modern mathematical programming solving algorithms, pinch-based techniques have been competed by mixed-integer programming approaches either linear (MILP) or nonlinear (MINLP). The linear model is generally restricted to simple water networks involving only one contaminant, while the nonlinear one can be applied to more complex networks. [START_REF] Boix | A Multiobjective Optimization Framework for Multicontaminant Industrial Water Network Design[END_REF] Besides the mathematical model, IWN allocation problems entail several objective functions which are often antagonist between themselves, for example, as discussed above, minimizing resources consumption while maximizing productivity. In fact, very few studies take into account several objectives simultaneously. It is more common to choose a cost objective function to minimize. However, it does not guarantee a simple topology for the network, and it proposes only suitable solutions according to one criteria.

The solution of multiobjective optimization (MOO) problems differs from single objective optimization problems because there is no global optimal solution in a mathematical sense, due to the contradictory nature of the set of objectives involved; that is, a solution that minimizes all objectives at the same time does not exist. On the contrary, there is a virtually infinite number of equally significant solutions (i.e., the Pareto front) that are tradeoff solutions between the objectives. In fact, the best solution (without loss of generality) among the set of solutions should be identified by a decision maker (DM), in accordance with its own criteria. [START_REF] Rangaiah | Multi-Objective Optimization in Chemical Engineering: Developments and Applications[END_REF][START_REF] Collette | Multiobjective Optimization: Principles and Case Studies[END_REF] Indeed, the purpose of solving a MOO problem is, in most cases, to find a trade-off solution (or a few of them), and there are several means to achieve this goal. One way is to determine the Pareto front in its totality and choose the trade-off solution a posteriori, or offline. The other set of methods consists in finding one trade-off solution a priori, or online, by solving one or a series of single objective optimization problems. In the former, the advantage is that the totality of the Pareto front is found, with the important drawback that solution times are often prohibitive, since a very big number of sub problems have to be solved, frequently in a stochastic way. [START_REF] Goldberg | Genetic Algorithms[END_REF][START_REF] Fonseca | Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization[END_REF] This drawback is very limiting in the context of large-scale MILP/MINLP (as IWN allocation problems might be), since solution times for a single sub problem is often prohibitive by itself. Moreover, as the number of objective functions increases, so do complexity and solution times. On the other hand, a priori methods do not provide the entire Pareto front, although any solution found is inside it. The essential advantage is that DM preferences are included before the optimization, so the solution of the MOO problem is reduced to the solution of one or a few single objective optimization problems. [START_REF] Rangaiah | Multi-Objective Optimization in Chemical Engineering: Developments and Applications[END_REF][START_REF] Collette | Multiobjective Optimization: Principles and Case Studies[END_REF] The latter is more than convenient in large-scale optimization problems, for the reasons mentioned above in this paragraph.

Only a few studies have dealt with the MOO of IWN (Vamvakeridou-Lyroudia et al. 2005; [START_REF] Vamvakeridou-Lyroudia | Fuzzy Multiobjective Optimization of Water Distribution Networks[END_REF] [START_REF] Mariano-Romero | Multi-Objective Optimization of Water-Using Systems[END_REF] Tanyimboh et al. 2010 [START_REF] Tanyimboh | Multiobjective Optimization and Multicriteria Decision Making for Water Networks[END_REF] ). Two studies [START_REF] Vamvakeridou-Lyroudia | Fuzzy Multiobjective Optimization of Water Distribution Networks[END_REF][START_REF] Mariano-Romero | Multi-Objective Optimization of Water-Using Systems[END_REF] carry out the optimization of single-contaminant distribution networks each one according to two different objectives, such as total freshwater consumption and capital or/ and operating costs. While Vamvakeridou-Lyroudia et al. [START_REF] Vamvakeridou-Lyroudia | Fuzzy Multiobjective Optimization of Water Distribution Networks[END_REF] employed fuzzy MOO as the decision-making tool and used stochastic algorithms to find the Pareto front, Mariano-Romero et al. [START_REF] Mariano-Romero | Multi-Objective Optimization of Water-Using Systems[END_REF] linked the principles of pinch technology with mathematical programming to obtain Pareto-solutions with a heuristic algorithm without using/proposing any decisionmaking tool. Similarly, Farmani et al. [START_REF] Farmani | Evolutionary Multi-Objective Optimization of the Design and Operation of Water Distribution Network: Total Cost vs Reliability vs Water Quality[END_REF] minimized total cost, reliability, and water quality by using a genetic algorithm to construct the Pareto front, and likewise, Tanyimboh et al. [START_REF] Tanyimboh | Multiobjective Optimization and Multicriteria Decision Making for Water Networks[END_REF] by using analytic hierarchy process as the DM.

More recently, Boix et al. [START_REF] Boix | A Multiobjective Optimization Framework for Multicontaminant Industrial Water Network Design[END_REF][START_REF] Boix | Multiobjective Optimization of Industrial Water Networks with Contaminants[END_REF][START_REF] Boix | Minimizing Water and Energy Consumptions in Water and Heat Exchange Networks[END_REF] proposed the MOO of industrial water networks both single and multicontaminant by using the εconstraint method to identify the Pareto front, as well as the simultaneous water-energy network allocation. Among the objective functions, the authors employed, for example, total freshwater consumption, number of connections between processes, and total energy consumed by the network. Also, the authors employed as DM process the TOPSIS [START_REF] Ren | Comparative Analysis of a Novel M-TOPSIS Method and TOPSIS[END_REF] (Technique for Order of Preference by Similarity to Ideal Solution) method.

As noted above, none of the previous works have addressed the MOO of IWN by employing a priori solution methods and, what is more, by using goal programming. In fact, all the works are based in the construction of the Pareto front by several means, mostly by stochastic algorithms or mathematical programming along with ε-constraint methodology. However, it is known that these methods encounter some difficulties to deal with large and complex networks and it is always a long task (with high computational times) to build a Pareto front. Furthermore, the problem of water and/or energy network design involve not only continuous variables but also binary variables that make the resolution very difficult in some cases. To overcome these difficulties, we propose here an alternate methodology for solving MOO of IWN in a very efficient way, by using a priori solution methods (specifically goal programming) and specifying DM priorities inside the optimization problem. Case studies include networks tackled before by Boix et al. [START_REF] Boix | Multiobjective Optimization of Industrial Water Networks with Contaminants[END_REF][START_REF] Boix | Minimizing Water and Energy Consumptions in Water and Heat Exchange Networks[END_REF] Moreover, we present comparisons among the proposed methodology, other methods, and the results obtained by the other authors, in order to demonstrate its efficiency and reliability to solve MOO problems, generally speaking.

In the subsequent sections, MOO solution methods employed are introduced and explained and every case study is introduced punctually.

SOLUTION METHODS FOR MULTIOBJECTIVE

OPTIMIZATION MOO encompasses the solution of optimization problems with two or more objective functions. Generally speaking, a MOO problem is mathematically formulated, as it is illustrated in Problem 1. (Problem 1)
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As shown above, the problem has nf objectives, n continuous variables (i.e., x) and m discrete variables (i.e., y) as well as the vectors of equality and inequality constraints (i.e., respectively, h(x, y) and g(x, y)).

There are several methods for the solution of MOO problems, where most of them imply the transformation of the original problem in a series of single-objective optimization problems.

2.1. Methods Classification. Solution methods for the solution of MOO problems are generally classified in accordance to the number of solutions generated and the role of the DM inside the problem solution. This classification, adopted by Miettinen [START_REF] Miettinen | Nonlinear Multiobjective Optimization[END_REF] and Diwekar 27 is shown in Figure 1.

Methods are initially classified into two groups (Figure 1): generating methods and preference-based methods. The former, as the name indicates, generate one or several Pareto-optimal solutions without taking into consideration DM choices. It is only after all solutions are generated that the DM comes into play. On the other hand, preference-based methods use DM preferences inside the different stages involved in the solution of the problem.

Generating methods are subsequently subdivided into three categories:

• First, the nonpreference methods, as their name indicates, do not consider preference-based solutions. • Second and third, the a posteriori methods are based on the solution of the original MOO problem by solving a series of single-objective optimization problems in order to find the Pareto front. These two a posteriori methods differ only in the way they are solved, either by scalarization approaches (e.g., ε-constraint or weighting method) or by stochastic algorithms (e.g., simulated annealing or genetic algorithms). Afterward, obtained solutions are evaluated by the DM, which picks the solution to implement. It is important to highlight the significance of the DM in these methods, since the solution method is not capable by itself to provide a unique solution. Contrariwise, preference-based methods are subdivided into two groups.

• A priori preference methods: DM preferences are initially included into the MOO problem, and then transformed into one or several single-objective problems. Finally, a unique trade-off solution is obtained according to DM preferences included in first place. Reference point method and goal programming are common examples of these methods.

• Interactive methods: In this group, there is an active interaction of the DM during the resolution process. After each ith iteration (i.e., each single-objective problem solution) the DM proposes changes to the Pareto-optimal ith values of the objective functions and proposes further changes (either improvement, trade-off, or none) for each one of the objective functions. These preferences are then included into the subsequent iteration. The process stops when the DM is satisfied with the current solution. The most notorious interactive method is the NIMBUS method. 26,28,29 2.2. A Priori Preference Methods. In the present work, two a priori preference methods, namely, reference point method and goal programming are going to be implemented in an introductive mathematical example to show its usefulness, as well as a posteriori methods coupled with decision-making tools. Afterward, two IWN allocation problems are solved with goal programming whose results are going to be compared against solutions with a posteriori methods found in literature.

2.2.1. Reference Point Methods. These methods are based on the specification by the DM of a reference vector z ̅ = [z ̅ 1 ,...,z ̅ nf ], which includes aspiration levels for each objective function, and then are projected into the Pareto front. In other words, the nearest Paretooptimal solution to the reference vector is found. This distance can be measured in several ways (cf. Colette and Siarry [START_REF] Collette | Multiobjective Optimization: Principles and Case Studies[END_REF] ). Indeed, the distance is measured by an achievement or scalarizing function. [START_REF] Rangaiah | Multi-Objective Optimization in Chemical Engineering: Developments and Applications[END_REF] Here, the advantage is that the method is able to generate Paretooptimal solutions no matter how the reference point is specified (i.e., they are attainable or not). [START_REF] Rangaiah | Multi-Objective Optimization in Chemical Engineering: Developments and Applications[END_REF] The method is illustrated in Figure 2.

There are several achievement functions: in this work, the Tchebychev (or min-max) [START_REF] Collette | Multiobjective Optimization: Principles and Case Studies[END_REF][START_REF] Jaszkiewicz | Light Beam Search" ApproachAn Overview of Methodology Applications[END_REF] function is implemented (Problem 2).
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In Problem 2, z i , ∀i ∈ F are the reference points, w = [w 1 ,...,w nf ] is the weighting vector, w i ≥ 0, ∀i ∈ F and ρ is a positive scalar sufficiently small. Note that the set F is the set containing the objective functions and nf the number of objective functions. One particularity of this method relies on the weighting vector definition, which is defined in turn by vectors z r and z v such as
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The vector z r is the aspiration vector while z v is the nadir vector. It is important to note that these vectors can or cannot be attainable; that is, they can or not correspond to feasible alternatives. It is possible to transform Problem 2 in an equivalent minimization problem by adding one additional variable v and by removing the max operator:
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According to Collette and Siarry, [START_REF] Collette | Multiobjective Optimization: Principles and Case Studies[END_REF] for this method to well behave, it is necessary to be capable of choose wisely the reference vector with the purpose of assuring the solution obtained to be consistent with the original problem. Moreover, this method only allows to find Pareto-optimal solutions inside nonconvex regions under certain conditions (see Messac et al. 31 ).

2.2.2. Goal Programming. In contrast to reference point method, goal programming does not constraint to work in a convex region. This method consists in transforming the MOO problem in a single-objective problem in the following way: [START_REF] Collette | Multiobjective Optimization: Principles and Case Studies[END_REF] Let goal = [goal 1 ,..., goal nf ] be the vector that contains the levels of aspiration (i.e., the goals) of each objective 
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Similar to the reference point method, w i ≥ 0, ∀i ∈ F, ∑ i∈F w i = 1 is a necessary condition. Depending on how it is desired to achieve the goal of each function, a different combinations of d i + , d i -could be minimized, as it is shown in Table 1.

It is important to highlight that in the two first cases the ith objective function value is allowed to go further in the opposite direction, when d i + ∨ d i -= 0, ∀i ∈ F. Goal programming basis is then to be as close as possible to the minimum of each objective function by allowing positive or negative deviations (Figure 3).

On the other hand, it is important to normalize both objective function values and goals:
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In eqs 2 and 3, f i min , f i max , ∀i ∈ F are respectively the minimum and maximum value of each ith objective function attained in individual single-objective optimizations.

Finally, it is important to notice that goal programming is the most employed method for multiobjective optimization. [START_REF] Chang | Multi-Choice Goal Programming with Utility Functions[END_REF] 2.3. A Posteriori Preference Methods. These methods are based in the first place on the construction of the Pareto front and then the implementation of multicriteria decision-making (MCDM) tools.

2.3.1. Pareto Front Generation. The Pareto front can be generated traditionally by scalarization approaches or stochastic methods.

Indeed, it can be generated by any method in capacity to produce Pareto-optimal solutions, so even a priori methods are suitable for this task on conjunction with other algorithms. [START_REF] Moghaddam | Multi-Objective Preventive Maintenance and Replacement Scheduling in a Manufacturing System Using Goal Programming[END_REF] By using these methods, this algorithm deals with changing the weighting coefficients and/or the aspiration levels.

On the other hand, the most common method to generate Pareto-optimal solutions is the ε-constraint method. [START_REF] Miettinen | Nonlinear Multiobjective Optimization[END_REF] This method consists in minimizing one of the objective functions at a time and by transforming the others in bounds through inequality constraints. This implies some kind of knowledge of minimum and maximum values of objective functions, and in consequence, the first step is to do single-objective optimizations of each problem separately. The method is stated in Problem 5.
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In Problem 5, the vector ε = [ε 1 ,...,ε nf ] is the upper bound of the objective functions f j , ∀j ∈ F, j ≠ i. The solution of Problem 5 is always weak Pareto-optimal, and is Paretooptimal if and only if the solution is unique. Subsequently, to guaranty Pareto-optimality, it is needed to solve nf problems. [START_REF] Rangaiah | Multi-Objective Optimization in Chemical Engineering: Developments and Applications[END_REF] The advantage of this method is that it is in capacity to find every Pareto-optimal solution, even if the The ith objective function value is allowed to be greater than or equal to the goal i.

positive d i +
The ith objective function value is allowed to be less than or equal to the goal i.

negative d i -
The ith objective function value desired has to be equal to the goal i.

null d i + + d i - Figure 3.
Objective deviations. [START_REF] Chen | Goal Programming Approach to Solving Network Design Problem with Multiple Objectives and Demand Uncertainty[END_REF] Figure 2. Reference point method. [START_REF] Collette | Multiobjective Optimization: Principles and Case Studies[END_REF] problem is nonconvex. Therefore, the Pareto-front obtainment is due to the solution of several single-objective optimizations by changing functions bounds. Practically, however, it is not always easy to find feasible upper bounds for Problem 5. Also, it can be difficult to determine which problem has to be optimized subsequently. Finally, when the problem has several objective functions, the number of single-objective optimizations that have to be carried out increases substantially, which is not desirable in most cases.

Beyond mathematical programming methods to generate the Pareto-front, stochastic methods have become popular in order to generate the Pareto front in MOO problems. Among these, evolutionary algorithms are the most commonly used since they are easy to implement and are effective. Evolutionary algorithms are based on the emulation of natural selection mechanisms [START_REF] Zhou | Multiobjective Evolutionary Algorithms: A Survey of the State of the Art[END_REF] and are particularly appropriated in order to solve MOO problems thanks to their capacity to handle several solutions simultaneously and their ability to tackle different kinds of problems without knowing important information about the problem structure (e.g., derivatives). Nevertheless, evolutionary algorithms require a very significant amount of time to be solved to such an extent that the solution of large-scale problems is prohibitive. The most widely spread evolutionary algorithm is the genetic algorithm and its variants (e.g., NSGA-II [START_REF] Srinivas | Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms[END_REF] ).

Decision-Making Tools.

A posteriori methods generate several Pareto-optimal solutions, based in the dominance relationship (see Rangaiah and Bonilla-Petriciolet [START_REF] Rangaiah | Multi-Objective Optimization in Chemical Engineering: Developments and Applications[END_REF] and Collette and Siarry [START_REF] Collette | Multiobjective Optimization: Principles and Case Studies[END_REF] ). This relationship allows to filter solutions and to retain only comparable results. Yet, it remains the choice of "the best" solutions according to DM preferences. There are several decision-making tools, but in this study, the interest lies only with TOPSIS based methods.

2.3.2.1. M-TOPSIS. The idea beyond M-TOPSIS is described next. [START_REF] Ren | Comparative Analysis of a Novel M-TOPSIS Method and TOPSIS[END_REF] Let S = [1,...ns] be a set with ns alternative solutions of the objective functions and A ns,nf a matrix with ns rows and nf columns:

1. Normalize the decision matrix A, accordingly:
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2. Determine the ideal positive and negative solutions of matrix A:
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3. Compute the distance between each solution and the ideal positive and negative solution using n-dimensional Euclidean distance:
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4. Calculate the distance of each solution to point O (min
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5. Class solutions in descendant order according to R i . Consequently, the solution with greater R i is the best trade-off solution. 2.3.2.2. LMS-TOPSIS. This modification we propose, is based on a linear normalization rather than using the norm as M-TOPSIS does. Indeed, this normalization is the same employed when using goal programming in this study:
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The aforementioned modification is proposed due to poor performance of traditional and M-TOPSIS procedures in nontrivial cases, as it is going to be demonstrated in the subsequent sections.

CASE STUDIES

As case studies, we propose an introductory mathematical example to show the followed methodology and two IWA problems, one traditional and one with simultaneous water and energy allocation. For the introductory example, we implemented the two a priori methods addressed above (i.e., reference point method and goal programming) and one a posteriori method, that is, generation of the Pareto front by stochastic methods and decision-making by TOPSIS methods. On the other hand, for the IWA problems, we implemented goal programming in order to compare a priori methods results and the results obtained by Boix et al. [START_REF] Boix | Multiobjective Optimization of Industrial Water Networks with Contaminants[END_REF][START_REF] Boix | Minimizing Water and Energy Consumptions in Water and Heat Exchange Networks[END_REF] by implementing a posteriori methods. All a priori implementations were modeled in GAMS. [START_REF] Brooke | GAMS User's Guide[END_REF] For the MINLP problem (i.e., the introductory example), the outer-approximation solver DICOPT [START_REF] Duran | An Outer-Approximation Algorithm for a Class of Mixed-Integer Nonlinear Programs[END_REF] was used coupled with CPLEX [START_REF]IBM ILOG CPLEX Optimization Studio[END_REF] and IPOPT. [START_REF] Wachter | An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering[END_REF][START_REF] Wachter | On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming[END_REF] For the MILP problems (i.e., the IWA problems), CPLEX [START_REF]IBM ILOG CPLEX Optimization Studio[END_REF] was used as the solver. The Pareto front of the introductive example was generated by the genetic algorithm, NSGA-II by using the multipurpose solver MULTIGEN, [START_REF] Gomez | Optimisation Technico-E ćonomique Multi-Objectif De Systemes De Conversion D'energie: Cogeńeŕation E ́lectricite-Hydrogeǹe A ̀Partir D'un Reácteur Nucleáire De Iveme Geńeŕation[END_REF] whose interface is available in Microsoft Excel and ran several times before the construction of the Pareto front. In all cases, weight factors are defined as w i = 1/nf, in order to obtain a trade-off solution without any explicit preference to any objective in particular. In addition, the goal vector in goal programming was defined for all cases as goal i = ((f i max + 15 f i min )/16), ∀i ∈ F, and consequently, the normalized goal vector is always goal i norm = 0.062, ∀i ∈ F in order to locate goals as close as possible to each function minimum. With the latter in place, the objective in goal programming is then to minimize positive deviation (i.e., d i + , ∀i ∈ F).

Introductive Mathematical

Example. This biobjective MINLP problem has been proposed by Papalexandri and Dimkou. [START_REF] Papalexandri | A Parametric Mixed-Integer Optimization Algorithm for Multiobjective Engineering Problems Involving Discrete Decisions[END_REF] The formulation is the following: A first analysis of these results leads toward the conclusion that all methods are capable of obtain trade-off solutions. Although, important differences can be noted, possibly due to the normalization method, notably between different TOPSIS implementations. This observations are certainly noted in Tables 3 and4, which show the normalized gap between a priori and a posteriori methods. Moreover, it must be highlighted that binary variables of the problem (i.e., y 1 , y 2 , y 3 ) are always equal to zero and also that x 2 ≅ 40 in all cases. Due to this, the differences between x 1 and x 3 are considerable, since the objective functions are not sufficiently sensitive to these variables.
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On the other hand, the problem was exploited in order to analyze the efficiency of the different methods. In fact, f 1 was modified by adding 1000. The objective was to verify if the solutions were the same, since a scalar introduction in an objective function does not change the nature of the optimization problem. Results are shown in Table 5 and Figure 5.

Contrary to the first case, the solution is not the same as it was expected with certain methods. Indeed, M-TOPSIS does not manage to achieve the good solution, while LMS-TOPSIS does achieve it, due to the objective functions normalization proposed. On the other hand, goal programming is able to find the correct solution while the reference point method is not, and is only successful if the aspiration vector is changed. In fact, these results highlight the essential relationship between the reference point method and the aspiration vector. Relative to it, a sensitivity analysis of the solution obtained in function of the chosen vectors was carried out (see Figure 6). It is necessary to clarify that the illustrated variation corresponds to ≈10% of the Pareto front. The latter comports a considerable gap, mainly relative to other methods.

3.2. Industrial Water Network. The formulation of the IWN allocation problem is the same as in previous works. [START_REF] Boix | Multiobjective Optimization of Industrial Water Networks with Contaminants[END_REF][START_REF] Bagajewicz | On the Appropriate Architecture of the Water/Wastewater Allocation Problem in Process Plants[END_REF][START_REF] Bagajewicz | On the Use of Linear Models for the Design of Water Utilization Systems in Process Plants with a Single Contaminant[END_REF] The way to model a IWN allocation problem is based on the concept of superstructure. [START_REF] Yeomans | A Systematic Modeling Framework of Superstructure Optimization in Process Synthesis[END_REF][START_REF] Biegler | Systematic Methods of Chemical Process Design[END_REF] From a given number of regeneration units and processes, all possible connections between them may exist, except recycling to the same unit. This constraint forbids self-recycles on process and regeneration units, although the latter is often relevant in some chemical processes. For each water-flow rate using process, input water may be freshwater, output water from other process and/or regenerated water. Indeed, output water from a process may be directly discharged, distributed to another process and/or to regeneration units. Similarly, a regeneration unit may receive water from another regeneration unit. For the sake of simplicity and generalization, the problem is built as a set of black boxes. In this kind of approach, physical or chemical phenomena occurring inside each process is not taken into account. In addition, each process has a contaminant load over the input flow rate of water. A general view of the superstructure is given in Figure 7. 1. The existence of freshwater input to a process yw i , ∀i ∈ P. 2. The existence of flow between two processes yp i,j , ∀i, J ∈ P, I ≠ J.

The existence of flow between a process and a

regeneration unit ypr i,r , ∀i ∈ P, r ∈ R. 4. The existence of flow between a regeneration process and a process yrp r,i , ∀r ∈ R, i ∈ P. 5. The existence of flow between two regeneration units yr r,s , ∀r,s ∈ R. 6. The existence of flow between a process and the discharge yd i , ∀i ∈ P.

The inlet and outlet of each process and regeneration unit

for each component Fin i c , Fin r c , Fout i c , Fout r c , ∀i ∈ P, r ∈ R, c ∈ C. In order to (objectives):

1. Minimize the number of connections. 2. Minimize freshwater consumption.

3. Minimize regenerated water consumption.

Optimization Problem Formulation.

The IWN allocation problem comports several objective functions. In this work, number of connections, freshwater consumption, and regenerated water consumption were chosen and are stated in eq 9-11.

∑ ∑ ∑ = + + + ∈ ≠ ∈ ∈ ∈

J y p y w y r p y p r (

)

i j P i j ij i P i i P r R r i i R 1 , , , , , (9) 
∑ = ∈ J f w i P i 2 (10) ∑ = ∈ ∈ J f r p r R i P r i 3 , , (11) 
The resulting optimization problem to solve is the following:

J J J min( , , ) 1 2 3
subject to eqs 14-33, 35-40 (described in the Appendix).

3.2.3. Results. The studied network is composed of ten processes and one regeneration unit. The contaminant load of each process is presented in Table 6. The regeneration unit is capable of an outlet concentration of contaminant of 5 ppm, and the value of minf is chosen as 0 T/h. It must be highlighted that the value of these parameters are the same as in Boix et al. [START_REF] Boix | Multiobjective Optimization of Industrial Water Networks with Contaminants[END_REF] Single-objective optimization (i.e., minimizations) were carried out for each objective function, revealing not significantly different lower and upper bound for the latter related to the results of Boix et al. [START_REF] Boix | Multiobjective Optimization of Industrial Water Networks with Contaminants[END_REF] Maximum attained values correspond to the Subsequently, a multiobjective optimization by using goal programming was accomplished following the same methodology as in the introductive mathematical example. Results are compared with the results of Boix et al. [START_REF] Boix | Multiobjective Optimization of Industrial Water Networks with Contaminants[END_REF] in the Pareto front obtained by the latter authors (Figure 8 and Table 7).

In Figure 8, the pareto fronts are built with the ε-constraint methodology for each number of connections. Indeed, to deal with MOO, the third objective (number of connections) is fixed as a constraint while the two other objectives are minimized, for more information the reader can referred to Boix et al. [START_REF] Boix | A Multiobjective Optimization Framework for Multicontaminant Industrial Water Network Design[END_REF] As it can be seen from the aforementioned results, the results obtained are indeed different from those of Boix et al. [START_REF] Boix | Multiobjective Optimization of Industrial Water Networks with Contaminants[END_REF] In fact, the former are more suited as a trade-off solution, since all objective functions are in the midst between bounds, while in Boix et al. [START_REF] Boix | Multiobjective Optimization of Industrial Water Networks with Contaminants[END_REF] it can be noted that total freshwater flow rate is at its lower bound, heavily punishing regenerated water consumption. The results obtained are also in accordance to other works, which are also related with the same network (see Bagajewicz and Savelski [START_REF] Bagajewicz | On the Use of Linear Models for the Design of Water Utilization Systems in Process Plants with a Single Contaminant[END_REF] and Feng et al. [START_REF] Feng | Grass-Roots Design of Regeneration Recycling Water Networks[END_REF] ).

3.3. Industrial Water and Energy Network. The case of simultaneous water and energy network allocation is tackled in the present section. The problem comports the same elements of an IWN allocation problem, with the addition of energy requirements for each process and/or regeneration units. These energy requirements can be fulfilled by several different means, that is, heat exchangers and/or by warming freshwater in a boiler. In fact, in the current work, we present four different cases by varying the types of utilities and/or energy requirements. The cases are stated as shown in Table 8.

The last case is added to emulate a situation where the freshwater source is located in a cold area. Indeed, by adding duty constraints to heat exchangers gives the problem an approach closer to reality. Moreover, the case study is based on an existing paper mill facility, as it will be discussed later.

3.3.1. Problem Statement. This type of problem, as said earlier, shares almost all elements with the IWN allocation problem. In fact, all elements in Section 3.2.1 apply, and the following are added or modified:

Given (inputs): 9. The operating temperature of a process Tp i , i ∈ P. 10. Freshwater temperature Tw, and discharge temperature Td. 11. The operating temperature of a regeneration unit Tr r , r ∈ R. 12. The maximum inlet flow rate to a process f maxp i , i ∈ P, and to a regeneration unit f maxr r , r ∈ R. 13. The minimum and maximum duty of the heat exchanger associated with a process or regeneration unit minQ, maxQ. Determine (variables): 8. The existence of a heat exchanger (i.e., cooler or heater) in a process, a regeneration unit or the discharge. yexp i + , yexp i -, yexr r + , yexr r -, yexd + , yexd -, i ∈ P, r ∈ R In order to (objectives): 4. Minimize total energy consumption 5. The number of heat exchangers in the network It is important to note that in the present case study total regenerated water consumption is not considered as an objective function, in order to be in accordance with the case study of Boix et al. [START_REF] Boix | Minimizing Water and Energy Consumptions in Water and Heat Exchange Networks[END_REF] 3.3.2. Optimization Problem Formulation. The objective functions related to this case study, according to the aforementioned, are J 1 , J 2 and in addition eqs 12 and 13. Total energy consumption:

∑ ∑ = + + + + + ∈ + - ∈ + - + - J Q p Q p Q r Q p Qd Qd ( ) ( ) 
( ) i P i i r R i i 4 (12) 
Number of heat exchanges in the network:

∑ ∑ = + + + + + ∈ + - ∈ + - + - J yexp yexp yexr yexr yexd yexd ( ) ( ) 
( ) i P i i r R i i 5 (13) 
In accordance, the resulting optimization problem is the following: [START_REF] Boix | Minimizing Water and Energy Consumptions in Water and Heat Exchange Networks[END_REF] Freshwater temperature = 30 °C, only heat exchangers without duty constraints. 1

J J J J min( , , , ) 1 2 4 5
Freshwater @ 30 °C, heat exchangers with minimum duty = 1000 kW and warm water @ 85 °C. 2

Freshwater temperature @ 30 °C, heat exchangers with minimum duty = 1000 kW and warm water @ 85 and 60 °C.

3
Freshwater @ 10 °C, heat exchangers with minimum duty = 1000 kW and warm water @ 85 and 60 °C.

subject to eqs 14-33, 35-40, 41-46 (described in the Appendix).

Results

. The case study is the same as the one treated by Boix et al., [START_REF] Boix | Minimizing Water and Energy Consumptions in Water and Heat Exchange Networks[END_REF] which is in turn an adaptation of a real-world application of a paper mill plant 8 (Figure 9). The case study is made up of 12 processes, and four regeneration units. For this case, minf is fixed to 2 T/h, since lower flow rates would imply piping inferior to 1 inch in diameter. These and other parameters value are the same as in Boix et al. [START_REF] Boix | Minimizing Water and Energy Consumptions in Water and Heat Exchange Networks[END_REF] Table 9 shows the results of each case. The minimum and maximum attained values correspond to single-objective optimizations.

From Table 9 several items should be pointed out: in the first place, results between the base case and those from Boix et al. [START_REF] Boix | Minimizing Water and Energy Consumptions in Water and Heat Exchange Networks[END_REF] make evident significant gaps between the objective functions. Relative to minimum and maximum attained values, results of case 0 are evidently real trade-off solutions. In fact, as goal programming is employed, the latter is assured in comparison to a posteriori methods (i.e., Boix et al. [START_REF] Boix | Minimizing Water and Energy Consumptions in Water and Heat Exchange Networks[END_REF] best solution). It is also important to notice that cases offering the option to feed processes with warm water (cases 1, 2, and 3) propose optimal solutions with a low number of heat exchangers (only 4). However, the imposed lower bound for the number of heat exchangers (3) contributes to the design of a more realistic network. Indeed, the presence of heat exchangers could involve higher operating, raw material and energy costs but lower maintenance and capital costs for equipment. Nevertheless, energy consumed by the network in these cases is not highly penalized, and neither the number of connections. In order to provide a deeper analysis on energy, the duty of each exchanger is illustrated in Table 10, as well as cold/warm freshwater flow rate for all cases (Table 11).

From Tables 10 and11 it is evident that heat exchangers are essential in active regeneration units, since warm freshwater is not allowed to feed the latter. Indeed, the duty of the heat exchanger relative to regeneration unit number 3 is the one that consumer more than 50% of total energy consumption in all cases. On the other hand, processes, regeneration units, or the discharge that have low temperature requirements need necessarily a cooler, as there is not available another source of cooling utility. In the second place, it can be inferred that warm freshwater @ 85 °C lowers significantly the need of exchangers in case 1, and that freshwater @ 60 °C is preferred and sufficient for the other cases. It is to be noted also that in the base case there are exchangers with very low duties, thing that is traduced in very little and less efficient heat exchanger equipment. In addition, it is clear that source freshwater temperature has a very important impact on the network performance. For instance, the total energy consumed in case 3 is significantly higher than in other cases. Moreover, it is important to note that all cases that involve warm freshwater sources comport higher number of connections, since it is evident the preference for the latter than heat exchangers themselves. [START_REF] Boix | Minimizing Water and Energy Consumptions in Water and Heat Exchange Networks[END_REF] the authors employed a lexicographic methodology based on the ε-constraint method and subsequent selection by TOPSIS procedures, treating four objective functions could constraint the solution space to a few solutions within the Pareto front for the sake of solution times and practicality. On the other hand, solutions in this work are obtained within seconds, and several modifications to the case study can be studied with little difficulty. Nevertheless, the usefulness of a posteriori methods is not questioned if the totality of the Pareto front is desired. Additionally, several a priori methods can be used in order to accomplish this task, for example, goal programming coupled with stochastic algorithms.

Relative to the objective functions chosen in this study, it is important to say that other type of objective functions could be formulated to obtain other type of results. The inclusion of e.g. piping, heat exchanger, freshwater and regenerated cost can be of great utility.

■ APPENDIX

IWN Model Statement

From the aforementioned problem (section 3.2.1), a mathematical model can be formulated. In the majority of previous works, the problem is generally stated in terms of concentrations and total mass flows, giving birth to bilinear terms in model equations, [START_REF] Bagajewicz | On the Appropriate Architecture of the Water/Wastewater Allocation Problem in Process Plants[END_REF] resulting in MINLP formulations. Nevertheless, an IWN allocation problem can be stated as an MILP by complying with (i) only one contaminant is present on the network; (ii) total mass flows and concentrations are formulated in terms of partial mass flows; and (iii) contaminant flow is neglected in comparison to water flow in concentration calculations (see Savelski and Bagajewicz [START_REF] Savelski | On the Optimality Conditions of Water Utilization Systems in Process Plants with Single Contaminants[END_REF] and Bagajewicz and Savelski [START_REF] Bagajewicz | On the Use of Linear Models for the Design of Water Utilization Systems in Process Plants with a Single Contaminant[END_REF] ). Also, it is assumed that water losses at regeneration units are negligible. The mathematical model is stated as follows (note that the index c now denotes contaminant and w water).

Water mass balance around a process: 

∑ ∑ = + + ∈ ∈ ≠ ∈ Finp fw fp frp i P , i w i j P j i j i w r R r i w , , , (14) 
= ∈ Finp Foutp i P , i w i w ( (15) 
) 16 
Contaminant mass balance around a process:

∑ ∑ = + + ∈ ∈ ≠ ∈ Finp fp frp M i P , i c j P j i j i c r R r i c i c , , , (17) 
∑ ∑ = + + ∈ ∈ ≠ ∈ Foutp fd fp fpr i P , i c i c j P j i i j c r R i r c , , , (18) 
= ∈ Finp Foutp i P , i c i c ( 19 
)
Water mass balance around a regeneration unit:

∑ ∑ = + ∈ ∈ ≠ ∈ Finr fr fpr r R , r w m R m r m r w i P i r w , , , (20) 
∑ ∑ = + ∈ ∈ ∈ ≠ Foutr frp fr r R , r w i P r i w m R m r r m w , , , (21) 
= ∈ Finr Foutr r R , r w r w ( 22 
)
Contaminant mass balance around a regeneration unit: 

∑ ∑ = + ∈ ∈ ≠ ∈ Finr fr fpr r R , r c m R m r m r c i P i r c , , , (23) 
Operating constraints (33) In the last group, eqs 31 and 32 stand for the maximum concentration allowed at inlet and outlet of each process, while eq 33 fixes the outlet concentration of contaminant at the outlet of the regeneration units.

In order to model the decision whether it exists connections between process units and/or regeneration units or not, disjunctions are added to the model, such as for a freshwater connection to a process: Disjunctions such as eq 34 are added to each decision involved in the IWN allocation problem, relative to connections between processes, regeneration units, processes, and regenerations units, regeneration units and processes and processes and the discharge. In order to solve this disjunctive programming model, a simple Big-M reformulation is employed to transform the latter into a solvable MILP model: 

In eqs 35-40, yw i , yp i,j , yd i , ypr i,r , yrp r,i , yr r,m , i, j ∈ P, r, m ∈ R, i ≠ j, r ≠ m are indeed binary variables.

Industrial Water and Energy Network Model Statement

The model for the current problem is made of eq 14-40 and the following, which represent the addition of energy balances in the network.

Energy balance around a process unit: 

Energy balance around a regeneration unit: 

Global energy balance around the discharge: Equations 44-46 ensure that both positive and negative heats are between stipulated bounds. In addition, eq 46 assure that only cooling or heating is allowed, or neither. For regeneration units and the discharge, the disjunctions are modeled analogously.

Finally, it is important to highlight that boilers/heaters are modeled as processes without contaminant load and by prohibiting inlet connections different than freshwater to these processes.
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 9 Figure9. Flowsheet of the paper mill case study.[START_REF] Boix | Minimizing Water and Energy Consumptions in Water and Heat Exchange Networks[END_REF] 
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Table 1 .

 1 Different Combinations of Deviations[START_REF] Collette | Multiobjective Optimization: Principles and Case Studies[END_REF] 

			combination of
		deviation	variables to
	case	value	minimize

Table 2 .

 2 Summary of Results for the Introductive Example

		M-TOPSIS	LMS-TOPSIS	reference point method	goal programming	lower bound	upper bound
	f 1	-41.26	-43.84	-43.50	-42.90	-57	-0.92
	f 2	41.14	54.54	52.04	48.14	-0.59	329
	x 1	0.31	0.13	0.16	0.19	-100	100
	x 2	39.98	39.99	40	40	-100	100
	x 3	-1.38	-3.86	-3.53	-2.94	-100	100
	y 1	0	0	0	0	0	1
	y 2	0	0	0	0	0	1
	y 3	0	0	0	0	0	1

Table 3 .

 3 Gap between Solutions Relative to Reference Point Method

		percentage error (%) relative to reference point method
	variable	M-TOPSIS	LMS-TOPSIS	goal programming
	f 1	4.0	0.59	1.07
	f 2	3.30	0.76	1.18
	x 1	0.07	0.02	0.01
	x 2	0.01	0.005	0
	x 3	1.07	0.16	0.30
	mean error	1.69	0.31	0.51

Table 4 .

 4 Gap between Solutions Relative to Goal Programming

		percentage error (%) relative to goal programming
	variable	M-TOPSIS	LMS-TOPSIS	reference point method
	f 1	2.92	1.67	1.07
	f 2	2.12	1.94	1.18
	x 1	0.06	0.03	0.01
	x 2	0.01	0.005	0.0
	x 3	0.78	0.50	0.30
	mean error	1.18	0.82	0.51

Table 5 .

 5 Summary of Results with f 1 + 1000

		M-TOPSIS	LMS-TOPSIS	reference point method	goal programming	lower bound	upper bound
	f 1	998.52	956.16	977.20	957.10	943.0	999.0
	f 2	-0.39	54.54	20.79	48.14	-0.59	329
	x 1	0.30	0.13	0.50	0.19	-100	100
	x 2	2.28	39.99	23.54	40.0	-100	100
	x 3	-0.79	-3.86	-0.50	-2.94	-100	100

Table 6 .

 6 Parameters of the Network

	process	Cin i max (ppm)	Cout i max (ppm)	M i c (g/h)
	1	25	80	2000
	2	25	90	2880
	3	25	200	4000
	4	50	100	3000
	5	50	800	30000
	6	400	800	5000
	7	400	600	2000
	8	0	100	1000
	9	50	300	20000
	10	150	300	6500

Table 7 .

 7 Summary of Multiobjective Optimization Results

		this work	Boix et al. 2
	no. of connections	17	17
	total freshwater flow rate (T/h)	52.14	10
	total regenerated water flow rate (T/h)	120.0	177.24

Table 8 .

 8 Case Description Same case constructed with the same conditions as in Boix et al.

	case	scenario
	0	

Table 9 .

 9 Summary of Results for the Water and Energy Network

														Boix et al.
			case 0			case 1			case 2			case 3		(TOPSIS)
	objective function	min.	max.	optimal min.	max.	optimal	min.	max.	optimal	min.	max.	optimal	optimal
	no. of connections	20	41	25	26	49	36	26	54	36	26	53	36	35
	freshwater consumption (T/h)	377.64 1519.02 452.3 391.55 1519.02 461.35 391.55 1519.02 461.35 388.39 1519.02 458.96	389.3
	energy consumption (MW)	34.95	129.28	41.1	36.81	171.68	41.94	36.77	189.82	41.94	42.58	177.37	49.73	36.62
	no. of heat exchangers	8	17	9	3	16	4	3	16	4	3	16	4	10

Table 10 .

 10 Heat Exchanger Duties and Location for All Cases In this work, it is addressed the IWN allocation problem by multiobjective optimization using a priori methods, more specifically speaking, goal programming. This method has never been explored to the case of water and/or energy networks design although it is performing and particularly adapted to these problems containing binary variables where very few integer solutions exist in the feasible region. Indeed, usually with a branch-and-Bound methodology, the resolution of an MINLP or MILP problem is very fastidious, and especially with water network design, because the binary variables control the solution. Consequently, the size of the tree with traditional methods becomes very large and the program often returns an infeasible error message before finding a solution. In this study, goal programming methodology has been successfully applied to the problem of water and/or energy network design. Its effectiveness has been successfully demonstrated by comparing the results obtained with other research works where different multiobjective optimization methods are employed. On the two specific examples studied, namely, a traditional IWN and an IWN with energy, trade-off solutions are obtained and compared with other solutions. Moreover, in the latter case, different temperature freshwater sources are studied in order to study the influence of these in heat exchangers.Since in Boix et al.

			heat exchanger duty (MW)	
	process	case 0	case 1	case 2	case 3
	1	1.25			
	2				
	3	2.91			
	4				
	5	-1.41	-1.41	-1.41	-1.41
	6	0.15			
	7				
	8				
	9				
	10	1.64			
	11				
	12	1.55	2.01	2.01	1.13
	R1				
	R2	-0.13			
	R3	26.27	26.40	26.38	26.08
	R4				
	discharge	-5.79	-5.90	-5.89	-5.86

Table 11 .

 11 Summary of Freshwater Sources Results for All Cases

	freshwater flow rate (T/h)

  In addition, the following equations are added in order to model the disjunction to actually place a heat exchanger in a process or not:

	Cp w	∑ ∈ ( i P	fd Tp w i i	+ ) ( Qd	+	-	Qd	-)	=	Td	∑ ∈ i P	fw i	(43)
	+ Q yexp min ( i	)	≤	+ Qp i	≤		+ Q yexp max ( i	),	∈ i P	(44)
	-minQ yexp ( i	)	≤	-Qp i	≤	-maxQ yexp ( i	),	∈ i P	(45)
	+ yexp i	+	-yexp i	≤ 1,	∈ i P	(46)
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