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Abstract-Due to the need for discontinuous feedback laws, control design for dynamical systems subject to bounded state constraints is particularly challenging and has not been addressed rigorously in the literature. As a step in this direction we propose a constructive design method for linear systems, guaranteeing robust global asymptotic stability of the origin of the closedloop system, as well as robust obstacle avoidance. Here, obstacles are described through neighborhoods of isolated points in the state space. To obtain discontinuous input actions, the setting is embedded and solved in the framework of hybrid systems. The constructive controller design methodology, as well as the closed-loop properties, are investigated via numerical examples.
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I. INTRODUCTION

L YAPUNOV functions [11] provide a well established tool to analyze and characterize stability properties of general dynamical systems and are an important mechanism in the control literature to construct stabilizing feedback laws. While global asymptotic stability/stabilization (GAS) of unconstrained dynamical systems is well understood, stability/stabilization of dynamical systems subject to bounded state constraints, e.g., obstacle avoidance for mobile robots or collision avoidance in the coordination of drones, has yet to be addressed rigorously for general classes of dynamical systems. While in the context of unconstrained stabilization, discontinuous control laws only need to be considered for the class of systems that are asymptotically controllable but not Lipschitz continuous feedback stabilizable (e.g., the nonholonomic integrator [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF]), discontinuous feedback laws are necessary in the presence of bounded constraints, independent of the system dynamics [START_REF] Liberzon | Switching in Systems and Control[END_REF]Chapter 4], [START_REF] Braun | On (the existence of) control Lyapunov barrier functions[END_REF]. A similar need for discontinuous feedback laws is discussed in [START_REF] Mayhew | Hybrid control of planar rotations[END_REF] in terms of topological obstructions on manifolds.

When using control Lyapunov functions, the need for discontinuous feedback laws precludes the use of Sontag's universal formula [START_REF] Sontag | A 'universal' construction of Artstein's theorem on nonlinear stabilization[END_REF], for example, since it leads to a continuous feedback law. Thus, approaches extending classical results on control Lyapunov functions by control barrier functions [START_REF] Wieland | Constructive safety using control barrier functions[END_REF] to include constraints in the state space, are limited to constraints defining unbounded sets. In particular, this impacts approaches in [START_REF] Ngo | Integrator backstepping using barrier functions for systems with multiple state constraints[END_REF], [START_REF] Tee | Barrier Lyapunov functions for the control of output-constrainted nonlinear systems[END_REF], [START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF], [START_REF] Romdlony | Stabilization with guaranteed safety using control Lyapunov-barrier function[END_REF], which rely on the existence of continuous feedback laws.

In the robotics literature, artificial potential fields, which can be seen as Lyapunov-like functions, are well established for obstacle avoidance controller design and originate from papers by Khatib [START_REF] Khatib | Real-time obstacle avoidance for manipulators and mobile robots[END_REF], [START_REF] Khatib | Real-Time Obstacle Avoidance for Manipulators and Mobile Robots[END_REF]. In these approaches, artificial potential fields are functions whose gradient can be used to define a feedback law pushing solutions away from obstacles and towards a target set, usually defined as the origin. The approach is typically used for fully actuated systems and in general only guarantees asymptotic stability of the target set for almost all initial conditions due to saddle points and local minima of the artificial potential fields [START_REF] Rimon | Exact robot navigation using artificial potential functions[END_REF], [START_REF] Koditschek | Robot navigation functions on manifolds with boundary[END_REF]. Thus, in particular robustness with respect to disturbances as well as GAS cannot be expected from the controller design.

A widely used tool for control problems subject to state and input constraints is model predictive control [START_REF] Maciejowski | Predictive control: with constraints[END_REF], [START_REF] Rawlings | Model Predictive Control: Theory, Computation, and Design[END_REF]. Note however that the model predictive control literature does not provide a general framework for obstacle avoidance and global stabilization. Even though it is simple to define an optimization problem to iteratively compute a feedback law, proving GAS of the closed loop and recursive feasibility is nontrivial. Moreover, state constraints excluding a bounded set in the state space lead to nonconvex optimization problems which need to be solved to define a feedback law. Thus, obstacle avoidance is not only challenging from a theoretical perspective, but also from a practical perspective in the computation of optimal solutions for nonconvex optimization problems.

One way to define discontinuous feedback laws, and which we will follow in this paper, is to unite local and global controllers. This approach traces back to [START_REF] Teel | Uniting local and global controllers[END_REF] and was further investigated and established using the formalism of hybrid dynamical systems in [START_REF] Prieur | Uniting local and global controllers with robustness to vanishing noise[END_REF], [START_REF] Tuna | Hybrid MPC: Open-Minded but Not Easily Swayed[END_REF], [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF], [START_REF] Sanfelice | Robust hybrid controllers for continuous-time systems with applications to obstacle avoidance and regulation to disconnected set of points[END_REF], [START_REF] Sanfelice | Robust supervisory control for uniting two output-feedback hybrid controllers with different objectives[END_REF], [START_REF] Poveda | A hybrid adaptive feedback law for robust obstacle avoidance and coordination in multiple vehicle systems[END_REF]. While these results are promising and motivating, the papers address particular applications and do not provide a general tool for controller design subject to bounded state constraints.

As outlined in detail in the next section, and in contrast to the approaches discussed above, we extend our earlier nominal single-obstacle work in [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF] and propose a constructive method to design a robust hybrid control law for a stabilizable linear system that simultaneously guarantees GAS of the origin and avoidance of a neighborhood around given obstacles described by single points.

The paper is structured as follows. In Section II the math-ematical setting and the problem under consideration are formalized. In Section III we summarize the results of our earlier work [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF], i.e., the basic avoidance controller is defined and corresponding definitions and notations are provided before a robust controller extension is introduced in Section IV. The results are combined in Section V to obtain a global hybrid control law, following the framework of hybrid dynamical systems in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]. The closed-loop properties of the hybrid control law for the nominal system dynamics given in Section V are extended to robust GAS and robust obstacle avoidance for perturbed system dynamics in Section VI. The results of the hybrid controller are illustrated on numerical examples in Section VII. The proofs of the main result are shifted to Sections VIII and IX, before the paper concludes with final remarks in Section X. Throughout the paper the following notation is used. For x ∈ R n we use the vector norm |x| = n i=1 x 2 i . Similarly, the distance to a point y ∈ R n is denoted by |x| y = |x -y|. For a closed set A ∈ R n and r > 0 we define B r (A) = {x ∈ R n | min y∈A |x -y| ≤ r} and for the origin we simplify the notation to B r = B r (0). The closure, the boundary and the interior of a set are denoted by A, ∂A and int(A), respectively. For two sets A 1 , A 2 ⊂ R n , A 1 + A 2 and A 1 -A 2 denote the Minkowski sum and the Minkowski difference, respectively. The identity matrix of appropriate dimension is denoted by I. The natural numbers from 1 to β ∈ N are denoted N β = {1, . . . , β}. Similarly, Z β = {-β, . . . , 0, . . . , β} denotes the integers from -β to β.

II. SETTING & PROBLEM FORMULATION

In this paper we consider stabilizable linear dynamical systems

ẋ = Ax + Bu, x 0 = x(0) ∈ R n (1) with state x ∈ R n , input u ∈ R m and matrices A ∈ R n×n , B = [b 1 , . . . , b m ] ∈ R n×m .
As motivated in the introduction, the paper addresses the following general problem and provides a solution under some simplifying assumptions described below.

Problem 1. (Semiglobal x-avoidance augmentation with GAS) Given a set of "unsafe" points {x 1 , . . . , xβ } ∈ R n \{0}, β ∈ N, that must be avoided by the controller, and a stabilizing state feedback u s (x) = K s x, for each δ > 0, design a feedback selection of u that guarantees (i) (R-GAS) robust uniform global asymptotic stability of the origin; (ii) (Semiglobal preservation) the feedback u(x) matches the original stabilizer u(x) = K s x for all x ∈ R n \ ∪ β i=1 B δ (x i ); and (iii) (Semiglobal x-avoidance) all solutions starting outside the balls ∪ β i=1 B δ (x i ) never enter a suitable "safety" neighborhood around xi , i ∈ N β .

While this problem has been addressed for the special case of a single obstacle and without robustness properties in [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF], we provide a solution to the general Problem 1 in the following sections. We propose a constructive controller design method, which augments a given stabilizing control law u s = K s x and ensures robust avoidance of specified neighborhorhoods around the obstacles xi , i ∈ N β . To solve Problem 1 we make the following standing assumptions throughout the paper.

Assumption 1. Basic assumptions:

(a) Matrix A s := A + BK s is Hurwitz. (b) The norm x → |x| 2 is contractive under the stabilizer u s (x) = K s x (equivalently, A s + A T s < 0). (c) For each i ∈ N β , there exists a b j , j ∈ N m , (i.e., a column of B) such that the vectors A s xi and b j are linearly independent.

Assumption 1(a) simply states that the feedback law u s = K s x stabilizes the origin for the unconstrained system (1). Assumption 1(b) simplifies the notation and can always be achieved through a coordinate transformation. If V (x) = x T Sx is a Lyapunov function for the closed-loop system ẋ = A s x (with u s = K s x), then V (x) = |x| 2 is a Lyapunov function in the coordinates x = S F x, where S T F S F = S denotes the Cholesky factorization of S.

Assumption 1(c) is the only substantial restriction that we make in this paper and will be addressed in future work. Even though Assumption 1(c) appears restrictive, observe that in the case of a multidimensional input B ∈ R n×m , m ≥ 2, Assumption 1(c) is satisfied for all x ∈ R n \{0} if the columns of B are linearly independent. Assumption 1(c) enables us to exploit the convenient property that the transit of solutions through any sufficiently small neighborhood of xi , i ∈ N β , can be made independent of the input u.

This property, introduced as the "wipeout" property in [3] makes use of the natural drift in the system dynamics [START_REF] Ames | Control barrier function based quadratic programs for safety critical systems[END_REF] and is repeated together with the main results and definitions of [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF] in the next section. The results developed in this paper, which extend the earlier results in [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF], preserve the modularity properties of the corresponding controller design methodology.

III. THE WIPEOUT PROPERTY AND AVOIDANCE CONTROLLER DESIGN

In this section we recall the results of [3, Section III and IV] and extend them to the case of multiple obstacles and multidimensional inputs u ∈ R m . We study properties of an arbitrary unsafe point x ∈ {x 1 , . . . , xβ } throughout this section.

A. η-neighborhood and wipeout property

According to Assumption 1(c), for a fixed unsafe point x, there exists a j ∈ N m such that

x / ∈ E j := {y ∈ R n : ∃ν * ∈ R, A s y + b j ν * = 0} (2)
and the right-hand side defines a one dimensional subspace of induced equilibria corresponding to b j , j ∈ N m . More generally, for a vector Λ ∈ R m \{0} the one dimensional subspace

E Λ := {y ∈ R n : ∃ν * ∈ R, A s y + BΛν * = 0} (3) 
is defined through a linear combination of the columns of B.

The selection of Λ ∈ R m \{0} allows us to locally reduce the multi-dimensional input u ∈ R m to a one-dimensional input ν ∈ R and to concentrate on a specific linear combination of the inputs u = Λν. The selection Λ as unit vectors, for example, recovers (2) from (3). Since by Assumption 1(a) the matrix A s is Hurwitz, the subspace can alternatively be characterized through E Λ = span(A -1 s BΛ). Remark 1. Note that the existence of j ∈ N m with x / ∈ E j is independent of the stabilizer u s = K s x. In the case m = 1, the definition of the subspace E 1 can be rewritten as

E 1 = {y ∈ R n : ∃u * 1 ∈ R, A s y + b 1 u * 1 = 0} = {y ∈ R n : ∃u * 1 ∈ R, Ay + b 1 (K s y + u * 1 ) = 0} = {y ∈ R n : ∃v * 1 ∈ R, Ay + b 1 v * 1 = 0, u * 1 = v * 1 -K s y},
showing its independence of the stabilizer u s .

If m > 1 and x ∈ E j for a j ∈ N m , then x / ∈ E i , as long as columns b i and b j of B are independent. Therefore, Assumption 1(c) is automatically satisfied if rank(B) ≥ 2.

With the definition (3), the following property was introduced in [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF].

Proposition 1. (Wipeout Property, [3, Prop. 1]). Let Assump- tion 1 hold and let Λ ∈ R m be defined such that x / ∈ E Λ . Consider the function H(x) := xT A T Λ x, with A Λ defined as A Λ := (I -BΛΛ T B T )A s (4) 
and the scalar η Λ > 0 defined by the optimization problem

η Λ := min y∈EΛ |x -y|. (5) 
For each x ∈ B ηΛ (x) we have ∇H, A s x + BΛν ≥ 0 for all ν ∈ R, where we use the notation ∇H = ∇H(x) because of the linearity of H, implying that ∇H is a constant. Moreover, for each η < η Λ , there exists h > 0 such that

∇H, A s x + BΛν ≥ h, ∀ν ∈ R, ∀x ∈ B η (x). (6) 
A proof of the statement can be found in [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF]Prop. 1]. Note that in [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF] the matrix A Λ in (4) (and thus the function H) is defined based on A instead of the stabilized closed loop matrix A s . In Proposition 1 the multi dimensional input is reduced to a one dimensional input ν ∈ R. The input ν and the original input u are linked through the vector Λ, i.e., u = Λν. Remark 2. Due to the linearity of H(x), ∇H is independent of x and defines a direction

d x = ∇H |∇H| = AΛ x √ xT A T Λ AΛ
x , which is well defined through (4) because x / ∈ E Λ . This implies that (6) provides a lower bound on the speed the solution x(t) moves in direction d x for all η ≤ η Λ , i.e., d x, ẋ ≥ h η for h η = h/|∇H|. In particular, a solution x(•) such that x(t) ∈ B η (x) for all t ∈ [0, T ], satisfies

d x, x(T ) -x(0) ≥ T h η . (7) 
Moreover, a solution x(•) such that x(t) ∈ B η (x) for all t ∈ [0, T ], satisfies

d x, x(t 2 ) -x(t 1 ) ≥ 0 for all 0 ≤ t 1 ≤ t 2 ≤ T. ( 8 
)
The wipeout property ensures that solutions within B ηΛ (x) naturally drift away from small enough neighborhoods of x in a particular direction defined through BΛ ∈ R n regardless of the input u = Λν. As argued in [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF] and in Section V, it turns out that the size of the neighborhood B ηΛ (x) impacts the size of the neighborhood around x which can be guaranteed to be avoided. Therefore, we use the degree of freedom in the vector Λ ∈ R m to maximize η Λ .

Before we optimize η Λ and thus the vector Λ, observe that for a given Λ the value of η Λ can be computed as

η Λ = |x + c Λ A -1
s BΛ| where c Λ :=argmin

c∈R |x + cA -1 s BΛ| 2 .
By taking the derivative of the quadratic function, c Λ is explicitly defined through

c Λ = - (A -1 s BΛ) T x (A -1 s BΛ) T (A -1 s BΛ)
.

The distance between x and a one dimensional subspace vectors x andA -1 s BΛ are perpendicular. Hence, we can define Λ * as the solution of the optimization problem

span(A -1 s BΛ), Λ ∈ R m \{0} is maximal if x, A -1 s BΛ = 0 is satisfied, i.e,
Λ * ∈ argmin Λ∈R m x, A -1 s BΛ 2 (9a) s.t. |BΛ| 2 = 1. (9b) 
Optimization problem ( 9) is non-convex and the optimal solutions Λ * are not unique. While the computation of an optimal Λ * , and thus η Λ * , might be intractable, note that for the application of Proposition 1 optimality of η is not necessary. The stronger condition x, A -1 s BΛ * = 0 is in general only satisfied if m = n.

B. The eye-shaped shell S and the basic avoidance controller

A second ingredient used in this paper, introduced in [3, Sec. IV], whose construction is parallel to, and independent of the wipeout property, is the safety or avoidance controller ûi , acting in a neighborhood of the unsafe point xi , i ∈ N β . Before the avoidance controller is discussed, the neighborhood is specified.

The neighborhood of a fixed unsafe point x ∈ {x 1 , . . . , xβ } is a nonsmooth compact set, having the shape of an eye (in two dimensions) and is based on two geometric parameters and a direction:

1) the size δ ∈ R >0 of the shell; 2) the aspect ratio µ ∈ (0, 2) of the shell; 3) the orientation b ∈ R n , |b| = 1, of the shell.

Based on these parameters, the shell S is the following intersection between two balls centered at some shifted versions of the unsafe point x:

δ µ := δ 1 µ -µ 4 , (10a) 
O p := B ( µδ 2 +δµ) (x -pδ µ b), p ∈ {+1, -1}, (10b) 
S(δ) := O +1 O -1 . (10c) 
x S(δ) Note that µ ∈ (0, 2) fixes the aspect ratio of the shell, whose height corresponds to µδ, resembling an eye that is increasingly closed as µ approaches its lower limit 0. Conversely, as µ approaches its upper limit 2, the eye is increasingly open and converges to a circle. In our construction, we will assume that a certain desired aspect ratio µ is fixed a priori, and we will establish suitable results by exploiting the fact that the shell S(δ) can be made arbitrarily large and arbitrarily small by adjusting the positive parameter δ. Figure 1 represents a few possible shapes of these sets together with the distances that go with them. To simplify the notation in the following, we define

x + δµb x -δµb δµ + µδ 2 δµ δ µδ 2 O-1 O+1 µ = 1 µ = 0.5 µ = 1.5
c p := x -pδ µ b, p ∈ {-1, +1} (11) 
to denote the centers of the balls O p , p ∈ {-1, +1} in (10b). Moreover, Lemma 1 below will be useful to prove our main statements.

Lemma 1. Given an aspect ratio µ ∈ (0, 2) and an orientation b ∈ R m , |b| = 1, for each δ > 0, the following inclusions hold for the shell S(δ) defined in [START_REF] Liberzon | Switching in Systems and Control[END_REF]:

B µδ 2 (x) ⊂ S(δ) ⊂ B δ (x). ( 12 
) Proof. Let x ∈ B µδ 2 (x), i.e., |x -x| ≤ µδ 2 .
Then for each p ∈ {-1, +1} the triangle inequality leads to the estimate

|x -x + pδ µ b| ≤ |x -x| + |pδ µ b| ≤ µδ 2 + δ µ = δ 1 µ + µ 4 ,
which implies that x ∈ O p for all p ∈ {-1, +1}, and thus x ∈ S(δ). Hence B µδ 2 (x) ⊂ S(δ) is satisfied. We define the set

S max := x ∈ S(δ) : |x| x ≥ max y∈S(δ) |y| x .
It is clear that for all x ∈ S max either x ∈ ∂O +1 and/or x ∈ ∂O -1 is satisfied since otherwise the condition

|x| x ≥ max y∈S(δ) |y| x cannot hold. Similarly if x ∈ S max , x ∈ ∂O p and x ∈ int(O -p ), p ∈ {-1, +1}, for all ε > 0 there needs to exist x ∈ B ε (x) ∩ ∂O +1 ∩ O -1 such that |x| x > |x| x.
Thus, the set S max satisfies S max ⊂ ∂O +1 ∩ ∂O -1 . Using the definitions of O +1 and O -1 , and Pythagoras' theorem for pairwise orthogonal vectors provides the identities

|x -x| 2 = δ µ + µδ 2 2 -δ 2 µ = δ 2 1 µ + µ 4 2 -1 µ -µ 4 2 = δ 2
for all x ∈ ∂O +1 ∩ ∂O -1 (visualized in Figure 1). This particularly implies that S(δ) ⊂ B δ (x).

Based on the definition of the shell S(δ) the avoidance control law

ν(x, p) := - x -(x -pδ µ b), A s x x -(x -pδ µ b), b , p ∈ {-1, 1}, (13) 
was introduced in [3] and satisfies the following properties.

Proposition 2. ([3, Prop. 2]) Let µ ∈ (0, 2/ √ 3), δ > 0 and Λ ∈ R m with |b| = |BΛ| = 1 be given. For each p ∈ {-1, 1}
and any point x 0 ∈ S(δ), the avoidance controller

û(x, p) = K s x + Λν(x, p) (14) 
is well defined. Moreover, the solution to (1) with u = û(x, p) starting at x 0 ∈ S(δ) remains at a constant (non-negative) distance from the center c p = x -pδ µ b of the ball O p until it leaves S(δ).

In [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF] it was shown that this simple control law can be used for obstacle avoidance and global stabilization in the context of a nominal unperturbed system. The main contribution of this paper will be extensions to obtain a robust control law. Note that controller [START_REF] Ngo | Integrator backstepping using barrier functions for systems with multiple state constraints[END_REF] depends on the selection of the vector Λ and thus the notation û(x, p; Λ) would be more precise. To simplify the notation, in particular with respect to the following sections, we drop the dependence on Λ in the notation.

Remark 3. In [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF], ( 13) is defined based on A instead of A s and the control law [START_REF] Ngo | Integrator backstepping using barrier functions for systems with multiple state constraints[END_REF] does not contain the stabilizer K s . While these differences lead to different interpretations of the controller, the closed-loop solution coincides. While the controller in [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF] switches between the stabilizing controller and the avoidance controller, ( 14) corrects the stabilizing controller. The interpretation used here seems to be more appropriate for the multi-obstacle and multidimensional input case.

IV. ROBUST CONTROLLER DESIGN

Section III contains all the ingredients for an avoidance controller design. In Section V a hybrid controller is proposed that switches the control law (13) on and off thereby guaranteeing asymptotic stability and obstacle avoidance. However, before we propose the hybrid control law we extend the basic ideas of Section III to obtain a robust controller. 

A. Definition of hysteresis regions

To be able to define a robust controller selection that switches the avoidance controller on and off, we define a suitable h-hysteresis switching, based on a region S h (δ) obtained by shrinking S(δ) by a factor h ∈ (0, 1) as follows, and according to the pictorial representation in Figure 2:

O h,p := B (h µδ 2 +δµ) (c p ), p ∈ {+1, -1}, (15) 
S h (δ) := O h,+1 O h,-1 . (16) 
It is clear that for each p ∈ {-1, +1} the set O h,p is a ball sharing the same center as O p but having a smaller radius that approaches δ µ as h approaches 0. As a consequence, S h (δ) is a smaller eye-shaped set, with the same orientation as S(δ) (see Figure 2). Additionally, the definition of the lower and upper part of the shell (with respect to the orientation b) is needed. Thus, we define

S / p := S(δ) ∩ {x ∈ R n : pb T (x -x) ≥ 0}, p ∈ {-1, +1}, (17) 
which will be used to decide if the obstacle is passed from above or from below (which again needs to be understood with respect to the orientation b).

B. A repulsive avoidance control law

As shown in [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF], with the control law ( 14) a hybrid obstacle avoidance controller can be defined and its properties for the nominal unperturbed systems have been formalized in [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF]Thm. 1]. Here we extend the basic control law to be robust against model uncertainties.

For p ∈ {-1, +1}, the control law ( 14) ensures a constant distance to the center c p = x -pδ µ b defined in [START_REF] Lyapunov | The general problem of the stability of motion[END_REF]. To obtain a control law that increases the distance to c p and thus the distance to x we introduce the function κ(

•; k r , ) : R ≥0 → R ≥0 , κ(s; k r , ) := 1 2 k r (s -) 2 , if s ≤ 0, if s ≥ (18) 
with parameters k r ∈ R ≥0 and ∈ R >0 . The argument of the function s = |x| cp measures the distance of the state to c p . The parameter defines the critical distance where the function κ becomes active and k r defines the robustness gain parameter. The extension of ( 13) using function κ leads to the onedimensional input

ν kr (x, p) = κ(|x| cp ; k r , h µδ 2 + δ µ ) -x -c p , A s x x -c p , b (19) 
which recovers the original definition ( 13) for k r = 0. With these definitions, Proposition 2 can be extended to contain the following repulsive properties of the control law. 

Proposition 3. Let µ ∈ (0, 2/ √ 3), ε ∈ [0, 2/ √ 3 -µ), δ > 0, Λ ∈ R m such that b = BΛ, |b| = 1, k r ≥ 0,
is well defined. Moreover, for k r ≥ 0, the solution to (1) with u = ûkr (x, p) starting at x 0 ∈ S / p ∩ S h (δ), p ∈ {-1, +1}, is associated to a guaranteed increase of the distance from the center c p of the ball O p until it remains in S h (δ). In particular,

d dt |x(t) -c p | 2 = k r |x(t) -c p | -(h µδ 2 + δ µ ) 2 . (21) 
Proof. The well definedness of the the control law (20) follows immediately from the the well definedness of the control law [START_REF] Mayhew | Hybrid control of planar rotations[END_REF] and thus from the proof of Proposition 2 in [3, Prop. 2] applied to µ + ε ∈ (0, 2/ √ 3). To show [START_REF] Sanfelice | Robust hybrid controllers for continuous-time systems with applications to obstacle avoidance and regulation to disconnected set of points[END_REF], using BΛ = b, control law [START_REF] Romdlony | Stabilization with guaranteed safety using control Lyapunov-barrier function[END_REF] ensures that the closed-loop solution satisfies the estimate

1 2 d dt |x(t) -c p | 2 = x -c p , Ax + B ûkr (x, p) = x -c p , A s x + bν kr (x, p) = x -c p , A s x + x -c p , b ν kr (x, p) = x -c p , A s x + κ(|x| cp ; k r , h µδ 2 + δ µ ) -x -c p , A s x = κ(|x| cp ; k r , h µδ 2 + δ µ ). (22) 
Thus, the result follows immediately from the definition of the function κ in [START_REF] Rawlings | Model Predictive Control: Theory, Computation, and Design[END_REF].

Remark 4. Equation ( 21) implies that for k r > 0 the distance |x(t) -x| is strictly increasing whenever |x(t) -x| < h µδ 2 , which is a useful property to establish robust avoidance. The margin ε > 0 is used to show robustness with respect to uncertainties in the state x.

V. A HYBRID CONTROL SOLUTION

In this section we combine the results from the previous sections to derive a hybrid control solution to Problem 1. To distinguish between sets and parameters derived for a specific unsafe point x ∈ {x 1 , . . . , xβ } we use • i and • i , i ∈ N β , for sets and parameters, respectively, in the following.

In order to account for multiple obstacles, we modify (11) as

c q := x|q| - q |q| δ µ |q| b |q| , q ∈ Z β \{0}. (23) 
Note that this requires an obvious modification of ( 19) and ( 20) where q replaces p and the parameters are with respect to each obstacle |q| ∈ N β .

A. Hybrid dynamics selection

To ensure global asymptotic stability of the origin for the closed loop, we need to patch the feedback laws u s (x) = K s (x) (the stabilizing controller), and ûkr (x, q) = K s (x) + Λ |q| ν kr (x, q), Λ |q| ∈ R m (the avoidance controller in ( 20)) for q ∈ Z β \{0}. Such a patching operation is done here using a hybrid switching strategy exploiting the h i -hysteresis margins between S i hi (δ i ) and S i (δ i ) and robustly extends the work [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF] to the multidimensional input and the multiple obstacle setting. A hybrid feedback is a natural choice in light of the discussion that no continuous feedback can simultaneously ensure GAS of the origin and avoidance of x1 , . . . , xβ .

To suitably orchestrate the choice of the controller, we define an augmented state ξ = (x, q) ∈ R n ×Z β for the hybrid dynamics, comprising the plant state x and the quantity q ∈ Z β responsible for whether solutions should slide above (q > 0) or below (q < 0) an unsafe point when using the avoidance feedback. Here, above and below is meant with respect to the orientation b i = BΛ i , i ∈ N β , used in the definition of the avoidance controller [START_REF] Romdlony | Stabilization with guaranteed safety using control Lyapunov-barrier function[END_REF]. The control selection is summarized by the feedback law

u = γ(x, q) := u s (x), if q = 0, u s (x) + Λ |q| ν kr (x, q), if q ∈ Z β \{0} (24) 
The overall idea of the controller is to correct the feedback law u s when solutions enter the shell S i (δ i ) corresponding to an unsafe point xi , i ∈ N β . We will assume that the intersection of arbitrary shells is empty, i.e., S i (δ i ) ∩ S j (δ j ) = ∅ for all i, j ∈ N β , i = j. To ensure a robust switching between the local and global controllers, we exploit the h-hysteresis mechanism and orchestrate the switching of the logic variable q as follows:

ξ + := x + q + ∈ G(ξ) = x G q (ξ)
, ξ ∈ ∪ q∈Z β D q (25)

D +i := S i hi (δ i ) ∩ S / i +1 × {0}, i ∈ N β D -i := S i hi (δ i ) ∩ S / i -1 × {0}, i ∈ N β D 0 := R n \ ∪ i∈N β S i (δ i ) × (Z β \ {0}) G q (ξ) :=          i, if ξ ∈ D +i \ D -i , i ∈ N β -i, if ξ ∈ D -i \ D +i , i ∈ N β {i, -i} if ξ ∈ D +i ∩ D -i , i ∈ N β 0 if ξ ∈ D 0 , (26) 
where, according to the representation in Figure 3, the sets D +i and D -i , i ∈ N β , correspond to the upper and lower halves of the shell S i hi (δ i ). Note that these sets have a nonzero intersection, associated to the equator plane of the shell. To ensure suitable regularity properties of the jump map G in (26), we perform a set-valued selection in D +i ∩ D -i , which allows for either q + = i or q + = -i. Note that this does not generate multiple simultaneous jumps because we impose q = 0 in the jump sets D +i ∪ D -i , so that, once a decision has been made about whether sliding above or below the shell, this decision cannot be changed. 

(δ i ) ∩ S / i +1 ) × {0} and D -i = (S i h i (δ i ) ∩ S / i -1
) × {0}, respectively, in [START_REF] Teel | Uniting local and global controllers[END_REF], for an arbitrary unsafe point xi , i ∈ N β .

The hybrid closed-loop behavior is completed by the following flow dynamics, emerging from ( 1) and ( 24),

ξ = ẋ q = Ax + Bγ(x, q) 0 , ξ ∈ C, (27) 
where the flow set C, is defined as the closed complement of the union of the jump sets defined above. In particular, using

Ξ := R n × Z β , we select C := Ξ \ (∪ q∈Z β D q ). ( 28 
)
The selection above for the proposed jump sets has the important advantage that immediately after a jump the solution is in the interior of the flow set at a distance of at least

min i∈N β (1 -h i )µ i δ i /2 from the jump set D = ∪ q∈Z β D q .
Before our main results are given in Section VI, we note that the following structural regularity conditions of the dynamical system are satisfied, whose proof is straightforward and therefore omitted.

Lemma 2. The closed-loop dynamics ( 24)-(28) satisfies the hybrid basic conditions in [6, Assumption 6.5] and all maximal solutions are complete.

B. Nominal GAS and local preservation

We now extend the global stability and avoidance results provided in [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF] to the multiple obstacle and multi dimensional input case. We provide quantitative information about maximal sizes δ * i of the shells S i (δ i ), such that the hybrid control solution in ( 24)-(28) stabilizes the nominal system and avoids the unsafe points for any δ i < δ * i , i ∈ N β . A trivial corollary of our result is that regardless of all the parameters, there always exist small enough δ i , i ∈ N β , for which our goals are satisfied.

For the definition of δ * i , we need the following quantity

ζ := - 2|A s | λ max (A T s + A s ) > 0, (29) 
which is positive due to Assumption 1(b), ensuring that A T s + A s is negative definite. Additionally we will assume that Λ i ∈ R m is defined such that |BΛ i | = 1 and xi / ∈ span(A -1 s BΛ i ), which can be done according to Assumption 1(c). Then, for each i ∈ N β , for a fixed η i ≤ η Λi (with η Λi defined in ( 5)), we define δ * i as

δ * i := 1 2 |x i |+η i +ζ-(|x i | + η i + ζ) 2 -4|x i |η i > 0, (30 
) which is notably independent of µ i but depends on the orientation b i = BΛ i ∈ R n (through η i ), and is well characterized in the next lemma. 

Λ ∈ R n \ {0} such that 0 < η ≤ η Λ := min y∈span(A -1 s BΛ) |x -y|, (31) 
the scalar δ * in (30) is a positive real number, and for any value of δ satisfying δ < δ * , we have δ < η.

Proof. Since η, ζ > 0 and η < |x|, by expanding the squared terms, it is straightforward to verify the inequalities.

0 < (|x| -η + ζ) 2 < (|x| + η + ζ) 2 -4|x|η. ( 32 
)
Taking the square root and adding 2η on both sides provides

|x| -η + ζ + 2η < (|x| + η + ζ) 2 -4|x|η + 2η.
Finally, moving the square root to the left leads to the estimate

2δ * = |x| + η + ζ -(|x| + η + ζ) 2 -4|x|η < 2η,
which shows the assertion δ * < η. The proof is complete since δ * ∈ R >0 follows from (32), showing that the square root in (30) is positive.

With the selection of δ * i , i ∈ N β , in (30) the following result for the nominal system (1) can be shown. To simplify the statement we collect all the assumptions and save notation in Assumption 2.

Assumption 2. For a set of unsafe points {x 1 , . . . ,

xβ } assume that Λ i ∈ R m is selected such that |BΛ i | = 1 and xi / ∈ span(A -1 s BΛ i ). Moreover µ i ∈ (0, 2/ √ 
3) and h i ∈ (0, 1), i ∈ N β are given. Finally, assume that η i ∈ R >0 is defined such that η i ≤ η Λi (see [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF] and (31)) for i = 1, . . . , β, and

int (B ηi (x i )) ∩ int B ηj (x j ) = ∅, ∀ i, j ∈ N β , i = j.
With δ * i from (30), define δi := min δ * i , ηi 1+ζ and choose δ i from the open intervals

δ i ∈ (0, δi ), i ∈ N β . (33) 
Theorem 1. (Nominal avoidance and UGAS) Let Assumption 1 be satisfied and let the control parameters be defined according to Assumption 2. Then the hybrid controller ( 24)-(28) with k r ≥ 0, guarantees the following properties: (i) (Nominal shell avoidance) For any initial condition ξ(0, 0)

∈ (R n \ ∪ i∈N β S i (δ i )) × Z β , all the arising solutions satisfy |x(t, j)| xi ≥ hi 2 µiδi 2 , ∀ i ∈ N β , ∀ (t, j) ∈ dom(ξ).
(ii) (Nominal point avoidance) For any initial condition ξ(0, 0) ∈ (R n \ ∪ i∈N β {x i }) × {0}, all the arising solutions satisfy x(t, j) / ∈ {x 1 , . . . , xβ } for all (t, j) ∈ dom(ξ). (iii) (Nominal UGAS) The origin ξ = (x, q) = (0, 0) is uniformly globally asymptotically stable.

Proof. Theorem 1 follows immediately from the more general statement of Theorem 2, which is its robust extension.

VI. ROBUSTNESS PROPTERTIES OF THE CONTROL LAW

While the hysteresis parameter h ∈ (0, 1) prevents instantaneous switching of the control law without leaving the jump set and thus ensures that the closed loop is well defined, the parameter does not immediately guarantee that the controller is robust with respect to model uncertainties. In this section we establish robustness of the proposed scheme for cases where the dynamics is affected by perturbations. In particular, we assume that plant (1) is affected by two unmodelled disturbances w x , w y : R ≥0 → R n associated with the perturbed model

ẋ = Ax + Bu + w x , y = x + w y .
Here, w x represents model uncertainties while w y represents noise in the measurement of the state x. With respect to the closed loop ( 25) and ( 27) the perturbed dynamics lead to the model

ẋ = Ax + Bγ(y, q) + w x , [ y q ] ∈ C := Ξ \ D, ( 34 
) q + ∈ {i ∈ Z β : [ y q ] ∈ D i }, [ y q ] ∈ D := ∪ i∈Z β D i , (35) 
where we assume that the only accessible quantities in the control decisions are q (the controller state) and y (the plant output). The trivial relations q = 0 and x + = x have been omitted for simplicity.

The perturbations B(γ(x + w y , q) -γ(x, q)) + w x in (34) can be summarized using a positive semidefinite function σ : R n → R ≥0 within the continuous dynamics

ξ = ẋ q ∈ Ax + Bγ(x, q) + B σ(x) 0 , ∀ ξ ∈ C ρ , (36a) 
extending [START_REF] Wieland | Constructive safety using control barrier functions[END_REF] and where C ρ is defined as

C ρ = {(x, q) ∈ R n × Z β : {x + B ρ(x) } × {q} ∩ C = ∅} for all x ∈ R n .
The controller selection is influenced by the measurement error. Thus, with the definition of the function ρ : R n → R ≥0 the extension of the discrete dynamics ( 25) can be written as

ξ + = x + q + ∈ x {i ∈ Z β : ξ ∈ D ρ i } , ∀ ξ ∈ D ρ , (36b) 
where

D ρ i = {(x, q) ∈ R n × Z β : {x + B ρ(x) } × {q} ∩ D i = ∅} (36c)
for all x ∈ R n , for all i ∈ Z β , and D ρ = ∪ i∈Z β D ρ i . The definition of the perturbed system (36) follows the exposition in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]. Since we are only interested in linear plants, the general presentation in [6, Def. 6.27] is simplified here. Definition 1. We say that the continuous functions σ, ρ : R n → R ≥0 form an admissible perturbation pair if ρ(x) > 0 for all x ∈ R n \ {x 1 , . . . , xβ } and σ(x) > 0 for all x ∈ R n \{0}.

The next lemma generalizes the result of Lemma 2 to the perturbed case. Its proof is given in Section VIII-A where an admissible pair is explicitly constructed. Lemma 4. For each continuous non-negative function σ, there exists a sufficiently small ρ where (σ, ρ) is an admissible perturbation pair such that the perturbed closed-loop dynamics (36) satisfies the hybrid basic conditions of [6, Assumption 6.5] and all maximal solutions are complete.

We present two robustness results extending Theorem 1. The first (Theorem 2) relates to robustness in the small (Srobustness) where the perturbation σ must go to zero as the state x approaches the origin. The second result (Theorem 3) relates to robustness in the large (L-robustness) where σ is pre-specified and not required to be zero at the origin, which precludes proving asymptotic stability of the origin.

Theorem 2. (S-robust avoidance and UGAS) Let Assumption 1 be satisfied and let the control parameters be chosen according to Assumption 2. Then the hybrid controller ( 24)-(28) with robustness gain k r > 0, guarantees the existence of an admissible perturbation pair (σ, ρ) such that the perturbed dynamics (36) satisfy the following properties:

(i) (S-Robust shell avoidance) For any initial condition ξ(0, 0)

∈ (R n \ ∪ i∈N β S i (δ i )) × Z β , all the arising solutions satisfy |x(t, j)| xi ≥ hi 2 µiδi 2 ∀ i ∈ N β , ∀ (t, j) ∈ dom(ξ).
(ii) (S-Robust Point avoidance) For any initial condition ξ(0, 0) ∈ (R n \ ∪ i∈N β {x i }) × {0}, all the arising solutions satisfy x(t, j) / ∈ {x 1 , . . . , xβ } for all (t, j) ∈ dom(ξ). (iii) (S-Robust UGAS) The origin ξ = (x, q) = (0, 0) is uniformly robustly globally asymptotically stable.

Theorem 2 is proven in Section IX-B. For k r = 0 and σ = ρ ≡ 0 Theorem 2 recovers Theorem 1. While Theorem 1 ensures UGAS and obstacle avoidance for the nominal system, robust obstacle avoidance can only be guaranteed with the additional consideration of the function κ defined in [START_REF] Rawlings | Model Predictive Control: Theory, Computation, and Design[END_REF] and a strictly positive robustness gain k r > 0.

Theorem 2 only guarantees the existence of, possibly arbitrarily small, perturbation functions (σ, ρ). If a global bound c σ ∈ R on the size of perturbation σ is known, obstacle avoidance can still be guaranteed if k r is selected such that1 

k r > 8c σ max i∈N β hiδiµi+4δµ i h 2 i µ 2 i δ 2 i . (37) 
In particular, exploiting bound (37), the following result establishes robustness in the large, and is proven in Section VIII-B.

Theorem 3. (L-Robust avoidance) Let Assumptions 1 and 2 be satisfied and c σ ≥ 0 be given. For any non-negative continuous perturbation function σ : R n → R ≥0 with σ(•) ∞ ≤ c σ , there exists a function ρ such that (σ, ρ) is an admissible perturbation pair, with the property that for any selection of k r (in [START_REF] Rawlings | Model Predictive Control: Theory, Computation, and Design[END_REF]) satisfying (37), the perturbed dynamics (36) satisfies the following properties: (i) (L-Robust Shell avoidance) For any initial condition ξ(0, 0) ∈ (R n \ ∪ i∈N β S i (δ i )) × Z β , all the arising solutions satisfy

|x(t, j)| xi ≥ hi 2 µiδi 2 ∀ i ∈ N β , ∀ (t, j) ∈ dom(ξ).
(ii) (L-Robust Point avoidance) For any initial condition ξ(0, 0) ∈ (R n \ ∪ i∈N β {x i }) × {0}, all the arising solutions satisfy x(t, j) / ∈ {x 1 , . . . , xβ } for all (t, j) ∈ dom(ξ).

Theorem 3 states that obstacle avoidance is possible for arbitrarily large perturbations σ if the robustness gain parameter is selected sufficiently large. L-Robust UGAS, on the other hand, cannot be concluded due to the nontrivial perturbations caused by σ around the origin.

Note the key difference between Theorem 2 and Theorem 3 is that the former assumes a pre-specified robustness gain k r and constructs an admissible perturbation pair (σ, ρ), whereas the latter assumes the perturbation σ has been specified which then necessitates a lower bound on the robustness gain given by (37). In particular, in Theorem 2, the constructed σ satisfies σ(0) = 0 to guarantee the S-Robust UGAS property (see (54)).

VII. NUMERICAL EXAMPLES

Here, we illustrate the performance of the avoidance controller by numerically validating the results of Theorems 1 to 3.

A. Closed-loop solutions of the avoidance controller

We first simulate the controller for the simple twodimensional system defined by

A = -1 -3 -2 4 , B = 1 0 -1 2 , (38) 
and three obstacles

x1 = 0 1 , x2 = -1 -1.5 and x3 = 1 -1 .
Using pole placement, the stabilizing controller u s is defined such that eig(A + BK s ) = {-1 + i, -1 -i} and eig(A + A T ) = {-2, -2}, i.e., the origin of the closedloop system is asymptotically stable and V (x) = |x| 2 is a Lyapunov function. The vectors Λ * i (and thus the orientations b i ) are obtained by solving the optimization problems (9) for i = 1, 2, 3. Moreover, µ i = 1.15 and h i = 0.8 are used for all i ∈ N 3 for the definition of the shells S i (δ i ) and the inner shells S i hi (δ i ). With these definitions, η 1 = 1, η 2 = 1.8028 and η 3 = 1.4142 are obtained through the optimization problem [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF]. Since the η-balls of x1 and x2 are overlapping we restrict η 1 = 0.64, η 2 = 0.47 and η 3 = 1.4142 to satisfy Assumption 2. Equation (29) provides the value ζ = 1.4142. With these definitions, δ * 1 = 0.22, δ * 2 = 0.24 and δ * 3 = 0.54 can be computed using (30). For the simulations we define δ i = 0.99δ * i , i ∈ N 3 . Additionally, the robustness gain parameter is set to k r = 2. The setting is visualized in Figure 4. Closed-loop solutions for 50 initial values satisfying 

B. Impact of the robustness gain parameter k r

The impact of k r in the control law [START_REF] Romdlony | Stabilization with guaranteed safety using control Lyapunov-barrier function[END_REF] through the function κ in ( 18) is visualized in Figure 6 around the unsafe point x3 for the previous example. Using k r = 0 (left) the closedloop solution keeps a constant distance from the center c q , q ∈ {-3, +3} defined in [START_REF] Sontag | A 'universal' construction of Artstein's theorem on nonlinear stabilization[END_REF] until the shell is left. For k r > 0, the distance of the closed-loop solution to c q , q ∈ {-3, 3} increases until the inner shell S h (δ) is left. As visualized in Figure 6 in the middle and right plots, the bigger the value k r , the stronger repulsive properties of the controller, pushing away from c q . 

C. Perturbed systems

The robustness properties of the avoidance controller are illustrated by the numerical simulations in Figure 7. For the simulations the perturbed dynamics ẋ = Ax+γ(x, q)+w j (x), j ∈ {1, 2}, with

w 1 (x) = min 1, -0.45λ max (A s + A T s )|x| [ 1 0 ] (39) 
(Figure 7, left) and

w 2 (x) = min 1, -0.45λ max (A s + A T s )|x| [ 0 1 ] (40) 
(Figure 7, right) are used. The perturbations are bounded by 1, i.e., w 1 (x), w 2 (x) ∈ B cσ for c σ = 1. For |x| → 0 the perturbations vanish and the stabilizing control law, active in a neighborhood around the origin, can compensate for the perturbations. The robustness gain parameter is set to k r = 137.13 (satisfying condition (37) so that obstacle avoidance is guaranteed through Theorem 3).

D. A three dimensional example

The construction of the avoidance controller is independent of the dimension of the dynamical system. To illustrate the controller for a three dimensional system we consider the dynamical system defined through

A =   -1 1 2 -1 1 1 0 2 1   , B =   1 1 1 0 0 2   ( 41 
)
and three obstacles

x1 =   1 2 1 -1 2   , x2 =   3 2 1 0   and x3 =   0 -1 1 2   .
A stabilizer K s is obtained by solving the LQR-problem minimizing ∞ 0 |x(t)| 2 + 10|u(t)| 2 dt. Since the columns of B only span a two dimensional subspace of R 3 the elements of the subspaces E Λ * i computed through the optimization problem [START_REF] Koditschek | Robot navigation functions on manifolds with boundary[END_REF] are not orthogonal to xi , i ∈ N 3 . For this setting η Λ * i = 1.2247, η Λ * i = 1.8021 and η Λ * i = 1.1180 are obtained through Equation ( 5) and δ * is given by δ * 1 = 0.2216, δ * 2 = 0.4205 and δ * 3 = 0.1897. The corresponding setting showing the η-balls and the inner shells S i hi (δ * i ) for h i = 0.8 and µ i = 1.15, i ∈ N 3 , are visualized in Figure 8. i ) (blue), the η iballs (yellow) and the subspaces E i (green) for i = 1, 2, 3.

In Figure 9 three closed-loop solutions focusing on the avoidance of x2 are visualized. For the simulations the parameters δ 2 and h 2 are defined as δ 2 = 0.99δ * 2 and h 2 = 0.8. As pointed out in the theoretical results and numerically validated in Figure 9 the avoidance controller is independent of the dimension of the dynamical system (1). 

VIII. PROOF OF OBSTACLE AVOIDANCE

In this section we provide a selection of ρ ensuring the robust obstacle avoidance properties of Theorems 2 and 3, together with the proof of those statements (namely items (i) and (ii) of both theorems). The robust GAS statement of Theorem 2 (iii) is proved in the Section IX.

A. Selection of ρ (and Proof of Lemma 4)

Based on the control parameters characterized in Assumption 2, we explicitly construct the perturbation function ρ : R n → R ≥0 . First, define cρ > 0 as

cρ := min i∈N β (1-hi)µiδi 4 , hiδiµi 4 , δi 2 2 √ 3 -µ i , δµ i 2 , δi-δi 2 (42)
and choose

c ρ ∈ [0, cρ ). ( 43 
)
Observe that c ρ is strictly positive since all the terms defining cρ are strictly positive.

For each i ∈ N β , based on the projection

Π i = (I -b i b T i ) (with b i = BΛ i , |b i | = 1), define ρ i (x) := max 1 2 | b i , x-xi , |, δ µi - δ 2 µi -|Π i (x-xi )| 2 ,
where s := max{s, 0} is the projection on R ≥0 , so that the square root is well defined globally. The function ρ i is continuous and positive everywhere outside xi . Indeed the second term is positive outside the one-dimensional set L i := {x i + αb i : α ∈ R}, while the first term is positive for all x ∈ L i \ {x i }. Finally, we define the function ρ as ρ(x) := min c ρ , min

i∈N β ρ i (x) , (44) 
which is continuous and satisfies ρ(x) > 0 for all x ∈ R n \{x 1 , . . . , xβ } and ρ(x i ) = 0 for all i ∈ N β . The role of the constant c ρ is to provide a maximum distance between the boundary of C (respectively D) and that of C ρ (respectively D ρ ). Indeed, from the definitions in (36), since ρ(x) ≤ c ρ for all x, we have

C ρ ⊂ C + (B cρ × {0}), D ρ ⊂ D + (B cρ × {0}). (45) 
The shape of the inflated jump set D ρ +i , i ∈ N β , projected on the x-direction compared to the nominal set D +i is shown in Figure 10. Notice that the set is inflated in all directions, except for the point xi , as required by the definition of an admissible perturbation pair in Definition 1.

Due to (45) and from the fact that η i > min{δ * i , ηi 1+ζ } = δi , we have, from the last term in (42), that

c ρ < 1 2 min i∈N β η i -δ i (46) 
which implies

B ηi-cρ (x i )\B δi+cρ (x i ) = ∅, ∀i ∈ N β . (47) 
In addition, as one may visually understand from Figure 10, with the definitions in (36c), due to the second-to-last bound in (42) and from the construction in (44), we have that for all q = ±i ∈ Z β \{0}, thus ensuring |x| cq ≥ δ µi for all (x, q) ∈ D ρ q . Moreover, using the second bound in (42) and the inclusion in (45), we have that

D ρ q = (D q + B cρ × {0})\B δµ i (x i ) × {0}, (48) 
|x| cq ≥ δ µi + h i µ i δ i 4 , (49) 
for all x ∈ R n with (x, 0) ∈ C ρ and q |q| BΛ T |q| (x -x|q| ) ≥ 0. Before we use the bounds on ρ together with the properties (47) and (48) to prove Theorem 3, we conclude this section with a proof of Lemma 4. Proof of Lemma 4: All we need to show is that the avoidance controller is well defined (i.e., the denominator of ( 19) is nonzero) for all (x, q) ∈ C ρ with q ∈ Z β \ {0}. Based on the definition of the jump set and the flow set, and based on the considerations in (45), the avoidance controller can only be active in the inflated shells S i (δ i ) + B cρ , i ∈ N β . The third bound in (42) ensures that Proposition 3 is applicable with

c ρ = δi 2 ε, for i ∈ N β , (50) 
or equivalently ε = 2 δi c ρ , which provides well posedness.

B. Proof of Theorem 3

First notice that, due to the requirement in (37), the repulsive gain k r is large enough to ensure

c σ ∈ 0, min i∈N β kr 8 h 2 i µ 2 i δ 2 i hiδiµi+4δµ i (51) 
where c σ is a uniform upper bound for σ(•).

Proof of Item (i): For a solution ξ(•, •) of the hybrid system (36), the x-component x(•, •) will be denoted by solution x in the following. Consider ξ = (x, q) with x(0, 0) / ∈ ∪ i∈N β S i (δ i ). If q(0, 0) ∈ Z β \{0}, then from conditions (45) and the first bound in (42), the solution does not belong to D ρ and must jump to q + (0, 0) = 0. Therefore, let us consider without loss of generality that q(0, 0) = 0. Let i ∈ N β be arbitrary. From (47), we have that int((S i (δ i ) -B cρ ) \ (S i hi (δ i ) + B cρ )) = ∅, and using the second bound in (42), either the solution flows with

|x(t, 0)| xi ≥ h i µiδi 2 -c ρ (42) ≥ hi 2 δiµi
2 , ∀t ≥ 0 (which would prove the item), or otherwise it flows until some time (t 1 , 0) when it jumps. Due to the closedness of C ρ and D ρ , before the jump, we must have ξ(t 1 , 0) ∈ C ρ ∩ D ρ . At the jump time, the solution jumps to q(t 1 , 1) = q + (t 1 , 0) ∈ {-i, +i}, i ∈ N β . Without loss of generality, we consider hereafter the case q(t 1 , 1) = i.

After the jump, u switches to the avoidance controller ûkr (x, i) defined in [START_REF] Romdlony | Stabilization with guaranteed safety using control Lyapunov-barrier function[END_REF] and due to the repelling properties of the avoidance controller [START_REF] Romdlony | Stabilization with guaranteed safety using control Lyapunov-barrier function[END_REF] established in Proposition 3, we show below that the solution cannot flow closer than hi 2 µiδi 2 +δ µi to c +i . To show this, first notice that immediately after the jump, since

x(t 1 , 0) ∈ C ρ , from (49), |x(t 1 , 1)| c+i = |x(t 1 , 0)| c+i ≥ hi 2 µiδi 2 + δ µi is satisfied. Consider now any (t, 1) ∈ dom(x) such that |x(t, 1)| c+i = hi 2 µiδi 2 + δ µi . We claim that d dt |x(t, 1)| c+i > 0. Indeed, from (21) 
, and by using |y| ≤ σ(x) ≤ c σ to denote a generic selection at the right-hand side of (36a), we obtain (omitting the dependence on (t, 1) for compactness)

1 2 d dt |x| 2 c+i = 1 2 d dt |x -c +i | 2 = x -c +i , Ax + y + B ûkr (x, q) = x -c +i , y + kr 2 (|x -c +i | -h i µiδi 2 -δ µi ) 2 ≥ -c σ ( hi 2 µiδi 2 + δ µi ) + kr 2 ( hi 2 µiδi 2 + δ µi -h i µiδi 2 -δ µi ) 2 = -cσ 4 (h i µ i δ i + 4δ µi ) + kr 2 ( hi 2 µiδi 2 ) 2 > 0, (52) 
where we used the upper bound on c σ in (51). Hence, we conclude that |x(t, 1)

| c+i ≥ hi 2 µiδi 2 + δ µi for all (t, 1) ∈ dom(x), and thus |x(t, 1)| xi ≥ hi 2 µiδi 2 is satisfied.
If the solution jumps again to q + = 0, then, by definition of the jump set D ρ 0 in ( 25) and (36c), respectively, the solution x must be outside S i hi (δ i ) (due to the definition of the shell S i hi (δ i ) and the first bound in (42)) and the reasoning above can be repeated for the subsequent evolution, so that it is impossible for the solution x to enter the interior of S i h i 2 (δ i ), thus proving item (i).

Proof of Item (ii):

We consider two cases. Case (a): Let x(0, 0) ∈ R n \ ∪ i∈N β S i hi (δ i ) and q(0, 0) = 0. Then the same arguments as in item (i) imply that |x(t, j)| xi ≥ hi 2 µiδi 2 , i.e., x(t, j) = xi for all (t, j) ∈ dom x for all i ∈ N β . Case (b): Let x(0, 0) ∈ S i hi (δ i ) \ {x i }, i ∈ N β arbitrary, and q(0, 0) = 0. Due to the definition of the jump sets it holds that ξ(0, 0) ⊂ D +i ∪ D -i ⊂ D ρ +i ∪ D ρ -i . Moreover, ξ(0, 0) / ∈ C ρ because of the first upper bound on c ρ in (42), together with (45). Then the solution immediately jumps to ξ(0, 1) = x(0,0) q(0,1) with q(0, 1) ∈ {-i, i}. We assume without loss of generality that x(0, 0) ∈ D ρ +i × {0}, which, using the inequality derived after (48), implies that |x(0, 1)| c+i ≥ δ µi . and q(0, 1) = i.

Proceeding similarly to the proof of item (i) (see, in particular, (52)), we show below that the solution remains bounded away from xi because it is at least δ µi distant from c +i . In particular, by using |y| ≤ σ(x) ≤ c σ to denote a generic selection at the right-hand side of (36a), consider any time (t, 1) ∈ dom(x) such that |x(t, 1)| c+i = δ µi and apply Proposition 3 (specifically [START_REF] Sanfelice | Robust hybrid controllers for continuous-time systems with applications to obstacle avoidance and regulation to disconnected set of points[END_REF]) to obtain (again omitting the dependence on (t, 1) for compactness)

1 2 d dt |x| 2 c+i = 1 2 d dt |x -c +i | 2 = x -c +i , Ax + y + B ûkr (x, q) = x -c +i , y + kr 2 (|x -c +i | -h i µiδi 2 -δ µi ) 2 ≥ -c σ |x -c pi | + kr 2 (h i µiδi 2 ) 2 = -c σ δ µi + kr 2 (h i µiδi 2 ) 2 ≥ -cσ 4 (h i µ i δ i + 4δ µi ) + kr 2 ( hi 2 µiδi 2 ) 2 > 0, (53) 
where, similar to (52), the last step follows from the upper bound on c σ in (51). Note that Proposition 3 is applicable due to the considerations in (50). Due to the strict inequality in (53), it must hold that |x(t, 1)| c+i > δ µi for all (t, 1) ∈ dom(x), t > 0, which particularly implies that x(t, 1) = xi for all t ≥ 0 with (t, 1) ∈ dom(x), because x(0, 0) = xi by assumption. By definition of the jump set D ρ 0 in [START_REF] Teel | Uniting local and global controllers[END_REF], the solution will jump again (to q + = 0) only when its x component is outside S i hi (δ i ), and then the analysis carried out in case (a) applies.

IX. PROOF OF ROBUST GAS

The conditions on the perturbation σ imposed in the previous section were too mild to allow proving the robust GAS property stated in Theorem 2 item (iii). We provide here a specific feasible selection of σ that, together with the selection of ρ given in Section VIII-A, ensures robust GAS in the small. Robust obstacle avoidance in the small trivially follows from the stronger results established in the previous section.

A. Selection of perturbation σ and wipeout property

Define σ as

σ(x) := min{c σ , c σ |x|}, (54) 
for a constant c σ ≥ 0, which is constrained to belong to the following intervals:

c σ ∈ 0, min |A -1 s | -1 c ρ , -1 4 λ max (A s + A T s ) (55a) c σ ∈ 0, 2|A s | 2 • min i∈N β ζ -1 (ηi-δi-2cρ-(δi+cρ)ζ) (ηi-δi-2cρ)(2|As|-λmax(As+A T s )) , (55b) 
where the interval in (55a) is nonempty because of Assumption 1(b) ensuring that λ max (A s + A T s ) < 0, and where the interval in (55b) is shown to be non-empty in Claim 1 reported below.

The left bound in (55a) is used in Proposition 4 below to prove a wipeout property generalizing Proposition 1. The right bound in (55a) is used to prove asymptotic stability in the proof of Theorem 2 in Section IX-B. The upper bound in (55b) is necessary to prove positivity of the decrease ε characterized in the next proposition, generalizing our nominal results reported in [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF]Prop. 3] to the robust setting. Proposition 4. Let Assumption 1 hold and let the parameters of the hybrid system (36) be defined according to Assumption 2. Let the perturbation functions (σ, ρ), defined in (44), (54), satisfy conditions (43) and (55). Then the following properties hold for all solutions ξ(•, •) starting at ξ 0 .

(i) (Wipeout property) Let ξ 0 ∈ B δi+cρ (x i )×Z β for i ∈ N β arbitrary. Then there exists a time (t * , j * ) ∈ dom(ξ) such that either ξ(t * , j * ) ∈ ∂B ηi-cρ (x i ) × Z β or ξ(t, j) / ∈ B δi+cρ (x i ) × Z β for all (t, j) ≥ (t * , j * ).

S i (δi)

B δ i (xi) Bη i (xi)
x(t0, j0)

x(tin, j0)

x(tout, j1)

x(t1, j1) Fig. 11. The intuition behind the two statements of Proposition 4 and the hybrid times (t 0 , j 0 ) ≤ (t in , j 0 ) ≤ (tout, j 1 ) ≤ (t 1 , j 1 ), characterized in its statement and its proof.

(ii) (Decrease property)

Let ξ 0 ∈ R n \∪ i∈N β (S i (δ i )+B cρ )× Z β .
Additionally, consider any four times in the domain of ξ(•, •), such that

(t 0 , j 0 ) ≤ (t in , j 0 ) ≤ (t out , j 1 ) ≤ (t 1 , j 1 ), (56) 
and

ξ(t 0 , j 0 ), ξ(t 1 , j 1 ) ∈ ∂B ηi-cρ (x i ) × {0}, ξ(t in , j 0 ), ξ(t out , j 1 ) ∈ ∂B δi+cρ (x i ) × {0}. (57) 
for i ∈ N β , arbitrary. Then either

|x(t 1 , j 1 )|< min z∈S i (δi) |z|-c ρ or |x(t 1 , j 1 )| ≤ |x(t 0 , j 0 )|-ε (58) 
for some ε > 0, is satisfied.

Before we prove Proposition 4, the following claim illustrates why conditions (33), ( 43) and (55) are needed, and provides the selection of a positive ε in (58). 

ε = -(δ i + c ρ ) + ζ -1 (η i -δ i -2c ρ ) -c σ (ηi-δi-2cρ)(2|As|-λmax(As+A T s )) 2|As|(|As|+cσ) . ( 59 
)
Then the interval (55b) is non-empty and ε > 0 for all c σ in the interval defined through (55b).

Proof. According to (42), c ρ satisfies the condition

2 + ζ 1 + ζ c ρ < 2c ρ < η i 1 + ζ -δ i , which implies (2 + ζ)c ρ < η i -(1 + ζ)δ i . Since ζ is positive, rearranging we get 0 < ζ -1 (η i -δ i -2c ρ -(δ i + c ρ )ζ) = -(δ i + c ρ ) + ζ -1 (η i -δ i -2c ρ ). (60) 
According to (46) and Assumption 1(b),

0 < (η i -δ i -2c ρ )(2|A s | -λ max (A s + A T s )) 2|A s |(|A s | + c σ ) (61) ≤ (η i -δ i -2c ρ )(2|A s | -λ max (A s + A T s )) 2|A s | 2 (62) 
for all c σ ≥ 0.

Combining estimate (60) and (61) shows, that ε > 0 for c σ small enough. The condition c σ small enough is characterized through the interval (55b) which is obtained by combining (60) and (62).

Proof of Proposition 4:

Proof of item (i): Let us consider a solution ξ(•, •), whose x-component x(•, •) starts in B δi+cρ (x i ) for i ∈ N β arbitrary. Two cases may happen: either the solution x reaches ∂B ηi-cρ (x i ) in finite time, or it never reaches it. In the first case the item is proven. In the second case, solution x must remain in the interior of B ηi-cρ (x i ) for all times (t, j) ∈ dom(x). Therefore, according to the definition of γ in [START_REF] Tee | Barrier Lyapunov functions for the control of output-constrainted nonlinear systems[END_REF], the directional derivative of function H(x), defined in Proposition 1, in the direction of the flow map in (36a), can be written as Ḣ := ∇H, Ax + Bγ(x, q) + y = ∇H, A s x + BΛν + y for some y ∈ B σ and some ν ∈ R. We may then apply Proposition 1 to conclude the robust wipeout properties, which follow from the left upper bound in (55a) that implies

|A -1 s y| ≤ |A -1 s |c σ ≤ c ρ , x ∈ B ηi-cρ (x i ) ⇒ Ḣ = ∇H, A s (x + A -1 s y) + BΛν ≥ 0, x ∈ B η-cρ (x i ) ⇒ Ḣ = ∇H, A s (x + A -1 s y) + BΛν ≥ h, (63) 
for any η ∈ [c ρ , η i ), where h > 0 depends on η.

Observe now that δ i + c ρ < η Λi -c ρ , i ∈ N β , from the upper bound on c ρ in (46), and select η in (63) as the average of these two values, namely η = 1 2 (δ i + η Λi ), which satisfies 

δ i + c ρ < η < η Λi -c ρ . (64) 
(x i ) \ (S i (δ i ) + B cρ ) if q(t, j) = 0.
Let us now split the proof in two cases: Case (a): For some (t * , j * ) ∈ dom(ξ) satisfying (t 0 , j 0 ) ≤ (t * , j * ) ≤ (t 1 , j 1 ) we have |x(t * , j * )| < min z∈S i (δi) |z| -c ρ (> 0 according to (42) and from the assumption in (33)). Since from Assumption 1(b) the norm is contractive along flows with q = 0, the solution x satisfies |x(t, j)| ≤ |x(t * , j * )| < min z∈S i (δi) |z| -c ρ for all (t, j) ≥ (t * , j * ), which also includes (t 1 , j 1 ), and the proof is complete.

Case (b): For all (t, j) ∈ dom(ξ) satisfying (t 0 , j 0 ) ≤ (t, j) ≤ (t 1 , j 1 ) we have

|x(t, j)| ≥ min z∈S i (δi) |z| -c ρ ≥ |x i | -δ i -c ρ , (65) 
where we used Lemma 1 in the last inequality. In this second case we will prove that |x(t 1 , j 1 )| ≤ |x(t 0 , j 0 )| -ε, where ε is defined based on (59). In particular, due to the stated assumptions, the solution x must go through three phases characterized by the four hybrid times in (56), and corresponding to: 1) flow from x(t 0 , j 0 ) ∈ ∂B ηi-cρ (x i ) to x(t in , j 0 ) ∈ ∂B δi+cρ (x i ), 2) hit the boundary ∂B δi+cρ (x i ) at time (t in , j 0 ) and reach x(t out , j 1 ) ∈ ∂B δi+cρ (x i ) again after some finite time, 3) flow from x(t out , j 1 ) ∈ ∂B δi+cρ (x i ) to x(t 1 , j 1 ) ∈ ∂B ηi-cρ (x i ).

We show below that the increase of |x| over phase 2 is compensated by a suitable decrease in phases 1 and 3, adding up to a net decrease of -2ε, with ε > 0 defined in (59). Phase 2. It holds that min

z∈B δ i +cρ (xi) |z| = |x i | -δ i -c ρ and max z∈B δ i +cρ (xi) |z| = |x i | + δ i + c ρ ,
therefore we obtain the estimate

|x(t out , j 1 )| -|x(t in , j 0 )| ≤ |x i | + δ i + c ρ -(|x i | -δ i -c ρ ) = 2(δ i + c ρ ). (66) 
Phases 1 and 3. We will only address phase 1 because parallel arguments apply to phase 3. Since x(t, j) flows within B ηi-cρ (x i ) \ B δi+cρ (x i ) for all (t, j) satisfying (t 0 , j 0 ) ≤ (t, j) < (t in , j 0 ), then q(t, j) = 0 for all such (t, j) and the following inequality holds, where we use y ∈ B σ(x) to denote an arbitrary selection in the right-hand side of (36a):

| ẋ(t, j)| ≤ |A s x(t, j)| + |y| ≤ |A s ||x(t, j)| + |σ(x(t, j))| ≤ (|A s | + c σ )|x(t, j)| ≤ (|A s | + c σ )(|x i | + η i -c ρ ), (67) 
where we used the expression for γ in [START_REF] Tee | Barrier Lyapunov functions for the control of output-constrainted nonlinear systems[END_REF] and the bound (54) on σ, in addition to the fact that x(t, j) ∈ B ηi-cρ (x i ). Using |x(t in , j 0 ) -x(t 0 , j 0 )| ≥ η i -δ i -2c ρ (which holds because of the distance between ∂B ηi-cρ (x i ) and ∂B δi+cρ (x i ), and is positive due to (46)), it follows from the mean value theorem that

t in -t 0 ≥ η i -δ i -2c ρ (|A s | + c σ )(|x i | + η i -c ρ ) . (68) 
Consider now the following upper bound of the decrease rate of the norm, where we use again y ∈ B σ(x) to denote an arbitrary selection in the right-hand side of (36a): Due to Assumption 1(b), and from the upper bound on c σ in (55a), the right-hand side is negative. Thus, we can use (68) to estimate the decrease (we use the notations δ i := δ i + 2c ρ and λ := λ max (A s + A T s ) < 0 to shorten the expressions) 

˙ |x(t, j)| = d dt |x(t, j)| 2 = x(t, j) T (A s x(t, j) + y) + (A s x(t, j) + y) T x(t, j) 2|x(t, j)| = x(t, j) T (A s + A T s )x(t, j) + 2y T x(t, j) 2|x(t, j)| ≤ λ max (A s + A T s ) 2|x(t,
|x(t in , j 0 )|-|x(t 0 , j 0 )| ≤ 1 2 (t in -t 0 )( λ + 2c σ )(|x i | + η i -c ρ ) ≤ ( λ + 2c σ )(|x i | + η i -c ρ )(η i -δ i ) 2(|A s | + c σ )(|x i | + η i -c ρ ) ≤ ( λ + 2c σ )(η i -δ i ) 2(|A s | + c σ ) = λ(η i -δ i ) 2(|A s | + c σ ) + 2c σ (η i -δ i ) 2(|A s | + c σ ) = λ(η i -δ i ) 2|A s | - c σ λ(η i -δ i ) 2|A s |(|A s | + c σ ) + 2c σ (η i -δ i ) 2(|A s | + c σ ) = -ζ -1 (η i -δ i ) + c σ (η i -δ i )(2|A s | -λ) 2|A s |(|A s | + c σ ) (70 

B. Proof of Theorem 2

Items (i) and (ii) of Theorem 2 hold from the proof of Theorem 3 given in Section VIII-B, which were proven under less restrictive assumptions on the perturbation σ. Proof of Item (iii): To prove uniform global asymptotic stability (UGAS) of the origin, we exploit the fact, established in Lemma 4, that the closed loop satisfies the hybrid basic conditions of [6, As. 6.5] and all maximal solutions are complete. Then, using [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Thm. 7.12], it is sufficient to prove (local) Lyapunov stability and global (not necessarily uniform) convergence to the origin, to obtain uniform global asymptotic stability. The two properties are proven below.

Local Stability: We first observe that η Λi defined in (5) satisfies η Λi ≤ |x i | for all i ∈ N β , because y = 0 trivially belongs to E Λi in (3). Moreover, from Lemma 3 we have δ i + c ρ < η i ≤ η Λi , whose strict inequality, together with the inclusion S i (δ i ) ⊂ B δi (x i ), (see (46)) established in Lemma 1, implies that 0 / ∈ S i (δ i )+B cρ for all i ∈ N β . As a consequence, there exists an r > 0, such that B r ∩ (∪ i∈N β S i (δ i ) + B cρ ) = ∅. Moreover, for any initial state ξ ∈ B r × Z β the xand qcomponents satisfy the following properties. If q(0, 0) = 0, the dynamics will jump immediately to q(0, 1) = 0 (due to the definition of D ρ 0 ) and the x-component satisfies x + = x across any jump. Thus, either after the first jump, or immediately, the solution ξ(t, j) belongs to the interior of C (and in particular to the interior of C ρ \D ρ ). In addition to ξ(t, j) ∈ B r × {0}, let y ∈ B σ(x) ⊂ B cσ|x| , then using the estimate derived in ( 69 for all |x(t, j)| = 0, which follows from Assumption 1(b) together with the assumption on c σ ≤ -1 2 λ max (A s + A T s ) in (55a). This implies that ξ(t, j) flows forever in the forward invariant set B r ×{0}. (Local asymptotic) stability then follows from estimate (71) as well.

Global Convergence: Consider any solution ξ = (x, q), and based on the two possibilities in Proposition 4(i) we break the analysis in two cases. Case (a): The solution never reaches ∂B ηi-cρ (x i ) for i ∈ N β arbitrary. In this case, from Proposition 4(i) the solution remains in the stabilizing mode (i.e., u = u s and q = 0) on its tail. Then, it converges asymptotically to the origin due to the inequalities in (71) established for the perturbed dynamics ẋ ∈ A s x + B σ(x) . Case (b): The solution reaches ∂B ηi-cρ (x i ), i ∈ N β , at some time (t 0 , j 0 ). In this second case, either there exists a finite time after which the solution does not evolve using the avoidance controller (i.e., using u = γ(x, q) and with q = 0) anymore (and the analysis of case (a) applies), or there exists a sequence of times (t k , j k ), k ∈ N satisfying |x(t k+1 , j k+1 )| ≤ |x(t k , j k )| -ε, according to (58), which leads to a contradiction.

X. CONCLUSIONS

This paper proposes a constructive controller design method for linear systems subject to bounded state constraints. In particular a hybrid control law is introduced which robustly globally stabilizes the origin and guarantees robust obstacle avoidance, where obstacles are described through shells around isolated points in the state space.

While the paper provides a rigorous answer to the control problem motivated in Section II, the controller design methodology appears to be promising for more general control tasks and thus immediately opens up future research directions. In this regard, we will investigate the hybrid controller design method for more general nonlinear system dynamics and extend the results accordingly. A second research direction will be dedicated to the maximal size of the obstacles. Even though we are able to constructively compute a maximal domain around a point, which can be avoided by the closed loop, the size of the resulting domain may be conservative, and numerical simulations suggest that obstacle avoidance and robust GAS could be guaranteed for larger obstacles using the proposed control law.
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 1 Fig. 1. The construction of the eye-shaped shell S(δ) around an unsafe point x, based on the size δ ∈ R >0 the aspect ratio µ ∈ (0, 2) and the orientation b ∈ R n \{0}.

Fig. 2 .

 2 Fig. 2. The shrunken shell S h (δ) and the half shells S / +1 and S / -1 considered in Proposition 2.

  and h ∈ (0, 1) be given. For each p ∈ {-1, +1} and any point x ∈ S(δ) + B δε 2 the avoidance controller ûkr (x, p) = K s x + Λν kr (x, p)

Fig. 3 .

 3 Fig. 3. The upper and lower half-shells associated to D +i = (S i h i

Lemma 3 .

 3 [START_REF] Braun | Unsafe point avoidance in linear state feedback[END_REF] Lemma 4]) Let x ∈ {x 1 , . . . , xβ } be an arbitrary unsafe point. Under Assumption 1, for a given

Fig. 4 .

 4 Fig. 4. (Example VII-A; Setting) Visualization of the setting for the unsafe points x1 , x2 , x3 . The shells S i (δ i ) (blue) and S i h i (δ i ) (cyan), the η i -balls (green) and the subspaces E i (red) are shown. The balls B h i µ i δ i 4

Fig. 5 .

 5 Fig. 5. (Example VII-A; Closed-loop solutions) Visualization of 50 closedloop solutions avoiding a pre-specified neighborhood around the unsafe points x1 , x2 , x3 , and converging to the origin.

4 Fig. 6 .

 46 Fig. 6. (Example VII-B) Closed-loop solutions for different robustness gain selections in (20): kr = 0 (left), kr = 10 (middle) and kr = 100 (right).

Fig. 7 .

 7 Fig. 7. (Example VII-C) Closed-loop solutions for the perturbed system dynamics w 1 (left) and w 2 (right) defined in (39) and (40), respectively.

Fig. 8 .

 8 Fig. 8. (Example VII-D) Visualization of the shells S i h i (δ *i ) (blue), the η iballs (yellow) and the subspaces E i (green) for i = 1, 2, 3.

Fig. 9 .

 9 Fig. 9. (Example VII-D) Visualization of closed-loop solutions of the avoidance controller for a three dimensional example focusing on the unsafe point x2 . Depending on the initial state, the obstacle is passed by sliding along the surface of the upper or lower shell (with respect to the orientation b).

Fig. 10 .

 10 Fig. 10. Projection on the x-direction of the inflated set D ρ +i , i ∈ N β , as compared to the nominal set D +i . With a slight abuse of notation, the projections are labeled with the names of the extended sets in the figure.

Claim 1 .

 1 (Selection of ε) Under Assumptions 1 and 2, if conditions (43) hold, consider the selection

  )which is a lower bound on the decrease in phase 1 and 3, and ζ was defined in (29). Combining the increase and decrease bounds established in (66) and (70), we get|x(t 1 , j 1 )| -|x(t 0 , j 0 )| = |x(t 1 , j 1 )| -|x(t out , j 1 )| + |x(t out , j 1 )| -|x(t in , j 0 )| + |x(t in , j 0 )| -|x(t 0 , j 0 )| ≤ 2(δ i + c ρ ) -2ζ -1 (η i -δ i ) + 2c σ (ηi-δi)(2|As|-λ) 2|As|(|As|+cσ) = -2ε,where ε, defined in (59), is positive from Claim 1.

(

  See Assumption 2 for the definition of η Λi .) Since solution x remains in the interior of B ηi-cρ (x i ) for all times, then the upper condition in (63) implies that H is non-decreasing along this solution. Assume now, by contradiction, that solution x keeps revisiting B δi+cρ (x i ) for (t, j) → ∞. Since B δi+cρ (x i ) is a proper subset of B η (x i ) from (64), and since ẋ is uniformly bounded in the compact set B (x i ) then there exits T * > 0 such that each time solution x enters B δi+cρ (x i ), it spends T * ordinary time flowing in B η (x i ). Finally, completeness of solutions established in Lemma 2 implies that the solution spends an arbitrarily large amount of time in B η (x i ) and (63) implies that H grows unbounded, thus establishing a contradiction because H is bounded in B δi+cρ (x i ). Proof of item (ii): Consider any such solution ξ(•, •) and first notice that due to the expression in (28) of the flow set, the solution x can only flow in B ηi-cρ

  which is well defined because |x(t, j)| ≥ |x i | -δ i -c ρ > 0 according to (65) and where we used |y| ≤ c σ |x| from (54). Integrating both sides provides the estimate|x(t in , j 0 )|-|x(t 0 , j 0 )| ≤ 1 2 (t in -t 0 )(λ max (A s +A T s ) + 2c σ )(|x i | + η i -c ρ ).

j)| |x(t, j)| 2 + 2c σ |x(t, j)| 2 2|x(t, j)| (69) ≤ 1 2 (λ max (A s + A T s ) + 2c σ )(|x i | + η i -c ρ ),

  ) leads to ˙ |x(t, j)| ≤ λ max (A s + A T s ) 2|x(t, j)| |x(t, j)| 2 + 2c σ |x(t, j)| 2 2|x(t, j)| ≤ 1 2 λ max (A s + A T s ) + c σ |x(t, j)| < 0 (71)

It is emphasized that property (37) is only necessary in the neighborhood of xi , i ∈ N β , where the robust avoidance controller (20) is active.
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