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Abstract In this paper, we introduce a new general pseudo subregularity model
which unifies some important nonlinear (sub)regularity models studied recently in
the literature. Some slope and abstract coderivative characterizations are established.

Keywords Abstract subdifferential · Metric regularity · Directional metric regular-
ity ·Metric subregularity · directional Hölder metric subregularity · Coderivative
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1 Introduction

Over the past decades, mathematical ideas based on the use of advanced techniques
of generalized differentiation have allowed to make significant advances in the study
of generalized equations, that is inclusions governed by set-valued mappings. These
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inclusions/ generalized equations cover many important problems in various areas of
mathematics and applied sciences such as physics, mechanics, and economics: equa-
tions; inequality systems; variational inequalities; complementary problems; optimal
control, and various other topics. Also, due to their importance, as well as from their
theoretical point of view and their broad applicability, variational systems have at-
tracted the interest of many mathematicians.

One of the pillars of study of these generalized equations is the notion of met-
ric regularity. This concept has emerged in the last decades, mainly after the con-
tribution of Borwein [4], even if according to Ioffe [12, 13] in a recent survey, “the
roots of this concept go back to a circle of fundamental regularity ideas of classi-
cal analysis embodied in such results as the implicit function theorem, the Banach
open mapping theorem, theorems of Lyusternik and Graves, on the one hand, and
the Sard theorem and the Thom-Smale transversality theory, on the other”. Nowa-
days, this concept is commonly regarded as central for studying the existence and
behavior of solutions of nonlinear equations under small perturbations of the data.
The crucial role of metric regularity in Optimization and Variational Analysis as well
as researcher’s interest in this field can be found in many seminal works including for
instance [4, 7, 9, 11–14, 26], and references therein. By the time and demand of use
and applications, variants of this property have emerged suitable to practical prob-
lems. Weaker/stronger versions: calmness, (strong) (Hölder) metric sub/regularity,
semiregularity or equivalent versions: pseudo Lipschitz, linear openness were stud-
ied and have proved to have an important role in various applications in Mathematics,
especially in Variational Analysis and Optimization [5, 12, 13, 15–17, 26], ...

Another direction in this line is to build directional models for these objects
as recently proposed by Arutyunov-Avakov-Izmailov [1], Gfrerer [8], Ngai-Théra
[20], Ngai-Tron-Théra [22], Ngai-Tron-Tinh [23]. Characterizations of these con-
cepts have been established and successfully applied to study optimality conditions
for mathematical programs, for calculating tangent cones,...This notion of directional
regularity is an extension of an earlier notion used by Bonnans and Shapiro [3] to
study sensitivity analysis. Later, Ioffe [10] has introduced and investigated an exten-
sion called relative metric regularity which covers many notions of metric regularity
in the literature. In [24] Penot studied this property to establish second-order opti-
mality conditions.

The paper concerns a new type of directional metric regularity. In this article,
motivated by the works mentioned above, especially those of (co)authors and by Gfr-
erer, we build a general new model which unifies almost (sub)regularity models in
the literature; especially it covers both directional Hölder metric subregularity intro-
duced by Ngai, Tron and Tinh and metric pseudo subregularity explored by Gfrerer.
This property is given in Definition 3.2. Our aims are to give characterizations of the
property. First, we establish a slope characterization, after that we move to a subdif-
ferential/coderivative or a limit critical set characterization. Section 2 introduces the
mathematical notation and basic definitions. In Section 3, we present the motivation
of this paper and some slope characterizations of directional pseudo regularity. In
the final section, we explore how the use of an abstract subdifferential may derive to
characterizations of metric directional pseudo subregularity in terms of coderivatives.
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2 Preliminaries and notations

For the convenience of the reader, we include in this section the material concerning
set-valued analysis and variational analysis that will be extensively used throughout
the sequel. We use the monographs of Mordukhovich [18], Ioffe [14], Rockafellar &
Wets [26] and Penot [25] as our desk-copies.

For our purposes, we are going to work in the framework of real Banach spaces. If
X is such a space, we denote by ‖ ·‖ the associated norm and by d(x,Ω) the distance
from x ∈ X to the subset Ω of X , that is, d(x,Ω) := inf{‖x− y‖ : y ∈Ω}. Given X ,
we denote the topological dual (continuous dual) by X∗, by ‖ · ‖∗ the dual norm of
‖ · ‖, by BX = {x ∈ X : ‖x‖ ≤ 1} the closed unit ball, by SX = {x ∈ X : ‖x‖= 1} the
unit sphere, by B(x,r) the closed ball with center x and radius r, respectively.

By a set-valued mapping (also named by some authors multifunction), we mean a
mapping T from X into the subsets (possibly empty) of another Banach space Y and
we use the notation T : X ⇒ Y. The graph of T denoted by gphT is the set of those
points in X ×Y such that y ∈ T (x), while T−1 : Y ⇒ X , the inverse of T (always
defined), is given by (x,y) ∈ gphT ⇐⇒ (y,x) ∈ gphT−1. We say that T is closed if
its graph is closed with respect to the product topology on X×Y . Given a set K ⊂ X ,
we use the notation coneK for the conic hull of K, that is for the set of all conic
combinations ∑

i=n
i=1 λixi of points of K where λi ≥ 0 for each index i.

Given an extended real-valued function f : X → R∪ {+∞} we use the nota-
tion cl f to denote the lower semicontinuous envelope of f defined by cl f (x) =
liminfu→x f (u)), and Dom f will refer to the domain of f , that is, the set of those
points x ∈ X such that f (x) is finite. We recall that the convex subdifferential of f at
x ∈ Dom f is the set

∂ f (x) := {x? ∈ X∗ : 〈x?,y− x〉 ≤ f (y)− f (x) for all y ∈ X},

with the convention that ∂ f (x) = /0, when f (x) = +∞.

For the purpose of this study, we use the concept of slope |∇ f |(x) of a function f
at x ∈ Dom f . This is the quantity introduced by De Giovani, Marino & Tosques [6]
and defined by

|∇ f |(x) :=


0 if x is a local minimum point of f

limsup
y→x, y6=x

f (x)− f (y)
d(x,y)

otherwise.

For x /∈ Dom f , we set |∇ f |(x) = +∞.

When f is a convex function defined on a Banach space and x is not a minimum
point, then according to Ioffe [11, Poposition 3.8] (see also Azé & Corvelec [2, Propo-
sition 3.2])

|∇ f |(x) = sup
y6=x

f (x)− f (y)
‖x− y‖

and |∇ f |(x) = d(0,∂ f (x)).
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In the following sections, we make use of the notion of abstract subdifferential
operator.This operator denoted by ∂ satisfies the following conditions:

(C1) If f : X→R is a convex function which is continuous around x̄∈X and β :R→R
is continuously differentiable at t = f (x), then

∂ (β ◦ f )(x)⊆ {β ′( f (x))x? ∈ X∗ : 〈x?,y− x〉 ≤ f (y)− f (x) ∀y ∈ X};

(C2) ∂ f (x) = ∂g(x) if f (y) = g(y) for all y in a neighborhood of x;
(C3) Let f1 : X→R∪{+∞} be a lower semicontinuous function and f2, ..., fn : X→R

be Lipschitz functions. If f1 + f2 + ...+ fn attains a local minimum at x0, then for
any ε > 0, there exist xi ∈ x0 + εBX , x?i ∈ ∂ fi(xi), i ∈ 1,n, such that | fi(xi)−
fi(x0)|< ε , i ∈ 1,n, and ‖x?1 + x?2 + ...+ x?n‖< ε.

We recall that the indicator function δC of a closed set C in X is the function
defined by δC(x) = 0 when x ∈C and δC(x) = +∞, otherwise. Given an abstract sub-
differential ∂ , the set N(C,x) := ∂δC(x) is called the normal cone to C at x associated
with ∂ .

(C4) N(C,x) is assumed to be a cone for any closed subset C of X .

Let F : X⇒Y and (x̄, ȳ)∈ gphF . Given an abstract subdifferential ∂ and normal cone
associated with ∂ , the set-valued mapping D∗F(x̄, ȳ) : Y ∗⇒ X∗ defined by

D∗F(x̄, ȳ)(y?) =
{

x? ∈ X∗ : (x?,−y?) ∈ N
(

gphF,(x̄, ȳ)
)}

is called the coderivative of F associated with ∂ .

We assume further that ∂ satisfies the separable property in the following sense:

(C5) If f is a separable function defined on X ×Y, that is, f (x,y) := f1(x) + f2(y),
(x,y) ∈ X×Y, where f1 : X → R∪{+∞}, f2 : Y → R∪{+∞}, then

∂ f (x,y) = ∂ f1(x)×∂ f2(y), for all (x,y) ∈ X×Y.

It is well known that the proximal subdifferential in Hilbert spaces, the Fréchet subd-
ifferential in Asplund spaces, the viscosity subdifferentials in smooth spaces as well
as the Ioffe and the Clarke-Rockafellar subdifferentials in the setting of general Ba-
nach spaces are subdifferentials verifying the conditions (C1)-(C5).

3 Slope characterizations of directional pseudo subregularity

For the understanding of the paper, it would be wise to recall the definitions of metric
subregularity and of Hölder metric subregularity. We say that a set-valued mapping
F : X ⇒ Y between metric spaces X ,Y is called metrically subregular at a point
(x̄, ȳ) ∈ gphF with constant τ > 0, if there exists a neighbourhood U of x̄ such that

τd(x,F−1(ȳ))6 d(ȳ,F(x)) for all x ∈U. (3.1)
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If in relation (3.1) we replace d(ȳ,F(x)) by d(ȳ,F(x))γ , with γ > 0, then we say that
F is Hölder metrically subregular at (x̄, ȳ) ∈ gphF with modulus τ and order γ and
(3.1) can be equivalently rewritten as

τd(x,F−1(ȳ))6 d(ȳ,F(x))γ for all x ∈U. (3.2)

Throughout the rest of the paper, we assume given Banach spaces X and Yi, (i =
1, · · · ,m), as well as a finite family of set-valued mappings Ti : X⇒Yi,(i= 1, · · · ,m).
We note T := (T1, . . . ,Tm) : X ⇒ Y1× ·· · ×Ym, the set-valued mapping defined by
T (x) := T1(x)× . . .×Tm(x) and consider γ := (γ1, ...,γm) ∈Rm such that γ > 1 which
means that γi > 1 for i = 1, ...,m. To begin with, let us first recall the definition of γ-
metric pseudo subregularity (γ-MPSR, for short) w.r.t. a given direction u and order
γ > 1.

Definition 3.1 (directional pseudo subregularity, [9]) A set-valued mapping T =
(T1, . . . ,Tm) : X⇒Y1×·· ·×Ym is said to be (γ1, . . . ,γm)-metrically pseudo subregular
(γi > 1) in the direction u at (x̄, ȳ) ∈ gphT with modulus τ > 0 iff there exist ε > 0
and δ > 0 such that

d
(
x,T−1(ȳ)

)
6 τ

m

∑
i=1
‖x− x̄‖1−γid

(
ȳi,Ti(x)

)
(3.3)

for x 6= x̄ in B(x̄,ε)∩
(
x̄+ coneB(u,δ )

)
.

As observed by Gfrerer, γi-metric pseudo subregularity (γi > 1) in the direction u = 0
implies Hölder subregularity of order 1

γi
. Note also that when m= 1, if we note T = T1

and γ = γ1, then (3.3) becomes:

d
(
x,T−1(ȳ)

)γ
6 ‖x− x̄‖γ−1d

(
x,T−1(ȳ)

)
6 τd

(
ȳ,T (x)

)
. (3.4)

Hence, if a set-valued mapping T : X ⇒Y is γ-MPSR at (x̄, ȳ) in the direction u, then
T is directionally Hölder metrically subregular of order γ at (x̄, ȳ) in the direction u
as mentioned in [23].

The new idea in this contribution is to consider a general metric pseudo sub-
regularity model called (γ,h)−pseudo subregularity associated with a given func-
tion h := (h1, . . . ,hm) : X −→ Rm

+ and with γ := (γ1, ...,γm) ∈ Rm with γi > 1 for
i = 1, ...,m. To facilitate ease of reading, we shall introduce some useful real-valued
functions corresponding to T = (T1, . . . ,Tm) : X ⇒Y1×·· ·×Ym and γ = (γ1, . . . ,γm).
For each j, we define ρTj(·) = d

(
ȳ j,Tj(·)

)
and set

ϕTj(x) :=


ρTj (x)

h j(x)
γ j−1 if h j(x)> 0,

0 otherwise.

Now let us denote by ϕT the sum ϕT = ∑
m
j=1 ϕTj , by ψT = clϕT the lower semicon-

tinuous envelope of ϕT and by S the sublevel set [ψT 6 0]. Throughout the rest of the
document, we make use of the following assumption:

(A ) h1, . . . ,hm : X −→ R+ are continuous functions and satisfy

hi(x) = 0 =⇒ ρTi(x) = 0. (3.5)
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Definition 3.2 ((γ,h)-metric pseudo subregularity) Let T =(T1, . . . ,Tm) : X⇒Y1×
·· ·×Ym be given and let (x̄, ȳ) ∈ gphT . The mapping T is said to be (γ,h)-metrically
pseudo subregular in the direction u at (x̄, ȳ)∈ gphT for h = (h1, . . . ,hm) if there exist
τ > 0, ε > 0 and δ > 0 such that

d
(
x,T−1(ȳ)

)
6 τ ∑

16i6m,hi(x)>0

d
(
ȳi,Ti(x)

)
hi(x)γi−1 (3.6)

for x ∈ B(x̄,ε)∩
(
x̄+ coneB(u,δ )

)
with ∑

m
i=1 hi(x)> 0.

When the direction u := 0, we will say briefly that T is (γ,h)−pseudo subregular at
(x̄, ȳ) (that is, the inequality (3.6) is satisfied for all x near x̄). Let us note that when
considering some special mappings h, one recovers the concepts of directional metric
subregularity mentioned above. For instance, if we choose the functions hi(x) = ‖x−
x̄‖, one gets metric pseudo subregularity and if one considers the case m= 1, h1(x) :=
d(x,T−1(ȳ)) one gets directional Hölder metric subregularity. Especially, when γi = 1
(i = 1, ...,m), one gets the usual metric subregularity.

Throughout the paper, it is convenient to keep in mind the notation used in [20]:

x u−→ x̄ is meant to be x→ x̄ if u = 0 and x→ x̄ and x−x̄
‖x−x̄‖ →

u
‖u‖ otherwise, as well.

The rest of this section will be devoted to establish some characterizations for
the (γ,h)-metric pseudo subregularity (Definition 3.2). For such a purpose, the next
proposition will be useful.

Proposition 3.1 Suppose that T is not (h,γ)-metrically pseudo subregular in the di-
rection u at (x̄, ȳ) ∈ gphT . Then, for each nonnegative real sequence (τk) ↓ 0, there
exists a sequence xk

u−→ x̄ which satisfies for large integer k the following conditions:

i. d(xk,S)> 0;
ii. ψT (xk)6

τk
1−√τk

d(xk,S);

iii.
∣∣∇ψT

∣∣(xk)6max
{√

τk,τk
}

.

Consequently, one has

liminf
x

u−→x̄,x 6∈S,
ψT (x)/d(x,S)→0

{
|∇ψT |(x)

}
= 0. (3.7)

Proof According to the definition of metric pseudo subregularity, we can find a se-
quence x̃k

u−→ x̄ such that

x̃k 6∈ S, τkd
(
x̃k,S

)
> ∑

j=1,...,m
h j(x̃k)>0

d
(
ȳ j,Tj(x̃k)

)
h j(x̃k)

γ j−1 =
m

∑
j=1

ϕTj(x̃k)> ψT (x̃k). (3.8)

Hence, the lsc function ψT inherits the following property:

0 < ψT (x̃k)< τkd
(
x̃k,S

)
,k = 1,2, . . . (3.9)

Let εk := ψT (x̃k) > 0 and λk := min
{√

τkd(x̃k,S),
εk
τk

}
> 0. By the Ekeland varia-

tional principle, there exists for each k an element x̂k such that
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– ‖x̂k− x̃k‖6 λk;
– ψT (x̃k)− εk

λk
‖x̂k− x̃k‖> ψT (x̂k);

– the function fk : x 7−→ ψT (x)+
εk
λk
‖x− x̂k‖ attains its minimum at x̂k.

We are going to establish the following facts:

(i) x̂k 6∈ S;
(ii) x̂k

u−→ x̄;
(iii) ψT (x̂k)6

τk
1−√τk

d(x̂k,S);

(iv) |∇ψT |(x̂k)6max
{√

τk,τk
}

.

Assuming that (i) does not hold, one has

τkd
(
x̃k,S

)
6 τk‖x̃k− x̂k‖6 τkλk 6 εk = ψT (x̃k),

in contradiction with (3.9).
To prove (ii), let’s note that λk = o(‖x̃k− x̄‖) by virtue of the inequality

λk 6
√

τkd
(
x̃k,S

)
6
√

τk‖x̃k− x̄‖.

Set µk := ‖x̂k−x̄‖
‖x̃k−x̄‖ . After involving the triangle inequality, one deduces(
1− ‖x̂k− x̃k‖
‖x̃k− x̄‖

)
‖x̃k− x̄‖6 ‖x̂k− x̄‖6

(
1+
‖x̂k− x̃k‖
‖x̃k− x̄‖

)
‖x̃k− x̄‖.

Recalling that ‖x̂k− x̃k‖ 6 λk, we conclude that µk → 1 as well as ‖x̂k− x̄‖ → 0. If
u 6= 0, then a few straightforward calculations give us

x̂k− x̄
‖x̂k− x̄‖

− u
‖u‖

=

(
1
µk

)(
x̃k− x̄
‖x̃k− x̄‖

− u
‖u‖

)
+

(
1
µk

)
x̂k− x̃k

‖x̃k− x̄‖
+

(
1
µk
−1
)

u
‖u‖

.

(3.10)

Using (3.10) it yields
∥∥∥ x̂k−x̄
‖x̂k−x̄‖ −

u
‖u‖

∥∥∥→ 0, and therefore, (ii) is proved.
For establishing (iii), we invoke (3.9) and obtain

ψT (x̂k)

d(x̂,S)
6

ψT (x̃k)

d(x̂k,S)
6

τkd
(
x̃k,S

)
d(x̂k,S)

.

Since
|d(x̂k,S)−d(x̃k,S)|6 ‖x̂k− x̃k‖6 λk 6

√
τkd(x̃k,S),

for large k we get

ψT (x̂k)

d(x̂k,S)
6

τkd
(
x̃k,S

)
d
(
x̃k,S

)
−√τkd

(
x̃k,S

) = τk

1−√τk
.

Hence, (iii) follows immediately.
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In oder to verify (iv), remember that fk(·) attains a minimum at x̂k. As a result,

ψT (x)+
εk

λk
‖x− x̂k‖> ψT (x̂k)

for x close to x̂k. Equivalently,

ψT (x̂k)−ψT (x)
‖x̂k− x‖

6
εk

λk

for all x 6= x̂k belonging to a neighborhood of x̂k. In summary, we have

|∇ψT |(x̂k)6
εk

λk
= max

{
ψT (x̃k)√
τkd
(
x̃k,S

) ,τk

}
6max

{√
τk,τk

}
. (3.11)

Letting xk = x̂k, the whole proof is established. ut

Based on Proposition 3.1, the next theorem offers a sufficient criterion for metric
pseudo subregularity.

Theorem 3.1 Let T , γ , h and ψT be defined as above. Suppose that

liminf
x

u−→x̄,x 6∈S,
ψT (x)/d(x,S)→0

{
|∇ψT |(x)

}
> 0 (3.12)

is fulfilled. Then, the set-valued mapping T is (γ,h)-metrically pseudo subregular
w.r.t. the direction u at (x̄, ȳ) ∈ gphT .

Proof When (3.12) is valid, the set-valued mapping T must be (γ,h)-metrically pseudo
subregular as a direct consequence of Proposition 3.1. ut

Corollary 3.1 Under the same assumptions of Theorem 3.1, if now we have

liminf
x

u−→x̄,x 6∈S,
ψT (x)/‖x−x̄‖→0

{
|∇ψT |(x)

}
> 0, (3.13)

then, the set-valued mapping T is (γ,h)-metrically pseudo subregular w.r.t. the direc-
tion u at (x̄, ȳ) ∈ gphT .

Proof Relation (3.13) implies the one in (3.12). ut

Using Theorem 3.1 and taking hi(x) = ‖x− x̄‖, one obtains a slope characterization
of directional pseudo subregularity of T .

Proposition 3.2 (slope characterization) If

liminf
x

u−→x̄,x 6∈S
‖x−x̄‖−γ ϕTi (x)→0

∣∣∣∇cl
( m

∑
i=1

ρTi(·)
‖·− x̄‖γi−1

)∣∣∣(x)> 0 (3.14)

then T is (γ,h)-MPSR in the direction u at (x̄, ȳ).
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Similarly, considering the case m = 1, h1(x) := d
(
x,T−1(ȳ)

)
, we derive a characteri-

zation of directional Hölder metric subregularity of T .

Proposition 3.3 ( slope characterization) Suppose that the following condition

liminf
x

u−→x̄,x 6∈S,
d(ȳ,T (x))

‖x−x̄‖d(x,T−1(ȳ))γ−1→0

∣∣∣∇cl
d(ȳ,T (·))

d(·,T−1(ȳ))γ−1

∣∣∣(x)> 0 (3.15)

does hold. Then T is directional Hölder γ-metric subregular in the direction u at
(x̄, ȳ).

In many applications, it is sufficient to focus on the case m = 1. For such a situation,
when applying Theorem 3.1 we have to deal with the slope of the quotient of two
functions. The next lemma will be useful to the computation of the slope of such a
function.

Lemma 3.1 Let f ,g : X −→ R∪{∞} be lsc extended real-valued functions and let
x ∈ Dom f ∩Domg satisfying f (x) > 0 and g(x) > 0. Suppose in addition that g is
continuous at x. Under these assumptions, one has

∣∣∣∇( f
g

)∣∣∣(x)> |∇ f |(x)
g(x)

− f (x)
g(x)2 |∇g|(x). (3.16)

Proof Let us denote Θ := f
g . If x is an isolated point of Dom Θ , then x is a local

minimum of both Θ and f , so |∇Θ |(x) = |∇ f |(x) = 0, and the conclusion is trivial.
On the contrary, we fix a sequence of nonnegative reals (εk) ↓ 0. Then, there is a
sequence (δk) ↓ 0 for which the following property holds true:

‖z− x‖6 δk =⇒ g(x)−g(z)6
(
|∇g|(x)+ εk

)
‖x− z‖. (3.17)

For each k, we may select zk ∈ B(x,δk)\{x} such that

f (x)− f (zk)>
(
|∇ f |(x)− εk

)
‖x− zk‖. (3.18)

Due to the continuity of g, it is possible to assume g(zk)> 0. We have

Θ(x)−Θ(zk)

‖x− zk‖
=

f (x)
g(x)

− f (zk)

g(zk)

‖x− zk‖

=
1

g(zk)
· f (x)− f (zk)

‖x− zk‖
− f (x)

g(x)g(zk)
· g(x)−g(zk)

‖x− zk‖

>
1

g(zk)

(
|∇ f |(x)− εk

)
− f (x)

g(x)g(zk)

(
|∇g|(x)+ εk

)
.
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From the last inequality we derive

limsup
k→∞

Θ(x)−Θ(zk)

‖x− zk‖

> limsup
k→∞

(
1

g(zk)

(
|∇ f |(x)− εk

)
− f (x)

g(x)g(zk)

(
|∇g|(x)+ εk

))
=

1
g(x)
|∇ f |(x)− f (x)

g(x)2 |∇g|(x).

Since |∇Θ |(x) = limsup
z→x

Θ(x)−Θ(z)
‖x− z‖

, we obtain

|∇Θ |(x)> limsup
k→∞

Θ(x)−Θ(zk)

‖x− zk‖
>

1
g(x)
|∇ f |(x)− f (x)

g(x)2 |∇g|(x).

ut

Invoking Lemma 3.1, we obtain Lemma 3.2 used in the sequel for proving Proposi-
tion 3.4.

Lemma 3.2 Let T : X ⇒ Y be a given set-valued mapping and let (x̄, ȳ) ∈ gphT .
Suppose that h : X −→ R+ is locally Lipschitz around x̄ and that the subsequent
condition is valid as well

limsup
x

u−→x̄,x 6∈S

d(x,S)
h(x)

<+∞ (3.19)

for some u ∈ X. Then,

liminf
x

u−→x̄,x 6∈S,
h(x)1−γ ρT (x)

d(x,S) →0

∣∣∣∇(clρT

hγ−1

)∣∣∣(x)> liminf
x

u−→x̄,x 6∈S,
h(x)−γ ρT (x)→0

{
|∇clρT |(x)

h(x)γ−1

}
. (3.20)

Proof Applying Lemma 3.1 with f = clρT and g(·) = h(·)γ−1 we deduce∣∣∣∇(clρT

hγ−1

)∣∣∣(x)> |∇clρT |(x)
h(x)γ−1 − clρT (x)

h(x)γ−1

∣∣∇(hγ−1
)∣∣(x)

h(x)γ−1 (3.21)

for each x 6∈ S. According to [19], we have∣∣∇(hγ−1)∣∣(x) = (γ−1)h(x)γ−2∣∣∇h
∣∣(x). (3.22)

But since h is locally Lipschitz, it holds that κ(x) :=
∣∣∇h
∣∣(x) is locally bounded

around x̄. Let’s re-write (3.21) as follows∣∣∣∇(clρT

hγ−1

)∣∣∣(x)> |∇clρT |(x)
h(x)γ−1 − (γ−1)κ(x)

clρT (x)
h(x)

>
|∇clρT |(x)

h(x)γ−1 − (γ−1)κ(x)h(x)γ−1 ρT (x)
h(x)γ−1d(x,S)

· d(x,S)
h(x)

.

(3.23)
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Combining (3.19), (3.20) with (3.23) we infer

liminf
x

u−→x̄,x 6∈S,
h(x)1−γ ρT (x)

d(x,S) →0

∣∣∣∇(clρT

hγ−1

)∣∣∣(x)> liminf
x

u−→x̄,x 6∈S,
h(x)1−γ ρT (x)

d(x,S) →0

|∇clρT |(x)
h(x)γ−1 . (3.24)

Assume that (xk) is a sequence in X such that

xk
u−→ x̄, xk 6∈ S,

h(xk)
1−γ ρT (xk)

d(xk,S)
→ 0. (3.25)

By virtue of (3.19), we have

limsup
k→∞

d(xk,S)
h(xk)

<+∞,

which yields

limsup
k→∞

{
h(xk)

−γ
ρT (xk)

}
= limsup

k→∞

{
h(xk)

1−γ ρT (xk)

d(xk,S)
· d(xk,S)

h(xk)

}
= 0. (3.26)

As a result, we get

liminf
k→∞

{
|∇clρT |(xk)

h(xk)γ−1

}
> liminf

x
u−→x̄,x 6∈S,

h(x)−γ ρT (x)→0

{
|∇clρT |(x)

h(x)γ−1

}
. (3.27)

Combining (3.25) with (3.27), it holds that

liminf
x

u−→x̄,x 6∈S,
h(x)1−γ ρT (x)

d(x,S) →0

|∇clρT |(x)
h(x)γ−1 > liminf

x
u−→x̄,x 6∈S,

h(x)−γ ρT (x)→0

{
|∇clρT |(x)

h(x)γ−1

}
. (3.28)

In summary, (3.24) and (3.28) give us

liminf
x

u−→x̄,x 6∈S,
h(x)1−γ ρT (x)

d(x,S) →0

∣∣∣∇(clρT

hγ−1

)∣∣∣(x)> liminf
x

u−→x̄,x 6∈S,
h(x)−γ ρT (x)→0

{
|∇clρT |(x)

h(x)γ−1

}
. (3.29)

This completes the proof of Lemma 3.2. ut

Based on the previous results, we present a robust version of Theorem 3.1 for the
case m = 1 which might be more comfortable in practice.

Proposition 3.4 Let T , x̄, ȳ and h satisfy all assumptions of Lemma 3.2. Then, under
the following condition

liminf
x

u−→x̄,x 6∈S,
h(x)−γ ρT (x)→0

|∇clρT |(x)
h(x)γ−1 > 0, (3.30)

the set-valued mapping T is γ-metrically pseudo subregular at x̄ for ȳ in the direction
u.

Proof The proof follows by combining Theorem 3.1 with Lemma 3.2. ut
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4 Coderivative characterization of directional metric pseudo subregularity

Theorem 3.1 provides two sufficient conditions ensuring the validity of directional
pseudo subregularity through the slopes corresponding to suitable functions. Gfrerer
in his work [9] dealt with such a property using the notion of coderivatives. In or-
der to study the directional metric regularity property, the authors of [21], introduced
the notion of limiting critical set around a reference point (x̄, ȳ) ∈ gphT . Follow-
ing a similar trend, we shall develop an infinitesimal criterion for directional metric
pseudo subregularity using the coderivative associated with an abstract subdifferential
∂ . Hereinafter, we assume that the abstract subdifferential ∂ satisfies the following
quotient fuzzy rule:

(C5): Let f1, f2 : X→R∪{+∞} be two locally Lipschitz functions around x0 ∈ X
with f1(x0)≥ 0, f2(x0)> 0. For any ε > 0 one has

∂

(
f1

f2

)
(x0)⊆

⋃
x1,x2∈B(x0,ε)

{
f2(x0)∂ f1(x1)− f1(x0)∂ f2(x2)

f2(x0)2 + εBX?

}
.

Note that (C5) is valid for all usual subdifferentials in the literature of variational
analysis.

Proposition 4.1 Let T : X ⇒ Y = Y1 × ·· · ×Ym be a closed set-valued mapping
between two Banach spaces X and Y and (x̄, ȳ) ∈ gphT . Suppose given functions
hi : X −→R+,(i = 1, · · · ,m) locally Lipschitz around x̄. Let u∈ X and γ > 1 be given
for which the following condition is fulfilled

limsup
x

u−→x̄,x 6∈S

max
i=1,...,m

d(x,S)
hi(x)

<+∞. (4.1)

If T is not metrically pseudo subregular in the direction u at (x̄, ȳ), then there exist
some real sequence (tk) ↓ 0 together with (uk,vk) ∈ SX×Y , u?k ∈ X∗ and v?k ∈ Y ∗ such
that

(a). lim
k→∞

∥∥uk
∥∥= 1, lim

k→∞

∥∥‖u‖uk−u
∥∥= 0;

(b). lim
k→∞

maxi=1,...,m
{
(tk)1−γi‖vki‖

}
= 0;

(c). the vector (u?k ,−ṽ?k) belongs to N
(

gphT,(x̄+ tkuk, ȳ+ tkvk)
)
, where ṽ?k ∈ Y ∗ is

given by ṽ?ki = hi(x̄+ tkuk)
1−γiv?ki;

(d). lim
k→∞

{
∑

m
i=1〈v?ki,hi(x̄+ tkuk)

1−γivki〉∥∥(h1(x̄+ tkuk)1−γ1vk1, . . . ,hm(x̄+ tkuk)1−γmvkm
)∥∥
}

= 1;

(e). lim
k→∞

{
‖u?k‖

}
= 0, lim

k→∞

{
‖v?ki‖

}
= 1.

Proof For convenience, we assume that the distance on Y is given by

‖y‖Y := ‖y1‖Y1 + · · ·+‖ym‖Ym .

Further, with the aim of simplifying the notation, let us use ‖·‖ to indicate the norm
in any Banach space. By Proposition 3.1, we can find some sequences xk

u−→ x̄ such
that
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(i) xk 6∈ S;

(ii) lim
k→∞

ψT (xk)

d(xk,S)
= 0;

(iii) lim
k→∞

{∣∣∇ψT
∣∣(xk)

}
= 0.

Denoting αk := ‖xk − x̄‖ > 0 and assuming ψT (xk) = βkd(xk,S) where βk ↓ 0, for
each k, choose some positive parameters σk and ηk satisfying σk = o(ψT (xk)) and
ηk < σk. Making σk and ηk smaller if necessary, we may suppose

– 2ηk +σk < ψT (xk);
– ϕT (z)> ψT (xk)−σk whenever ‖z− xk‖6 ηk.

Let τk :=
∣∣∇ψT

∣∣(xk), then according to the definition, xk is a local minimum to the
function ψT (·)+(τk+σk)‖·−xk‖. Hence, there exists a radius rk6 min

j=1,...,m

{
h j(xk)

γ j ηk
}

such that
ψT (xk) = min

‖x−xk‖62rk

{
ψT (x)+(τk +σk)‖x− xk‖

}
. (4.2)

By the definition of a lsc envelope, we may select some (x̂k, ŷk)∈ gphT which fulfills
the two properties below:

‖x̂k− xk‖6 σkrk and
m

∑
j=1

‖ȳ j− ŷk j‖
h j(x̂k)

γ j−1 6 ψT (xk)+σkrk. (4.3)

Using (4.2), we deduce
m

∑
j=1

‖ȳ j− ŷk j‖
h j(x̂k)

γ j−1 6 ψT (x)+(τk +σk)‖x− xk‖+σkrk

6 δgphT (x,y)+
m

∑
j=1

‖ȳ j− y j‖
h j(x)γ j−1 +(τk +σk)‖x− x̂k‖

+(τk +σk)‖xk− x̂k‖+σkrk.

(4.4)

Define a lsc function fk : X×Y −→ R∪{+∞} by the formula

fk(x,y) := δgphT (x,y)+
m

∑
j=1

‖ȳ j− y j‖
h j(x)γ j−1 +(τk +σk)‖x− x̂k‖. (4.5)

Observe that fk(x̂k, ŷk) = ∑
m
j=1

‖ȳ j−ŷk j‖
h j(x̂k)

γ j−1 and that

fk(x̂k, ŷk)6 inf
‖x−xk‖62rk

f (x,y)+ εk,

where εk := (τk +σk)‖xk− x̂k‖+σkrk > 0. Setting λk := rk
√

σk > 0 and applying the
Ekeland variational principle, take (x̃k, ỹk) ∈ X×Y such that

– ‖(x̂k, ŷk)− (x̃k, ỹk)‖6 λk;
– fk(x̂k, ŷk)− εk

λk
‖(x̂k, ŷk)− (x̃k, ỹk)‖> fk(x̃k, ỹk);

– (x̃k, ỹk) is a minimum to the function (x,y) ∈ X ×Y 7−→ fk(x,y) +
εk
λk
‖(x,y)−

(x̃k, ỹk)‖ subject to the constraint ‖x− xk‖6 2rk.
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Observe that λk = o(rk), so x̃k 6= x̄, which allows for writing ỹk j 6= ȳ j. The last con-
dition along with the properties (C1)− (C5) of the subdifferential operator show that,
there are some elements x̃i

k, x̃k j ∈ X , ỹi
k ∈ Y , ỹk j ∈ Yj and also x̃i?

k , x̃
?
k j ∈ X∗, ỹi?

k ∈ Y ∗,
ỹ?k j ∈ Y ?

j which fulfill the following conditions:

(i) max
{
‖x̃k− x̃i

k‖,‖x̃k− x̃k j‖,‖ỹk− ỹi
k‖,‖ỹk− ỹk j‖

}
6 νk, where νk6min

{
λk,βk‖ȳ1−

ỹk1‖, . . . ,βk‖ȳm− ỹkm‖
}

;
(ii) (x̃1?

k , ỹ1?
k ) ∈ ∂X×Y δgphT (x̃1

k , ỹ
1
k) = N

(
gphT,(x̃1

k , ỹ
1
k)
)
;

(iii) x̃2?
k ∈ ∂X‖·− x̂k‖(x̃2

k);
(iv) (x̃3?

k , ỹ3?
k ) ∈ ∂X×Y‖(·, ·)− (x̃k, ỹk)‖(x̃3

k , ỹ
3
k);

(v) ỹ4?
k j ∈ ∂Y j‖ȳ j−·‖(ỹ4

k j);

(vi) x̃4?
k j ∈ ∂X

(
h

1−γ j
j

)
(x̃4

k j) = (1− γ j)h j(x̃4
k j)
−γ j
(
∂X h j

)
(x̃4

k j);
(vii)

∥∥x̃1?
k +(τk +σk)x̃2?

k + εk
λk

x̃3?
k +∑

m
j=1‖ȳ j− ỹ4

k j‖x̃4?
k j

∥∥6 σk;
(viii)

∥∥ỹ1?
k j +

εk
λk

ỹ3?
k j +h j(x4

k j)
1−γ j ỹ4?

k j

∥∥6 σk.

We shall establish the conclusion of Proposition 4.1 step-by-step through several aux-
iliary facts.

Fact 1 It holds that

lim
k→∞

‖x̂k− xk‖
‖xk− x̄‖

= lim
k→∞

‖x̃i
k− xk‖
‖xk− x̄‖

= lim
k→∞

‖x̃4
k j− xk‖
‖xk− x̄‖

= 0; (4.6a)

lim
k→∞

h j(x̂k)

h j(xk)
= lim

k→∞

h j(x̃i
k)

h j(xk)
= lim

k→∞

h j(x̃4
k j)

h j(xk)
= 1; (4.6b)

lim
k→∞

{
1

ψT (xk)

m

∑
j=1

‖ȳ j− ŷk j‖
h j(x̂k)

γ j−1

}
= 1; (4.6c)

lim
k→∞

{
1

ψT (xk)

m

∑
j=1

‖ȳ j− ỹi
k j‖

h j(x̃i
k)

γ j−1

}
= 1, i = 1,2,3; (4.6d)

lim
k→∞

{
1

ψT (xk)

m

∑
j=1

‖ȳ j− ỹ4
k j‖

h j(x̃4
k j)

γ j−1

}
= 1. (4.6e)

Proof of Fact 1 Firstly, we establish (4.6a). Equality lim
k→∞

‖x̂k−xk‖
‖xk−x̄‖ = 0 is trivial due to

the choice of x̂k. Further, since

max
{
‖x̃i

k− x̃k‖,‖x̃4
k j− x̃k‖

}
6 λk = o(‖xk− x̄‖),

whereas ‖x̃k− x̂k‖6 λk = o(‖xk− x̄‖), one gets

max
{
‖x̃i

k− xk‖,‖x̃4
k j− xk‖

}
= o(‖xk− x̄‖),

which implies (4.6a).
For (4.6b), let us involve the Lipschitz property to each function h j. Indeed, for

each j = 1,2, . . . ,m there is L j > 0 and r j > 0 for which one has

‖x− x̄‖6 r j,‖x′− x̄‖6 r j
‖x− x′‖6 r j

}
=⇒ |h j(x)−h j(x′)|6 L j‖x− x′‖. (4.7)
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Thus, when k is large, it holds that

|h j(x̂k)−h j(xk)|6 L j‖x̂k− xk‖6 L jσkrk. (4.8)

This allows us to write ∣∣∣h j(x̂k)

h j(xk)
−1
∣∣∣6 L j

rk

h j(xk)
σk. (4.9)

By interchanging in turn the role between x̂k with x̃k j, x̃i
k and repeating the arguments

above, we deduce

max
{∣∣∣h j(x̃4

k j)

h j(xk)
−1
∣∣∣, ∣∣∣h j(x̃i

k)

h j(xk)
−1
∣∣∣}6 L j

rk

h j(xk)
(σk +2

√
σk). (4.10)

Since rk 6 h j(xk)
γ ηk, (4.6b) follows from (4.9) and (4.10).

In the next step, we prove (4.6c). According to the choice of x̂k, it is possible to
derive

h j(x̂k)
1−γ j‖ȳ j− ŷk j‖> h j(x̂k)

1−γ j d
(
ȳ j,Tj(x̂k)

)
= ϕTj(xk).

As a result
m

∑
j=1

‖ȳ j− ŷk j‖
h j(x̂k)

γ j−1 > ϕT (xk)> ψT (xk)−σk.

Further, we have ∑
m
j=1

‖ȳ j−ŷk j‖
h j(x̂k)

γ j−1 < ψT (xk) + σkrk by the choice of ŷk j. Thus, the

limit (4.6c) is a direct consequence of the fact that σk = o(ψT (xk)).
Based on (4.6b), we can derive that the proof of (4.6e) is similar to the one

of (4.6d). Thus, it is sufficient to verify (4.6d) only. Indeed, fix an index i ∈ {1,2,3}.
We infer from (4.6b) that

lim
k→∞

{
1

ψT (xk)

m

∑
j=1

‖ȳ j− ŷk j‖
h j(x̃i

k)
γ j−1

}
= 1.

According to the choice of ỹi
k j we get

‖ỹi
k j− ŷk j‖6 ‖ỹk j− ŷk j‖+‖ỹi

k j− ŷk j‖6 2λk = 2rk
√

σk,

which yields
‖ỹi

k j− ŷk j‖
ψT (xk)h j(x̃i

k)
γ j−1 6 2

√
σk

rk

ψT (xk)h j(x̃i
k)

γ j−1

6 2
√

σk
h(xk)

γ j ηk

ψT (xk)h j(x̃i
k)

γ j−1 .

Recalling that ηk < σk = o(ψT (xk)), we obtain (4.6d) by applying (4.6b). ut
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Fact 2 We have ȳ 6∈ T (x̃1
k).

Let us define

tk :=
∥∥(x̃1

k− x̄, ỹ1
k− ȳ

)∥∥, (4.11a)

uk := (tk)−1(x̃1
k− x̄), (4.11b)

vki := (tk)−1(ỹ1
ki− ȳi), i = 1, . . . ,m. (4.11c)

Then the following relations are valid as well

‖(uk,vk)‖= 1, (4.12a)
lim
k→∞
‖uk‖= 1, (4.12b)

lim
k→∞

∥∥‖u‖uk−u
∥∥= 0, (4.12c)

lim
k→∞

{
(tk)1−γi‖vki‖

}
= 0. (4.12d)

Proof of Fact 2 Firstly, by the triangle inequality:

‖xk− x̃1
k‖6 ‖xk− x̂k‖+‖x̂k− x̃k‖+‖x̃k− x̃1

k‖6 σkrk +λk +νk = o(ηk).

Hence, for k large ‖xk− x̃1
k‖< ηk. Thus, we infer from the choice of ηk that

ϕT (x̃1
k)> ψT (x̃1

k)−σk > ηk.

This shows that ȳ 6∈ T (x̃1
k). Particularly, one has x̃1

k 6= x̄, which implies tk > 0. Hence,
the elements uk, vki are well-defined. The equality (4.12a) is trivial by the defini-
tions (4.11a)–(4.11c). To prove (4.12b), we note that ‖x̃1

k − x̄‖ ∼ ‖xk− x̄‖ = αk ac-
cording to (4.6a). It follows from the choice of ŷk that (see (4.3))

‖ŷki− ȳi‖6 hi(x̂k)
γi−1(

ψT (xk)+σkrk
)
= o(αk),

which allows for writing

‖ỹ1
ki− ȳi‖6 ‖ỹ1

ki− ỹki‖+‖ỹki− ŷki‖+‖ŷki− ȳi‖
6 ‖ỹ1

k− ỹk‖+‖ỹk− ŷk‖+‖ŷki− ȳi‖
6 νk +λk +‖ŷki− ȳi‖= o(αk).

Thus, the limit in (4.12b) is obtained directly from (4.11a) and (4.11b).
With the aim of verifying (4.12c), let us define the auxiliary element ûk := ‖u‖

‖xk−x̄‖ (xk−
x̄)−u. For such a notation, we have

‖u‖uk−u = (tk)−1‖u‖(x̃1
k− ū)−u

= ‖uk‖
(
ûk +u

)
−u+‖u‖‖uk‖

x̃1
k− xk

‖xk− x̄‖

= ‖uk‖ûk +(‖uk‖−1)u+‖u‖‖uk‖
x̃1

k− xk

‖xk− x̄‖
.
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Observe that xk
u−→ x̄; we get ‖ûk‖ → 0, and hence, (4.12c) follows from (4.12b)

and (4.6a).
Finally, we establish (4.12d). Due to (4.11a), (4.11c) we may write

(tk)1−γi‖vki‖=
‖ỹ1

k− ȳ‖
‖(x̃1

k − x̄, ỹ1
k− ȳ)‖γi

6
‖ỹ1

k− ȳ‖
‖x̃1

k− x̄‖γi

k→∞∼
‖ỹ1

k− ȳ‖
‖xk− x̄‖γi

.

Recalling the estimation for ‖ỹ1
k− ȳ‖ as above, we find

‖ỹ1
ki− ȳi‖6 νk +λk +‖ŷki− ȳi‖

6 νk +λk +hi(x̂k)
γi−1(

ψT (xk)+σkrk
)
.

We know that limsup
k→∞

hi(xk)

‖xk− x̄‖
<+∞, lim

k→∞

ψT (xk)

d(xk,S)
= 0. Therefore, (4.6a) and (4.6b)

imply limsup
k→∞

hi(x̂k)
γi−1ψT (xk)

‖xk− x̄‖γi
= 0. Since rk 6 hi(xk)

γiηk and λk = o(rk), νk = o(rk),

we conclude that ‖ỹ1
ki− ȳi‖= o

(
‖xk− x̄‖γi

)
. Thus, (4.12d) is thereby proved. ut

Fact 3 For each i = 1,2, . . . ,m it holds that

lim
k→∞

{
[hi(xk)]

γi−1‖ỹ1?
ki ‖
}
= 1. (4.13)

Proof of Fact 3 Invoking (viii), there exists w?
ki ∈ BY ∗i

such that

σkw?
ki = ỹ1?

ki +
εk

λk
ỹ3?

ki +h(x4
ki)

1−γi ỹ4?
ki .

By virtue of (iv), the sequence (ỹ3?
ki ) is bounded in norm, so

lim
k→∞

∥∥ỹ1?
ki +h(x4

ki)
1−γi ỹ4?

ki

∥∥= 0. (4.14)

By using (4.6b), it follows that hi(x̃4
ki) > 0 as k is sufficiently large (because of

hi(x̃4
ki)∼ hi(xk)). This implies ỹ4

ki 6= ȳi unless a finite many of indexes k. Taking into
account (v) and since the function ‖ȳi− ·‖ is convex continuous on Yj, we can say
that ỹ4

ki is a minimum to the function ‖ȳi−·‖−〈ỹ4?
ki , ·− ỹ4

ki〉. Thus,

‖ỹ4?
ki ‖= 1, ‖ȳi− ỹ4

ki‖=−〈ỹ4?
ki , ȳi− ỹ4

ki〉. (4.15)

The latter permits us to obtain

h(x4
ki)

1−γi −
∥∥ỹ1?

ki +h(x4
ki)

1−γi ỹ4?
ki

∥∥6 ‖ỹ1?
ki ‖
6 h(x4

ki)
1−γi +

∥∥ỹ1?
ki +h(x4

ki)
1−γi ỹ4?

ki

∥∥ (4.16)

Combining (4.6b), (4.14) with (4.16) we obtain (4.13). ut
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Fact 4 Let us define with respect to each k the elements below:

u?k := x̃1?
k , (4.17a)

v?ki :=−hi(x̄+ tkuk)
γi−1ỹ1?

ki , (4.17b)

ṽ?ki := hi(x̄+ tkuk)
1−γiv?ki. (4.17c)

For such elements, we have

lim
k→∞
‖v?ki‖= 1, (4.18a)(

u?k ,−ṽ?k1, . . . ,−ṽ?km
)
∈ N

(
gphT,(x̄+ tkuk, ȳ+ tkvk)

)
, (4.18b)

lim
k→∞
‖u?k‖= 0, (4.18c)

lim
k→∞

∑
m
i=1
〈
v?ki,hi(x̄+ tkuk)

1−γivki
〉∥∥(h1(x̄+ tkuk)1−γ1vk1, . . . ,hm(x̄+ tkuk)1−γmvkm

)∥∥ = 1. (4.18d)

Proof of Fact 4 The relations (4.18a) is derived from (4.17b) and (4.13), while (4.18b)
is a consequence of (ii). In order to obtain (4.18c), we invoke (iii), (iv), (vi), (vii), (4.6e)
and (4.13). Indeed, thanks to (vii), there is û?k ∈ BX∗ such that

σkû?k = x̃1?
k +(τk +σk)x̃2?

k +
εk

λk
x̃3?

k +
m

∑
i=1

(1− γi)
‖ȳi− ỹ4

ki‖
hi(x̃4

ki)
γi

ũ?ki, (4.19)

where ũ?ki ∈ ∂X hi(x̃4
ki) satisfies x̃4?

ki = (1− γi)hi(x̃4
ki)
−γi ũ?ki. According to (iii), (iv) and

by the Lipschitz property of each function hi, it is possible to check that

limsup
k→∞

{
max

{
‖x̃2?

k ‖,‖x̃3?
k ‖,‖ũ?k1‖, . . . ,‖ũ?km‖

}}
<+∞. (4.20)

Denoting γ∗ = max{γ1, . . . ,γm}, (4.19) yields

‖x̃1?
k ‖6 σk‖û?k‖+(τk +σk)‖x̃2?

k ‖+
εk

λk
‖x̃3?

k ‖

+(γ∗−1)
(

max
i=1,...,m

1
hi(x̃4

ki)

)(
max

i=1,...,m
‖ũ?ki‖

) m

∑
i=1

‖ȳi− ỹ4
ki‖

hi(x̃4
ki)

γi−1 .
(4.21)

Using (4.6b) and observing that limsup
k→∞

d(xk,S)
hi(xk)

<+∞, we deduce

limsup
k→∞

d(xk,S)
hi(x̃4

ki)
<+∞.

As a result, (4.18c) is obtained under the combination of (4.20), (4.21), (4.6e) and the
assumption that ψT (xk)

d(xk,S)
→ 0.

With the aim of establishing (4.18d), we define some quantities{
aki := hi(x̄+ tkuk)

1−γi〈v?ki,vki〉,ak := ∑
m
i=1 aki,

bki := hi(x̄+ tkuk)
1−γi‖vki‖,bk := ∑

m
i=1 bki.
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Then, we have {
−aki = (tk)−1〈ỹ1?

ki , ỹ
1
ki− ȳi〉,

bki = (tk)−1hi(hi(x̃1
k))

1−γi‖ỹ1
ki− ȳi‖.

(4.22)

Since ỹ1?
ki +

εk
λk

ỹ3?
ki +hi(x̃4

ki)
1−γi ỹ4?

ki = σkw?
ki (see in the proof of Fact 3), it follows that

− tkhi(x̃4
ki)

γi−1aki = 〈hi(x̃4
ki)

γi−1ỹ1?
ki , ỹ

1
ki− ȳi〉= σkhi(x̃4

ki)
γi−1〈w̃?

ki, ỹ
1
ki− ȳi〉

− εk

λk
hi(x̃4

ki)
γi−1〈ỹ3?

ki , ỹ
1
ki− ȳi〉−〈ỹ4?

ki , ỹ
1
ki− ȳi〉.

Consequently, we find

tkhi(x̄+ tkuk)
γi−1
{

bki−
[hi(x̃4

ki)

hi(x̃1
k)

]γi−1
aki

}
= ‖ȳi− ỹ1

ki‖
{

σkhi(x̃4
ki)

γi−1 〈w̃?
ki, ỹ

1
ki− ȳi〉

‖ȳi− ỹ1
ki‖

}
−‖ȳi− ỹ1

ki‖
{

εk

λk
hi(x̃4

ki)
γi−1 〈ỹ3?

ki , ỹ
1
ki− ȳi〉

‖ȳi− ỹ1
ki‖

}
+‖ȳi− ỹ1

ki‖
{

1−
〈ỹ4?

ki , ỹ
1
ki− ȳi〉

‖ȳi− ỹ1
ki‖

}
.

(4.23)

As in the proof of Fact 3 (see (4.15))

‖ỹ4?
ki ‖= 1, ‖ȳi− ỹ4

ki‖+ 〈ỹ4?
ki , ȳi− ỹ4

ki〉= 0,

and the latter implies

〈ỹ4?
ki , ỹ

1
ki− ȳi〉= ‖ȳi− ỹ4

ki‖+ 〈ỹ4?
ki , ỹ

1
ki− ỹ4

ki〉. (4.24)

Moreover, recall that νk 6 βk‖ȳi− ỹki‖ (cf. (i)). Therefore, from the fact max{‖ỹ1
ki−

ỹki‖,‖ỹ4
ki− ỹki‖}6 νk (by virtue of (i)) one has

lim
k→∞

‖ỹ1
ki− ỹki‖
‖ȳi− ỹki‖

= lim
k→∞

‖ỹ4
ki− ỹki‖
‖ȳi− ỹki‖

= 0, (4.25a)

lim
k→∞

‖ȳi− ỹ1
ki‖

‖ȳi− ỹki‖
= lim

k→∞

‖ȳi− ỹ4
ki‖

‖ȳi− ỹki‖
= 1. (4.25b)

Combining (4.25a) with (4.25b), we obtain

limsup
k→∞

(
|〈ỹ4?

ki , ỹ
1
ki− ỹ4

ki〉|
‖ȳi− ỹ1

ki‖

)
6 limsup

k→∞

(
‖ỹ4?

ki ‖‖ỹ1
ki− ỹ4

ki‖
‖ȳi− ỹ1

ki‖

)
= 0.

Taking into account the estimation∣∣∣∣1− 〈ỹ4?
ki , ỹ

1
ki− ȳi〉

‖ȳi− ỹ1
ki‖

∣∣∣∣6 ∣∣∣∣1− ‖ȳi− ỹ4
ki‖

‖ȳi− ỹki‖

∣∣∣∣+ |〈ỹ4?
ki , ỹ

1
ki− ỹ4

ki〉|
‖ȳi− ỹ1

ki‖
,
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we find

lim
k→∞

(
1−
〈ỹ4?

ki , ỹ
1
ki− ȳi〉

‖ȳi− ỹ1
ki‖

)
= 0.

Hence, we can infer from (4.23) that

tkhi(x̄+ tkuk)
γi−1
{

bki−
[hi(x̃4

ki)

hi(x̃1
k)

]γi−1
aki

}
= o(‖ȳi− ỹ1

ki‖), (4.26)

which implies

bki−
[hi(x̃4

ki)

hi(x̃1
k)

]γi−1
aki = o(bki). (4.27)

Taking the sum over the index i in (4.27), we reach the conclusion

bk−
m

∑
i=1

{[hi(x̃4
ki)

hi(x̃1
k)

]γi−1
aki

}
= o(bk). (4.28)

Observe that

limsup
k→∞

|aki|
bki

= limsup
k→∞

{
hi(x̃1

k)
γi−1 |〈ỹ1?

ki , ȳi− ỹ1
ki〉|

‖ȳi− ỹ1
ki‖

}
6 limsup

k→∞

{
hi(x̃1

k)
γi−1‖ỹ1?

ki ‖
}
= 1, (4.29)

we deduce

bk−ak = bk−
m

∑
i=1

{[hi(x̃4
ki)

hi(x̃1
k)

]γi−1
aki

}
+

m

∑
i=1

{{[hi(x̃4
ki)

hi(x̃1
k)

]γi−1
−1
}

aki

}
= o(bk). (4.30)

This shows that lim
k→∞

(
1− ak

bk

)
= 0, which is equivalent to (4.18d). ut

Combining Facts 1, 2, 3, 4 we obtain a full proof for Proposition 4.1. ut

Definition 4.1 ((γ,h)-limiting critical set) Let T , γ and h as similar as in Defini-
tion 3.2 and let (x̄, ȳ) ∈ gphT . For some fixed element u ∈ X , we define the limiting
critical set SCrγ,h T (x̄, ȳ)(u) with respect to T , γ , h and u at the reference point (x̄, ȳ)
as follows. A pair (v,u?) ∈ Y ×X∗ lies in SCrγ,h T (x̄, ȳ)(u) if it is possible to find

some sequences (tk) ↓ 0, (vk,u?k)
Y×X∗−−−→ (v,u?) and (uk,v?k) ∈ SX × SY ∗ which fulfill

simultaneously the following conditions:

i. lim
k→∞

∥∥‖u‖uk−u
∥∥= 0;

ii. the pair (xk,yk) with xk := x̄+ tkuk, yki := ȳi +(tk)γivki is in gphT but ȳ 6∈ T (xk);
iii.

(
u?k ,−h1(xk)

1−γ1v?k1, . . . ,−hm(xk)
1−γmv?km

)
∈ N

(
gphT,(xk,yk)

)
and one has

lim
k→∞

{
∑

m
i=1〈v?ki,hi(xk)

1−γi(yki− ȳi)〉∥∥(h1(xk)1−γ1(yk1− ȳ1), . . . ,hm(xk)1−γm(ykm− ȳm)
)∥∥
}

= 1.
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Using this new notion, we are now ready to present the infinitesimal characterization
for the property of (γ,h)-metric pseudo subregularity. The next theorem is in this
sense.

Theorem 4.1 Let T , γ , h and (x̄, ȳ) as in Definition 4.1. Suppose that each function
hi is locally Lipschitz around x̄ and that

limsup
x→x̄,x 6∈S

d(x,S)
hi(x)

<+∞, i = 1, . . . ,m. (4.31)

If (0,0) 6∈ SCrγ,h T (x̄, ȳ)(u), then the set-valued mapping T is (γ,h)-metrically pseudo
subregular in the direction u ∈ X at (x̄, ȳ).

Proof The proof is almost based on Proposition 4.1. Assume that the norm in Y ∗ =
Y ∗1 ×·· ·×Y ∗m coincides with the maximum

‖y?‖Y ∗ =
∥∥(y?1, . . . ,y?m)∥∥Y ∗ = max

{
‖y?1‖Y ∗1 , . . . ,‖y

?
m‖Y ∗m

}
.

Suppose on the contrary that T is not (γ,h)-metrically pseudo subregular in the di-
rection u at (x̄, ȳ). Let tk > 0, (uk,vk)∈ SX×Y , and (u?k ,v

?
k)∈ X∗×Y ∗ be the sequences

in the conclusion of Proposition 4.1. Let us define

xk := x̄+ tkuk,yk := ȳ+ tkvk; (4.32)

then it is clear that(
u?k ,−h1(xk)

1−γ1v?k1, . . . ,−hm(xk)
1−γmv?km

)
∈ N

(
gphT,(xk,yk)

)
, (4.33a)

lim
k→∞
‖u?k‖= 0, lim

k→∞
‖v?ki‖= 1, (4.33b)

lim
k→∞
‖uk‖= 1, lim

k→∞

∥∥‖u‖uk−u
∥∥= 0, (4.33c)

lim
k→∞

{
(tk)1−γ1‖vk1‖

}
= · · ·= lim

k→∞

{
(tk)1−γm‖vkm‖

}
= 0, (4.33d)

lim
k→∞

{
∑

m
i=1〈v?ki,hi(xk)

1−γivki〉∥∥(h1(xk)1−γ1vk1, . . . ,hm(xk)1−γmvkm
)∥∥
}

= 1. (4.33e)

Further, as proved in Fact 2, we also have ȳ 6∈ T (x̄+ tkuk) = T (xk). Setting

t̂k := ‖uk‖tk, (4.34a)

ûk := ‖uk‖−1uk, v̂ki := (tk)1−γi‖uk‖−γivki, (4.34b)

û?k := ‖v?k‖−1u?k , v̂?k := ‖v?k‖−1v?k , (4.34c)

we obtain

xk = x̄+ t̂kûk, yki = ȳi +(t̂k)γi v̂ki, (4.35a)(
û?k ,−h1(xk)

1−γi v̂?k1, . . . ,−hm(xk)
1−γm v̂?km

)
∈ N

(
gphT,(xk,yk)

)
, (4.35b)

‖ûk‖= 1, ‖v̂?k‖= 1, (4.35c)
lim
k→∞
‖v̂ki‖= 0, lim

k→∞
‖û?k‖= 0. (4.35d)
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On the other hand, combining (4.34c) with (4.33b) and (4.33e), we find

lim
k→∞

{
∑

m
i=1〈v̂?ki,hi(xk)

1−γi(yki− ȳi)〉∥∥(h1(xk)1−γ1(yk1− ȳ1), . . . ,hm(xk)1−γm(ykm− ȳm)
)∥∥
}

= lim
k→∞

{
‖v?k‖−1 ∑

m
i=1〈v?ki,hi(xk)

1−γivki〉∥∥(h1(xk)1−γ1vk1, . . . ,hm(xk)1−γmvkm
)∥∥
}

= lim
k→∞

{(
max

i=1,...,m
‖v?ki‖

)−1
∑

m
i=1〈v?ki,hi(xk)

1−γivki〉∥∥(h1(xk)1−γ1vk1, . . . ,hm(xk)1−γmvkm
)∥∥
}

= 1.

In addition, taking into account the representation

‖u‖ûk−u = ‖uk‖−1 (‖u‖uk−u)+
(
‖uk‖−1−1

)
u,

(4.33c) implies lim
k→∞

∥∥‖u‖ûk−u
∥∥= 0. In summary, it follows that (0,0)∈SCrγ,h T (x̄, ȳ)(u),

which contradicts the assumption of Theorem 4.1. ut

Remark 4.1 By letting hi(x) = ‖x− x̄‖, Theorem 4.1 subsumes to somewhat studied
in [9, Theorem 1]. Taking m = 1, h1 = d

(
x,T−1(ȳ)

)
, then Theorem 4.1 recovers the

results presented in the works [21, 23].

Note that certain applications concern set-valued mapping having a convex (and
closed) graph. For such situations, the counterpart of Theorem 4.1 might be also
fulfilled. The next result is in this sense.

Proposition 4.2 (Set-valued mapping with convex graph) Suppose that the set-
valued mapping T : X ⇒ Y has closed convex graph. Fix some given (x̄, ȳ) ∈ gphT
and u∈ X. Let γ and h be the same as in Theorem 4.1. If T is (γ,h)-metrically pseudo
subregular in the direction u at (x̄, ȳ), then one has (0,0) 6∈ SCrγ,h T (x̄, ȳ)(u).

Proof Replacing T by T̃ (·) := T (·+ x̄)− ȳ if necessary, we may assume x̄= 0 and ȳ=
0. Let T satisfy the assumptions of Proposition 4.2 but (0,0) be in the set SCrγ,h T (0,0)(u).
The definition of SCrγ,h T (0,0)(u) shows that, there exist a real sequence (sk) ↓ 0 to-

gether with some sequences (uk,v?k)∈ SX×SY ∗ and (vk,u?k)
Y×X∗−−−→ (0,0) which fulfill

the conditions below:

– lim
k→∞

∥∥‖u‖uk−u
∥∥= 0;

– we have yk ∈ T (xk) but 0 = ȳ 6∈ T (xk), in which xk = skuk ∈ X and yki = (sk)
γivki;

–
(
u?k ,−h1(xk)

1−γ1v?k1, . . . ,−hm(xk)
1−γmv?km

)
is an element of the normal cone N

(
gphT,(xk,yk)

)
;

– lim
k→∞

{
∑

m
i=1
〈
v?ki,hi(xk)

1−γiyki
〉∥∥(h1(xk)1−γ1yk1, . . . ,hm(xk)1−γmykm

)∥∥
}

= 1.

Let τ , δ and r be positive real parameters such that

d
(
x,T−1(0)

)
6 τ ∑

i:hi(x)>0
hi(x)1−γid

(
0,Ti(x)

)
(4.36)
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whenever x∈ coneB(u,δ ) with 0< ‖x‖< r. Since lim
k→∞

∥∥‖u‖uk−u
∥∥= 0, xk will be in

coneB(u,δ ) after skipping a few first indexes k. Hence, it is possible to apply (4.36)
at x = xk

d
(
xk,T−1(0)

)
6 τ

m

∑
i=1

hi(xk)
1−γid

(
0,Ti(xk)

)
6 τ

m

∑
i=1

hi(xk)
1−γi‖yki‖.

(4.37)

Recall that xk 6∈ T−1(0). By virtue of (4.37), for some 0 < σk < 1 there exists zk ∈
T−1(0) which fulfills the inequalities

0 < ‖xk− zk‖6 τ(1+σk)
m

∑
i=1

hi(xk)
1−γi‖yki‖. (4.38)

Because the set gphT is convex, we may derive from the choice of u?k and v?k that

〈u?k ,zk− xk〉+
m

∑
i=1
〈−hi(xk)

1−γiv?ki,−yki〉6 0. (4.39)

As a result, we obtain

∑
m
i=1 hi(xk)

1−γi‖yki‖
‖zk− xk‖

∑
m
i=1〈v?ki,hi(xk)

1−γiyki〉∥∥(h1(xk)1−γ1yk1, . . . ,hm(xk)1−γmykm
)∥∥

6
〈u?k ,xk− zk〉
‖zk− xk‖

.

(4.40)

Combining (4.38) with (4.40), we deduce

1
τ(1+σk)

∑
m
i=1〈v?ki,hi(xk)

1−γiyki〉∥∥(h1(xk)1−γ1yk1, . . . ,hm(xk)1−γm ykm
)∥∥

6
〈u?k ,xk− zk〉
‖zk− xk‖

6 ‖u?k‖.
(4.41)

Passing to the limit w.r.t k in both sides of (4.41), we obtain the following estimate

liminf
k→∞

{
1

τ(1+σk)

∑
m
i=1〈v?ki,hi(xk)

1−γiyki〉∥∥(h1(xk)1−γ1yk1, . . . ,hm(xk)1−γmykm
)∥∥
}
6 0. (4.42)

Since the left-hand side of (4.42) takes a positive value, we reach a contradiction.
This completes our proof. ut

As arising from many applications, for instance, in generalized equations, we restrict
our consideration to the case m = 1 and T = f +F where f : X −→ Y = Y1 is C1

and F : X ⇒Y has a closed and convex graph. Under some robust condition imposed
on the given data f and the abstract subdifferential ∂ , the next proposition has the
advantage of offering a necessary and sufficient condition for (γ,h)-metric pseudo
subregularity.
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Proposition 4.3 () Let γ = γ1 ∈ [1,2) and h = h1 : X −→ R be the same as in state-
ment of Theorem 4.1. Suppose in addition that the Jacobian map ∇ f is Lipschitz
around x̄ while the coderivative associated with ∂ obeys the sum rule

D∗( f +F)(x, f (x)+ z) = ∇ f (x)∗+D∗F(x,z) (4.43)

for every (x,z) ∈ gphF near (x̄, z̄) ∈ gphF. Then, T = f + F is (γ,h)-metrically
pseudo subregular in the direction u at (x̄, ȳ)∈ gphT if and only if (0,0) 6∈SCrγ,h T (x̄, ȳ)(u).

Proof It is sufficient to prove only the necessary part. Without any loss of generality,
we may assume x̄ = 0, f (x̄) = ȳ = 0. Suppose T is (γ,h)-metrically pseudo subreg-
ular in the direction u at (0,0). Let κ,δ ,ε be positive real numbers under which the
following estimation

d
(
x,T−1(0)

)
6 τh(x)1−γ d

(
0,T (x)

)
(4.44)

holds whenever x 6= 0∈ coneB(u,δ )∩εB. If (0,0)∈ SCrγ,h T (0,0)(u), we may select
for each k, some elements sk > 0, uk ∈ SX , vk ∈ Y , u?k ∈ X∗ and v?k ∈ SY ∗ such that

(a). the pair (xk,yk) is in gphT with xk = skuk and yk = f (xk)+ zk = (sk)
γ vk;

(b). lim
k→∞

∥∥‖u‖uk−u
∥∥= lim

k→∞

∥∥vk
∥∥= lim

k→∞

∥∥u?k
∥∥= 0;

(c).
(
u?k ,−h(xk)

1−γ v?k
)
∈ N(gphT,(xk,yk));

(d). lim
k→∞

{〈
v?k ,h(xk)

1−γ yk
〉∥∥h(xk)1−γ yk
∥∥
}

= 1.

In view of (c), one has

h(xk)
γ−1u?k ∈ D∗T (xk,yk)(v?k).

Applying the sum rule formula to T = f +F at (xk,zk), the latter inclusion yields

h(xk)
γ−1u?k−∇ f (xk)

∗v?k ∈ D∗F(xk,zk)(v?k). (4.45)

According to the definition of a coderivative, and noticing that gphF is closed and
convex, we deduce〈

h(xk)
γ−1u?k−∇ f (xk)

∗v?k ,x− xk
〉
+
〈
− v?k ,z− zk

〉
6 0 (4.46)

when (x,z) ∈ gphF . Taking (b) into account, we may apply (4.44) with x = xk and
get

d
(
xk,T−1(0)

)
6 τh(xk)

1−γ d
(
0,T (xk)

)
6 τh(xk)

1−γ‖yk‖. (4.47)

Recall that S = T−1(0). Let σk > 0 be such that limsup
k→∞

σk

d(xk,S)
= 0 and let x̂k ∈

S\{xk} satisfy

‖xk− x̂k‖6 d(xk,S)+min
{

σk,
1
k2 h(xk)

1−γ‖yk‖
}
. (4.48)

Substituting x = x̂k and z =− f (x̂k) in (4.46), we get〈
h(xk)

γ−1u?k−∇ f (xk)
∗v?k , x̂k− xk

〉
+
〈
− v?k ,− f (x̂k)− zk

〉
6 0. (4.49)
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Consequently, after replacing zk by yk− f (xk), (4.49) reads〈
h(xk)

γ−1u?k , x̂k− xk
〉
+
〈
v?k ,yk

〉
6
〈
v?k ,− f (x̂k)+ f (xk)+∇ f (xk)(x̂k− xk)

〉
.

(4.50)

Combining inequalities (4.47), (4.48) and (4.50), yields

h(xk)
γ−1

〈
u?k , x̂k− xk

〉
‖x̂k− xk‖

+h(xk)
γ−1
(

τ +
1
k2

)−1 〈v?k ,yk
〉

‖yk‖

6
1

‖x̂k− xk‖
〈
v?k ,− f (x̂k)+ f (xk)+∇ f (xk)(x̂k− xk)

〉
.

(4.51)

Setting ûk := x̂k− xk and applying the Taylor expansion to f gives:

f (x̃k) = f (xk)+∇ f (xk)(ûk)+
∫ 1

0
[∇ f (xk + tûk)−∇ f (xk)](ûk) dt.

From the Lipschitz continuity of the Jacobian ∇ f , we have

limsup
k→∞

supt∈[0,1]
{
‖∇ f (xk + tûk)−∇ f (xk)‖

}
‖ûk‖

<+∞,

and therefore, we obtain

limsup
k→∞

‖ f (x̃k)− f (xk)−∇ f (xk)(ûk)‖
‖ûk‖2 <+∞. (4.52)

This leads to the estimation〈
u?k , x̂k− xk

〉
‖x̂k− xk‖

+

(
τ +

1
k2

)−1 〈v?k ,yk
〉

‖yk‖
6 θkh(xk)

1−γ‖x̂k− xk‖,
(4.53)

in which the real sequence (θk) is bounded. Due to the choice of x̂k, it is possible to
write

d
(
xk,S

)
6 ‖x̂k− xk‖6 d

(
xk,S

)
+σk,

which permits to deduce that

limsup
k→∞

‖x̂k− xk‖
h(xk)

= limsup
k→∞

(
‖x̂k− xk‖
d(xk,S)

· d(xk,S)
h(xk)

)
<+∞. (4.54)

Taking into account that ‖u?k‖ → 0, and passing to the limit as k→ ∞ in (4.53), we
obtain that

liminf
k→∞

{(
τ +

1
k2

)−1 〈v?k ,yk
〉

‖yk‖

}
6 0.

However, the latter relation obviously contradicts (d). Thus, the proof is complete.
ut
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Remark 4.2 The conclusion of the preceding proposition is still valid for γ = 2 if we
choose h(x) = ‖x− x̄‖. Indeed, following the proof above, we have

‖yk‖= (sk)
γ‖vk‖= ‖xk‖γ‖vk‖= h(xk)

γ‖vk‖. (4.55)

Reminding (4.47), this yields d(xk,S) = o(h(xk)), and hence, from the choice of x̂k,
this implies

‖x̂k− xk‖= o(h(xk)). (4.56)

Combining this relation with (4.53), we reach a contradiction as in the previous proof.
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