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Explicit construction of robust avoidance controllers
for linear systems

Philipp Braun, Christopher M. Kellett and Luca Zaccarian

Abstract—Due to the need for discontinuous feedback laws,
control design for dynamical systems subject to bounded state
constraints is particularly challenging and has not been addressed
rigorously in the literature. As a step in this direction we propose
a constructive design method for linear systems, guaranteeing
robust global asymptotic stability of the origin of the closed-
loop system, as well as robust obstacle avoidance. Here, obstacles
are described through neighborhoods of isolated points in the
state space. To obtain discontinuous input actions, the setting
is embedded and solved in the framework of hybrid systems.
The constructive controller design methodology, as well as the
closed-loop properties, are investigated via numerical examples.

Index Terms—hybrid systems; obstacle avoidance; state con-
straints; robust controller design; global asymptotic stability.

I. INTRODUCTION

LYAPUNOV functions [11] provide a well established
tool to analyze and characterize stability properties of

general dynamical systems and are an important mechanism
in the control literature to construct stabilizing feedback
laws. While global asymptotic stability/stabilization (GAS)
of unconstrained dynamical systems is well understood, sta-
bility/stabilization of dynamical systems subject to bounded
state constraints, e.g., obstacle avoidance for mobile robots
or collision avoidance in the coordination of drones, has yet
to be addressed rigorously for general classes of dynamical
systems. While in the context of unconstrained stabilization,
discontinuous control laws only need to be considered for
the class of systems that are asymptotically controllable but
not Lipschitz continuous feedback stabilizable (e.g., the non-
holonomic integrator [5]), discontinuous feedback laws are
necessary in the presence of bounded constraints, independent
of the system dynamics [10, Chapter 4], [2]. A similar need
for discontinuous feedback laws is discussed in [13] in terms
of topological obstructions on manifolds.

When using control Lyapunov functions, the need for dis-
continuous feedback laws precludes the use of Sontag’s uni-
versal formula [23], for example, since it leads to a continuous
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feedback law. Thus, approaches extending classical results on
control Lyapunov functions by control barrier functions [27] to
include constraints in the state space, are limited to constraints
defining unbounded sets. In particular, this impacts approaches
in [14], [24], [1], [20], which rely on the existence of contin-
uous feedback laws.

In the robotics literature, artificial potential fields, which
can be seen as Lyapunov-like functions, are well established
for obstacle avoidance controller design and originate from
papers by Khatib [7], [8]. In these approaches, artificial
potential fields are functions whose gradient can be used to
define a feedback law pushing solutions away from obstacles
and towards a target set, usually defined as the origin. The
approach is typically used for fully actuated systems and in
general only guarantees asymptotic stability of the target set
for almost all initial conditions due to saddle points and local
minima of the artificial potential fields [19], [9]. Thus, in
particular robustness with respect to disturbances as well as
GAS cannot be expected from the controller design.

A widely used tool for control problems subject to state and
input constraints is model predictive control [12], [18]. Note
however that the model predictive control literature does not
provide a general framework for obstacle avoidance and global
stabilization. Even though it is simple to define an optimization
problem to iteratively compute a feedback law, proving GAS
of the closed loop and recursive feasibility is nontrivial.
Moreover, state constraints excluding a bounded set in the state
space lead to nonconvex optimization problems which need to
be solved to define a feedback law. Thus, obstacle avoidance is
not only challenging from a theoretical perspective, but also
from a practical perspective in the computation of optimal
solutions for nonconvex optimization problems.

One way to define discontinuous feedback laws, and which
we will follow in this paper, is to unite local and global
controllers. This approach traces back to [25] and was further
investigated and established using the formalism of hybrid
dynamical systems in [16], [26], [17], [21], [22], [15]. While
these results are promising and motivating, the papers address
particular applications and do not provide a general tool for
controller design subject to bounded state constraints.

As outlined in detail in the next section, and in contrast to
the approaches discussed above, we extend our earlier nominal
single-obstacle work in [3] and propose a constructive method
to design a robust hybrid control law for a stabilizable linear
system that simultaneously guarantees GAS of the origin and
avoidance of a neighborhood around given obstacles described
by single points.

The paper is structured as follows. In Section II the math-
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ematical setting and the problem under consideration are for-
malized. In Section III we summarize the results of our earlier
work [3], i.e., the basic avoidance controller is defined and
corresponding definitions and notations are provided before a
robust controller extension is introduced in Section IV. The
results are combined in Section V to obtain a global hybrid
control law, following the framework of hybrid dynamical
systems in [6]. The closed-loop properties of the hybrid control
law for the nominal system dynamics given in Section V
are extended to robust GAS and robust obstacle avoidance
for perturbed system dynamics in Section VI. The results of
the hybrid controller are illustrated on numerical examples
in Section VII. The proofs of the main result are shifted to
Sections VIII and IX, before the paper concludes with final
remarks in Section X.

Throughout the paper the following notation is used. For
x ∈ Rn we use the vector norm |x| =

√∑n
i=1 x

2
i . Similarly,

the distance to a point y ∈ Rn is denoted by |x|y = |x − y|.
For a closed set A ∈ Rn and r > 0 we define Br(A) =
{x ∈ Rn|miny∈A |x− y| ≤ r} and for the origin we simplify
the notation to Br = Br(0). The closure, the boundary and the
interior of a set are denoted byA, ∂A and int(A), respectively.
For two sets A1,A2 ⊂ Rn, A1 +A2 and A1−A2 denote the
Minkowski sum and the Minkowski difference, respectively.
The identity matrix of appropriate dimension is denoted by
I . The natural numbers from 1 to β ∈ N are denoted Nβ =
{1, . . . , β}. Similarly, Zβ = {−β, . . . , 0, . . . , β} denotes the
integers from −β to β.

II. SETTING & PROBLEM FORMULATION

In this paper we consider stabilizable linear dynamical
systems

ẋ = Ax+Bu, x0 = x(0) ∈ Rn (1)

with state x ∈ Rn, input u ∈ Rm and matrices A ∈ Rn×n,
B = [b1, . . . , bm] ∈ Rn×m. As motivated in the introduction,
the paper addresses the following general problem and pro-
vides a solution under some simplifying assumptions described
below.

Problem 1. (Semiglobal x̂-avoidance augmentation with
GAS) Given a set of “unsafe” points {x̂1, . . . , x̂β} ∈ Rn\{0},
β ∈ N, that must be avoided by the controller, and a stabilizing
state feedback us(x) = Ksx, for each δ > 0, design a feedback
selection of u that guarantees

(i) (R-GAS) robust uniform global asymptotic stability of
the origin;

(ii) (Semiglobal preservation) the feedback u(x) matches
the original stabilizer u(x) = Ksx for all x ∈ Rn \
∪βi=1Bδ(x̂i); and

(iii) (Semiglobal x̂-avoidance) all solutions starting outside
the balls ∪βi=1Bδ(x̂i) never enter a suitable “safety”
neighborhood around x̂i, i ∈ Nβ . y

While this problem has been addressed for the special case
of a single obstacle and without robustness properties in [3],
we provide a solution to the general Problem 1 in the following
sections. We propose a constructive controller design method,

which augments a given stabilizing control law us = Ksx
and ensures robust avoidance of specified neighborhorhoods
around the obstacles x̂i, i ∈ Nβ . To solve Problem 1 we make
the following standing assumptions throughout the paper.

Assumption 1. Basic assumptions:
(a) Matrix As := A+BKs is Hurwitz.
(b) The norm x 7→ |x|2 is contractive under the stabilizer

us(x) = Ksx (equivalently, As +ATs < 0).
(c) For each i ∈ Nβ , there exists a bj , j ∈ Nm, (i.e., a

column of B) such that the vectors Asx̂i and bj are
linearly independent. y

Assumption 1(a) simply states that the feedback law us =
Ksx stabilizes the origin for the unconstrained system (1).
Assumption 1(b) simplifies the notation and can always be
achieved through a coordinate transformation. If V (x) =
xTSx is a Lyapunov function for the closed-loop system
ẋ = Asx (with us = Ksx), then V (x̃) = |x̃|2 is a Lyapunov
function in the coordinates x̃ = SFx, where STFSF = S
denotes the Cholesky factorization of S.

Assumption 1(c) is the only substantial restriction that we
make in this paper and will be addressed in future work. Even
though Assumption 1(c) appears restrictive, observe that in
the case of a multidimensional input B ∈ Rn×m, m ≥ 2,
Assumption 1(c) is satisfied for all x̂ ∈ Rn\{0} if the columns
of B are linearly independent. Assumption 1(c) enables us to
exploit the convenient property that the transit of solutions
through any sufficiently small neighborhood of x̂i, i ∈ Nβ ,
can be made independent of the input u.

This property, introduced as the “wipeout” property in [3]
makes use of the natural drift in the system dynamics (1)
and is repeated together with the main results and definitions
of [3] in the next section. The results developed in this paper,
which extend the earlier results in [3], preserve the modularity
properties of the corresponding controller design methodology.

III. THE WIPEOUT PROPERTY AND AVOIDANCE
CONTROLLER DESIGN

In this section we recall the results of [3, Section III and
IV] and extend them to the case of multiple obstacles and
multidimensional inputs u ∈ Rm. We study properties of
an arbitrary unsafe point x̂ ∈ {x̂1, . . . , x̂β} throughout this
section.

A. η-neighborhood and wipeout property

According to Assumption 1(c), for a fixed unsafe point x̂,
there exists a j ∈ Nm such that

x̂ /∈ Ej := {y ∈ Rn : ∃ν∗ ∈ R, Asy + bjν
∗ = 0} (2)

and the right-hand side defines a one dimensional subspace
of induced equilibria corresponding to bj , j ∈ Nm. More
generally, for a vector Λ ∈ Rm\{0} the one dimensional
subspace

EΛ := {y ∈ Rn : ∃ν∗ ∈ R, Asy +BΛν∗ = 0} (3)

is defined through a linear combination of the columns of B.
The selection of Λ ∈ Rm\{0} allows us to locally reduce the
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multi-dimensional input u ∈ Rm to a one-dimensional input
ν ∈ R and to concentrate on a specific linear combination
of the inputs u = Λν. The selection Λ as unit vectors, for
example, recovers (2) from (3). Since by Assumption 1(a)
the matrix As is Hurwitz, the subspace can alternatively be
characterized through EΛ = span(A−1

s BΛ).

Remark 1. Note that the existence of j ∈ Nm with x̂ /∈ Ej is
independent of the stabilizer us = Ksx. In the case m = 1,
the definition of the subspace E1 can be rewritten as

E1 = {y ∈ Rn : ∃u∗1 ∈ R, Asy + b1u
∗
1 = 0}

= {y ∈ Rn : ∃u∗1 ∈ R, Ay + b1(Ksy + u∗1) = 0}
= {y ∈ Rn : ∃v∗1 ∈ R, Ay + b1v

∗
1 = 0, u∗1 = v∗1 −Ksy},

showing its independence of the stabilizer us.
If m > 1 and x̂ ∈ Ej for a j ∈ Nm, then x̂ /∈ Ei, as

long as columns bi and bj of B are independent. Therefore,
Assumption 1(c) is automatically satisfied if rank(B) ≥ 2. y

With the definition (3), the following property was intro-
duced in [3].

Proposition 1. (Wipeout Property, [3, Prop. 1]). Let Assump-
tion 1 hold and let Λ ∈ Rm be defined such that x̂ /∈ EΛ.
Consider the function H(x) := x̂TATΛx, with AΛ defined as

AΛ := (I −BΛΛTBT )As (4)

and the scalar ηΛ > 0 defined by the optimization problem

ηΛ := min
y∈EΛ

|x̂− y|. (5)

For each x ∈ BηΛ
(x̂) we have 〈∇H,Asx+BΛν〉 ≥ 0 for all

ν ∈ R, where we use the notation ∇H = ∇H(x) because of
the linearity of H , implying that ∇H is a constant. Moreover,
for each η̄ < ηΛ, there exists h > 0 such that

〈∇H,Asx+BΛν〉 ≥ h, ∀ν ∈ R,∀x ∈ Bη̄(x̂). (6)

y

A proof of the statement can be found in [3, Prop. 1]. Note
that in [3] the matrix AΛ in (4) (and thus the function H) is
defined based on A instead of the stabilized closed loop matrix
As. In Proposition 1 the multi dimensional input is reduced to
a one dimensional input ν ∈ R. The input ν and the original
input u are linked through the vector Λ, i.e., u = Λν.

Remark 2. Due to the linearity of H(x), ∇H is independent
of x and defines a direction

dx̂ = ∇H
|∇H| = AΛx̂√

x̂TATΛAΛx̂
,

which is well defined through (4) because x̂ /∈ EΛ. This implies
that (6) provides a lower bound on the speed the solution
x(t) moves in direction dx̂ for all η̄ ≤ ηΛ, i.e., 〈dx̂, ẋ〉 ≥ hη̄
for hη̄ = h/|∇H|. In particular, a solution x(·) such that
x(t) ∈ Bη̄(x̂) for all t ∈ [0, T ], satisfies

〈dx̂, x(T )− x(0)〉 ≥ Thη̄. (7)

Moreover, a solution x(·) such that x(t) ∈ Bη̄(x̂) for all t ∈
[0, T ], satisfies

〈dx̂, x(t2)− x(t1)〉 ≥ 0 for all 0 ≤ t1 ≤ t2 ≤ T. (8)

The wipeout property ensures that solutions within BηΛ
(x̂)

naturally drift away from small enough neighborhoods of x̂
in a particular direction defined through BΛ ∈ Rn regardless
of the input u = Λν. As argued in [3] and in Section V, it
turns out that the size of the neighborhood BηΛ

(x̂) impacts the
size of the neighborhood around x̂ which can be guaranteed
to be avoided. Therefore, we use the degree of freedom in the
vector Λ ∈ Rm to maximize ηΛ.

Before we optimize ηΛ and thus the vector Λ, observe that
for a given Λ the value of ηΛ can be computed as

ηΛ = |x̂+ cΛA
−1
s BΛ| where cΛ :=argmin

c∈R
|x̂+ cA−1

s BΛ|2.

By taking the derivative of the quadratic function, cΛ is
explicitly defined through

cΛ = − (A−1
s BΛ)T x̂

(A−1
s BΛ)T (A−1

s BΛ)
.

The distance between x̂ and a one dimensional subspace
span(A−1

s BΛ), Λ ∈ Rm\{0} is maximal if 〈x̂, A−1
s BΛ〉 =

0 is satisfied, i.e, vectors x̂ and A−1
s BΛ are perpendicular.

Hence, we can define Λ∗ as the solution of the optimization
problem

Λ∗ ∈ argmin
Λ∈Rm

〈x̂, A−1
s BΛ〉2 (9a)

s.t. |BΛ|2 = 1. (9b)

Optimization problem (9) is non-convex and the optimal
solutions Λ∗ are not unique. While the computation of an
optimal Λ∗, and thus ηΛ∗ , might be intractable, note that
for the application of Proposition 1 optimality of η is not
necessary. The stronger condition 〈x̂, A−1

s BΛ∗〉 = 0 is in
general only satisfied if m = n.

B. The eye-shaped shell S and the basic avoidance controller

A second ingredient used in this paper, introduced in [3,
Sec. IV], whose construction is parallel to, and independent
of the wipeout property, is the safety or avoidance controller
ûi, acting in a neighborhood of the unsafe point x̂i, i ∈ Nβ .
Before the avoidance controller is discussed, the neighborhood
is specified.

The neighborhood of a fixed unsafe point x̂ ∈ {x̂1, . . . , x̂β}
is a nonsmooth compact set, having the shape of an eye (in
two dimensions) and is based on two geometric parameters
and a direction:

1) the size δ ∈ R>0 of the shell;
2) the aspect ratio µ ∈ (0, 2) of the shell;
3) the orientation b ∈ Rn, |b| = 1, of the shell.
Based on these parameters, the shell S is the following in-

tersection between two balls centered at some shifted versions
of the unsafe point x̂:

δµ := δ
(

1
µ −

µ
4

)
, (10a)

Op := B(µδ2 +δµ)(x̂− pδµb), p ∈ {+1,−1}, (10b)

S(δ) := O+1

⋂
O−1. (10c)
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x̂S(δ)

x̂+ δµb

x̂− δµb
δµ + µδ

2

δµ

δ

µδ
2

O−1

O+1

µ = 1

µ = 0.5

µ = 1.5

Fig. 1. The construction of the eye-shaped shell S(δ) around an unsafe point
x̂, based on the size δ ∈ R>0 the aspect ratio µ ∈ (0, 2) and the orientation
b ∈ Rn\{0}.

Note that µ ∈ (0, 2) fixes the aspect ratio of the shell, whose
height corresponds to µδ, resembling an eye that is increas-
ingly closed as µ approaches its lower limit 0. Conversely, as
µ approaches its upper limit 2, the eye is increasingly open
and converges to a circle. In our construction, we will assume
that a certain desired aspect ratio µ is fixed a priori, and we
will establish suitable results by exploiting the fact that the
shell S(δ) can be made arbitrarily large and arbitrarily small
by adjusting the positive parameter δ. Figure 1 represents a
few possible shapes of these sets together with the distances
that go with them. To simplify the notation in the following,
we define

cp := x̂− pδµb, p ∈ {−1,+1} (11)

to denote the centers of the balls Op, p ∈ {−1,+1} in (10b).
Moreover, Lemma 1 below will be useful to prove our main
statements.

Lemma 1. Given an aspect ratio µ ∈ (0, 2) and an orientation
b ∈ Rm, |b| = 1, for each δ > 0, the following inclusions hold
for the shell S(δ) defined in (10):

Bµδ
2

(x̂) ⊂ S(δ) ⊂ Bδ(x̂). (12)

y

Proof. Let x ∈ Bµδ
2

(x̂), i.e., |x − x̂| ≤ µδ
2 . Then for each

p ∈ {−1,+1} the triangle inequality leads to the estimate

|x− x̂+ pδµb| ≤ |x− x̂|+ |pδµb|

≤ µδ
2 + δµ = δ

(
1
µ + µ

4

)
,

which implies that x ∈ Op for all p ∈ {−1,+1}, and thus
x ∈ S(δ). Hence Bµδ

2
(x̂) ⊂ S(δ) is satisfied.

We define the set

Smax :=
{
x ∈ S(δ) : |x|x̂ ≥ maxy∈S(δ) |y|x̂

}
.

It is clear that for all x ∈ Smax either x ∈ ∂O+1 and/or
x ∈ ∂O−1 is satisfied since otherwise the condition |x|x̂ ≥
maxy∈S(δ) |y|x̂ cannot hold. Similarly if x ∈ Smax, x ∈ ∂Op

and x ∈ int(O−p), p ∈ {−1,+1}, for all ε > 0 there needs
to exist x̃ ∈ Bε(x̂) ∩ ∂O+1 ∩ O−1 such that |x̃|x̂ > |x|x̂.
Thus, the set Smax satisfies Smax ⊂ ∂O+1 ∩ ∂O−1. Using
the definitions of O+1 and O−1, and Pythagoras’ theorem for
pairwise orthogonal vectors provides the identities

|x− x̂|2 =
(
δµ + µδ

2

)2

− δ2
µ

= δ2
(

1
µ + µ

4

)2

−
(

1
µ −

µ
4

)2

= δ2

for all x ∈ ∂O+1 ∩ ∂O−1 (visualized in Figure 1). This
particularly implies that S(δ) ⊂ Bδ(x̂).

Based on the definition of the shell S(δ) the avoidance
control law

ν(x, p) := −〈x− (x̂− pδµb), Asx〉
〈x− (x̂− pδµb), b〉

, p ∈ {−1, 1}, (13)

was introduced in [3] and satisfies the following properties.

Proposition 2. ([3, Prop. 2]) Let µ ∈ (0, 2/
√

3), δ > 0 and
Λ ∈ Rm with |b| = |BΛ| = 1 be given. For each p ∈ {−1, 1}
and any point x0 ∈ S(δ), the avoidance controller

û(x, p) = Ksx+ Λν(x, p) (14)

is well defined. Moreover, the solution to (1) with u = û(x, p)
starting at x0 ∈ S(δ) remains at a constant (non-negative)
distance from the center cp = x̂− pδµb of the ball Op until it
leaves S(δ). y

In [3] it was shown that this simple control law can be used
for obstacle avoidance and global stabilization in the context
of a nominal unperturbed system. The main contribution of
this paper will be extensions to obtain a robust control law.
Note that controller (14) depends on the selection of the
vector Λ and thus the notation û(x, p; Λ) would be more
precise. To simplify the notation, in particular with respect
to the following sections, we drop the dependence on Λ in the
notation.

Remark 3. In [3], (13) is defined based on A instead of
As and the control law (14) does not contain the stabilizer
Ks. While these differences lead to different interpretations of
the controller, the closed-loop solution coincides. While the
controller in [3] switches between the stabilizing controller
and the avoidance controller, (14) corrects the stabilizing
controller. The interpretation used here seems to be more
appropriate for the multi-obstacle and multidimensional input
case. y

IV. ROBUST CONTROLLER DESIGN

Section III contains all the ingredients for an avoidance con-
troller design. In Section V a hybrid controller is proposed that
switches the control law (13) on and off thereby guaranteeing
asymptotic stability and obstacle avoidance. However, before
we propose the hybrid control law we extend the basic ideas
of Section III to obtain a robust controller.
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x̂

S/−1

S/+1Sh(δ) S(δ)

µδ
2

(1−h)µδ
2

O−1

O+1

O−1

O+1

Fig. 2. The shrunken shell Sh(δ) and the half shells S/+1 and S/−1 considered
in Proposition 2.

A. Definition of hysteresis regions

To be able to define a robust controller selection that
switches the avoidance controller on and off, we define a
suitable h-hysteresis switching, based on a region Sh(δ)
obtained by shrinking S(δ) by a factor h ∈ (0, 1) as follows,
and according to the pictorial representation in Figure 2:

Oh,p := B(hµδ2 +δµ)(cp), p ∈ {+1,−1}, (15)

Sh(δ) := Oh,+1

⋂
Oh,−1. (16)

It is clear that for each p ∈ {−1,+1} the set Oh,p is a ball
sharing the same center as Op but having a smaller radius that
approaches δµ as h approaches 0. As a consequence, Sh(δ)
is a smaller eye-shaped set, with the same orientation as S(δ)
(see Figure 2). Additionally, the definition of the lower and
upper part of the shell (with respect to the orientation b) is
needed. Thus, we define

S/p := S(δ) ∩ {x ∈ Rn : pbT (x− x̂) ≥ 0}, p ∈ {−1,+1},
(17)

which will be used to decide if the obstacle is passed from
above or from below (which again needs to be understood
with respect to the orientation b).

B. A repulsive avoidance control law

As shown in [3], with the control law (14) a hybrid obstacle
avoidance controller can be defined and its properties for the
nominal unperturbed systems have been formalized in [3, Thm.
1]. Here we extend the basic control law to be robust against
model uncertainties.

For p ∈ {−1,+1}, the control law (14) ensures a constant
distance to the center cp = x̂−pδµb defined in (11). To obtain
a control law that increases the distance to cp and thus the
distance to x̂ we introduce the function κ(·; kr, `) : R≥0 →
R≥0,

κ(s; kr, `) :=

{
1
2kr (s− `)2

, if s ≤ `
0, if s ≥ ` (18)

with parameters kr ∈ R≥0 and ` ∈ R>0. The argument of the
function s = |x|cp measures the distance of the state to cp. The
parameter ` defines the critical distance where the function κ
becomes active and kr defines the robustness gain parameter.

The extension of (13) using function κ leads to the one-
dimensional input

νkr (x, p) =
κ(|x|cp ; kr, h

µδ
2 + δµ)− 〈x− cp, Asx〉
〈x− cp, b〉

(19)

which recovers the original definition (13) for kr = 0. With
these definitions, Proposition 2 can be extended to contain the
following repulsive properties of the control law.

Proposition 3. Let µ ∈ (0, 2/
√

3), ε ∈ [0, 2/
√

3− µ), δ > 0,
Λ ∈ Rm such that b = BΛ, |b| = 1, kr ≥ 0, and h ∈ (0, 1) be
given. For each p ∈ {−1,+1} and any point x ∈ S(δ) + B δε

2

the avoidance controller

ûkr (x, p) = Ksx+ Λνkr (x, p) (20)

is well defined. Moreover, for kr ≥ 0, the solution to (1) with
u = ûkr (x, p) starting at x0 ∈ S/p ∩ Sh(δ), p ∈ {−1,+1}, is
associated to a guaranteed increase of the distance from the
center cp of the ball Op until it remains in Sh(δ). In particular,

d
dt |x(t)− cp|2 = kr

(
|x(t)− cp| − (hµδ2 + δµ)

)2

. (21)

y

Proof. The well definedness of the the control law (20) follows
immediately from the the well definedness of the control law
(13) and thus from the proof of Proposition 2 in [3, Prop. 2]
applied to µ+ ε ∈ (0, 2/

√
3).

To show (21), using BΛ = b, control law (20) ensures that
the closed-loop solution satisfies the estimate

1
2
d
dt |x(t)− cp|2

= 〈x− cp, Ax+Bûkr (x, p)〉
= 〈x− cp, Asx+ bνkr (x, p)〉
= 〈x− cp, Asx〉+ 〈x− cp, b〉νkr (x, p)
= 〈x− cp, Asx〉+ κ(|x|cp ; kr, h

µδ
2 + δµ)− 〈x− cp, Asx〉

= κ(|x|cp ; kr, h
µδ
2 + δµ). (22)

Thus, the result follows immediately from the definition of the
function κ in (18).

Remark 4. Equation (21) implies that for kr > 0 the distance
|x(t) − x̂| is strictly increasing whenever |x(t) − x̂| < hµδ2 ,
which is a useful property to establish robust avoidance. The
margin ε > 0 is used to show robustness with respect to
uncertainties in the state x. y

V. A HYBRID CONTROL SOLUTION

In this section we combine the results from the previous
sections to derive a hybrid control solution to Problem 1. To
distinguish between sets and parameters derived for a specific
unsafe point x̂ ∈ {x̂1, . . . , x̂β} we use ·i and ·i, i ∈ Nβ , for
sets and parameters, respectively, in the following.

In order to account for multiple obstacles, we modify (11)
as

cq := x̂|q| −
q

|q|
δµ|q|b|q|, q ∈ Zβ\{0}. (23)

Note that this requires an obvious modification of (19) and
(20) where q replaces p and the parameters are with respect
to each obstacle |q| ∈ Nβ .
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A. Hybrid dynamics selection

To ensure global asymptotic stability of the origin for the
closed loop, we need to patch the feedback laws us(x) =
Ks(x) (the stabilizing controller), and ûkr (x, q) = Ks(x) +
Λ|q|νkr (x, q), Λ|q| ∈ Rm (the avoidance controller in (20)) for
q ∈ Zβ\{0}. Such a patching operation is done here using a
hybrid switching strategy exploiting the hi-hysteresis margins
between Sihi(δi) and Si(δi) and robustly extends the work [3]
to the multidimensional input and the multiple obstacle setting.
A hybrid feedback is a natural choice in light of the discussion
that no continuous feedback can simultaneously ensure GAS
of the origin and avoidance of x̂1, . . . , x̂β .

To suitably orchestrate the choice of the controller, we
define an augmented state ξ = (x, q) ∈ Rn×Zβ for the hybrid
dynamics, comprising the plant state x and the quantity q ∈ Zβ
responsible for whether solutions should slide above (q > 0)
or below (q < 0) an unsafe point when using the avoidance
feedback. Here, above and below is meant with respect to the
orientation bi = BΛi, i ∈ Nβ , used in the definition of the
avoidance controller (20). The control selection is summarized
by the feedback law

u = γ(x, q) :=

{
us(x), if q = 0,
us(x) + Λ|q|νkr (x, q), if q ∈ Zβ\{0}

(24)

The overall idea of the controller is to correct the feedback law
us when solutions enter the shell Si(δi) corresponding to an
unsafe point x̂i, i ∈ Nβ . We will assume that the intersection
of arbitrary shells is empty, i.e., Si(δi) ∩ Sj(δj) = ∅ for
all i, j ∈ Nβ , i 6= j. To ensure a robust switching between
the local and global controllers, we exploit the h-hysteresis
mechanism and orchestrate the switching of the logic variable
q as follows:

ξ+ :=

[
x+

q+

]
∈ G(ξ) =

[
x

Gq(ξ)

]
, ξ ∈ ∪q∈ZβDq (25)

D+i :=
(
Sihi(δi) ∩ S/

i
+1

)
× {0}, i ∈ Nβ

D−i :=
(
Sihi(δi) ∩ S/

i
−1

)
× {0}, i ∈ Nβ

D0 := Rn \ ∪i∈NβSi(δi)× (Zβ \ {0})

Gq(ξ) :=


i, if ξ ∈ D+i \ D−i, i ∈ Nβ
−i, if ξ ∈ D−i \ D+i, i ∈ Nβ
{i,−i} if ξ ∈ D+i ∩ D−i, i ∈ Nβ
0 if ξ ∈ D0,

(26)

where, according to the representation in Figure 3, the sets
D+i and D−i, i ∈ Nβ , correspond to the upper and lower
halves of the shell Sihi(δi). Note that these sets have a nonzero
intersection, associated to the equator plane of the shell. To
ensure suitable regularity properties of the jump map G in
(26), we perform a set-valued selection in D+i ∩ D−i, which
allows for either q+ = i or q+ = −i. Note that this does
not generate multiple simultaneous jumps because we impose
q = 0 in the jump sets D+i ∪ D−i, so that, once a decision
has been made about whether sliding above or below the shell,
this decision cannot be changed.

x̂i D−i

D+i

bi bi

x̂i−x
Sihi(δi)×{0}

Fig. 3. The upper and lower half-shells associated to D+i = (Sihi (δi) ∩
S/i+1) × {0} and D−i = (Sihi (δi) ∩ S/

i
−1) × {0}, respectively, in (25), for

an arbitrary unsafe point x̂i, i ∈ Nβ .

The hybrid closed-loop behavior is completed by the fol-
lowing flow dynamics, emerging from (1) and (24),

ξ̇ =

[
ẋ
q̇

]
=

[
Ax+Bγ(x, q)

0

]
, ξ ∈ C, (27)

where the flow set C, is defined as the closed complement of
the union of the jump sets defined above. In particular, using
Ξ := Rn × Zβ , we select

C := Ξ \ (∪q∈ZβDq). (28)

The selection above for the proposed jump sets has the
important advantage that immediately after a jump the solution
is in the interior of the flow set at a distance of at least
mini∈Nβ (1 − hi)µiδi/2 from the jump set D = ∪q∈ZβDq .
Before our main results are given in Section VI, we note that
the following structural regularity conditions of the dynami-
cal system are satisfied, whose proof is straightforward and
therefore omitted.

Lemma 2. The closed-loop dynamics (24)–(28) satisfies the
hybrid basic conditions in [6, Assumption 6.5] and all maximal
solutions are complete. y

B. Nominal GAS and local preservation

We now extend the global stability and avoidance results
provided in [3] to the multiple obstacle and multi dimensional
input case. We provide quantitative information about maximal
sizes δ∗i of the shells Si(δi), such that the hybrid control
solution in (24)–(28) stabilizes the nominal system and avoids
the unsafe points for any δi < δ∗i , i ∈ Nβ . A trivial corollary
of our result is that regardless of all the parameters, there
always exist small enough δi, i ∈ Nβ , for which our goals are
satisfied.

For the definition of δ∗i , we need the following quantity

ζ := − 2|As|
λmax(ATs +As)

> 0, (29)

which is positive due to Assumption 1(b), ensuring that ATs +
As is negative definite. Additionally we will assume that Λi ∈
Rm is defined such that |BΛi| = 1 and x̂i /∈ span(A−1

s BΛi),
which can be done according to Assumption 1(c). Then, for
each i ∈ Nβ , for a fixed ηi ≤ ηΛi (with ηΛi defined in (5)),
we define δ∗i as

δ∗i := 1
2

(
|x̂i|+ηi+ζ−

√
(|x̂i|+ ηi + ζ)2 − 4|x̂i|ηi

)
>0, (30)

which is notably independent of µi but depends on the orien-
tation bi = BΛi ∈ Rn (through ηi), and is well characterized
in the next lemma.
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Lemma 3. ([3, Lemma 4]) Let x̂ ∈ {x̂1, . . . , x̂β} be an
arbitrary unsafe point. Under Assumption 1, for a given
Λ ∈ Rn \ {0} such that

0 < η ≤ ηΛ := min
y∈span(A−1

s BΛ)
|x̂− y|, (31)

the scalar δ∗ in (30) is a positive real number, and for any
value of δ satisfying δ < δ∗, we have δ < η. y

Proof. Since η, ζ > 0 and η < |x̂|, by expanding the squared
terms, it is straightforward to verify the inequalities.

0 < (|x̂| − η + ζ)2 < (|x̂|+ η + ζ)2 − 4|x̂|η. (32)

Taking the square root and adding 2η on both sides provides

|x̂| − η + ζ + 2η <
√

(|x̂|+ η + ζ)2 − 4|x̂|η + 2η.

Finally, moving the square root to the left leads to the estimate

2δ∗ = |x̂|+ η + ζ −
√

(|x̂|+ η + ζ)2 − 4|x̂|η < 2η,

which shows the assertion δ∗ < η. The proof is complete
since δ∗ ∈ R>0 follows from (32), showing that the square
root in (30) is positive.

With the selection of δ∗i , i ∈ Nβ , in (30) the following
result for the nominal system (1) can be shown. To simplify
the statement we collect all the assumptions and save notation
in Assumption 2.

Assumption 2. For a set of unsafe points {x̂1, . . . , x̂β}
assume that Λi ∈ Rm is selected such that |BΛi| = 1
and x̂i /∈ span(A−1

s BΛi). Moreover µi ∈ (0, 2/
√

3) and
hi ∈ (0, 1), i ∈ Nβ are given. Finally, assume that ηi ∈ R>0 is
defined such that ηi ≤ ηΛi (see (5) and (31)) for i = 1, . . . , β,
and

int (Bηi(x̂i)) ∩ int
(
Bηj (x̂j)

)
= ∅, ∀ i, j ∈ Nβ , i 6= j.

With δ∗i from (30), define

δ̄i := min
{
δ∗i ,

ηi
1+ζ

}
and choose δi from the open intervals

δi ∈ (0, δ̄i), i ∈ Nβ . (33)

y

Theorem 1. (Nominal avoidance and UGAS) Let Assump-
tion 1 be satisfied and let the control parameters be defined
according to Assumption 2. Then the hybrid controller (24)–
(28) with kr ≥ 0, guarantees the following properties:

(i) (Nominal shell avoidance) For any initial condition
ξ(0, 0) ∈ (Rn\ ∪i∈Nβ Si(δi)) × Zβ , all the arising
solutions satisfy

|x(t, j)|x̂i ≥ hi
2
µiδi

2 , ∀ i ∈ Nβ , ∀ (t, j) ∈ dom(ξ).

(ii) (Nominal point avoidance) For any initial condition
ξ(0, 0) ∈ (Rn\ ∪i∈Nβ {x̂i}) × {0}, all the arising
solutions satisfy x(t, j) /∈ {x̂1, . . . , x̂β} for all (t, j) ∈
dom(ξ).

(iii) (Nominal UGAS) The origin ξ = (x, q) = (0, 0) is
uniformly globally asymptotically stable. y

Proof. Theorem 1 follows immediately from the more general
statement of Theorem 2, which is its robust extension.

VI. ROBUSTNESS PROPTERTIES OF THE CONTROL LAW

While the hysteresis parameter h ∈ (0, 1) prevents in-
stantaneous switching of the control law without leaving
the jump set and thus ensures that the closed loop is well
defined, the parameter does not immediately guarantee that
the controller is robust with respect to model uncertainties. In
this section we establish robustness of the proposed scheme
for cases where the dynamics is affected by perturbations.
In particular, we assume that plant (1) is affected by two
unmodelled disturbances wx, wy : R≥0 → Rn associated with
the perturbed model

ẋ = Ax+Bu+ wx,

y = x+ wy.

Here, wx represents model uncertainties while wy represents
noise in the measurement of the state x. With respect to the
closed loop (25) and (27) the perturbed dynamics lead to the
model

ẋ = Ax+Bγ(y, q) + wx, [ yq ] ∈ C := Ξ \ D, (34)

q+ ∈ {i ∈ Zβ : [ yq ] ∈ Di}, [ yq ] ∈ D := ∪i∈ZβDi, (35)

where we assume that the only accessible quantities in the
control decisions are q (the controller state) and y (the plant
output). The trivial relations q̇ = 0 and x+ = x have been
omitted for simplicity.

The perturbations B(γ(x + wy, q) − γ(x, q)) + wx in (34)
can be summarized using a positive semidefinite function σ :
Rn → R≥0 within the continuous dynamics

ξ̇ =

[
ẋ
q̇

]
∈
[
Ax+Bγ(x, q) + Bσ(x)

0

]
, ∀ ξ ∈ Cρ,

(36a)

extending (27) and where Cρ is defined as

Cρ = {(x, q) ∈ Rn × Zβ :
(
{x+ Bρ(x)} × {q}

)
∩ C 6= ∅}

for all x ∈ Rn. The controller selection is influenced by the
measurement error. Thus, with the definition of the function
ρ : Rn → R≥0 the extension of the discrete dynamics (25)
can be written as

ξ+ =

[
x+

q+

]
∈
[

x
{i ∈ Zβ : ξ ∈ Dρi }

]
, ∀ ξ ∈ Dρ, (36b)

where

Dρi = {(x, q) ∈ Rn × Zβ :
(
{x+ Bρ(x)} × {q}

)
∩ Di 6= ∅}

(36c)

for all x ∈ Rn, for all i ∈ Zβ , and Dρ = ∪i∈ZβD
ρ
i .

The definition of the perturbed system (36) follows the
exposition in [6]. Since we are only interested in linear plants,
the general presentation in [6, Def. 6.27] is simplified here.

Definition 1. We say that the continuous functions σ, ρ :
Rn → R≥0 form an admissible perturbation pair if ρ(x) > 0
for all x ∈ Rn \ {x̂1, . . . , x̂β} and σ(x) > 0 for all
x ∈ Rn\{0}. y



8

The next lemma generalizes the result of Lemma 2 to the
perturbed case. Its proof is given in Section VIII-A where an
admissible pair is explicitly constructed.

Lemma 4. For each continuous non-negative function σ, there
exists a sufficiently small ρ where (σ, ρ) is an admissible
perturbation pair such that the perturbed closed-loop dynam-
ics (36) satisfies the hybrid basic conditions of [6, Assumption
6.5] and all maximal solutions are complete. y

We present two robustness results extending Theorem 1.
The first (Theorem 2) relates to robustness in the small (S-
robustness) where the perturbation σ must go to zero as the
state x approaches the origin. The second result (Theorem 3)
relates to robustness in the large (L-robustness) where σ is
pre-specified and not required to be zero at the origin, which
precludes proving asymptotic stability of the origin.

Theorem 2. (S-robust avoidance and UGAS) Let Assump-
tion 1 be satisfied and let the control parameters be chosen
according to Assumption 2. Then the hybrid controller (24)–
(28) with robustness gain kr > 0, guarantees the existence of
an admissible perturbation pair (σ, ρ) such that the perturbed
dynamics (36) satisfy the following properties:

(i) (S-Robust shell avoidance) For any initial condition
ξ(0, 0) ∈ (Rn\ ∪i∈Nβ Si(δi)) × Zβ , all the arising
solutions satisfy

|x(t, j)|x̂i ≥ hi
2
µiδi

2 ∀ i ∈ Nβ , ∀ (t, j) ∈ dom(ξ).

(ii) (S-Robust Point avoidance) For any initial condition
ξ(0, 0) ∈ (Rn\ ∪i∈Nβ {x̂i}) × {0}, all the arising
solutions satisfy x(t, j) /∈ {x̂1, . . . , x̂β} for all (t, j) ∈
dom(ξ).

(iii) (S-Robust UGAS) The origin ξ = (x, q) = (0, 0) is
uniformly robustly globally asymptotically stable. y

Theorem 2 is proven in Section IX-B. For kr = 0 and
σ = ρ ≡ 0 Theorem 2 recovers Theorem 1. While Theorem 1
ensures UGAS and obstacle avoidance for the nominal system,
robust obstacle avoidance can only be guaranteed with the
additional consideration of the function κ defined in (18) and
a strictly positive robustness gain kr > 0.

Theorem 2 only guarantees the existence of, possibly arbi-
trarily small, perturbation functions (σ, ρ). If a global bound
cσ ∈ R on the size of perturbation σ is known, obstacle
avoidance can still be guaranteed if kr is selected such that1

kr > 8cσmax
i∈Nβ

hiδiµi+4δµi
h2
iµ

2
i δ

2
i

. (37)

In particular, exploiting bound (37), the following result estab-
lishes robustness in the large, and is proven in Section VIII-B.

Theorem 3. (L-Robust avoidance) Let Assumptions 1 and 2
be satisfied and cσ ≥ 0 be given. For any non-negative contin-
uous perturbation function σ : Rn → R≥0 with ‖σ(·)‖∞ ≤ cσ ,
there exists a function ρ such that (σ, ρ) is an admissible
perturbation pair, with the property that for any selection of kr

1It is emphasized that property (37) is only necessary in the neighborhood
of x̂i, i ∈ Nβ , where the robust avoidance controller (20) is active.

(in (18)) satisfying (37), the perturbed dynamics (36) satisfies
the following properties:

(i) (L-Robust Shell avoidance) For any initial condition
ξ(0, 0) ∈ (Rn\ ∪i∈Nβ Si(δi)) × Zβ , all the arising
solutions satisfy

|x(t, j)|x̂i ≥ hi
2
µiδi

2 ∀ i ∈ Nβ , ∀ (t, j) ∈ dom(ξ).

(ii) (L-Robust Point avoidance) For any initial condition
ξ(0, 0) ∈ (Rn\ ∪i∈Nβ {x̂i}) × {0}, all the arising
solutions satisfy x(t, j) /∈ {x̂1, . . . , x̂β} for all (t, j) ∈
dom(ξ). y

Theorem 3 states that obstacle avoidance is possible for ar-
bitrarily large perturbations σ if the robustness gain parameter
is selected sufficiently large. L-Robust UGAS, on the other
hand, cannot be concluded due to the nontrivial perturbations
caused by σ around the origin.

Note the key difference between Theorem 2 and Theorem 3
is that the former assumes a pre-specified robustness gain kr
and constructs an admissible perturbation pair (σ, ρ), whereas
the latter assumes the perturbation σ has been specified which
then necessitates a lower bound on the robustness gain given
by (37). In particular, in Theorem 2, the constructed σ satisfies
σ(0) = 0 to guarantee the S-Robust UGAS property (see (54)).

VII. NUMERICAL EXAMPLES

Here, we illustrate the performance of the avoidance con-
troller by numerically validating the results of Theorems 1
to 3.

A. Closed-loop solutions of the avoidance controller

We first simulate the controller for the simple two-
dimensional system defined by

A =

[
−1 −3
−2 4

]
, B =

[
1 0
−1 2

]
, (38)

and three obstacles

x̂1 =

[
0
1

]
, x̂2 =

[
−1
−1.5

]
and x̂3 =

[
1
−1

]
.

Using pole placement, the stabilizing controller us is de-
fined such that eig(A + BKs) = {−1 + i,−1 − i} and
eig(A + AT ) = {−2,−2}, i.e., the origin of the closed-
loop system is asymptotically stable and V (x) = |x|2 is a
Lyapunov function. The vectors Λ∗i (and thus the orientations
bi) are obtained by solving the optimization problems (9)
for i = 1, 2, 3. Moreover, µi = 1.15 and hi = 0.8 are
used for all i ∈ N3 for the definition of the shells Si(δi)
and the inner shells Sihi(δi). With these definitions, η1 = 1,
η2 = 1.8028 and η3 = 1.4142 are obtained through the
optimization problem (5). Since the η-balls of x̂1 and x̂2 are
overlapping we restrict η1 = 0.64, η2 = 0.47 and η3 = 1.4142
to satisfy Assumption 2. Equation (29) provides the value
ζ = 1.4142. With these definitions, δ∗1 = 0.22, δ∗2 = 0.24 and
δ∗3 = 0.54 can be computed using (30). For the simulations
we define δi = 0.99δ∗i , i ∈ N3. Additionally, the robustness
gain parameter is set to kr = 2. The setting is visualized in
Figure 4. Closed-loop solutions for 50 initial values satisfying
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-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 4. (Example VII-A; Setting) Visualization of the setting for the unsafe
points x̂1, x̂2, x̂3. The shells Si(δi) (blue) and Sihi (δi) (cyan), the ηi-balls
(green) and the subspaces Ei (red) are shown. The balls Bhiµiδi

4

(x̂i) for

which avoidance is guaranteed are depicted in red.

|x0| = 2 are visualized in Figure 5. As expected by the
theoretical results, the controller ensures obstacle avoidance
and asymptotic stability of the origin for the closed loop.

Fig. 5. (Example VII-A; Closed-loop solutions) Visualization of 50 closed-
loop solutions avoiding a pre-specified neighborhood around the unsafe points
x̂1, x̂2, x̂3, and converging to the origin.

B. Impact of the robustness gain parameter kr

The impact of kr in the control law (20) through the function
κ in (18) is visualized in Figure 6 around the unsafe point x̂3

for the previous example. Using kr = 0 (left) the closed-
loop solution keeps a constant distance from the center cq ,
q ∈ {−3,+3} defined in (23) until the shell is left. For kr > 0,
the distance of the closed-loop solution to cq , q ∈ {−3, 3}
increases until the inner shell Sh(δ) is left. As visualized in
Figure 6 in the middle and right plots, the bigger the value
kr, the stronger repulsive properties of the controller, pushing
away from cq .

0.5 1 1.5

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

0.5 1 1.5

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

0.5 1 1.5

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

Fig. 6. (Example VII-B) Closed-loop solutions for different robustness gain
selections in (20): kr = 0 (left), kr = 10 (middle) and kr = 100 (right).

C. Perturbed systems

The robustness properties of the avoidance controller are
illustrated by the numerical simulations in Figure 7. For the

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

Fig. 7. (Example VII-C) Closed-loop solutions for the perturbed system
dynamics w1 (left) and w2 (right) defined in (39) and (40), respectively.

simulations the perturbed dynamics ẋ = Ax+γ(x, q)+wj(x),
j ∈ {1, 2}, with

w1(x) = min
{

1,−0.45λmax(As +ATs )|x|
}

[ 1
0 ] (39)

(Figure 7, left) and

w2(x) = min
{

1,−0.45λmax(As +ATs )|x|
}

[ 0
1 ] (40)

(Figure 7, right) are used. The perturbations are bounded by
1, i.e., w1(x), w2(x) ∈ Bcσ for cσ = 1. For |x| → 0 the
perturbations vanish and the stabilizing control law, active
in a neighborhood around the origin, can compensate for
the perturbations. The robustness gain parameter is set to
kr = 137.13 (satisfying condition (37) so that obstacle
avoidance is guaranteed through Theorem 3).

D. A three dimensional example

The construction of the avoidance controller is independent
of the dimension of the dynamical system. To illustrate the
controller for a three dimensional system we consider the
dynamical system defined through

A =

 −1 1 2
−1 1 1

0 2 1

 , B =

 1 1
1 0
0 2

 (41)

and three obstacles

x̂1 =

 1
2
1
− 1

2

 , x̂2 =

 3
2
1
0

 and x̂3 =

 0
−1

1
2

 .



10

A stabilizer Ks is obtained by solving the LQR-problem
minimizing

∫∞
0
|x(t)|2 + 10|u(t)|2 dt. Since the columns of

B only span a two dimensional subspace of R3 the elements
of the subspaces EΛ∗i computed through the optimization
problem (9) are not orthogonal to x̂i, i ∈ N3. For this
setting ηΛ∗i

= 1.2247, ηΛ∗i
= 1.8021 and ηΛ∗i

= 1.1180 are
obtained through Equation (5) and δ∗ is given by δ∗1 = 0.2216,
δ∗2 = 0.4205 and δ∗3 = 0.1897. The corresponding setting
showing the η-balls and the inner shells Sihi(δ

∗
i ) for hi = 0.8

and µi = 1.15, i ∈ N3, are visualized in Figure 8.

-2
-2

-1

2

0

1

2

0 0

2 -2

Fig. 8. (Example VII-D) Visualization of the shells Sihi (δ
∗
i ) (blue), the ηi-

balls (yellow) and the subspaces Ei (green) for i = 1, 2, 3.

In Figure 9 three closed-loop solutions focusing on the
avoidance of x̂2 are visualized. For the simulations the param-
eters δ2 and h2 are defined as δ2 = 0.99δ∗2 and h2 = 0.8. As
pointed out in the theoretical results and numerically validated
in Figure 9 the avoidance controller is independent of the
dimension of the dynamical system (1).

-1

-0.5

0

0

0.5

1

1
00.512 1.52

Fig. 9. (Example VII-D) Visualization of closed-loop solutions of the
avoidance controller for a three dimensional example focusing on the unsafe
point x̂2. Depending on the initial state, the obstacle is passed by sliding
along the surface of the upper or lower shell (with respect to the orientation
b).

VIII. PROOF OF OBSTACLE AVOIDANCE

In this section we provide a selection of ρ ensuring the
robust obstacle avoidance properties of Theorems 2 and 3,
together with the proof of those statements (namely items
(i) and (ii) of both theorems). The robust GAS statement of
Theorem 2 (iii) is proved in the Section IX.

A. Selection of ρ (and Proof of Lemma 4)

Based on the control parameters characterized in Assump-
tion 2, we explicitly construct the perturbation function ρ :
Rn → R≥0. First, define c̄ρ > 0 as

c̄ρ := min
i∈Nβ

{
(1−hi)µiδi

4 , hiδiµi4 , δi2

(
2√
3
− µi

)
,
δµi
2 , δ̄i−δi2

}
(42)

and choose

cρ ∈ [0, c̄ρ). (43)

Observe that cρ is strictly positive since all the terms defining
c̄ρ are strictly positive.

For each i ∈ Nβ , based on the projection Πi = (I − bibTi )
(with bi = BΛi, |bi| = 1), define

ρi(x) :=max
{

1
2 |〈bi, x−x̂i, 〉|, δµi−

√
bδ2
µi−|Πi(x−x̂i)|2c

}
,

where bsc := max{s, 0} is the projection on R≥0, so that
the square root is well defined globally. The function ρi
is continuous and positive everywhere outside x̂i. Indeed
the second term is positive outside the one-dimensional set
Li := {x̂i + αbi : α ∈ R}, while the first term is positive for
all x ∈ Li \ {x̂i}. Finally, we define the function ρ as

ρ(x) := min

{
cρ, min

i∈Nβ
ρi(x)

}
, (44)

which is continuous and satisfies ρ(x) > 0 for all x ∈
Rn\{x̂1, . . . , x̂β} and ρ(x̂i) = 0 for all i ∈ Nβ .

The role of the constant cρ is to provide a maximum distance
between the boundary of C (respectively D) and that of Cρ
(respectively Dρ). Indeed, from the definitions in (36), since
ρ(x) ≤ cρ for all x, we have

Cρ ⊂ C + (Bcρ × {0}), Dρ ⊂ D + (Bcρ × {0}). (45)

The shape of the inflated jump set Dρ+i, i ∈ Nβ , projected
on the x-direction compared to the nominal set D+i is shown
in Figure 10. Notice that the set is inflated in all directions,
except for the point x̂i, as required by the definition of an
admissible perturbation pair in Definition 1.

Due to (45) and from the fact that ηi > min{δ∗i ,
ηi

1+ζ } = δ̄i,
we have, from the last term in (42), that

cρ <
1
2 min
i∈Nβ

ηi − δi (46)

which implies

Bηi−cρ(x̂i)\Bδi+cρ(x̂i) 6= ∅, ∀i ∈ Nβ . (47)

In addition, as one may visually understand from Figure 10,
with the definitions in (36c), due to the second-to-last bound
in (42) and from the construction in (44), we have that

Dρq = (Dq + Bcρ × {0})\Bδµi (x̂i)× {0}, (48)
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c+i

x̂i

D+i

Dρ+i

cρ
δµi

Fig. 10. Projection on the x-direction of the inflated set Dρ+i, i ∈ Nβ ,
as compared to the nominal set D+i. With a slight abuse of notation, the
projections are labeled with the names of the extended sets in the figure.

for all q = ±i ∈ Zβ\{0}, thus ensuring |x|cq ≥ δµi for all
(x, q) ∈ Dρq . Moreover, using the second bound in (42) and
the inclusion in (45), we have that

|x|cq ≥ δµi +
hiµiδi

4
, (49)

for all x ∈ Rn with (x, 0) ∈ Cρ and q
|q|BΛT|q|(x − x̂|q|) ≥ 0.

Before we use the bounds on ρ together with the properties
(47) and (48) to prove Theorem 3, we conclude this section
with a proof of Lemma 4.
Proof of Lemma 4: All we need to show is that the avoidance
controller is well defined (i.e., the denominator of (19) is
nonzero) for all (x, q) ∈ Cρ with q ∈ Zβ \ {0}. Based on
the definition of the jump set and the flow set, and based on
the considerations in (45), the avoidance controller can only
be active in the inflated shells Si(δi) +Bcρ , i ∈ Nβ . The third
bound in (42) ensures that Proposition 3 is applicable with

cρ = δi
2 ε, for i ∈ Nβ , (50)

or equivalently ε = 2
δi
cρ, which provides well posedness. �

B. Proof of Theorem 3

First notice that, due to the requirement in (37), the repulsive
gain kr is large enough to ensure

cσ ∈
[
0, min
i∈Nβ

kr
8

h2
iµ

2
i δ

2
i

hiδiµi+4δµi

)
(51)

where cσ is a uniform upper bound for σ(·).
Proof of Item (i): For a solution ξ(·, ·) of the hybrid
system (36), the x-component x(·, ·) will be denoted by
solutionx in the following. Consider ξ = (x, q) with x(0, 0) /∈
∪i∈NβSi(δi). If q(0, 0) ∈ Zβ\{0}, then from conditions (45)
and the first bound in (42), the solution does not belong to
Dρ and must jump to q+(0, 0) = 0. Therefore, let us consider
without loss of generality that q(0, 0) = 0. Let i ∈ Nβ
be arbitrary. From (47), we have that int((Si(δi) − Bcρ) \
(Sihi(δi) + Bcρ)) 6= ∅, and using the second bound in (42),
either the solution flows with

|x(t, 0)|x̂i ≥ hi
µiδi

2 − cρ
(42)
≥ hi

2
δiµi

2 , ∀t ≥ 0

(which would prove the item), or otherwise it flows until some
time (t1, 0) when it jumps. Due to the closedness of Cρ and
Dρ, before the jump, we must have ξ(t1, 0) ∈ Cρ ∩ Dρ. At

the jump time, the solution jumps to q(t1, 1) = q+(t1, 0) ∈
{−i,+i}, i ∈ Nβ . Without loss of generality, we consider
hereafter the case q(t1, 1) = i.

After the jump, u switches to the avoidance controller
ûkr (x, i) defined in (20) and due to the repelling properties
of the avoidance controller (20) established in Proposition 3,
we show below that the solution cannot flow closer than
hi
2
µiδi

2 +δµi to c+i. To show this, first notice that immediately
after the jump, since x(t1, 0) ∈ Cρ, from (49), |x(t1, 1)|c+i =

|x(t1, 0)|c+i ≥ hi
2
µiδi

2 + δµi is satisfied.
Consider now any (t, 1) ∈ dom(x) such that |x(t, 1)|c+i =

hi
2
µiδi

2 + δµi . We claim that d
dt |x(t, 1)|c+i > 0. Indeed, from

(21), and by using |y| ≤ σ(x) ≤ cσ to denote a generic
selection at the right-hand side of (36a), we obtain (omitting
the dependence on (t, 1) for compactness)

1
2
d
dt |x|

2
c+i = 1

2
d
dt |x− c+i|

2

= 〈x− c+i, Ax+ y +Bûkr (x, q)〉
= 〈x− c+i, y〉+ kr

2 (|x− c+i| − hi µiδi2 − δµi)
2

≥ −cσ(hi2
µiδi

2 + δµi) + kr
2 (hi2

µiδi
2 + δµi − hi

µiδi
2 − δµi)

2

= − cσ4 (hiµiδi + 4δµi) + kr
2 (hi2

µiδi
2 )2 > 0, (52)

where we used the upper bound on cσ in (51). Hence, we con-
clude that |x(t, 1)|c+i ≥ hi

2
µiδi

2 + δµi for all (t, 1) ∈ dom(x),
and thus |x(t, 1)|x̂i ≥ hi

2
µiδi

2 is satisfied.
If the solution jumps again to q+ = 0, then, by definition of

the jump set Dρ0 in (25) and (36c), respectively, the solutionx
must be outside Sihi(δi) (due to the definition of the shell
Sihi(δi) and the first bound in (42)) and the reasoning above
can be repeated for the subsequent evolution, so that it is
impossible for the solutionx to enter the interior of Sihi

2

(δi),
thus proving item (i).

Proof of Item (ii): We consider two cases.
Case (a): Let x(0, 0) ∈ Rn \ ∪i∈NβSihi(δi) and q(0, 0) = 0.
Then the same arguments as in item (i) imply that |x(t, j)|x̂i ≥
hi
2
µiδi

2 , i.e., x(t, j) 6= x̂i for all (t, j) ∈ domx for all i ∈ Nβ .
Case (b): Let x(0, 0) ∈ Sihi(δi) \ {x̂i}, i ∈ Nβ arbitrary,
and q(0, 0) = 0. Due to the definition of the jump sets it
holds that ξ(0, 0) ⊂ D+i ∪ D−i ⊂ Dρ+i ∪ D

ρ
−i. Moreover,

ξ(0, 0) /∈ Cρ because of the first upper bound on cρ in (42),
together with (45). Then the solution immediately jumps to
ξ(0, 1) =

[
x(0,0)
q(0,1)

]
with q(0, 1) ∈ {−i, i}. We assume without

loss of generality that x(0, 0) ∈ Dρ+i × {0}, which, using the
inequality derived after (48), implies that |x(0, 1)|c+i ≥ δµi .
and q(0, 1) = i.

Proceeding similarly to the proof of item (i) (see, in
particular, (52)), we show below that the solution remains
bounded away from x̂i because it is at least δµi distant from
c+i. In particular, by using |y| ≤ σ(x) ≤ cσ to denote a
generic selection at the right-hand side of (36a), consider any
time (t, 1) ∈ dom(x) such that |x(t, 1)|c+i = δµi and apply
Proposition 3 (specifically (21)) to obtain (again omitting the
dependence on (t, 1) for compactness)

1
2
d
dt |x|

2
c+i = 1

2
d
dt |x− c+i|

2

= 〈x− c+i, Ax+ y +Bûkr (x, q)〉
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= 〈x− c+i, y〉+ kr
2 (|x− c+i| − hi µiδi2 − δµi)

2

≥ −cσ|x− cpi |+ kr
2 (hi

µiδi
2 )2 = −cσδµi + kr

2 (hi
µiδi

2 )2

≥ − cσ4 (hiµiδi + 4δµi) + kr
2 (hi2

µiδi
2 )2 > 0, (53)

where, similar to (52), the last step follows from the upper
bound on cσ in (51). Note that Proposition 3 is applicable
due to the considerations in (50). Due to the strict inequality
in (53), it must hold that |x(t, 1)|c+i > δµi for all (t, 1) ∈
dom(x), t > 0, which particularly implies that x(t, 1) 6= x̂i
for all t ≥ 0 with (t, 1) ∈ dom(x), because x(0, 0) 6= x̂i
by assumption. By definition of the jump set Dρ0 in (25),
the solution will jump again (to q+ = 0) only when its x
component is outside Sihi(δi), and then the analysis carried
out in case (a) applies. �

IX. PROOF OF ROBUST GAS

The conditions on the perturbation σ imposed in the previ-
ous section were too mild to allow proving the robust GAS
property stated in Theorem 2 item (iii). We provide here a
specific feasible selection of σ that, together with the selection
of ρ given in Section VIII-A, ensures robust GAS in the small.
Robust obstacle avoidance in the small trivially follows from
the stronger results established in the previous section.

A. Selection of perturbation σ and wipeout property

Define σ as

σ(x) := min{cσ, cσ|x|}, (54)

for a constant cσ ≥ 0, which is constrained to belong to the
following intervals:

cσ ∈
[
0,min

{
|A−1

s |−1cρ,− 1
4λmax(As +ATs )

}]
(55a)

cσ ∈
[
0, 2|As|2 · min

i∈Nβ

ζ−1(ηi−δi−2cρ−(δi+cρ)ζ)
(ηi−δi−2cρ)(2|As|−λmax(As+ATs ))

)
,

(55b)

where the interval in (55a) is nonempty because of Assump-
tion 1(b) ensuring that λmax(As + ATs ) < 0, and where the
interval in (55b) is shown to be non-empty in Claim 1 reported
below.

The left bound in (55a) is used in Proposition 4 below
to prove a wipeout property generalizing Proposition 1. The
right bound in (55a) is used to prove asymptotic stability in
the proof of Theorem 2 in Section IX-B. The upper bound
in (55b) is necessary to prove positivity of the decrease ε
characterized in the next proposition, generalizing our nominal
results reported in [4, Prop. 3] to the robust setting.

Proposition 4. Let Assumption 1 hold and let the parameters
of the hybrid system (36) be defined according to Assump-
tion 2. Let the perturbation functions (σ, ρ), defined in (44),
(54), satisfy conditions (43) and (55). Then the following
properties hold for all solutions ξ(·, ·) starting at ξ0.

(i) (Wipeout property) Let ξ0 ∈ Bδi+cρ(x̂i)×Zβ for i ∈ Nβ
arbitrary. Then there exists a time (t∗, j∗) ∈ dom(ξ)
such that either ξ(t∗, j∗) ∈ ∂Bηi−cρ(x̂i) × Zβ or
ξ(t, j) /∈ Bδi+cρ(x̂i)× Zβ for all (t, j) ≥ (t∗, j∗).

Si(δi)

Bδi(x̂i)

Bηi(x̂i)

x(t0, j0)

x(tin, j0)

x(tout, j1)

x(t1, j1)

Fig. 11. The intuition behind the two statements of Proposition 4 and the
hybrid times (t0, j0) ≤ (tin, j0) ≤ (tout, j1) ≤ (t1, j1), characterized in its
statement and its proof.

(ii) (Decrease property) Let ξ0 ∈ Rn\∪i∈Nβ (Si(δi)+Bcρ)×
Zβ . Additionally, consider any four times in the domain
of ξ(·, ·), such that

(t0, j0) ≤ (tin, j0) ≤ (tout, j1) ≤ (t1, j1), (56)

and
ξ(t0, j0), ξ(t1, j1) ∈ ∂Bηi−cρ(x̂i)× {0},
ξ(tin, j0), ξ(tout, j1) ∈ ∂Bδi+cρ(x̂i)× {0}.

(57)

for i ∈ Nβ , arbitrary. Then either

|x(t1, j1)|<min
z∈Si(δi)

|z|−cρ or |x(t1, j1)| ≤ |x(t0, j0)|−ε

(58)

for some ε > 0, is satisfied. y

Before we prove Proposition 4, the following claim illus-
trates why conditions (33), (43) and (55) are needed, and
provides the selection of a positive ε in (58).

Claim 1. (Selection of ε) Under Assumptions 1 and 2, if
conditions (43) hold, consider the selection

ε = −(δi + cρ) + ζ−1(ηi − δi − 2cρ)

− cσ (ηi−δi−2cρ)(2|As|−λmax(As+A
T
s ))

2|As|(|As|+cσ) . (59)

Then the interval (55b) is non-empty and ε > 0 for all cσ in
the interval defined through (55b).

Proof. According to (42), cρ satisfies the condition

2 + ζ

1 + ζ
cρ < 2cρ <

ηi
1 + ζ

− δi,

which implies (2 + ζ)cρ < ηi− (1 + ζ)δi. Since ζ is positive,
rearranging we get

0 < ζ−1(ηi − δi − 2cρ − (δi + cρ)ζ)

= −(δi + cρ) + ζ−1(ηi − δi − 2cρ). (60)

According to (46) and Assumption 1(b),

0 <
(ηi − δi − 2cρ)(2|As| − λmax(As +ATs ))

2|As|(|As|+ cσ)
(61)

≤ (ηi − δi − 2cρ)(2|As| − λmax(As +ATs ))

2|As|2
(62)



13

for all cσ ≥ 0.
Combining estimate (60) and (61) shows, that ε > 0 for cσ

small enough. The condition cσ small enough is characterized
through the interval (55b) which is obtained by combining
(60) and (62).

Proof of Proposition 4:
Proof of item (i): Let us consider a solution ξ(·, ·), whose
x-component x(·, ·) starts in Bδi+cρ(x̂i) for i ∈ Nβ arbi-
trary. Two cases may happen: either the solutionx reaches
∂Bηi−cρ(x̂i) in finite time, or it never reaches it. In the
first case the item is proven. In the second case, solutionx
must remain in the interior of Bηi−cρ(x̂i) for all times
(t, j) ∈ dom(x). Therefore, according to the definition of γ
in (24), the directional derivative of function H(x), defined in
Proposition 1, in the direction of the flow map in (36a), can
be written as

Ḣ := 〈∇H,Ax+Bγ(x, q) + y〉 = 〈∇H,Asx+BΛν + y〉

for some y ∈ Bσ and some ν ∈ R. We may then apply
Proposition 1 to conclude the robust wipeout properties,
which follow from the left upper bound in (55a) that implies
|A−1

s y| ≤ |A−1
s |cσ ≤ cρ,

x ∈ Bηi−cρ(x̂i)⇒ Ḣ = 〈∇H,As(x+A−1
s y) +BΛν〉 ≥ 0,

x ∈ Bη̄−cρ(x̂i)⇒ Ḣ = 〈∇H,As(x+A−1
s y) +BΛν〉 ≥ h,

(63)

for any η̄ ∈ [cρ, ηi), where h > 0 depends on η̄.
Observe now that δi + cρ < ηΛi − cρ, i ∈ Nβ , from the

upper bound on cρ in (46), and select η̄ in (63) as the average
of these two values, namely η̄ = 1

2 (δi + ηΛi), which satisfies

δi + cρ < η̄ < ηΛi − cρ. (64)

(See Assumption 2 for the definition of ηΛi .) Since solutionx
remains in the interior of Bηi−cρ(x̂i) for all times, then the
upper condition in (63) implies that H is non-decreasing along
this solution. Assume now, by contradiction, that solutionx
keeps revisiting Bδi+cρ(x̂i) for (t, j)→∞. Since Bδi+cρ(x̂i)
is a proper subset of Bη̄(x̂i) from (64), and since ẋ is
uniformly bounded in the compact set Bηi−cρ(x̂i) then there
exits T ∗ > 0 such that each time solutionx enters Bδi+cρ(x̂i),
it spends T ∗ ordinary time flowing in Bη̄(x̂i). Finally, com-
pleteness of solutions established in Lemma 2 implies that the
solution spends an arbitrarily large amount of time in Bη̄(x̂i)
and (63) implies that H grows unbounded, thus establishing
a contradiction because H is bounded in Bδi+cρ(x̂i).
Proof of item (ii): Consider any such solution ξ(·, ·) and
first notice that due to the expression in (28) of the flow set,
the solutionx can only flow in Bηi−cρ(x̂i) \ (Si(δi) + Bcρ) if
q(t, j) = 0. Let us now split the proof in two cases:
Case (a): For some (t∗, j∗) ∈ dom(ξ) satisfying (t0, j0) ≤
(t∗, j∗) ≤ (t1, j1) we have |x(t∗, j∗)| < minz∈Si(δi) |z| − cρ
(> 0 according to (42) and from the assumption in (33)). Since
from Assumption 1(b) the norm is contractive along flows
with q = 0, the solutionx satisfies |x(t, j)| ≤ |x(t∗, j∗)| <
minz∈Si(δi) |z| − cρ for all (t, j) ≥ (t∗, j∗), which also
includes (t1, j1), and the proof is complete.

Case (b): For all (t, j) ∈ dom(ξ) satisfying (t0, j0) ≤ (t, j) ≤
(t1, j1) we have

|x(t, j)| ≥ min
z∈Si(δi)

|z| − cρ ≥ |x̂i| − δi − cρ, (65)

where we used Lemma 1 in the last inequality. In this second
case we will prove that |x(t1, j1)| ≤ |x(t0, j0)|−ε, where ε is
defined based on (59). In particular, due to the stated assump-
tions, the solutionx must go through three phases characterized
by the four hybrid times in (56), and corresponding to: 1) flow
from x(t0, j0) ∈ ∂Bηi−cρ(x̂i) to x(tin, j0) ∈ ∂Bδi+cρ(x̂i),
2) hit the boundary ∂Bδi+cρ(x̂i) at time (tin, j0) and reach
x(tout, j1) ∈ ∂Bδi+cρ(x̂i) again after some finite time, 3) flow
from x(tout, j1) ∈ ∂Bδi+cρ(x̂i) to x(t1, j1) ∈ ∂Bηi−cρ(x̂i).

We show below that the increase of |x| over phase 2 is
compensated by a suitable decrease in phases 1 and 3, adding
up to a net decrease of −2ε, with ε > 0 defined in (59).
Phase 2. It holds that

min
z∈Bδi+cρ (x̂i)

|z| = |x̂i| − δi − cρ

and max
z∈Bδi+cρ (x̂i)

|z| = |x̂i|+ δi + cρ,

therefore we obtain the estimate

|x(tout, j1)| − |x(tin, j0)| ≤ |x̂i|+ δi + cρ − (|x̂i| − δi − cρ)
= 2(δi + cρ). (66)

Phases 1 and 3. We will only address phase 1 because
parallel arguments apply to phase 3. Since x(t, j) flows within
Bηi−cρ(x̂i) \ Bδi+cρ(x̂i) for all (t, j) satisfying (t0, j0) ≤
(t, j) < (tin, j0), then q(t, j) = 0 for all such (t, j) and the
following inequality holds, where we use y ∈ Bσ(x) to denote
an arbitrary selection in the right-hand side of (36a):

|ẋ(t, j)| ≤ |Asx(t, j)|+ |y| ≤ |As||x(t, j)|+ |σ(x(t, j))|
≤ (|As|+ cσ)|x(t, j)|
≤ (|As|+ cσ)(|x̂i|+ ηi − cρ), (67)

where we used the expression for γ in (24) and the bound (54)
on σ, in addition to the fact that x(t, j) ∈ Bηi−cρ(x̂i). Using
|x(tin, j0) − x(t0, j0)| ≥ ηi − δi − 2cρ (which holds because
of the distance between ∂Bηi−cρ(x̂i) and ∂Bδi+cρ(x̂i), and is
positive due to (46)), it follows from the mean value theorem
that

tin − t0 ≥
ηi − δi − 2cρ

(|As|+ cσ)(|x̂i|+ ηi − cρ)
. (68)

Consider now the following upper bound of the decrease rate
of the norm, where we use again y ∈ Bσ(x) to denote an
arbitrary selection in the right-hand side of (36a):

˙︷ ︸︸ ︷
|x(t, j)| = d

dt

√
|x(t, j)|2

=
x(t, j)T (Asx(t, j) + y) + (Asx(t, j) + y)Tx(t, j)

2|x(t, j)|

=
x(t, j)T (As +ATs )x(t, j) + 2yTx(t, j)

2|x(t, j)|

≤ λmax(As +ATs )

2|x(t, j)|
|x(t, j)|2 +

2cσ|x(t, j)|2

2|x(t, j)|
(69)

≤ 1
2 (λmax(As +ATs ) + 2cσ)(|x̂i|+ ηi − cρ),
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which is well defined because |x(t, j)| ≥ |x̂i| − δi − cρ > 0
according to (65) and where we used |y| ≤ cσ|x| from (54).
Integrating both sides provides the estimate

|x(tin, j0)|−|x(t0, j0)|
≤ 1

2 (tin−t0)(λmax(As +ATs ) + 2cσ)(|x̂i|+ ηi − cρ).

Due to Assumption 1(b), and from the upper bound on cσ in
(55a), the right-hand side is negative. Thus, we can use (68)
to estimate the decrease (we use the notations δ̂i := δi + 2cρ
and λ̂ := λmax(As +ATs ) < 0 to shorten the expressions)

|x(tin, j0)|−|x(t0, j0)| ≤ 1
2 (tin − t0)(λ̂+ 2cσ)(|x̂i|+ ηi − cρ)

≤ (λ̂+ 2cσ)(|x̂i|+ ηi − cρ)(ηi − δ̂i)
2(|As|+ cσ)(|x̂i|+ ηi − cρ)

≤ (λ̂+ 2cσ)(ηi − δ̂i)
2(|As|+ cσ)

=
λ̂(ηi − δ̂i)

2(|As|+ cσ)
+

2cσ(ηi − δ̂i)
2(|As|+ cσ)

=
λ̂(ηi − δ̂i)

2|As|
− cσλ̂(ηi − δ̂i)

2|As|(|As|+ cσ)
+

2cσ(ηi − δ̂i)
2(|As|+ cσ)

= −ζ−1(ηi − δ̂i) + cσ
(ηi − δ̂i)(2|As| − λ̂)

2|As|(|As|+ cσ)
(70)

which is a lower bound on the decrease in phase 1 and 3, and
ζ was defined in (29). Combining the increase and decrease
bounds established in (66) and (70), we get

|x(t1, j1)| − |x(t0, j0)| = |x(t1, j1)| − |x(tout, j1)|
+ |x(tout, j1)| − |x(tin, j0)|+ |x(tin, j0)| − |x(t0, j0)|

≤ 2(δi + cρ)− 2ζ−1(ηi − δ̂i) + 2cσ
(ηi−δ̂i)(2|As|−λ̂)

2|As|(|As|+cσ) = −2ε,

where ε, defined in (59), is positive from Claim 1. �

B. Proof of Theorem 2

Items (i) and (ii) of Theorem 2 hold from the proof of
Theorem 3 given in Section VIII-B, which were proven under
less restrictive assumptions on the perturbation σ.
Proof of Item (iii): To prove uniform global asymptotic
stability (UGAS) of the origin, we exploit the fact, established
in Lemma 4, that the closed loop satisfies the hybrid basic
conditions of [6, As. 6.5] and all maximal solutions are
complete. Then, using [6, Thm. 7.12], it is sufficient to prove
(local) Lyapunov stability and global (not necessarily uniform)
convergence to the origin, to obtain uniform global asymptotic
stability. The two properties are proven below.

Local Stability: We first observe that ηΛi defined in (5)
satisfies ηΛi ≤ |x̂i| for all i ∈ Nβ , because y = 0 trivially
belongs to EΛi in (3). Moreover, from Lemma 3 we have
δi + cρ < ηi ≤ ηΛi , whose strict inequality, together with the
inclusion Si(δi) ⊂ Bδi(x̂i), (see (46)) established in Lemma 1,
implies that 0 /∈ Si(δi)+Bcρ for all i ∈ Nβ . As a consequence,
there exists an r > 0, such that Br∩(∪i∈NβSi(δi)+Bcρ) = ∅.
Moreover, for any initial state ξ ∈ Br × Zβ the x- and q-
components satisfy the following properties. If q(0, 0) 6= 0,
the dynamics will jump immediately to q(0, 1) = 0 (due to the
definition of Dρ0) and the x-component satisfies x+ = x across
any jump. Thus, either after the first jump, or immediately, the
solution ξ(t, j) belongs to the interior of C (and in particular

to the interior of Cρ\Dρ). In addition to ξ(t, j) ∈ Br × {0},
let y ∈ Bσ(x) ⊂ Bcσ|x|, then using the estimate derived in (69)
leads to

˙︷ ︸︸ ︷
|x(t, j)| ≤ λmax(As +ATs )

2|x(t, j)|
|x(t, j)|2 +

2cσ|x(t, j)|2

2|x(t, j)|
≤
(

1
2λmax(As +ATs ) + cσ

)
|x(t, j)| < 0 (71)

for all |x(t, j)| 6= 0, which follows from Assumption 1(b)
together with the assumption on cσ ≤ − 1

2λmax(As + ATs )
in (55a). This implies that ξ(t, j) flows forever in the forward
invariant set Br×{0}. (Local asymptotic) stability then follows
from estimate (71) as well.

Global Convergence: Consider any solution ξ = (x, q), and
based on the two possibilities in Proposition 4(i) we break the
analysis in two cases.
Case (a): The solution never reaches ∂Bηi−cρ(x̂i) for i ∈ Nβ
arbitrary. In this case, from Proposition 4(i) the solution
remains in the stabilizing mode (i.e., u = us and q = 0) on
its tail. Then, it converges asymptotically to the origin due to
the inequalities in (71) established for the perturbed dynamics
ẋ ∈ Asx+ Bσ(x).
Case (b): The solution reaches ∂Bηi−cρ(x̂i), i ∈ Nβ , at
some time (t0, j0). In this second case, either there exists
a finite time after which the solution does not evolve using
the avoidance controller (i.e., using u = γ(x, q) and with
q 6= 0) anymore (and the analysis of case (a) applies), or
there exists a sequence of times (tk, jk), k ∈ N satisfying
|x(tk+1, jk+1)| ≤ |x(tk, jk)| − ε, according to (58), which
leads to a contradiction. �

X. CONCLUSIONS

This paper proposes a constructive controller design method
for linear systems subject to bounded state constraints. In
particular a hybrid control law is introduced which robustly
globally stabilizes the origin and guarantees robust obsta-
cle avoidance, where obstacles are described through shells
around isolated points in the state space.

While the paper provides a rigorous answer to the control
problem motivated in Section II, the controller design method-
ology appears to be promising for more general control tasks
and thus immediately opens up future research directions. In
this regard, we will investigate the hybrid controller design
method for more general nonlinear system dynamics and
extend the results accordingly. A second research direction
will be dedicated to the maximal size of the obstacles. Even
though we are able to constructively compute a maximal
domain around a point, which can be avoided by the closed
loop, the size of the resulting domain may be conservative,
and numerical simulations suggest that obstacle avoidance and
robust GAS could be guaranteed for larger obstacles using the
proposed control law.
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