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The problem of devising learning strategies for discrete losses (e.g., multilabeling, rank-
ing) is currently addressed with methods and theoretical analyses ad-hoc for each loss.

In this paper we study a least-squares framework to systematically design learning al-
gorithms for discrete losses, with quantitative characterizations in terms of statistical and
computational complexity. In particular we improve existing results by providing explicit
dependence on the number of labels for a wide class of losses and faster learning rates in
conditions of low-noise.

Theoretical results are complemented with experiments on real datasets, showing the
effectiveness of the proposed general approach.

1. Introduction

Structured prediction with discrete labels of high cardinality is ubiquitous in machine learning, e.g.,
in multiclass problems, multilabel learning, ranking, ordinal regression, etc. [1, 2, 3, 4].

These supervised learning problems typically come with computational and theoretical challenges:

(1) how to design efficient algorithms dealing with potentially large number of data and labels?

(2) even if learning is computationally feasible, how to make sure that the resulting algorithm leads
to improved accuracy on the test set?

Many special cases are often addressed in an ad-hoc fashion in terms of consistency, algorithms and
convergence rates, depending on the specific loss used in each application to quantify the performance
of predictors.

A few generic learning frameworks exist: (a) conditional random fields [5, 6] use conditional proba-
bilistic modelling typically combined with maximum likelihood estimation, but may lead to intractable
probabilistic inference and cannot easily incorporate structured losses which are needed in applica-
tions [7]; (b) Structured SVM [8, 9] extended the class of problems where a systematic max-margin
framework can be applied, with the incorporation of arbitrary losses, but they are not consistent in
general, that is, even with infinite amounts of data, they would not lead to optimal predictions [10];
(c) more recently, least-squares (or quadratic surrogate) frameworks [11, 12] have emerged. Such ap-
proaches can tackle arbitrary discrete losses producing consistent estimators and have the potential
to provide a systematic way to design learning algorithms with both statistical and computational
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guarantees. However, no sharp analyses exist yet, quantifying the impact of crucial quantities like the
number of labels or the level of noise on the statistical and computational properties of the resulting
algorithms. The goal of this paper is to characterize explicitly such impact for a number of widely used
loss functions in the context of multilabeling and ranking, showing the effectiveness of least-squares
frameworks for structured prediction with discrete labels.

We make the following contributions:

– We provide quantitative characterizations of the statistical and computational complexity for the
least-squares framework of [11] depending on the number of labels and the number of examples.
The characterization is explicit for a wide family of common losses in ranking and multilabel
learning (see Secs. 3.1, 3.2 and 4).

– We propose a margin condition for discrete losses (generalizing the Tsybakov condition for binary
classification [13]) and obtain fast learning rates for the framework of [11], that are adaptive to
the proposed condition (see Sec. 3.3).

– Our analysis encompasses many previous results on special cases and provides improved learning
rates over existing generic structured prediction frameworks (see Sec. 6).

– We conduct a series of experiments highlighting the benefits of the considered least-squares
framework on ranking and multilabel problems (Sec. 5).

2. Background

The problem of supervised learning consists in learning from examples the function relating inputs
with observations/labels. More specifically, let Y be the space of observations, denoted observation
space or label space and X be the input space. The quality of the predicted output is measured by a
given loss function L. In many scenarios the output of the function is in a different space than the
observations (see Sec. 3.2 for some examples). We denote by Z the output space, so

L : Z× Y −→ R, (1)

where L(z, y) measures the cost of predicting z when the observed value is y. Finally the data are
assumed to be distributed according to a probability measure P on X × Y. The goal of supervised
learning is then to recover the function f⋆ minimizing the expected risk E(f) of the loss,

f⋆ = arg min
f :X→Z

E(f), E(f) = EL(f(X), Y ), (2)

given only a number of examples (xi, yi)
n
i=1, with n ∈ N, sampled independently from P . The quality

of an estimator f for f⋆ is measured in terms of the excess risk E(f)− E(f⋆).

2.1. Quadratic Surrogate method

A systematic way to solve the problem in Eq. (2) is to consider that f⋆ is characterized as follows
[14, 11]:

f⋆(x) = arg min
z∈Z

ℓ(z, x),

where ℓ(z, x) =
∫
Y
L(z, y)dP (y|x) is the Bayes risk, defined as the conditional expectation of y given

x ∈ X. The quadratic surrogate (QS) for structured prediction, introduced in [11], is a natural
estimator that has the following form,

f̂(x) = arg min
z∈Z

ℓ̂(z, x), (3)
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Multilabel and Ranking measures

Measure Z Definition r A INFF (|Z|)
0-1 (↓) Pm 1(z 6= y) 2m 2m/2 O(n ∧ 2m)

Block 0-1 (↓) Pm 1(z ∈ Bj, y /∈ Bj, j ∈ [b]) b
√
b O(b)

Hamming (↓) Pm
1
m

∑m
j=1 1([z]j 6= [y]j) m 1

2 O(m)

F-score (↑) Pm 2 |z∩y|
|z|+|y| m2 + 1

√
2m O(m2)

Prec@k (↑) Pm,k
|z∩y|
k m

√
m
k O(m log k)

NDCG (↑) Sm
1

N(r)

∑m
j=1G([r]j)Dσ(j) m

√
m (

∑
j D

2
j )

1

2Gmax O(m logm).

PD (↓) Sm
1

N(y)

∑m
j,ℓ=1 1([y]j<[y]ℓ)1(σ(j)>σ(ℓ))

m(m−1)
2

m
4 MWFAS(m).

MAP (↑) Sm
1
|y|
∑m

j=1
[y]j
σ(j)

∑σ(j)
ℓ=1 yσ−1(ℓ)

m(m+1)
2

1
2m
√

log(m+ 1) QAP(m).

Table 1: Upper bounds for A in Thms. 3.1 and 3.5 and Cor. 3.6 and computational complexity of eval-
uating the QS estimator in Eq. (9), for a number of widely-used losses for multilabel/ranking
problems. See Sec. 3.2 for notation, Sec. 4 for computational considerations and Appendix B
for the full derivation of the results.

where ℓ̂(z, x) :=
∑n

i=1 αi(x)L(z, yi). Here (αi)
n
i=1 are suitable functions defined explicitly in terms

of the observed data (not on L) and will be discussed later (see Eqs. (8) and (9)). Informally, the
closer ℓ̂(z, x) is to ℓ(z, x), the closer f̂ will be to f⋆ in terms of the excess risk. In [11] a detailed
statistical framework analyzes the generalization properties of the derived estimator, that will be
recalled in the next paragraph. Here we point out that a crucial aspect of the algorithm in Eq. (3),
that makes it appealing from a practical viewpoint, is that we can directly apply it given the loss at
hand, without the need to devise a different surrogate (and consequently a different algorithm and
theoretical analysis) ad-hoc for each specific loss.

Statistical properties of Quadratic Surrogate. Here we recall some generalization properties
of the QS estimator from [11], that will be extended in Sec. 3. First, assume that the loss L is a
structure encoding loss function (SELF), i.e., it can be written as,

L(z, y) = 〈ϕ(z), V ψ(y)〉H, (4)

where H is a separable Hilbert space with 〈·, ·〉H the associated inner product, V : H → H is a
bounded linear operator and ϕ : Z → H, ψ : Y → H.

Note that by assuming Z,Y discrete and finite, then every loss function on Z,Y is SELF. Indeed
Eq. (4) is recovered by setting H = R

|Z|, V = (L(z, y))z∈Z,y∈Y ∈ R
|Z|×|Y| the loss matrix, and ϕ(z) =

ez , ψ(y) = ey the vectors of the canonical basis in R
|Z| and R

|Y|, respectively (For the case of continuous
Z,Y see [11]).

The key property of a loss being SELF is that, by linearity of the inner product,

ℓ(z, x) =

∫
L(z, y)dP (y|x)

=

∫
〈ϕ(z), V ψ(y)〉HdP (y|x)

= 〈ϕ(z), V g∗(x)〉H,

with g∗(x) =
∫
ψ(y)dP (y|x) being the conditional expectation of ψ(y), given x. This means that in

order to estimate ℓ, we just need to find an estimator ĝ for the conditional expectation g∗, and then
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define ℓ̂(z, x) = 〈ϕ(z), V ĝ(x)〉H. To find a suitable estimator for g∗, note that g∗ can be written as the
minimizer of the following quadratic surrogate (QS),

g∗ = arg min
g:X→H

Rψ(g), (5)

where Rψ(g) :=
∫
‖g(x) − ψ(y)‖2HdP (x, y) is the expected surrogate risk of g. The quality of the

surrogate estimator g is measured in terms of the surrogate excess risk Rψ(g)−Rψ(g
∗). In particular,

denote by d : H → Z the decoding function d(u) = arg minz∈Z〈ϕ(z), V u〉H. In [11] it is proven that by
construction, the QS estimator is Fisher consistent, i.e., f⋆ = d ◦ g∗, with f⋆, g∗ as above. Moreover,
for any g : X → H, the comparison inequality holds

E(d ◦ g) − E(f⋆) ≤ 2cV,ϕ

√
Rψ(g) − Rψ(g∗), (6)

where cV,ϕ = supz∈Z ‖V ∗ϕ(z)‖H. In the next paragraph we recall how to devise a suitable estimator
of g∗.

The QS estimator depends only on L. Given a finite dataset (xi, yi)
n
i=1, an estimator ĝ for

g∗ can be found by considering the characterization of g∗ in terms of Eq. (5). Indeed the problem in
Eq. (5) can be solved using kernel ridge regression (KRR) [15]. Let k : X× X → R be a kernel on X

and HX the associated reproducing kernel Hilbert space (RKHS). Then given λ > 0, KRR reads

ĝn ∈ arg min
g∈G

1

n

n∑

i=1

‖g(xi)− ψ(yi)‖2H + λ‖g‖2G, (7)

where G is the space of Hilbert-Schmidt operators from HX to H, which is isometric to H ⊗ HX.
The minimizer ĝn can be written in closed form as ĝn(·) =

∑n
i=1 αi(·)ψ(yi) ∈ G where α(x) =

(α1(x), . . . , αn(x)) ∈ R
n is defined by

α(x) = (K + nλI)−1Kx, (8)

with Kx = (k(x, x1), . . . , k(x, xn)) ∈ R
n and K ∈ R

n×n is defined by Kij = k(xi, xj).

The key property here, is that due to the fact that ĝn is linear in the ψ(yi)’s, then ℓ̂(z, x) does
not explicitly depend on the surrogate space H, indeed ℓ̂(z, x) = 〈ϕ(z), V (

∑n
i=1 αi(x)ψ(yi))〉H =∑n

i=1 αi(x)L(z, yi). Hence, the final estimator f̂n = d ◦ ĝn can be written as

f̂n(x) = arg min
z∈Z

n∑

i=1

αi(x)L(z, yi). (9)

Finally, by combining the comparison inequality with results on the convergence of ĝn to g∗ (see
e.g. [15]), the following theorem holds.

Theorem 2.1 (Thm. 5 of [11]). Let n ∈ N, λn = n−1/2 and τ > 0. If L is SELF and g∗ ∈ G, then
the following holds with probability at least 1− 8e−τ ,

E(f̂n)− E(f∗) ≤ C cV,ϕκ‖g∗‖Gτ2n−1/4. (10)

where κ2 = supx k(x, x) and C a universal constant.

Positioning of our contribution. From a theoretical viewpoint the result above holds for any
loss on discrete and finite Z,Y, and shows a learning rate that is O(n−1/4). Moreover, from a practical
viewpoint, to define and evaluate the QS estimator in Eq. (9) is enough to know only the loss L and a
kernel k for X (no knowledge of H, ψ, ϕ is required). These considerations show that the QS framework
could be a good candidate to systematically solve learning problems with discrete outputs.
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However, note that constants of the bound depend on the specific SELF decomposition for L. If
we use the one in [11], H = R

|Z|, ϕ(z) = ez, ψ(y) = ey, V = L, then the constant cV,ϕ equals the
spectral norm of the loss matrix ‖L‖, which is exponentially large even for highly structured loss
functions such as Hamming. In that case ‖L‖ = 2m−1, where m is the number of labels (and a similar
behaviour could affect ‖g∗‖G). Then Eq. (10) can be totally uninformative if the constants of the rate
are exponentially large [12].

In the next section, we prove that by using a suitable SELF-decomposition it is possible to find a
version of Eq. (10), that depends only polynomially on the number of labels m. In particular we find
the explicit constants for a number of widely used loss functions for ranking and multilabel learning.
Finally we provide a refined generalization bound adaptive to the noise-level of the learning problem.

3. Main Results

In this section we study a specific SELF-decomposition for discrete losses, providing a generalization
bound in the form of Eq. (10), with explicit constants depending on the specific loss chosen (Thm. 3.1).
In Thm. 3.2 and Table 1 we quantify the constants for a number of widely used loss functions for
multilabeling and ranking problems, showing that they are always polynomial with respect to the
number of labels and in many cases optimal (Remark 3.3). Finally in Thm. 3.5 we generalize Eq. (10)
(and so the learning rate in [11]), introducing a Tsybakov-like noise condition for the structured
prediction problem.

3.1. Affine decomposition

Motivated by the limitations given by the possible exponential magnitude of the constants in the
generalization bound in Eq. (10), we consider another SELF-decomposition of the loss, based on the
following affine decomposition of the loss matrix,

L = FU⊤ + c1. (11)

where F ∈ R
|Z|×r, U ∈ R

|Y|×r, c ∈ R is a scalar and 1 ∈ R
|Z|×|Y| is the matrix of ones, i.e. 1ij = 1

and r ∈ N. The minimum r for which there exists a decomposition as Eq. (11) is called the affine
dimension of the loss L and is denoted affdim(L).

Note that the“centered” loss L− c is SELF with

H = R
r, ϕ(z) = Fz, ψ(y) = Uy, V = Ir×r, (12)

where Fz is the z-th row of F and Uy the y-th row of U . Using the decomposition above, the following
theorem gives a new version of the bound Eq. (10) specialized to discrete losses. Before giving the
result, note that when we use the SELF-decomposition above for a loss, the conditional expectation
g∗ is characterized by g∗ : X → R

r, g∗(x) = (g∗j (x))
r
j=1, for g

∗
j : X → R defined as g∗j (x) = U j⊤Π(x),

with U j ∈ R
|Y| the j-th column of U and Π : X → R

|Y|, Π(x)y = P (y|x) the conditional probability of
y given x. In particular g∗j (x) ≤ maxk∈Y |Ukj |, (Ukj is the k, j-th element of U). Finally, G is isometric
to Hr

X, since H = R
r.

Theorem 3.1 (Statistical complexity). Let n ∈ N, τ > 0 and λn = n−1/2. Assume that the loss L
decomposes as Eq. (11). If g∗ ∈ G, we have that with probability 1− 8e−τ ,

E(f̂n)− E(f⋆) ≤ AQ Cκτ2 n−1/4, (13)

where C, κ are as in Thm. 2.1,
A =

√
r‖F‖∞Umax, (14)

Q = max1≤j≤r ‖g∗j /Umax‖HX
, Umax = maxj,k |Ukj|.
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Proof. First, note that the excess risk E(f) − E(f∗) is the same for L and for L − c for any c ∈ R,
moreover both the definition of f⋆ and f̂ are invariant when L− c is used instead of L. So we bound
E(f̂)− E(f∗) with Eq. (10) applied to L− c, with c as in Eq. (11).

Applying Thm. 2.1 with the affine decomposition in Eq. (12) for L − c and the definition of cV,ϕ
by [11], we have that cV,ϕ := supz∈Z ‖Fz‖2 = ‖F‖∞ and ‖g∗‖2G =

∑r
j=1 ‖g∗j ‖2HX

≤ rmax1≤j≤r ‖g∗j ‖2HX
.

The final result is obtained by multiplying and dividing by Umax.

The theorem above is essentially a version of Thm. 2.1 where we use the affine decomposition in
Eq. (11) for the loss L, making explicit the dependence of the constants on structural properties of
the loss, like the affine dimension.

In particular, we explicitly identify three distinct terms A, Q and Cκτ2n−1/4. The third term is
completely explicit and does not dependent on the loss nor on the data distribution. It expresses the
dependence of the statistical error with respect to the number of examples n and the high probability
confidence τ (C is a universal constant and κ the constant of the kernel). The second term depends
on the data distribution P and measures in a sense the “regularity” of the most difficult regression
scalar function g∗j defining the surrogate conditional expectation for the given loss. Note that the Q
is renormalized by Umax so is invariant to the magnitude of the representation vector ψ.

Finally A depends only on the chosen loss and measures the cost of using the QS method as surrogate
approach. In the next subsection we give sharp bounds on the constant A for many discrete losses
used in practice, together with the computational complexity required to evaluate the QS estimator.
In particular, we prove that, contrary to what suggested by [12], A depends only polynomially on the
number of labels, making the QS method a good systematic approach to deal with discrete losses.

3.2. Sharp constants for multilabel and ranking losses

In this section (Thm. 3.2, Table 1) we characterize explicitly the constants introduced in Thm. 3.1, for
a number of widely used losses for multi-labeling and ranking problems. In particular we show that
they depend only polynomially on the number of labels (or equivalently polylog(|Y|, |Z|)). Moreover in
Remark 3.3 we show that the bounds obtained for many of the considered losses are sharp in a precise
sense [16]. Finally we characterize the computational complexity of evaluating the QS estimator in
Eq. (9) for such losses.

In the following we denote by m ∈ N the number of classes of a multilabel/ranking problem, by Pm

the power-set of [m] = {1, . . . ,m} and by Sm the set of permutations of m-elements. In particular
note that in the multilabel problems both the output space Z and the observation space Y are equal
to Pm, while in ranking Z = Sm and Y = {1, . . . , R}m = [R]m, the set of observed relevance scores for
the m documents where R is the highest relevance [17]. Finally we denote by [v]j the j-th element of
a vector v and we identify Pm with {0, 1}m, moreover σ(j) is the j-th element of the permutation σ,
for σ ∈ Sm, j ∈ [m].

Theorem 3.2. The constant A and the computational complexity of the QS estimator for the multilabel
losses: 0-1, block 0-1, Hamming, Prec@k, F-score and ranking losses: NDCG-type, PD and MAP,
appearing in Table 1 hold.

Proof. We sketch here the analyses for the Hamming loss and the NDCG-type ranking measures. The
complete analysis for all the losses is in Appendix B.

Hamming. Let m ∈ N be the number of labels. We represent each output element as a binary
vector (Z = Y = {0, 1}m). We re-write the Hamming loss as

L(y′, y) =
1

2m
− 1

2m

m∑

j=1

sj(y
′)sj(y), (15)
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where sj(y) = 2[y]j − 1. Hence, this corresponds to an affine decomposition by setting

Fz = − 1

2m
(sj(z))

m
j=1, Uy = (sj(y))

m
j=1, c =

1

2m
.

We have that r = m, ‖F‖∞ = 1
2
√
m
, Umax = 1. This implies that A = 1

2 . Finally, inference corresponds

to f̂j(x) = (sign (ĝj(x)) + 1)/2 where ĝj(x) =
∑n

i=1 sj(yi)αi(x). This is done in O(m).
NDCG-type. [18, 17, 19] Let Z = Sm be the set of permutations of m elements and Y = [R]m

the set of relevance scores for m documents. Let the gain G : R → R be an increasing function and
the discount vector D = (Dj)

m
j=1 be a coordinate-wise decreasing vector. The NDCG-type losses are

defined as the normalized discounted sum of the gain of the relevance scores ordered by the predicted
permutation:

L(σ, r) = 1− 1

N(r)

m∑

j=1

G([r]j)Dσ(j), (16)

where N(r) = maxσ∈Sm

∑m
j=1G([r]j)Dσ(j) is a normalizer.

Note that looking at Eq. (16) we can directly write that r = m and

Fσ = −(Dσ(j))
m
j=1, Ur =

(
G([r]j)

N(r)

)m

j=1

, c = 1. (17)

It follows that, ‖F‖∞ = ‖D‖2, Umax = DmaxGmax, so A =
√
mGmaxDmax(

∑m
j=1D

2
j )

1/2. For Table 1,
assume D1 = 1. If we define the vector v ∈ R

m as

vj =
n∑

i=1

G([ri]j)αi(x)

N(ri)
, 1 ≤ j ≤ m, (18)

then inference corresponds to f∗(x) = argsortσ∈Sm
(v), which can be done in O(m logm) operations.

The key result in Table 1 is that the generalization properties and the computational complexity
of the algorithm are both polynomial in the number of labels m (or equivalently polylog(|Y|, |Z|))
for all considered losses except the 0-1, which does not provide any structural information of the
observation/output spaces Y,Z. This theoretically explains why in discrete structured prediction and
in particular multi-labeling and ranking, learning is possible even if the size of the output space is
exponentially large compared to the number labels and, potentially, to the number of examples. More-
over this result shows that the Quadratic Surrogate is a valid candidate for systematically addressing
learning problems with discrete losses both from a statistical and from a computational viewpoint (in
contrast with what conjectured in [12]).

Remark 3.3 (On the sharpness of the QS estimator). It is natural to ask to what extent the statistical
rates provided by Thm. 3.1 can be considered representative of the statistical difficulty of solving the
problem in Eq. (2). Of course, formally answering this question necessarily requires a study of the
corresponding minimax rates under certain priors. In particular, one would be interested in studying
the dependence of those rates both in the number of samples and the size of the output space Z.

Although far from answering this question, we can provide a weaker notion of optimality on the
framework of surrogate-based methods. In particular, by using the results in [16], we prove that cannot
exist a consistent convex surrogate that maps the discrete problem in a vector valued problem of lower
dimension than r (the one used by the QS estimator through the affine-decomposition) for the following
losses: 0-1, block 0-1, Hamming, Prec@k, NDCG, PD and MAP (see Appendix B).
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2ε

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

z = 3

z = 1 z = 2

Figure 1: Generalized Tsybakov condition for discrete losses, Eq. (20), in the case of multi-class. See
Example 3.4 for more details.

More in detail, for the Hamming loss we obtain that the statistical complexity of the problem is
independent of the number of labels. Intuitively this is explained by the fact that the QS estimator
corresponds to estimating the m marginals independently. Our result is to be compared with [12],
where they obtain a constant in the order of O(m2). For Prec@k, we obtain A =

√
m
k , which is coherent

with the intuition that the problem becomes more challenging when k is fixed and m increases.
For the F-score the computational bound of the resulting algorithm is essentially in [20]. For the
NDCG-type losses, G : R → R, the gain is an increasing function and D = (Dj)

m
j=1 ∈ [0, 1]m, the

discount, is a coordinate-wise decreasing vector. For this family of losses A depends crucially on the
discount factor Dj , tending to

√
m (the constant of Prec@1) for fast decaying Dj and to m for low

decaying ones. For PD and MAP, estimating the surrogate function is statistically tractable, but both
inference algorithms are NP-Hard (Minimum Weight Feedback Arcset problem (MWFAS) for PD and
an instance of Quadratic Assignment Problem (QAP) for MAP), as was already noted in [21].

3.3. Improved rates under low-noise assumption

Intuitively, if there is small noise at the decision boundary between different labels, then it should be
statistically easier to discriminate between them. To formalize this intuition, we define the margin
γ(x) as

γ(x) = min
z′ 6=f∗(x)

ℓ(z′, x)− ℓ(f∗(x), x). (19)

The margin function γ measures the minimum suboptimality gap in terms of the Bayes risk. If for
a given x the margin is small, then its cost at the optimum is very close to the cost at a suboptimal
label. We will say that the p-noise condition is satisfied if

PX(γ(X) ≤ ε) = o(εp), (20)

where PX is the marginal of P over X, with p ≥ 0. The parameter p characterizes how fast the noise
vanishes at the boundary and corresponds to no assumption when p = 0.

Note that Eq. (20) is a generalization of the Tsybakov condition for binary classification [13] and
of the condition in [22] for multi-class classification, to general discrete losses. Indeed, for the binary
0-1 loss (Y = {−1, 1}), γ(x) = |E[Y |x]|, so we recover the classical Tsybakov condition.

Example 3.4 (Generalized Tsybakov for multiclass). For every P (y|x) in the simplex, one associates
the corresponding optimal label as z∗ = arg minz ℓ(z, x). Fig. 1 represents the partition of the simplex
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corresponding to the 0-1 loss for Z = Y = {1, 2, 3}. In this case, γ(x) corresponds to the distance to
the boundary decision depicted in Fig. 1 and so {P (y|x) | γ(x) < ε} corresponds to the yellow area.
Eq. (20) says that the probability of falling in that region vanishes as o(εp).

In the next theorem we improve the comparison inequality of Eq. (6) to take into account the
generalized Tsybakov condition for discrete losses of Eq. (20).

Theorem 3.5 (Improved comparison inequality). Assume Y,Z to be finite and γ to satisfy Eq. (20)
for p > 0. Then the following holds

1. 1/γ ∈ Lp(PX).

2. Assume a decomposition as in Eq. (11) for the loss L. Then, for any bounded measurable
g : X → H,

E(f)− E(f⋆) ≤ qγ
1

p+2

p (Rψ(g)− Rψ(g
∗))

p+1

p+2 , (21)

where γp = ‖1/γ‖Lp(PX), q = (16‖F‖2∞)
p+1

p+2 .

The proof of the first part can be found in Lemma A.7, while the second part is Cor. A.11, both in
the Appendix A. As you can note, the comparison inequality of Eq. (6) is recovered when p = 0 (i.e.
when the generalized Tsybakov condition is always verified), while an exponent close to 1, instead of
1/2 is obtained when p≫ 0. Finally, by using the improved comparison inequality we refine the rates
for the QS estimator in Thm. 3.1.

Corollary 3.6 (Improved rates). Under the p-noise condition, we have the following improvement on
the generalization bound in Eq. (13),

E(f̂n)− E(f⋆) ≤ Cγ
1

p+2

p

(
A
2Q2κ2τ4n−

1

2

) p+1

p+2

, (22)

with C universal constant and A, Q, κ as in Thm. 3.1.

Note that the result of Thm. 3.1 is recovered for p = 0 (always verified), while we obtain a learning
rate essentially in the order of n−1/2, instead of n−1/4, in conditions of low-noise (i.e. p≫ 0).

4. Computational Considerations

As already observed in [11]: (1) the computation of the QS estimator (Eq. (9)) is divided in training
step and inference step (or evaluation step), (2) the SELF-decomposition of the loss is not needed
to run the algorithm, but only to derive the theoretical guarantees. Here we show how the explicit
knowledge of the affine decomposition of the loss can be useful to improve also the computational
complexity of the method (its theoretical implications have been studied in Sec. 3.1). First we recall
the training and test steps.

Training. The training step requires only to have a kernel function k over X and to have access
to the training input examples (xi)

n
i=1. It consists essentially in computing the inverse of the kernel

matrix necessary for the second step, i.e. W = (K + λnI)−1, with K defined in Eq. (8).
Evaluation. The evaluation step requires only the knowledge of the loss L and to have access

to the train observations (yi)
n
i=1. Given a test input point x ∈ X, it consists in: first, computing the

coefficients (αi(x))
n
i=1 according to Eq. (8), i.e. α(x) = WKx, with the notation in Eq. (8); second

predicting the output z ∈ Z associated to the test input x, by solving Eq. (9).
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Multilabel bibtex birds CAL500 corel5k enron mediamill medical scene yeast

n 7395 645 502 5000 1702 43907 978 2407 2417
d 1836 260 68 499 1001 120 1449 294 103
m 159 19 174 374 53 101 45 6 14

0-1 (↓)
THBM 0.82 0.57 1.0 0.99 0.92 0.93 0.31 0.49 0.93
SSVM 0.91 0.53 1.0 0.99 0.90 1.0 0.35 0.51 0.95
QS 0.78 0.52 1.0 0.95 0.86 0.86 0.29 0.34 0.76

Ham (↓)
THBM 1.3e-2 7.9e-2 0.14 1.1e-2 5.9e-2 3.1e-2 9.4e-3 0.11 0.26

SSVM 1.3e-2 6.4e-2 0.13 1.0e-2 7.1e-2 8.7e-2 1.07e-2 0.11 0.40
QS 1.3e-2 4.9e-2 0.14 9.4e-3 8.6-2 3.1e-2 9.6e-3 0.11 0.42

F-score (↑)
THBM 0.44 0.25 0.46 0.25 0.51 0.56 0.80 0.63 0.48

SSVM 0.19 0.16 0.33 0.11 0.49 0.40 0.74 0.57 0.48

QS 0.47 0.28 0.47 0.26 0.52 0.56 0.83 0.68 0.47

Ranking Ohsumed

n 106
d 25
m 150

NDCG@3 (↑)
SSVM 0.47

QS 0.51

NDCG@5 (↑)
SSVM 0.45

QS 0.48

NDCG@10 (↑)
SSVM 0.43

QS 0.46

Table 2: Numerical results on real-world multilabeling and ranking datasets comparing our QS esti-
mator, THBM [23] and SSVM [9]. n is the size of the full dataset, d the dimensionality of
the data and m the number of classes (multilabel), or the avg. number of query-document
pairs (ranking). See Sec. 5 for more details.

4.1. Using the affine decomposition to speed up the QS estimator

Note that, to run the algorithm described above, only the loss L and kernel k are needed. This makes
the QS-method (1) systematically applicable to any supervised learning problem with discrete loss,
since it does not require to devise a specific surrogate for each loss (2) theoretically grounded with
basic guarantees from [11] in terms of consistency and learning rates. Indeed note that the SELF-
decomposition in terms of H, ϕ, ψ for the loss and in particular the affine decomposition of Eq. (11)
is needed only to prove the sharper guarantees in Thms. 3.1, 3.2 and 3.5 and Cor. 3.6.

However it is possible to additionally exploit the affine decomposition to have even a computational
benefit for the presented algorithm, as we are going to show in the rest of the section.

Improved training when U is known. When we know the affine decomposition of the loss, we
have H = R

r and ψ(y) = Uy, so we can compute explicitly the solution to Eq. (7) [15], ĝn : X → R
r

that is ĝn(x) =
∑n

i=1 k(x, xi)Ci, where Ci ∈ R
r is the i-th row of C ∈ R

n×r, the solution of the linear
system

(K + λnI)C = Ψ⊤,

with Ψ = (ψ(y1), . . . , ψ(yn)) ∈ R
r×n. This is the same as solving r scalar KRR problems independently

and its computation can be efficiently reduced from essentially O(n3r) to O(n
√
nr) via suitable random

projection techniques [24, 25, 26].
Improved evaluation when F is known. Given a test point x ∈ X, first we evaluate θ := ĝn(x) ∈

R
r, requiring essentially O(nr) (up to O(

√
nr) by using random projection techniques [24, 25, 26]).

Then we use the characterization of f̂n(x) = (d ◦ ĝn)(x) = d ◦ θ, to obtain the equivalent problem

min
z∈Z

Fz · θ, (23)

where Fz ∈ R
r is the z-th row of F (see Eqs. (11) and (12)) and (·) the dot-product. The computational

complexity of Eq. (23) (we denote it by INFF (|Z|)) has been devised for a number of widely used losses
in Thm. 3.2, Table 1 (see Appendix B for the proofs).

5. Numerical Experiments

We perform numerical experiments for the QS-estimator on multilabeling (9 datasets [27]) and ranking
problems (1 dataset [28]), see Table 2. We use three evaluation measures for multilabel, namely, 0-1,
Hamming and F-score, and NDCG@k for ranking (in the NDCG-type family [18]), which have been
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theoretically analysed in Sec. 3 and Table 1. All experiments are performed using 60% of the dataset
for training, 20% for validation and 20% for testing. We compare the performance of the QS-estimator
with a threshold-based method, which we denote by THBM [23], and the Structural SVM [9] (SSVM).
THBM is a common method for multilabelling where learning is done in two stages. The method first
estimates the m marginals ĝj(·) and then learns the best threshold function t̂(·) minimizing via least-
squares the measure of interest. The inference is performed via thresholding the estimated marginals
by t̂(x) (see Sec. 2 in [23]). The SSVM corresponds to the multilabel-SVM [29], which is an instance of
the SSVM with unary potentials that optimizes the Hamming loss. Note that we have used the same
multilabel-SVM for all multilabel losses; for the F-score, there is no principled way of optimizing the
measure with SSVMs. The experimental results in Table 2 show that the QS-estimator outperforms
the other methods for 0-1 loss and F-score. Indeed, the method depends on the loss and is designed to
be consistent with it. THBM achieves approximatively the same accuracy for Hamming as it is based
on estimating the marginals, while the SSVM is proven to be inconsistent even in this case [30], as
the experimental result empirically shows. For the ranking experiment, we have used the SSVM from
[9] called RankSVM as baseline to compare with the QS-estimator. The algorithm corresponding to
the QS-estimator for NDCG, which corresponds to the one in [17] for this measure, outperforms the
SSVM. This highlights the importance of consistency in learning, and the importance of making the
algorithm dependent on the measure willing to use for evaluation.

6. Related Works & Discussion

While the QS for structured prediction generalizes the QS for binary classification, Structural SVMs
(SSVMs) [8, 2] and Conditional Random Fields (CRFs) [5, 6, 31] generalize the binary SVM and logistic
regression to the structured case. All of them are surrogate methods based on minimizing the expected
risk of a certain surrogate loss S(v, y) : C× Y → R in a convex surrogate space C. The corresponding
surrogates are SQS(v, y) = ‖v − Uy‖2Rr , SSSVM(v, y) = maxy′∈Y(vy′ + L(y′, y)) − vy and SCRF(v, y) =
log(

∑
y′∈Y exp vy′)−vy (See Examples in Appendix A.1) for QS, SSVM and CRF, respectively. SSVMs

and CRFs exploit the structure of the problem by decomposing each output element into cliques and
considering only the features on this parts. This is necessary for the tractability of the methods.
Moreover, for SSVMs, the loss L must decompose into these cliques to make possible the maximization
inside the surrogate, often called augmented inference. The clique decomposability of the loss, can
be seen as a low rank decomposition, analogous to our SELF-decomposition. While the QS has
attractive statistical properties, it is generally not the case for the other surrogate methods. CRFs
are only consistent for the 0-1 loss in the case that the model is well-specified [31]. This lack of
calibration to a given loss is an important drawback of this method [7]. SSVMs are in general not
Fisher consistent, even for the 0-1 loss, for which is only consistent if the problem is deterministic, i.e,
there always exists a majority label y with probability larger than 1/2 [32].

QS for structured prediction. [21] proposed the QS through an affine decomposition of the loss
and derived Fisher consistency of the corresponding surrogate method. They analyzed the inference
algorithms for Prec@k, ERU (NDCG-type measure that we study in Appendix B), PD and MAP.
As Fisher consistency is a property only at the optimum, their analysis is not able to provide any
statistical guarantees. [17] analyses consistency and calibration properties for the QS specialized for
NDCG-type losses. In particular, they highlight the fact that estimating the normalized relevance
scores is key to be consistent, which is a property that follows directly from our framework.

As far as we know, [12] is the only work that addresses the learning complexity of general discrete
losses for structured prediction. They consider a different QS surrogate than ours, which could be
potentially intractable to compute since it is defined on the space of labels (even when the loss
is low-rank) E ‖Fg(X) − L(·, Y )‖2

R|Z| , and not in the low dimensional space of the decomposition

E ‖g(X) − UY ‖2Rr . They also obtain rates of the form ∝ An−1/4, however, their constants are always

11



larger than ours and computed explicitly only for a small number of loss functions. In particular, for
A, they obtain O(2m),O(b),O(m2), while we obtain O(2m/2),O(

√
b),O(1) for the 0-1, block 0-1 and

Hamming, respectively. In addition, our constants are interpretable and most of them can be proven
to be optimal (in the sense explained in Remark 3.3). Finally we provide a refined bound adaptive to
the noise of the problem as in Cor. 3.6.

To conclude, [16] introduces and studies the concept of convex calibration dimension. We use their
lower bound on this quantity to study the optimality of the dimension of the QS as reported in
Remark 3.3.
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A. Calibration and fast rates for surrogate methods
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B.3. Analysis of the losses

A. Calibration and fast rates for surrogate methods

The goal of Appendix A is to provide a generic method to sistematically improve the relation between
excess risks of surrogate methods. Our analysis is a generalization of the one in [33], which was done
for binary classification under 0-1 loss, to the case of general discrete losses.

In Appendix A.1, we introduce the basic quantities used for the analysis of surrogate methods.
Then, in Appendix A.2 we focus on the central concept of calibration, which is key to study the
statistical properties of these methods. In particular, we will re-derive the calibration properties of
the Quadratic Surrogate (QS), which were proved in [11]. Finally, in Appendix A.3, we derive our
main result, which generalizes the Tsybakov condition, existing for multiclass and binary [22, 13]
classification.

A.1. Prerequisites on surrogate methods

Given a loss L : Z× Y → R and a probability measure P on X× Y, recall that the goal of supervised
learning is to find the function f∗ that minimizes the expected risk E(f) of the loss,

f∗(x) = arg min
z∈Z

ℓ(z, x), E(f) = E ℓ(f(X),X), (24)

where ℓ(z, x) =
∫
L(z, Y )dP (Y |x) is the Bayes risk. The goal of surrogate methods is to design a

tractable surrogate loss S : C× Y → R defined on a surrogate space C, such that when approximately
minimized by a surrogate function ĝ : X → C, then it produces a good estimator f̂ of f∗. The mapping
from ĝ to f̂ is performed with a decoding function d : C → Z.

For a given surrogate S, we define the following quantities,

g∗(x) = arg min
v∈C

W (v, x), W (v, x) =

∫
S(v, Y )dP (Y |x) R(g) = EW (g(X),X), (25)
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were here, g∗ is the optimal surrogate function, W (v, x) is the Bayes surrogate risk and R(g) is the
expected surrogate risk of g.

An important requirement for a surrogate method is the so-called Fisher consistency, which says
that the optimum g∗ of the surrogate S gives the optimum f∗ of the loss L. It can be written as
f∗ = d ◦ g∗.

Example A.1 (Surrogate elements for the QS). In the case of the QS, we have that ,

S(v, y) = ‖v − Uy‖2Rr , C = R
r, d(v) = arg min

z∈Z
Fz · v, (26)

and its Bayes excess risk W (ĝ(x), x) −W (g∗(x), x) has the following form,

W (ĝ(x), x)−W (g∗(x), x) = ‖ĝ(x)− g∗(x)‖22. (27)

Moreover, it is Fisher consistent by construction ([11]).

Example A.2 (Surrogate elements for the CRFs and SSVMs). (Assume Z = Y) Conditional Random
Fields (CRFs) and Structural SVMs (SSVMs) are also surrogate methods for structured prediction.
In this case, they split the output into a set of parts/cliques C as {Yc}c∈C , which encode the structure
of the output set. Then, they both consider

C = R
r, d(v) = arg max

z∈Z

∑

c∈C
vzc , (28)

where r =
∑

c∈C |Yc|. The surrogate for CRFs has the following form (note that it does not dependent
on any L),

S(v, y) = log



∑

y′∈Y
exp

(
∑

c∈C
vy′c

)
−

∑

c∈C
vyc . (29)

For SSVM, one assumes that the loss decomposes accordingly to the structure given by C. Then, it
takes the following form,

S(v, y) = max
y′∈Y

{
∑

c∈C

(
{L(yc, y′c) + vy′c}

)
}

−
∑

c∈C
vyc . (30)

A.2. Calibration

Fisher consistency is an essential property of a surrogate method, nevertheless, it is only a property
at the optimum. In practice the surrogate will be never optimized exactly, this is why it is important
to study the concept of calibration, i.e, how the excess risk of the surrogate relates to the excess risk
of the loss of interest.

This concept is formalized through the following definition A.3.

Definition A.3 (Calibration and Calibration function). We say that a surrogate S is calibrated w.r.t
a loss L if there exists a convex function HL,S : R → R with HL,S(0) = 0 and positive in (0,∞), such
that,

HL,S(ℓ(d ◦ g(x), x) − ℓ(f∗(x), x)) ≤W (g(x), x) −W (g∗(x), x), (31)

for every x ∈ X.

Calibration means that for every x, one can control the excess of the Bayes risk by the excess Bayes
risk of the surrogate.

Let’s re-derive the form of the calibration function for the QS.
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Lemma A.4 (Calibration function for QS [11]). Assumption 1 holds for the QS with

HL,S(ε) =
ε2

4‖F‖2∞
(32)

Proof. Let’s first decompose the Bayes risk into two terms A and B:

ℓ(f̂(x), x)− ℓ(f∗(x), x) = {ℓ(f̂(x), x)− ℓ̂(f̂(x), x)} + {ℓ̂(f̂(x), x) − ℓ(f∗(x), x)} = A+B. (33)

The first term, clearly A ≤ supz∈Z |ℓ̂(z, x)− ℓ(z, x)|. For the second term , we use the fact that for any

given two functions η, ζ : Z → R, it holds that |minz η(z) −minz ζ(z)| ≤ supz |η(z) − ζ(z)|. As f̂(x)
minimizes ℓ̂(·, x) and f∗(x) minimizes ℓ(·, x), we can conclude also that B ≤ supz∈Z |ℓ̂(z, x)− ℓ(z, x)|.
Using the fact that ℓ̂(z, x) = Fz ĝ(x) and ℓ(z, x) = Fzg

∗(x), we can conclude that,

(ℓ(f(x), x)− ℓ(f∗(x), x))2 ≤ 2 sup
z∈Z

(ℓ̂(z, x) − ℓ(z, x))2 = 4‖F‖2∞‖ĝ(x)− g∗(x)‖22. (34)

Re-arranging and using Eq. (27) gives the final result.

The following important Theorem shows how Eq. (32) translates into a relation between excess
risks, which are the quantities that we are ultimately interested at.

Theorem A.5 (From Bayes risks to risks). Suppose Assumption 1 holds. Then,

HL,S(E(f)− E(f∗)) ≤ R(g)− R(g∗) (35)

Proof. This is a simple application of Jensen inequality.

HL,S(E(f)− E(f∗)) = HL,S(EX(ℓ(d ◦ g(x), x) − ℓ(f∗(x), x)))

≤ EX HL,S(ℓ(d ◦ g(x), x) − ℓ(f∗(x), x)) = EXW (g(x), x) −W (g∗(x), x) = R(g) −R(g∗)

If we combine Thm. A.5 with Lemma A.4, we obtain the comparison inequality for the QS.

Corollary A.6 (Comparison inequality for QS [11]). For the QS, we have that

E(f)− E(f∗) ≤ 2‖F‖∞
√

R(g)− R(g∗) (36)

A.3. Improved calibration under low noise

Thm. A.5 gives the ability to translate learning rates of the surrogate to learning rates of the full risk.
However, as we will show, Eq. (35) can be loose in the presence of low noise at the boundary decision.

To formalize this, we will improve the result from the relation given by Thm. A.5 under the p-noise
assumption. We recall that the p-noise condition states that

PX(γ(X) < ε) = o(εp), (37)

where γ(x) = minz′ 6=f∗(x) ℓ(z
′, x) − ℓ(f∗(x), x), is called the margin, and is defined as the minimum

suboptimality gap between labels.
We have the following Lemma A.7.

Lemma A.7. If the p-noise condition holds, then 1/γ ∈ Lp(PX).
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Proof.

‖1/γ‖pLp(PX)
= E 1/γ(X)p =

∫ ∞

0
ptp−1PX(1/γ(X) > t)dt =

∫ ∞

0
ptp−1PX(γ(X) < t−1)dt. (38)

The integral converges if PX(γ(X) < t−1) decreases faster than t−p.

Let’s now define the error set as Xf = {x ∈ X | f(x) 6= f∗(x)}. The following Lemma A.8, which
bounds the probability of error by a power of the excess risk, is a generalization of the Tsybakov
Lemma [13, Prop.1] for general discrete losses.

Lemma A.8 (Bounding the size of the error set). If 1/γ ∈ Lp(PX), then

PX(Xf ) ≤ γ
1

p+1

p (E(f)− E(f∗))
p

p+1 (39)

Proof. By the definition of the margin γ(x), we have that:

1(f(x) 6= f∗(x)) ≤ 1/γ(x)∆ℓ(f(x), x) (40)

By taking the p
p+1 -th power on both sides, taking the expectation w.r.t PX and finally applying Hölder’s

inequality, we obtain the desired result.

Before proving Thm. A.10, we will need the following useful Lemma A.9 of convex functions.

Lemma A.9 (Property of convex functions). Suppose h : R → R is convex and h(0) = 0. Then, for
all x > 0, 0 ≤ y ≤ x,

h(y) ≤ y

x
h(x) and h(x)/x is increasing on (0,∞). (41)

Proof. Take α = y
x < 1. The result follows directly by definition of convexity, as h(y) = h((1 −

α)0 + αx) ≤ (1 − α)h(0) + αh(x) = y
xh(x). For the second part, re-arrange the terms in the above

inequality.

The following Thm. A.10, is an adaptation of Thm. 10 of [33], which was specific for binary 0-1
loss, now adapted to the case of general discrete losses.

Theorem A.10 (Improved Calibration). Suppose that the surrogate S is calibrated with calibration
function HL,S (see Eq. (31)) and the p-noise condition holds. Then, we have that

HL,S,p(E(d ◦ g)− E(f∗)) ≤ R(g)− R(g∗), (42)

where

HL,S,p(ε) = (γpε
p)

1

p+1HL,S

(
1

2
(γ−1
p ε)

1

p+1

)
. (43)

Moreover, we have that HL,S,p(ε) ≥ γ
1

p+1

p HL,S(ε/(2γ
1

p+1

p )). Hence, HL,S,p never provides a worse rate
than HL,S.

Proof. (Of Thm. A.10). To ease notation let’s denote the excess Bayes risk by ∆ℓ(z′, x) = ℓ(z′, x) −
ℓ(f∗(x), x).

The intuition of the proof is to split the Bayes excess risk into a part with low noise ∆ℓ(f(x), x) ≤ t
and a part with high noise ∆ℓ(f(x), x) ≥ t. The first part will be controlled by the p-noise assumption
and the second part by Eq. (31).

E(d ◦ g)− E(f∗) = EX ∆ℓ(f(X),X)

= E {1(Xf )∆ℓ(f(X),X)}
= E {∆ℓ(f(X),X)1(Xf ∩ {∆ℓ(f(X),X) ≤ t}}
+ E {∆ℓ(f(X),X)1(Xf ∩ {∆ℓ(f(X),X) ≥ t}}
= A+B.
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• Bounding the error in the region with low noise A:

A ≤ tPX(Xf ) ≤ tγ
1

p+1

p (E(d ◦ g)− E(f∗))
p

p+1 , (44)

where in the last inequality we have used Lemma A.8.

• Bounding the error in the region with high noise B:

We have that

∆ℓ(f(x), x)1(∆ℓ(f(x), x) ≥ t) ≤ t

HL,S(t)
HL,S(∆ℓ(f(x), x)) (45)

In the case ∆ℓ(f(x), x) < t, inequality in Eq. (45) follows from the fact that HL,S is nonnegative.
For the case ∆ℓ(f(x), x) > t, apply Lemma A.9 with h = HL,S, x = ∆ℓ(f(x), x) and y = t.

From Eq. (32), we have that E{1(Xf )HL,S(∆ℓ(f(X),X))} ≤ R(g) − R(g∗). Hence,

B ≤ t

HL,S(t)
(R(g) − R(g∗)) (46)

Putting everything together,

E(d ◦ g)− E(f∗) ≤ tγ
1

p+1

p (E(d ◦ g)− E(f∗))
p

p+1 +
t

HL,S(t)
(R(g) − R(g∗)), (47)

and hence,

(
E(d ◦ g)− E(f∗)

t
− γ

1

p+1

p (E(d ◦ g) − E(f∗))
p

p+1

)
HL,S(t) ≤ R(g) − R(g∗). (48)

Choosing t = 1
2γ

−1

p+1

p (E(d ◦ g)− E(f∗))
1

p+1 and substituting finally gives Eq. (43). The second part of

the Theorem follows because
HL,S(t)

t is non-decreasing by Lemma A.9.

Finally, if we apply Thm. A.10 to the QS, we get the desired result as Cor. A.11.

Corollary A.11 (Improved comparison inequality for QS). For the QS, we have that

E(f)− E(f∗) ≤ γ
1

p+2

p

(
16‖F‖2∞(R(g)− R∗)

) p+1

p+2 . (49)

Proof. Substituting HL,S(ε) =
ε2

4‖F‖2∞
in Eq. (43), gives that,

HL,S,p =
ε

p+2

p+1

γ
1

p+1

p 16‖F‖2∞
. (50)

Reversing the relation gives the comparison inequality in Eq. (49).

B. Multilabel and ranking losses

The goal of this section is to derive all of the constants from Table 1.
In Appendix B.1, we recall the elements that we need in order to derive the constants. In Ap-

pendix B.2, we introduce the main tool from [16] that we use in order to study the optimality of the
QS. Finally, the main bulk is in Appendix B.3, where we analyse each loss separately.
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B.1. Prerequisites.

Remember that the goal here is to study the statistical and computational properties of the QS-
estimator f̂n : X −→ Z defined as

f̂n(x) = arg min
z∈Z

n∑

i=1

αi(x)L(z, yi). (51)

Recall that the statistical complexity is determined by the following quantity,

L = FU⊤ + c1. (52)

where F = (Fz)z∈Z ∈ R
|Z|×r, U = (Uy)y∈Y ∈ R

|Y|×r, c ∈ R is a scalar and 1 ∈ R
|Z|×|Y| is the matrix of

ones, i.e. 1ij = 1 and r ∈ N. Here, Fz is the z-th row of F and Uy the y-th row of U . We denote by
affdim(L) the affine dimension of the loss L, which is defined as the minimum r for which Eq. (52)
holds.

Recall that the quantity of interest for the statistical complexity is

A =
√
r‖F‖∞Umax. (53)

The inference complexity corresponds to the computational complexity of solving Eq. (51).

B.2. On the optimality of the QS.

We use results from [16] in order to study the optimality of the dimension of the QS as commented
in Remark 3.3. We implicitly use the concept of convex calibration dimension of a loss L (see Def.
10 in [16]), which is defined as the minimum dimension over all consistent convex surrogates w.r.t L.
In the following Thm. B.1 (their Thm. 18), they provide a sufficient condition to lower bound this
dimension.

Theorem B.1. (In [16]) Let L ∈ R
|Z|×|Y| the loss matrix. If ∃Π ∈ relint(∆|Y|), c ∈ R, such that LΠ =

c1, then there cannot exist any consistent convex surrogate with dimension less than affdim(L) − 1.
Here, ∆|Y| is the simplex of |Y| dimensions and relint(A) denotes the relative interior of the set A.

In particular, Thm. B.1 says that if there exists at least one distribution Π at the interior of the
simplex for which the Bayes risk is the same for all labels, then one can’t hope to be consistent by
estimating less than affdim(L)−1 scalar functions. In particular, this means that the QS is essentially
optimal over all surrogate methods, in the sense that it estimates affdim(L) scalar functions.

For each loss, we test the condition given by Thm. B.1 to show the optimality (or not) of the
Quadratic Surrogate approach.

Note that there exist problems for which you can find consistent surrogates with dimension much
smaller than affdim(L). In ordinal regression, where the discrete labels have a natural order, there
exist one dimensional surrogates [4] despite the loss matrix being full rank.

B.3. Analysis of the losses

Notation. In the following we denote by m ∈ N the number of classes of a multilabel/ranking
problem, by Pm the power-set of [m] = {1, . . . ,m} and by Sm the set of permutations of m-elements.
In particular note that in the multilabel problems both the output space Z and the observation space
Y are equal to Pm, while in ranking Z = Sm and Y = [R]m, the set of observed relevance scores for
the m documents where R is the highest relevance [17]. Finally we denote by [v]j the j-th element of
a vector v and we identify Pm with {0, 1}m, moreover σ(j) is the j-th element of the permutation σ,
for σ ∈ Sm, j ∈ [m].
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0-1 loss

The 0-1 loss is defined as 0 if the subsets are exactly equal and 1 otherwise, i.e, it does not provide
any structural information. In this case, Y = Z = {0, 1}m and

L(z, y) = 1(z 6= y). (54)

• Statistical complexity. We can decompose it as

Fz = −(1[z=z′])z′∈{0,1}m , Uy = (1[y=y′])y′∈{0,1}m , c = 1. (55)

We have that
r = 2m, ‖F‖∞ = 1, Umax = 1. (56)

Hence,
A = 2m/2. (57)

• Inference. Inference corresponds to

f̂(x) ∈ arg max
z∈Pm

∑

i|yi=z
αi(x), (58)

which can be done in
O(2m ∧ n). (59)

• Optimality of r. Taking Πy = 1/2m for every y ∈ Y and applying Thm. B.1, one has that
affdim(L) = 2m is optimal.

Block 0-1 loss

Assume that the prediction space Pm is partitioned into b regions Pm = ⊔bj=1Bj . The block 0-1 loss
is defined as 0 if the subsets belong to the same region and 1 otherwise. In this case, Y = Z = {0, 1}m
and

L(z, y) = 1(z ∈ Bj, y /∈ Bj, for some j ∈ [b]). (60)

• Statistical complexity. We can decompose it as

Fz = −(1[z∈Bj ])
b
j=1, Uy = (1[y∈Bj ])

b
j=1, c = 1. (61)

We have that
r = b, ‖F‖∞ = 1, Umax = 1. (62)

Hence,
A =

√
b. (63)

• Inference. Inference corresponds to

f̂(x) ∈ arg max
1≤j≤b

∑

i|yi∈Bj

αi(x), (64)

which can be done in
O(b) (65)

• Optimality of r. Taking Πy = 1
b|B(y)| , where B(y) is the partition where y ∈ Y belongs to

and applying Thm. B.1, one has that affdim(L) is optimal.
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Hamming

The Hamming loss counts the average number of classes that disagree. In this case, Y = Z = {0, 1}m
and

L(z, y) =
1

m

m∑

j=1

1([z]j 6= [y]j). (66)

• Statistical complexity. If we define sj(y) = 2[y]j − 1, we can re-write the Hamming loss as

L(z, y) =
1

m

m∑

j=1

(
1− sj(z)sj(y)

2

)
=

1

2m
− 1

2m

m∑

j=1

sj(z)sj(y).

This implies that

Fz = − 1

2m
(sj(z))

m
j=1, Uy = (sj(y))

m
j=1, c =

1

2m
. (67)

We have that

‖F‖∞ =
1

2
√
m
, Umax = 1. (68)

Hence,

A =
1

2
. (69)

• Inference. Inference corresponds to

f̂j(x) =

(
sign (ĝj(x)) + 1

2

)
, where ĝj(x) =

n∑

i=1

sj(yi)αi(x), (70)

which can be done in
O(m). (71)

• Optimality of r. Taking Πy = 1/2m for every y ∈ Y and applying Thm. B.1, one has that
affdim(L) = m is optimal.

Prec@k

Prec@k (Precision at k) measures the average number of elements in the predicted k-set that also
belong to the ground truth. In this case, the prediction space is Z = Pm,k, i.e, subsets of [m] of size
k, and Y = Pm.

L(z, y) = 1− |y ∩ z|
k

= 1− 1

k

m∑

j=1

[z]j [y]j . (72)

• Statistical complexity. We have that r = m,Fz = − 1
k ([z]j)

m
j=1, Uy = ([y]j)

m
j=1, c =

1, ‖F‖∞ = 1√
k
, Umax = 1. Hence,

A =

√
m

k
. (73)

• Inference. Inference corresponds to

f̂(x) ∈ arg topk
z∈Pm,k





 ∑

i|[yi]j=1

αi(x)



m

j=1


 , (74)

which can be done in
O(m log k). (75)
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• Optimality of r. Taking Πy = 1/2m for every y ∈ Y and applying Thm. B.1, one has that
affdim(L) = m is optimal.

F-score

The F-score is defined as the harmonic mean of precision and recall. In this case Z = Y = Pm and

L(z, y) = 1− 2
|z ∩ y|
|z| + |y| , (76)

where we treat the case y = 0 as follows:

2
|z ∩ y|
|z|+ |y| =

{
2
∑m

j=1

∑m
ℓ=0

[z]j
ℓ+|z|1([y]j = 1, |y| = ℓ) y 6= 0

1(z = 0) y = 0
. (77)

Let’s define the matrix P (x) ∈ R
m×m and p0(x) ∈ R as,

Pjℓ(x) = P ([Y ]j = 1, |Y | = ℓ|X = x), p0(x) = P (Y = 0|X = x). (78)

Then, the Bayes risk reads

ℓ(z, x) =

{
2
∑m

j=1

∑m
ℓ=0

[z]j
ℓ+|z|Pjℓ(x) y 6= 0

p0(x) y = 0
. (79)

Hence, for every x, one needs no more than r = m2+1 parameters to compute the F-score Bayes risk.
We have the following Lemma B.2.

Lemma B.2. Given the matrix P (x) ∈ R
m×m and the scalar p0(x), inference can be performed

through the following two-step procedure:

1. Compute the matrix A(x) ∈ R
m×m:

Ajk(x) =

m∑

ℓ=0

Pjℓ(x)

ℓ+ k
(80)

This is a matrix-by-matrix multiplication that takes O(m3).

2. From A(x) and p0(x), the prediction f(x) can be computed in O(m2) through an iterated maxi-
mization procedure.

Proof. Suppose we have already computed A(x) ∈ R
m×m and p0(x) ∈ R. Now, we perform the

following m maximizations:

f (k)(x) = arg max
z∈Pm,k

AT·,k(x)z, for k = 1, . . . ,m. (81)

Then, f∗(x) is computed by taking the maximum over the f (k)(x)’s together with p0(x), which corre-
sponds to z = 0.

• Statistical complexity.

Note that depending on whether we approximate P or directly A, we have different computa-
tional complexities. In particular, if the surrogate approximates directly A, then it avoids the
operation Eq. (80). As the estimator is the same, the statistical complexity is the minimum of
both.
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Decomposition 1. Estimating P (x), corresponds to the following decomposition:

Fz,m(ℓ−1)+j = −
(
1([z]j = 1)

|z|+ ℓ

)
, 1 ≤ j, ℓ ≤ m

Uy,m(ℓ−1)+j = 1([y]j = 1, |y| = ℓ), 1 ≤ j, ℓ ≤ m

and Fz,m2+1 = 1(z = 0), Uy,m2+1 = 1(y = 0). In this case,

r = m2 + 1,
1

2
≤ ‖F‖∞ ≤ 1, Umax = 1. (82)

Hence,

A1 ≤
√
m2 + 1 ≤

√
2m (83)

Decomposition 2. Estimating A(x), corresponds to the following decomposition:

Fz,m(ℓ−1)+j = −1([z]j = 1, |z| = ℓ), 1 ≤ j, ℓ ≤ m

Uy,m(ℓ−1)+j =

(
1([y]j = 1)

|y|+ ℓ

)
, 1 ≤ j, ℓ ≤ m

and Fz,m2+1 = 1(z = 0), Uy,m2+1 = 1(y = 0).

In this case,
r = m2 + 1, ‖F‖∞ =

√
m, Umax = 1. (84)

Hence,
A2 =

√
m(m2 + 1) ≤ m

√
2m. (85)

We take A = min(A1,A2), hence,
A ≤

√
2m. (86)

• Inference. The quadratic surrogate approximates A(x) and P (x) as:

P̂jℓ(x) =
∑

i|[yi]j=1,|yi|=ℓ
αi(x), Âjk(x) =

m∑

ℓ=0

P̂jℓ(x)

ℓ+ k
, p̂0(x) =

∑

i|yi=0

αi(x). (87)

If we use Decomposition 1, i.e, ĝ(x) = (P̂ (x), p̂0(x)), then we have cubic inference,

O(m3). (88)

If we use Decomposition 2, i.e, ĝ(x) = (Â(x), p̂0(x)), then we have quadratic inference,

O(m2). (89)

• Optimality of r. We can’t say anything about the potential existence of a convex calibrated
surrogate with smaller dimension than affdim(L) − 1. This is because the sufficient condition
from Theorem 18 of [16] does not hold for any Π even for m = 2.
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NDCG-type

Let Z = Sm be the set of permutations of m elements and Y = {1, . . . , R}m = [R]m the space of
relevance scores for m documents. Let the gain G : R → R be an increasing function and the discount
vector D = (Dj)

m
j=1 be a coordinate-wise decreasing vector. NDCG-type losses are defined as the

normalized discounted sum of the gain of the relevance scores ordered by the predicted permutation:

L(σ, r) = 1− 1

N(r)

m∑

j=1

G([r]j)Dσ(j) (90)

where N(r) = maxσ∈Sm

∑m
j=1G([r]j)Dσ(j) is the normalizer. The discount is performed in order to

give more importance to the relevance of the top ranked elements.

• Statistical complexity.

Note that looking at Eq. (90) we can directly write that r = m and Fσ = −(Dσ(j))
m
j=1, Ur =(

G([r]j)
N(r)

)m
j=1

, c = 1.

It follows that,

‖F‖∞ =

√√√√
m∑

j=1

D2
j , Umax = GmaxDmax, (91)

hence,

A =
√
mGmaxDmax

√√√√
m∑

j=1

D2
j . (92)

• Inference.

The inference corresponds to,

f̂(x) = argsortσ∈Sm
(v), where vj =

n∑

i=1

G([ri]j)αi(x)

N(ri)
, (93)

which can be done in
O(m logm) (94)

operations.

• Optimality of r. Optimal. As Hamming, the barycenter of the simplex satisfies Thm. B.1.

Normalized Discounted Cumulative Gain (NDCG) This is the most widely used configuration, in

this case, G(t) = 2t − 1 and Dj = 1
log(j+1) . We have that ‖D‖2 ∼

(∫m
2

1
log2(t)

dt
)1/2

∼
√

m
logm . And

hence,

A ≤ cGmax
m√
logm

. (95)

Expected Rank Utility (ERU) In this case, G(t) = max(t− r̄) and Dj = 21−j , where r̄ corresponds
to a neutral score. We have that ‖D‖2 ≤ 2√

3
,

A ≤ 2√
3
Gmax

√
m. (96)
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The QS-estimator estimates the marginals of the normalized relevance scores and sorts the estimates
at inference. As it was shown in [17], in order to be consistent for NDCG, one has to estimate the
normalized relevance scores and not the unnormalized ones as one would do at the first place. In
particular, the QS-estimator for the NDCG that follows directly from our framework corresponds
exactly to their proposed consistent algorithm.

Due to the discount factor, the statistical complexity grows with the number of elements to sort.
In particular, faster the decay is, more samples you need to optimize the corresponding loss. This is
shown in the two examples we have shown, where the NDCG is statistically easier to optimize than
the ERU.

Pairwise Disagreement (PD)

The pairwise disagreement computes the cost associated to a given permutation in terms of pairwise
comparisons using binary relevance scores. In this case, Z = Sm, Y = [0, 1]m = Pm, and,

L(σ, y) =
1

N(y)

m∑

j=1

∑

ℓ 6=j
1([y]j < [y]ℓ)1(σ(j) > σ(ℓ)), (97)

where N(y) = supσ∈Sm

∑m
j=1

∑
ℓ 6=j 1([y]j < [y]ℓ)1(σ(j) > σ(ℓ)) = |y|(m− |y|) is a normalizer.

• Statistical complexity. Note that we can re-write

1([y]j < [y]ℓ) =
sign([y]ℓ − [y]j) + 1

2
, 1(σ(j) > σ(ℓ)) =

sign(σ(j) − σ(ℓ)) + 1

2
. (98)

Hence,

L(σ, y) =
1

4
+

1

4N(y)

m∑

j=1

∑

ℓ 6=j
sign([y]ℓ − [y]j)sign(σ(j) − σ(ℓ)) (99)

Note that Fσ = 1/4(sign(σ(j) − σ(ℓ)))mj,ℓ=1 and Uy = (
sign([y]ℓ−[y]j)

N(y) )mj,ℓ=1 are anti-symmetric

matrices. Hence, they can be described with m(m − 1)/2 numbers. We can then consider Fσ
and Uy as vectors of m(m− 1)/2 coordinates.

This implies that r = m(m− 1)/2, c = 1/4, ‖F‖∞ = 1/4
√
m(m− 1)/2, Umax = 2

m−1 . Hence,

A =
m

4
(100)

• Inference. In this case, the optimization problem reads

f̂(x) ∈ arg min
σ∈Sm

m∑

j=1

∑

ℓ 6=j
γjℓ(x)1(σ(j) > σ(ℓ)), (101)

with

γjℓ(x) =
∑

i|[yi]j<[yi]ℓ

αi(x)

N(yi)
. (102)

This is precisely a Minimum Weight Feedback Arcset (MWFAS) problem with associated di-
rected graph having weights γjℓ(x). This problem is known to be NP-Hard.

• Optimality of r. Optimal. See Corollary 19 and Proposition 20 from [16].
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As it was shown in [34], there is no hope of devising a consistent convex surrogate method which is

based on sorting an estimated vector of relevance scores. In particular, one needs to estimate m(m−1)
2

scalar functions corresponding to the weights of a graph between the classes. Although estimating
the graph structure is statistically feasible, inference corresponds to finding a directed acyclic graph
(DAG) with minimum cost. This is equivalent to the Minimum Weight Feedback Arcset Problem
(MWFAS), which is known to be NP-Hard. Consequently, one can state that, unless P = NP , there
does not exist any polynomial surrogate-based consistent algorithm for the PD loss. If it existed, one
could solve the Bayes risk minimization problem, i.e., MFWAS, to ε-accuracy in poly(1ε ).

Mean Average Precision (MAP)

The mean average precision (MAP) is a widely used ranking measure in information retrieval. The
precision associated to a relevant document j ([y]j = 1) ranked at position σ(j) is the Precision at
σ(j) of the σ(j) retrieved documents ranked before (and including), j. In this case, Z = Sm and
Y = [0, 1]m = Pm. The mean average precision corresponds to the mean over all relevant documents
in y. Hence, MAP has the following form:

L(σ, y) = 1− 1

|y|
∑

j|[y]j=1

1

σ(j)

σ(j)∑

ℓ=1

[y]σ−1(ℓ). (103)

Note that it can be re-written as

L(σ, y) = 1− 1

|y|

m∑

j=1

[y]j
σ(j)

σ(j)∑

ℓ=1

[y]σ−1(ℓ)

= 1− 1

|y|

m∑

j=1

j∑

ℓ=1

[y]σ−1(ℓ)[y]σ−1(j)

j

= 1− 1

|y|

m∑

j=1

j∑

ℓ=1

[y]ℓ[y]j
max(σ(j), σ(ℓ))

.

• Statistical complexity. We have that r = m(m+1)
2 , Fσ =

(
max(σ(j), σ(ℓ))−1

)
j≥ℓ , Uy =

−
(
[y]j [y]ℓ

|y|

)
j≥ℓ

, c = 1, ‖F‖∞ ≤
√

log(m+ 1), Umax = 1/2. Hence,

A =
1

2
m
√
log(m+ 1) (104)

• Computational complexity. The inference problem reads

f̂(x) = arg max
σ∈Sm

m∑

j=1

j∑

ℓ=1

1

max(σ(j), σ(ℓ))

∑

i|[yi]j [yi]ℓ=1

αi(x)

|yi|
(105)

Denote by

Wjℓ =

{ ∑
i|[yi]j [yi]ℓ=1

αi(x)
|yi| j ≥ ℓ

0 otherwise
, Djℓ =

{
max(j, ℓ)−1 j ≥ ℓ

0 otherwise
(106)
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We have that,

f̂(x) = arg max
σ∈Sm

m∑

j,ℓ=1

WjℓDσ(j)σ(ℓ) ≡ arg max
P∈Πm

Tr(W TPDP T ), (107)

where Πm is the set of permutation matrices of size m. This is an instance of the Quadratic
Assignment Problem (QAP).

• Optimality of r. Optimal. See Corollary 19 and Proposition 21 from [16].

As for PD, inference for MAP corresponds to a NP-Hard problem, more specifically, to an instance
of the Quadratic Assignment Problem (QAP). Consequently, one can conclude analogously as for the
PD loss, i.e., that no efficient and consistent surrogate algorithm exists for MAP.
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